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Abstract 

Functional MRI has been used as a tool to detect and quantify change in 

volumetric data sets. 	It is an important non-invasive functional 

neuroimaging method which has been developing rapidly. Functional 

images of the brain are commonly analysed by using some form of 

statistical parametric mapping. 

The motivation of this work is to investigate the reliability and 

reproducibility of activation detection, and to validate the analysis of 

standard fMRI data analysis techniques. The reproducibility of activation 

has been studied under the effects of registration, choice of a 

hemodynamic response function (HRF) and under different experimental 

protocols. A set of tools has been developed to enable independent 

evaluation of the presence of activation patterns engaged in repetitive 

tasks. This was utilized to investigate, briefly, the effect of the realignment 

process and, extensively, the effect of the choice of HRF signal on the 

activation. Comparisons are made between data analyzed using the 

accepted 'gold standard' technique of SPM and our alternative method, and 

the results are presented and qualitatively evaluated. ROC curves were 

produced to provide a graphical illustration of the results. 
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Chapter 1: Introduction 

Chapter 1 

Pntroduction 

Medical images are increasingly being used within healthcare for diagnosis, 

treatment planning, guidance during treatment procedures and monitoring 

disease progression. Medical images are captured by a variety of 

techniques, one of which is magnetic resonance imaging (MRI). Although 

the primary clinical usage for MRI remains anatomical imaging, it has been 

shown to be useful in the detection of brain activity via the relatively indirect 

coupling of neural activity to cerebral blood flow and subsequently to 

magnetic resonance signal intensity [2]. The goal of a broad class of 

techniques known as "functional neuroimaging" is to map the activity of the 

living brain in space and time. This requires the acquisition of multiple 

volumes of data from subjects at different times. fMRI is an important non-

invasive functional neuroimaging method which has been developing 

rapidly. I. has many advantages over other methods which include: the 

signal comes directly from functionally induced changes, speed, good 

spatial resolution (1-2 mm), good delineation of the spatial ektent on an 
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Chaptii-  1: Introduction 

activated area, little known risk and accurate matching to anatomical 

structures [3]. Data is acquired while the subject is engaged in a set of 

cognitive tasks designed to isolate specific brain functions. fMRI offers a 

powerful tool for mapping brain activation and for exploring the neural basis 

of human cognition, perception, and behaviour. ' Some of its clinical 

applications include [3]: neurological studies (epilepsy, Demehtia, and 

Stroke), emotional studies (Affective Disorders, EXternally Elicited Affect, 

and Pain), psychiatry, pediatrics, pharmacology, and surgical planning. 

Chapter 2 presents some basic concepts concerning functional MRI in 

terms of contrast, BOLD mechanism, biophysics and physiology, 

hemodynamic response function, the linearity issue, EPI and noise in fMRI. 

A fundamental step in the analysis of fMRI time-series of the brain is the 

correction for subject motion. This is necessary because the signal 

changes due to the hemodynamic response to neural activity can be small 

compared to signal changes that can result from subject motion, especially 

when the subject movement is correlated with the task. This will lead to 

uncertainty in deciding whether the changes in intensity are due to brain 

activity or subject movement. Subject head movement in the scanner 

cannot be completely eliminated, so motion correction needs to be 

performed as a preprocessing step on the image data. This requires the 

aligning of images as closely as possible prior to performing any statistical 

tests. The first step in the subject motion correction is image registration. 

20 



Chapter 1: Introduction 

Chapter 3 discusses the applications of image registration, the 

classification of registration techniques, registration steps, causes of 

misregistration and validation of the motion correction. 

Functional images of the brain are commonly compared using some form of 

"statistical parametric mapping". There are several public domain 

algorithms currently available for the analysis of fMRI data using a 

technique known as statistical parametric mapping, some of which are: 

Automated Image Registration (AIR), Analysis of Functional Neurolmages 

(AFNI), Statistical Parametric mapping (SPM) and the pyramid method of 

Thevenaz, Ruttimann and Unser (TRU), Independent Component Analysis 

(ICA) and BrainTools [4]. A widely used and freely distributed software 

package is SPM, which is designed to analyse functional neuroimaging 

data. SPM is a widely used algorithm package written in Matlab. It was 

developed originally in 1991 by K. Friston and was made available freely to 

the functional imaging community. Its main goal is to produce a statistically 

meaningful comparison between groups of images. A method has been 

developed to analyze fMRI data independently from SPM, and thus can be 

used as a comparative tool. Chapter 4 presents the statistical procedures 

for fMRI discussing the basic concepts of the general linear model, the t 

test and a detailed description of SPM99 and its comparison to SPM2. 
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Chapter 1: Introduction 

Chapter 5 describes the methods utilized in the investigation, chapter 6 and 

7 describe the results obtained with detailed discussion of these results. 

Finally, Chapter 8 presents a conclusion of this work and suggests future 

directions for work. 
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Chapter 2: Principles of Functional MRI 

Chapter 2 

Principles of Functional MRI  

2.1 Introduction 

Functional magnetic resonance imaging (fMRI) has greatly increased our 

ability to study localized brain activity in humans by taking advantage of the 

coupling between neuronal activity and hemodynamics (the local control of 

blood flow and oxygenation) in the brain. 

fMRI is a tomographic technology used in medical imaging that enables a 

non-invasive study of the function of the brain by measuring hemodynamic 

changes related to alterations in neural activity. Its main advantage over 

other imaging techniques is the absence of ionising radiation, which allows 

for repeated measurements to be made, allowing for the study of the 

reproducibility of activation images [5]. 
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2.2 Contrast in Functional MRI Imaging 

The apparent structure of what we see in the image (contrast) depends on 

how it is acquired. MR images are produced using radio frequency (RF) 

pulses and gradient fields in the presence of the main magnetic field of the 

scanner. By the choice of their timings (TE and TR), it is possible to 

highlight various characteristics of the tissue being imaged [5-8]. 

Body tissues have different proton density (PD), depending on the number 

of hydrogen atoms in the tissues. The PD determines the strength of the 

net magnetisation vector, which affects the overall signal strength. When 

the body is placed in a scanner, the induced magnetisation will initially be 

aligned with the main field of the scanner. The presence of the RF pulse 

will cause the magnetisation to be knocked out of alignment into the 

transverse plane (perpendicular to the main field). After the RF pulse, the 

magnetisation will return to its equilibrium position via two relaxation 

processes: spin-lattice relaxation (T1) which controls the recovery of the 

magnetisation aligned along the main field, and spin-spin relaxation (T2) 

which controls the decay of the signal in the transverse plane. Field 

variations randomly alter the frequency of the proton's precession, 

disturbing the phase coherence and speeding the transverse relaxation. 

The combined T2 and magnetic field inhomogeneity is known as T2*  

relaxation. In the brain, the extent of the inhomogeneities depends on the 

physiological state, which in turn is dependent on the neural activity. 
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Chapter 2: Principles of Functional MRI 

Therefore, measurement of the T2*  parameter is an indirect measurement 

of the neural activity [6;8]. 

Until the late 1980's, the T2 relaxation was considered to be a nuisance. 

But, once it was realised that the presence of a paramagnetic substance in 

the bloodstream (deoxyhemoglobin) could act as a vascular marker, T2*  

started being used in MRI and the technique was applied eventually to 

functional activation studies to detect changes in brain activation via the 

relatively indirect coupling of the neural activity to cerebral blood flow and 

subsequently to magnetic resonance signal intensity [2;9]. 

2.3 BOLD Mechanism 

Changes in the T2*  parameter are connected to the neural activities via 

changes in the oxygenation of venous blood, or what is known as the 

BOLD contrast mechanism [5;6]. 

2.3.1 Biophysics of BOLD fMRI 

In 1990, the effects of changes in the relative concentration of oxygenated 

and deoxygenated blood on T2*  were first reported [10]. It was noted that 

cortical blood vessels become more visible as blood oxygen was lowered 

and hence, the term BOLD (Blood Oxygenation Level Dependent) fMRI. 

BOLD does not provide a direct measurement of quantitative flow but it is 
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Chapter 2: Principles of Functional MRI 

related to the regional changes in brain activity in areas close to the 

observed signal. It is a technique that relies on variation in the MRI signal 

due to the physical process of changing proportions of deoxyhemoglobin in 

the blood. It does not require injection of a contrast agent, but does require 

a rigid active/inactive model to produce data sets during known functional 

activity/inactivity [11]. Images are obtained while the subject is engaged in 

a set of tasks to isolate specific brain functions. The nature of the activity 

field is then roughly thought to be as follows. Increase in the neural activity 

will induce an increase in the regional blood flow, which will in turn cause 

vasodilation of the venules and veins and thus an increase in the venous 

oxygenated blood (Fig. 2.1). This will overcompensate for the consumption 

of oxygen in the area leading to a decrease in the concentration of the 

deoxyhemoglobin in the blood. Deoxyhemoglobin is paramagnetic and has 

a different magnetic susceptibility relative to the surrounding tissue [12;13]. 

Its presence alters the local magnetic susceptibility, creating magnetic field 

distortions within and around the blood vessels, which in turn produce a 

slight alteration in the local MR signal [14]. Therefore, the decrease in the 

deoxyhemoglobin concentration relative to the oxyhemoglobin in the blood 

will lead to a reduction in the local field inhomogeneity, an increase in T2* 

and a slower decay of the MR signal, thus resulting in increased MR signal 

intensity [15;16]. 
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Normal Flow 	Increased Flow 

Fig. 2.1 Alterations in Blood Oxygenation. 

As we mentioned previously, the intensity of the signal depends on the 

change in the oxy/deoxyhemoglobin ratio in the blood. If the local oxygen 

consumption remained constant, the deoxyhemoglobin concentration would 

not change. The BOLD contrast is determined by the supply (cerebral blood 

flow (CBF) and cerebral blood volume (CBV)) and demand (cerebral 

metabolic rate of oxygen consumption (CMRo2)), as well as the baseline 

physiological state. The interaction between the neural activity and the 

physiological variables (CBF, CBV, CMRo2) involves a number of factors 

including the cell types and circuitry driven during activation, and the 

processes that couple energy demand to its supply to the brain [6]. 

There are contradictory results regarding the effect of the baseline state on 

the BOLD response. Some researchers have noted that the baseline CBF 

has a strong effect on the magnitude of the BOLD response, where an 

increase in the baseline CBF will cause a decrease in the BOLD response 
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[14]. Others have observed that an increase in the global blood flow 

resulted in a noted earlier response with higher amplitude and narrower 

width [17]. The relative changes in the CBF and CMRo2  determine the level 

of oxygenation of the blood, where an increase in the neural activity will 

cause CBF to increase much more than CMRo2  and therefore, cause a 

decrease in the local oxygen extraction. The CBV determines the total 

amount of blood (and thus the total deoxyhemoglobin in the voxel) 

[10;14;18]. 

2.3.2 The Physiological Basis of BOLD fMRI 

It is known that the fMRI signal is triggered by the metabolic demands of 

increased neuronal activity. The interpretation of task-induced functional 

imaging of the brain is dependent on understanding the relationship 

between observed hemodynamic responses and the underlying neural 

changes. Simultaneous fMRI and electrophysiological recordings have 

confirmed that the BOLD contrast mechanism reflects aspects of the neural 

responses elicited by a stimulus [6]. The exact relationship between the 

neural activity and the BOLD contrast mechanism is unclear and is still 

under analysis [6;13;19-22]. 

It is widely believed that increased blood flow follows directly from 

increased synaptic activity, where the propagation of action potentials along 
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the axon of the neuron due to the inflow of Na+, will result in the release of 

neurotransmitters known as Glutamate (dominant excitatory 

neurotransmitter of the brain). Glial cells known as astrocytes, are present 

in the extracellular space, and are connected to the synapses of the 

neurons and the brain's vasculature (capillaries). The release of glutamate 

from the synaptic cleft triggers the astrocytes to uptake the glutamate and 

glucose from the blood. A process known as "glycolysis" occurs in the 

astrocytes, where glucose is consumed and converted to pyruvate, which is 

then converted into lactate and energy is released. This energy is then 

used to convert glutamate to glutamine (neurotransmitter recycling). 

Lactate is consumed by the neurons through oxidative phosphorylation to 

produce pyruvate and energy (ATP). Glutamine is subsequently released 

by astrocytes and taken up by the neuronal terminals, and the energy is 

used to reconvert the glutamine back to glutamate. Most of the energy is 

consumed by the neurons, and a small amount is consumed by the 

astrocytes to clear glutamate from the extracellular space [3;6;13;23]. 

The enhancement of the BOLD contrast is due to an increase in the 

cerebral blood flow (CBF) that overcompensates for the decrease in 

oxygen, delivering an oversupply of oxygenated blood. The reason of the 

mismatch between the supply and the consumption of blood oxygen is still 

unclear. Two main viewpoints attempt to explain the mismatch: 
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Glucose Supply: 

It is widely believed that an increase in the synaptic activity will cause an 

increase in the blood flow. This is due to two observations that noted an 

increase in the blood flow due to an increase in glucose consumption, and 

a link between glucose metabolism and synaptic activity. This view explains 

the mismatch between the blood flow and the oxygen consumption, as 

blood flow provides the level of glucose required regardless of the blood 

oxygenation [6]. 

Oxygen Supply: 

The other view is that the blood flow provides the oxygen levels required by 

the neurons. This view attributes the mismatch to the inefficient extraction 

of oxygen at higher flow rates, which is supported by observations noting 

an increase in oxygen consumption with neuronal activity and that most of 

the energy in the brain is used by the neurons, which rely on oxidative 

metabolism of lactate, and only a small amount is used for the 

neurotransmitters recycling by the astrocytes, which rely on non-oxidative 

glycolysis. However, due to contradictory observations, this hypothesis still 

remains uncertain [6;13]. 

There has been some controversy in regards to whether the oxygenation 

level is related to the intracellular neural activity (Sub-threshold activity 
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represented by Local Field Potential LFP) or if it is related to the 

extracellular neural activity (Supra-threshold firing (spiking) rate). 

Local field potentials (LFP) represent slow electrical signals and sub-

threshold activity including synaptic potentials, afterpotentials of 

somatodendritic spikes and voltage-gated membrane oscillations. 

Therefore, it reflects the input signal and the local processing mediated by 

the sub-threshold signals of interneurons but does not reflect the action 

potentials carried by the principal (output) neurons. On the other hand, 

Multi-Unit Activity (MUA) measures regional neuronal spiking and reflects 

the action potential carried by the output neurons. The magnitude of the 

MUA is determined by the local cell size and therefore, its magnitude varies 

considerably across brain sites [6]. 

Recent studies have concluded that increases in the BOLD signal is 

correlated most clearly with the local field potential rather than the neuronal 

firing rate [6;7;18]. Other studies have confirmed this by noting that the 

HRF reflects the neuronal input (LFP) to the relevant area of the brain 

rather than the signals transmitted by the action potentials to other regions 

of the brain (spiking activity). This may be a cause of false activation, 

depending on whether the output is correlated with the input or whether the 

input plays a primarily modulatory role [6]. In general, the LFP is believed to 

be often (but not always) correlated with the output spiking activity [13]. 
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Further studies are required to determine if spikes (MUA) are not a key 

variable in the BOLD response [6;18]. Studies also concluded that the 

BOLD signal does not correlate perfectly with action potentials, but rather 

measures a mix of continuous membrane potentials and action potentials 

[6]. 

2.3.3 Hemodynamic Response Function 

The activation-induced fMRI signal change has a magnitude and time delay 

determined by a transfer function for the response which is referred to as 

the hemodynamic response function (HRF). It depends on a combination of 

changes in cerebral blood flow (CBF), cerebral metabolic rate of oxygen 

(CMRO2), cerebral blood volume (CBV) and also on the baseline 

physiological state [14]. The HRF is the theoretical signal that BOLD fMRI 

would measure in response to a single, very short stimulus of unit intensity 

[24]. It is not well understood and there is still ongoing research to 

determine a precise and robust estimation of the HRF, since it has the 

potential to give an insight into the underlying dynamics of brain activation 

and the relationships between active areas [14;24-28]. 

Fig. 2.2 represents the time course of a typical hemodynamic response 

function for a neural event that lasts a second. HRF is composed of three 

stages: after stimulus onset, the BOLD signal exhibits an initial dip due to 
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the rapid increase in local deoxyhemoglobin (due to initial period of oxygen 

consumption). The signal increase is delayed by 2-3 s followed by a ramp 

of 6-9 s to a peak value (due to the oversupply of oxygenated blood). The 

signal eventually returns to the baseline with an evident undershooting (due 

to the diminishing of the oversupply of oxygenated blood) [6;13;27;29;30]. 
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Fig. 2.2 Hemodynamic response function (HRF) — 

Standard HRF extracted from SPM99. 

Initial dip: 

A small transient decrease in the BOLD signal lasting 1-2 s before the 

standard BOLD signal increase has been observed in some areas of the 

brain. Most of the empirical evidence for the initial dip comes from optical 

imaging studies as well as some reports of it using BOLD fMRI and 

magnetic resonance spectroscopy [13;20]. This initial dip has been 

interpreted as reflecting local deoxygenation of blood in the capillaries 
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preceding the inflow and volume effects that take place and the onset of 

activation. The initial dip is a highly controversial topic, as studies have not 

always been able to find it in the responses measured [7;13;14;20]. 

Variability: 

Heterogeneity in the timing, amplitude and shape of the HRF signal was 

found across regions, tasks, subjects and sessions. This reflects the 

variability of the underlying neural activity, but might include some other 

factors including partial volume imaging of veins, slice timing differences, 

global magnetic susceptibilities, hematocrit concentrations, caffeine, 

alcohol, or lipid ingestion [6;22;24;24;28;31-33]. Some of the variations 

noted include an initial dip, a slow ramp and an overshoot at the end of the 

stimulus [14]. Further research is required to investigate the variability in 

the temporal behaviour of the BOLD response, especially addressing the 

within-subject variability across session. Understanding the within-subject 

variability across sessions is essential for better interpretation of the results 

from the between subjects. It could also be used for learning and 

habituation effects on the subject's performance as well as the aging and 

recovery effect on subjects [30]. Further research is needed to characterise 

the extent of the variability and examine how these observed variations 

affect the statistical results of BOLD fMRI studies [32]. 
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2.3.4 Linearity 

An important step in characterising the relationship between the neural 

activity and the measured fMRI signal is by assessing the linearity of the 

measured BOLD signal in response to neural stimulation. The general 

understanding of the relationship between the input stimulation and the 

output BOLD response is shown below in Fig. 2.3. 

BOLD 
Signal 

' 	1 '; 	1 • 	1 • 
, Neuronal 1 ; Metabolic 1 ; Vascular 1 ; 	MRI 	: 

44 Stimulation — 	Processes :-►110, Processes : Si Processes 40, 1  . Physics : 1 	, 	1 	, 	 I 	 

Fig. 2.3 Link between stimulation and BOLD response. 

In general, the relationship between stimulus energy and the BOLD 

response is nonlinear. Nonlinearity is an important issue in the design of 

experiments and in the analysis of fMRI data [34]. The nonlinearity could be 

due to the relationship between neural signal and the stimulus energy, or 

due to the relationship between the neural signal and the BOLD response 

[6;17;34]. Recent studies have shown that the relationship between the 

BOLD response and the neural activity is varying spatially, where there is a 

linear relationship at high contrasts but nonlinear relationship at low 

contrasts [13]. Logothetis et al [6] confirmed this, where a linear relationship 

was observed at higher contrasts. Further investigations are required to 

study the nature of the nonlinearity in the low-contrast regions. Their study 
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also concluded that the neuronal synaptic activity responses are nonlinearly 

related to the stimulus properties [6;31;31]. 

Other studies have also found a temporal nonlinearity, where the addition 

of a shift and an added response over-predicted the true response. This 

nonlinearity was more evident when using a stimulus that is less than 4 s to 

predict the response of a stimulus that is longer than 6 s. There is some 

suggestion that this might be due to failure in the design of the 

experiments, and not to failure of the temporal linear summation itself. This 

is due to the observation that the experiments were completed in the 

primary sensory and motor cortical areas, where short-duration stimuli are 

expected to give disproportionately large neuronal responses, which 

according to the linear transform model, should in turn evoke 

disproportionately large fMRI responses. Therefore, further investigation is 

required to study the effects of the response transients, adaptation and 

attention on the temporal summation of the fMRI responses [13;14;35-38]. 

Nonlinearity has also been reported as a refractory period, where two 

identical stimuli close together in time produced a net response that is less 

than twice the integrated response of a single stimulus [14]. Recent 

research regarding the refractory effect concluded that it reflects the 

adaptation of local stimulus-specific neuronal or neurovascular (local 

vasculature that directly supports a functional region) populations, so that 
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they will be present for stimuli that evoke similar neuronal activity but 

absent for stimuli that evoke different neuronal activity [39]. 

As mentioned earlier, the main goal of neuroimaging studies is to 

depict the neuronal activity associated with the performance of a 

particular task. Nonlinearities could either be eliminated (or 

minimised) or incorporated into the analysis. The failure to model the 

nonlinear effects in the data analysis may reduce the statistical 

significance or may introduce biased or incorrect results. Addressing 

the nonlinear effects in fMRI data is still an active area of research. In 

most of this work, however, we rely on the linear model of 

approximation of BOLD signal. 

2.3.5 Modelling Neurological Response 

A large series of images is acquired rapidly while the subject performs a 

task that oscillates the brain activity between two or more states (On-Off). 

Several hundred volumetric scans of the brain are collected in a single 

session while the subject is performing the task [7]. If the task variations 

evoke a large enough change in the metabolic demand (blood flow and 

oxygenation) in certain areas in the brain, then the image intensity in that 

region will modulate over time about its mean intensity value. These 

changes are around +5% at best [13;25;29;40]. 
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2.3.6 Field strength influence on BOLD signal 

Changes in the image intensity due to changes in the neural activity are 

dependent on the magnetic field strength. Some studies have investigated 

the relationship between the BOLD signal and the static field strength of the 

MRI scanner and found that there is a linear increase in the BOLD signal 

change in relation to the field strength for blood vessels that are of greater 

radius than about 8 pm and a quadratic increase for vessels that are 

smaller than that [7]. Other studies have also confirmed this, where they 

showed that BOLD signal increases with field strength and that the gain in 

the SNR offered by the high field imaging translates to a decrease in the 

minimum number of cycles needed in fMRI experiments [41]. 

2.3.7 Activation Detection 

It is possible to identify areas of activation in the brain by correlating the 

signal time course at each voxel with the known time course of the task 

(model) [7]. The model is designed to mimic the paradigm or stimulation 

protocol. The model is a convolution of the rectangular waveform (On-Off) 

with a suitable hemodynamic response function [29]. Note, this is a linear 

model for activation, but the non-linear relationship discussed earlier 

implies that there is not a linear relation between the strength of the 

activation and the amplitude of the signal. 
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2.4 Echo-planar Imaging (EPI) 

Echo-planar imaging was conceived in 1977 by Sir Peter Mansfield. It is a 

commonly used technique for fMRI studies of the human brain. It is the 

fastest practical imaging method available which can acquire a slice in less 

than 100ms and thus the entire brain can be imaged in few seconds [42]. It 

is a method that can form a complete image from a single RF pulse (single 

shot). The k-space in the EPI is formed by collecting raw data lines (Kr) 

using a single slice-selective RF pulse and by using a continuous phase 

encode gradient (nonblipped) during the oscillating readout gradient, which 

are then sampled in the presence of a rapidly switched (oscillating) 

magnetic field gradient, resulting in an irregular zigzag path through the k-

space, and this is known as nonblipped EPI. The same process can be 

done by using (blipped) brief pulse of the phase encoding gradient (Kr) at 

each readout gradient reversal to move to the next line in the phase encode 

direction resulting in a regular path through the k-space (Fig. 2.4), and this 

is known as blipped EPI [5;8;29]. 
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Fig. 2.4 K-space in EPI. 
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Both the k-space matrix and the real space matrix have the same size, but 

the pixels do not correspond to each other directly. Data in the middle of k-

space will contain information about the signal to noise ratio (SIN) and the 

contrast, whereas data around the outside will contain information about 

the resolution. 3D volumes (images) are reconstructed from multiple 2D 

slices in the k-space using a Fourier Transform [8]. 

This rapid data acquisition technique has enabled the development of real-

time MRI. Changes in the blood oxygenation in response to brain function 

result in a rapid alteration of the MR signal, which can be measured using 

EPI. 

Artifacts: 

The imaging speed in EPI is a result of very rapid sampling, which requires 

very high amplitude field gradient. This will cause the bandwidth to be very 

high along the readout axis (Kr) and relatively low along the phase 

encoding axis (Ky). This leads to artifacts like: shape distortion and 

chemical shifts. The alternating sign of successive k-space acquisitions 

(gradient echoes) may lead to image ghosts [8;9;22;29;43]. 

Another major limitation of EPI is the relatively low spatial resolution. This 

problem is more apparent at high magnetic fields with increasingly shorter 

T2*  relaxation times. The maximum switching rate of the magnetic field 
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gradients used for the echo generation is restricted to avoid peripheral 

nerve stimulation [29]. The spatial resolution can be increased by 

increasing the gradient amplitude and/or the gradient duration, which may 

subsequently lead to safety problems and a decrease in the image 

bandwidth causing shape distortion [43]. 

Other artifacts related to the EPI imaging technique are similar to those 

experienced by other MR imaging techniques, which are sensitive to 

motion, displacement of internal tissues, blood flow in discrete vessels etc. 

[40]. 

Several modifications have been made to the basic EPI sequence to 

compensate for these artifacts like segmented EPI, introduction of phase 

correction, spiral scanning etc. [5;29]. 

Thus, the EPI technique involves a degree of compromise between 

sensitivity to hydraulic flow (flow not associated with change in the 

oxyhemoglobin / deoxyhemoglobin ratio) and sensitivity to the BOLD effect 

[40]. 

There is a wide variety of sequence and sequence parameters of EPI that 

are used to obtain an image with a range of contrast behaviors. Two main 

classes are: spin echo imaging and gradient echo sequences. 
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Spin Echo (SE) sequence: 

Spin-echo sequences are the most common implementation of EPI in 

clinical imaging. In the SE sequence, the spatial encoding module is 

preceded by a 90° excitation pulse and a 180° echo forming pulse, resulting 

in the formation of a Hahn echo during the readout period [43]. 

It is an attractive alternative to a gradient echo sequence due to its ease of 

implementation, signal retention in areas with large magnetic susceptibility 

gradients (which eliminates non-specific contributions from extravascular 

BOLD signal changes in the vicinity of large venous vessels) and improved 

localization of neural activity. But the imaging time is too slow for most fMRI 

[44;45]. 

The signal intensity from a voxel for a spin echo sequence can be written in 

terms of echo time (TE), repetition time (TR), longitudinal relaxation time 

(Ti), transverse relaxation time (T2), proton density (p) and constant of 

proportionality KSE as shown below: [3;43]. 

SI = KsEp (1- e-TRIT1)-e TEJT2 for TR»TE 
	

(2.1) 

Images obtained using the SE sequence show relatively little sensitivity to 

local field homogeneities and behave similar to conventional MR images. 

The difference is that in the SE sequence, the TR is effectively infinite and 
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the images can be obtained with little or no T1  contrast. This is an 

advantage in T2-weighted studies, where the simultaneous manifestation of 

T1 and T2 contrasts tend to cause an overall reduction in the image 

contrast [3;43]. 

Gradient Echo (GE) sequence: 

Gradient-echo sequences remain the most widely used fMRI method. In the 

GE sequence, the 180° echo forming pulse is omitted and the signal is 

focused solely by the gradients, hence the name of the sequence [43]. 

GE sequences are sensitive to both large vessels and small capillaries [45]. 

They have a faster imaging time (several seconds to a minute) compared to 

spin echo. The main reason for using the GE sequences is that the contrast 

includes a T2*  component as opposed to the T2  component, which is the 

dominant mechanism in BOLD functional imaging [43]. 

The signal intensity from a voxel for a gradient echo sequence can be 

written in terms of echo time (TE), repetition time (TR), longitudinal 

relaxation time (T1), transverse relaxation time including both 

inhomogeneous (time reversible) and homogeneous (time irreversible) 

broadening contributions (T2*), proton density (p)  and constant of 

proportionality KGE  as shown below [3;43]: 
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SI = KGEP 
e-TE/T2*sin (a) 	  1— 2e(-TR-TE 12)17'1 

	

1 + cos(ot)e -TR  / Ti 

	 (2.2) 

The signal is optimized (for any combination of TR and Ti) when the flip 

angle (a) is adjusted to the Ernst angle, which is shown below: 

a = cos 1(e-TRI T1) 	 (2.3) 

When TR is chosen to be shorter than T1, the Ernst angle will be less than 

90° resulting in less disturbance from the magnetic equilibrium and 

therefore shorter relaxation recovery time [3;43]. 

2.5 Noise Inducing Factors in fMRI 

The change in signal intensity due to brain activity is small in general and, 

in particular, smaller than the noise and the baseline signal intensity [24]. 

This will lead to confusion in whether the activation detected is due to brain 

activity or noise. There are several factors, other than brain activity, that 

contribute to image intensity changes in fMRI. These factors can be divided 

into two sections: 

A. Factors that affect the concentration of the paramagnetic 

deoxyhemoglobin in the blood: 
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1. Research found that fMRI signals reflect the collective 

activity of a very large number of neurons; changes in the 

fMRI responses may be due to either large changes in the 

firing rates in a small subpopulation of neurons or small 

changes in the firing rates in a much larger subpopulation of 

neurons [13;21]. 

2. The BOLD contrast change is due to the deoxyhemoglobin-

related susceptibility effects, which alter the microscopic 

magnetic field gradients in (water molecules in the blood) 

and around (surrounding tissues) the vessels. Therefore, the 

BOLD contrast is composed of both an intravascular and 

extravascular component. Their contribution to the BOLD 

contrast depend on the static magnetic field strength, the 

echo time of the imaging sequence and the nature of the 

MRI signal. This could cause detection of activation at areas 

of some distance from the site of neuronal activity [7;14;29]. 

3. Vasomotion: Local changes in blood flow at rest: due to 

vasomotion where the arteries experience arrhythmic 

dilation and contraction of the blood vessels [46]. 

45 



Chapter 2: Principles of Functional MRI 

4. Pharmacological modulations and pathological alterations: 

Some drugs can have a vasodilatory (i.e. acetazolamide) or 

vasoconstrictory (i.e. aminophylline) effects and therefore a 

change in the BOLD signal strength. Also some diseases 

affect the speed of vasomotor reaction to functional 

activation (i.e. cerebrovascular disease) [29]. 

5. Physiological noise: the heart cycle causes periodic blood 

flow which is confined mainly to vessels [9]. 

B. Factors that affect the signal intensity other than the concentration 

of the paramagnetic deoxyhemoglobin in the blood: 

1. Vessels: Signal intensity is dependent on the position of the 

nuclear spin within the vessel and its proximity to an 

adjacent vessel with a different magnetic susceptibility. It is 

also dependent on shape, size of the vessel and the 

orientation of the vessel relative to the main magnetic field 

[3;11;30]. 

2. Susceptibility differences: due to the differences in magnetic 

susceptibility between brain tissue and air-filled spaces [29]. 
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3. Comparative studies of the brain are also influenced by the 

scanning hardware, procedures, experimental designs, 

analysis tools, and post-processing strategies [30]. 

4. Subject movement: It is the major source of noise in fMRI, 

especially if it is correlated with the stimulus [29;47]. There 

are two main types of motion: 

a. Between acquisition [4;48]: attempts were made to limit 

head movement using facial masks, but it is not practical 

especially when used in patient studies and also found 

not to eliminate the problem completely. 

b. During acquisition: during the filling of the k-space for a 

single slice. It is not likely to be a significant issue when 

using EPI, due to its speed of acquisition. 

5. Spin excitation history effect [10;49;50]: Changes in the 

observed signal are a function of both the current position 

and the spin excitation history (past positions). The spin 

excitation history is determined by the history of past 

movements. A displacement (motion) during the experiment 

can modify the intensity of the subsequently scanned 

volumes, even if those volumes are not displaced 

themselves. The spin excitation history effect will be evident 
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if the excited spins in the acquisition volume do not have 

enough time to return to equilibrium before the next 

excitation pulse occurs. 

6. Respiratory effects: due to small field shifts induced in the 

brain caused by gross magnetic susceptibility change as the 

lungs in the chest cavity expand and contract. Field shifts 

will induce a field gradient across the brain, which will cause 

fluctuations in the signal intensity due to dephasing of the 

signal [3;51;52]. 

7. Cardiac motion: contractions of the heart within the chest 

cavity will cause a pulsatile motion that can extend 

throughout the entire brain and can induce fluctuations in 

magnetic susceptibility. Cardiac gating can be used in 

conventional MRI to correct for the cardiac effects, and 

Gradient Moment Nulling may be used in peripheral imaging 

[3;9;51;52]. 

8. Cerebrospinal fluid (CSF): this flows throughout the brain 

and the spinal cord and is driven by the cardiac pulsations of 

the brain with a rhythmic modulation superimposed by 

breathing. It is a potential source for signal fluctuation 

48 



Chapter 2: Principles of Functional MRI 

especially at regions in and around the ventricles. It can be 

corrected for using Inversion Nulling or FLAIR (FLuid 

Attenuated Inversion Recovery) [3;46;53]. 

9. Interpolation scheme used to resample realigned images 

can lead to motion-correlated residual intensity errors. It is 

possible that these may lead to false activations appearing 

[10;12;49;50]. 

10. Inhomogeneity of the static magnetic field (Bo) and the field 

of the RF electromagnetic radiation [24;46;54]. There are 

many reasons causing these inhomogeneities including 

magnetic field gradient switching faults, chemical shift of the 

Larmor frequency, tissue magnetic susceptibility and 

ferromagnetic materials [55]. Dynamic Shimming may be 

used to minimize Bo  inhomogeneities using small DC current 

offsets in the gradient coil adjusted with the subject in place. 

11. Thermal noise: temperature instability of the electronics of 

the scanner receiver subsystem, A/D system and elsewhere 

[8;51;52]. 
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12. HRF variability: variability of the HRF signal between 

subjects, tasks and regions in the brain will affect the ability 

to detect regions of activation [48]. 

13. Eye motion: causing ghosting effects by increasing the 

variance in regions in the phase-encode direction [3;47]. 

14. External sources: Mechanical vibration due to the lack of 

stability of the site supporting the magnet [3;24]. 

Thus, the fMRI time series can be viewed as a mixture of signal and noise 

and can be divided into three main components [51]: 

1. Correlated signal: conforms to changes in neural activity (low 

frequency). 

2. Correlated noise: physiological noise from cardiac and 

respiratory cycles and motion correlated signal noise (low 

frequency). 

3. Aliasing: it is present when high frequency physiological 

pulsations are critically sampled at a lower frequency than their 

own. Over a prolonged period of scanning, this would create an 

artefactual signal of low frequency [56-58]. 
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4. Uncorrelated noise: thermal noise (high frequency). 

It is crucial to know the exact amount of influence these factors have on the 

measured fMRI signal for a further understanding of the neurovascular 

coupling and the accurate interpretation and statistical analysis of these 

measurements [30]. 

The main problem with ensuring a valid signal from a BOLD analysis is in 

controlling the effects of motion, which can be considerable during the 

length of the experiment and can correlate directly with the task performed 

which will then lead to false activation. 

2.6 Summary 

Some basic fMRI concepts were presented in this chapter, in terms of 

contrast, BOLD mechanism, biophysics and physiology of BOLD fMRI, 

hemodynamic response function, the linearity issue, EPI and noise in 

affecting fMRI. In the next chapter, we will consider the registration 

process. This is used to register volumetric data sets to a reference volume 

to reduce noise due to subject motion in between volumetric data sets 

acquisitions. 
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Chapter 3 

Image Registration Review 

3.1 Introduction 

Changes in the MR signal intensity that result from the subject stimulation 

are typically small compared to the baseline signal intensity and noise level. 

Therefore, the data can be easily corrupted by small involuntary 

movements of the subject between volume acquisitions, particularly where 

there is a large spatial variation in image intensity: at tissue boundaries, at 

the edge of the brain or near major vessels [59]. Movement of the subject's 

head is a fundamental problem in fMRI studies, especially when it is 

correlated with the task and it has been found to cause signals which mimic 

true activation (false activation). Realignment of fMRI time series is 

considered a prerequisite preprocessing step in the analysis of functional 

activation studies [4;11;12]. Several public domain algorithms are currently 

available for motion detection in fMRI. Registration involves the spatial 

alignment of images (which have a common underlying anatomy, acquired 
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at different times, from different view points, and/or by different sensors) by 

transforming one volume with respect to the other as shown in Fig. 3.1. 

This involves estimating a mapping between the two volumetric data sets. 

One assumed to remain stationary (the target), whereas the other (the 

source) is transformed to match the target. This requires a mapping from 

each voxel position in the target to a corresponding position in the source. 

The source is then resampled at the new positions [60]. 

Before registration 

 

After registration 

   

Template image 
	Raw image 
	

Template 
	image 

Realigned 
raw Image. 

Fig. 3.1 Image registration 

3.2 Applications of Image Registration 

Image registration has a vast range of applications. Images acquired using 

different modalities usually provide complementary information. Image 

registration is required in the integration (or fusion) of data from these 
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images [61-63]. It is also used for integrating information from data sets 

obtained with the same modality at different times for the purpose of 

quantitative comparison [64]. Some of its applications in medicine include 

pathology detection (detecting abnormal brain structures), analyzing brain 

data (comparing brain function between individuals and groups), measuring 

anatomical differences (quantification of local and global shape changes), 

population-based atlases (creating a probabilistic brain atlas that encodes 

patterns of anatomic variation in human populations and detecting 

structural differences that do not belong to a specific group) and measuring 

brain changes (temporal single subject monitoring) [65]. It also has 

applications in remote sensing (environmental monitoring, weather 

forecasting) and in computer vision (quality control) [66]. 

3.3 Classification of Registration Techniques 

Registration techniques may be classified according to the criteria 

formulated by van den Elsen [62]: 

1. Dimension of data to be registered [62;67]: Registration can be 

performed in any dimension, whether all dimensions are spatial or that time 

is an added dimension: 

a. 2D/2D: registration of two image slices. 
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b. 2D/3D: registration of spatial data to projective data (and vice 

versa). An example is the registration of pre-operative CT image 

to an intra-operative x-ray image. 

c. 3D/3D: registration of two volumetric datasets. 

All of the above may include time as extra dimension (2D becomes 3D and 

3D becomes 4D). 

2. Modalities [67;67-69] :Images are divided into two main types: 

I. Functional: showing information on the metabolism of the 

underlying anatomy (i.e. SPECT, PET, fMRI, etc). 

II. Anatomical: showing information about the topography or 

the structure (i.e. x-ray, CT, MRI, etc). 

Therefore, image-type related registration can be divided as follows: 

a. Intra-modality: registration of images from the same source. 

b. Inter-modality: registration of images that come from different 

technologies (i.e. MRI and CT). An example is the registration 

required in radiotherapy treatment, when a CT image is needed 

to compute the radiation dose and an MR image is used for 

delineation of tumour tissue. 

c. Modality to model: registration of one image to a model. 
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d. Patient to modality: registration of one image to the patient 

him/herself. It appears in intra-operative and radiotherapy 

applications. 

3. Degree of user interaction [67]: registration methods have varying 

degrees of user interaction: 

a. Interactive: requires human interaction. 

b. Semi-automatic: transformations are determined by the 

computer while the user determines the image properties 

required for registration and decides when to start and stop the 

registration. 

c. Automatic: does not require human interaction. 

4. Subject [67;67]: 

a. Single subject (intra-subject): where registration is between 

different images for the same subject, (i.e. in case of 

progression of disease study). 

b. Multi-subjects (inter-subject): registration between images of 

different subjects, (i.e. in case of group disease related study). 

c. Single subject and Atlas. Appears mostly in 3D/3D MR 

applications. 

5. Matching features (nature of registration algorithms) [62;64;67;67;69;70]. 
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a. Extrinsic (prospective): based on artificial (foreign) objects 

introduced into the imaged space. It can be invasive (i.e. screw-

mounted markers) or non-invasive (i.e. stereotactic frame). 

b. Intrinsic (retrospective): based on image information generated 

by the subject: 

I. Landmark (homologous) based: Where a set of identified 

points representing the same feature in the different 

images is directly compared to each other. 

II. Segmentation based: a set of identified surfaces, contours 

or volumes are extracted and deformed to fit the original 

image. 

III. Voxel based: operate on the grey values (intensity) of each 

voxel in the image to perform the registration. 

c. Non-image based: the calibration of the image coordinate 

systems of two scanners, assuming that the patient remains 

stationary between acquisition and that the scanners are in the 

same physical location. (i.e. Ultrasound systems). 

6. Nature of transformation: 

This refers to the transformations needed to align the images. The 

transformations are divided into four major classes: rigid-body, affine, 

projective and curved. Rigid-body, affine and projective transformations are 

known as linear transformations because they map straight lines to straight 
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lines. They are most commonly used where the image scaling factors are 

unknown or suspected to be incorrect (MR images with geometric 

distortions). Curved transformations are known as nonlinear 

transformations because they map straight lines onto curves. Generally, 

local transformations are nonlinear, where subsections of the image have 

their own transformation defined [71]. 

7. Domain of the transformation: 

a. Global: when change in any one of the matching parameters 

influences the transformation of the image as a whole. 

b. Local: change influences only part of the image. 

8. Optimization procedure (parameter determination): [62;67;70] 

a. Direct: straightforward calculation from the data upon the 

assumption that the problem of finding the best match is simple. 

Used in small point sets. 

b. Search-oriented: starts from one or more initial guesses and 

tries to find the optimal transformation. 

9. Object: the part of the body that images have been acquired of and 

subsequently conducted a registration on [70]. 
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10. Tightness of feature coupling: transformation between two images can 

be interpolating or approximating. Interpolating transformations map the 

images precisely, while approximating transformations distribute the 

matching error over all the features and have a zero mean (i.e. least-

squares fit) [62;72]. 

3.4 Steps of Registration 

Registration can be separated into the following steps: 

1. Transformation: This captures the fundamental mapping of any image 

registration technique. It is the mapping of points from image or volumetric 

data to new 	locations in another. There are different types of 

transformations which can be classified as follows [60;62;63;67-69;73;74]: 

a. Rigid-body: It preserves relative lengths and all angles (7 

degrees of freedom (DOF)). The relative distance between two 

points in the first image is preserved when these two points are 

mapped onto the second image. Rigid body is composed of a 

combination of: 

i. Translation: 3D shifting (3 DOF), as shown in Fig. 3.2. 

1  

Fig. 3.2 Translation. 
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In matrix terms, it is represented as follows: 

yl 1 0 0 ql xl 
y2 0 1 0 q2 x2 

(3.1) 
y3 0 0 1 q3 x3 
1 0 0 0 1 1 

Where yi  represent the output (or image A), xi  represent the 

input (or image B), and qi  represent the translation 

parameters in the x, y and z direction. 

ii. Rotation: 3D rotation around x, y and z axes (3 DOF) as 

shown in Fig. 3.3. 

  

 

Fig.3.3 

 

Rotation. 

 

S./ 

In matrix terms, it is represented as follows. The matrix 

format for the rotation around the x axis (pitch): 

yl 1 0 0 0 xl 
y2 0 cos(q1) sin(q1) 0 x2 

(3.2) 
y3 0 — sin(q1) cos(q1) 0 x3 
1 0 0 0 1 1 

The matrix format for the rotation around the y axis (roll): 
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yl 
y2 
y3 
1 	_ 

cos(q2) 
0 

— sin(q2) 

_ 	0 

0 
1 
0 
0 

sin(q2 ) 
0 

cos(q2 ) 
0 

0 
0 
0 

1 _ 

xl 
x2 
x3 
 1 

(3.3) 

The matrix format for the rotation around the z axis (yaw): 

yl cos(q3) sin(q3 ) 0 0 xl 
y2 —sin(q3) cos(q3) 0 0 x2 

(3.4) 
y3 0 0 1 0 x3 

1 0 0 0 1 

Where yi represent the output (or image A), xi  represent the 

input (or image B), and gi represent the angles in radians 

around the x, y and z direction. The order in which the 

operations are performed are important. 

iii. Scaling: zooming in the x, y and z direction (1 DOF). It 

preserves angles and relative lengths as shown in Fig. 3.4. 

Fig. 3.4 Scaling. 

(Sometimes, scaling is categorized separately). 

In matrix terms, it is represented as follows: 
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yl ql 0 0 0 xl 
y2 0 q2 0 0 x2 

(3.5) 
y3 0 0 q3 0 x3 

1 0 0 0 1 1 

Where yi  represent the output (or image A), xi  represent the 

input (or image B), and cif;  represent the scaling parameters 

along the x, y and z axes. 

b. Affine (first order polynomial) transformation: It preserves 

straight lines and parallelism between lines (12 DOF): 

i. Translation: 3D shifting (3 DOF). 

ii. Rotation: 3D rotation (3 DOF). 

iii. Rescaling (aspect ratio): independent scaling in the x, y 

and z direction (3 DOF) as shown in Fig. 3.5. 

Fig. 3.5 Rescaling 

(aspect ratio). 

iv. Shear (skew): (3 DOF) does not preserve angles and 

lengths as shown in Fig. 3.6. 

Fig. 3.6 Shear. 
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In matrix terms, it is represented as follows: 

yl 1 q1  q2  0 xl 

y2 0 1 q3 0 x2 
(3.6) 

y3 0 0 1 0 x3 
_1 _0 0 0 1 1 

Where yi  represent the output (or image A), xi  represent the 

input (or image B), and qi represent the shearing parameters 

along the x, y and z axes. 

c. Projective and perspective: preserves straight lines, but not 

parallelism as shown in Fig. 3.7 (projective: 2D/2D, perspective: 

3D/2D). 

-0. 
	 Fig. 3.7 

Projective. 

d. Non-linear warps (higher order polynomial, spline, curved or 

elastic): it preserves the topology of an image. This is the most 

general transformation which allows local deformation in the image, 

where each voxel can have 3 DOF leading to very large DOF for a 

typical volumetric data set. The bilinear transformation is the 

simplest polynomial transformation [75]. 
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• „, 

  

Fig. 3.8 Non-linear 

 

s
ss  warps. 

From above we can see that rigid transformations are a subset of affine, 

which is in turn a subset of projective and perspective, which are subsets of 

non-linear transformations. Therefore, rigid transformations are curved 

transformations with zero elasticity. 

The type of transformation used to register images depends on the cause 

of the misalignment, which may or may not account for the variations 

between the images. 

2. Similarity measure: This is a function which quantifies the similarity 

between two images using either the features derived from the data or the 

data themselves [49;60;67;68;72]. The choice of the similarity measure 

may highly influence the procedure robustness and accuracy. Some of 

these are listed below: 

a. Correlation Methods: 

I. Normalized Correlation coefficient (CC): based on the 

correlation over the set of all voxel pairs calculated. This 
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method is used when slight rotation and scaling is present 

[66;67;75]. 

II. Sequential similarity detection algorithm: by calculating the 

accumulated sum of absolute differences of the image 

intensity values and applying a threshold. It is a 

computationally simpler distance measure than the CC. It 

is less accurate than the CC but it is faster [66]. 

b. Ratio Image Uniformity (RIU) (Woods Function): based on the 

derived ratio image calculated from the two images. It 

maximizes the uniformity of this ratio, which is quantified as the 

normalized standard deviation of the voxels in the ratio image. It 

has recently been widely used for serial MR registration and is 

available in the AIR registration package from UCLA [63]. 

c. Mutual Information (MI): it is a measure of the dependency 

between two data sets and it's based on the entropy of the 

individual images and the joint entropy, which is defined by the 

correspondence between voxels. The MI methods have 

appeared recently and represent the leading technique in 

multimodal registration [49;66;67;75]. 
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d. Least-squares: it is the sum of the squared difference of pixel 

intensities between the images. It is one of the simplest voxel 

similarity measures and is the optimum measure when two 

images only differ by Gaussian noise. It is widely used for serial 

MR registration [49;62-64;73;75]. 

e. Moments matching: by comparing the principal axes which can 

be derived from the moments of inertia of the objects. This 

method is used in registration problems that require no high 

accuracy because of the automatic and very fast nature of its 

use and easy implementation. It is used in the realignment of 

scintigraphic cardiac studies and as a coarse pre-registration in 

various other registration areas. [62;64;67;75]. 

f. Fourier methods: used when images are corrupted by 

frequency-dependent noise, if an acceleration of the 

computational speed is needed or if the images were acquired 

under varying conditions. It computes the cross-power spectrum 

of the images and looks for the location of the peak in its inverse 

[62;66;67;73]. 

g. Number of sign changes in the pointwise subtraction of the two 

images. Used when the images are dissimilar [73]. 
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3. Optimization: The objective of optimisation is to determine a set of 

parameters for which some function is minimized (or maximized) by 

searching through the possible transformations [76]. It utilizes an iterative 

approach, in which an initial estimate of the transformation is gradually 

refined by trial and error. In each iteration, the current estimate of the 

transformation is used to calculate a similarity measure. The optimization 

algorithm then makes another (hopefully better) estimate of the 

transformation, evaluates the similarity measure again, and continues until 

the algorithm converges, at which point no transformation can be found that 

results in a better value of the similarity measure [63]. There are several 

mathematical optimization methods available. 

To speed up the optimization process, a multi-resolution (pyramid) and 

multi-scale optimization methods are frequently used, where fast, but 

coarse techniques (low resolution image) are followed by an accurate, yet 

slow one (high resolution image) [67]. 

4. Resampling: where each image is resampled according to the spatial 

transformation estimated using an interpolation scheme [60]. This involves 

the extraction and interpolation of gray levels from pixel locations in the 

original distorted image and their relocation to the approximate matrix 

coordinate in the rectified (corrected) image as shown in Fig. 3.9. 

Interpolation of sampled data is the image transformation required for the 
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purpose of registration. It is the process of taking pixel values in one image 

(discrete matrix) and transforming them to a continuous image. In other 

words, it is a method used to estimate the gray values of an image at 

positions other than the grid points. Interpolation is often realized by 

convolving the image with an interpolation kernel. Errors in interpolation 

affect the value of the optimization cost function, which may lead to 

registration error. It is important to use an interpolation function that is 

appropriate to that nature of the image data. It is also important to note that 

there is always a trade-off between the demanded accuracy of the 

interpolation and the computational complexity. 

• 
• • 

• 
	• 

• Original 

intensity 

Interpolated and 

resampled 

intensity 

Fig. 3.9 Interpolation. 

There are a number of interpolation functions available, each is used in 

accordance with the application [77]: 

• 

• 

68 



Chapter 3: Image Registration Review 

a. Nearest Neighbour Interpolation: This is the simplest method of 

interpolation where the output value equals to the value of the 

nearest data point. This method is easy to compute but is 

discontinuous midway between each pair of data points and 

may lead to inaccurate coregistration. 

b. Linear interpolation: continuity can be improved by linear 

interpolation where each estimated pixel in the output image is a 

weighted combination with equal distance between 2 points with 

known values in the input image. It takes a little longer to 

compute and the slope is not continuous. Bilinear interpolation is 

a 2D piecewise extension of the linear interpolation. 

c. Cubic interpolation: estimates the slope at each data point and 

then a cubic curve can be fitted in each interval between the 

data points. The slope is continuous, but at the expense of more 

computation. Cubic spline interpolation is another way to 

achieve slope continuity. 

d. B-Spline Interpolation: uses a piecewise polynomial to provide a 

series of patches resulting in a surface that has continuous 1st  

and 2nd  derivatives. It is a local interpolator, which can be exact 

or used to smooth surfaces. Bezier spline curves (attributed and 
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named after a French engineer, Pierre Bezier) are polynomial 

splines represented in terms of a different basis function. 

e. Quadratic Interpolation: uses three known data points to 

estimate the unknown value of the output, based on a quadratic 

approximating polynomial, used for functions with large 

variations. 

f. Sinc Interpolation [52;60]: This technique uses every voxel in the 

image to calculate the new value at a single voxel. It is 

computationally intensive and thus requires limitation leading to 

the truncated sinc function and the windowed sinc function. 

g. Lagrange Interpolation: it is one of the best techniques for 

interpolating between values using polynomial fits. It is a way to 

pass a polynomial of degree N-1 through N points. It converges 

to sinc for large N [78]. 

h. Mitchell and Netravali's Method: Mitchell and Netravali 

developed a family of N=4 cubic filters. Their method partitioned 

the parameter space into regions characterizing artifacts like, 

blurring, ringing and anisotropy [77]. 
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i. Gaussian Interpolation: This is a method developed by 

Appledorn which is both locally compact in the signal space and 

almost band limited in the frequency domain and, in addition, 

are easy to manipulate [77]. 

j. Newton Interpolation: interpolating curves with the Newton 

polynomials [77]. 

3.5 Misregistration 

Even after the registration has been performed, images may still 

contain artefacts, which may affect the ability to detect regions of 

activation. It has also been noted that some standard motion 

correction methods may therefore induce spurious activations [79]. 

Some of the sources of artefacts are as follow: 

1. Interpolation scheme used to resample realigned images leads 

to motion-correlated residual intensity errors [12;79]. 

2. The brain is not entirely rigid and images are prone to local 

deformations due to CSF motion, which lead to misregistration. 

3. Aliasing due to gaps between the slices [12]. 

4. Ghosts in images. EPI is very sensitive to Nt2 Nyquist ghosts, 

where N represents the field of view [12]. 
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5. Slices not being acquired simultaneously (do not obey rigid body 

rules of rigid body transformations) [12]. 

6. Spin excitation history effects [12;52;79]. 

7. Most registration methods do not account for spatial T2*-

weighted signal loss due to changes in the main magnetic filed 

homogeneity near air/tissue for example (changes depending on 

spatial orientation) [80]. 

8. Low-frequency drifts in the voxel time-course in fMRI data sets 

are quite common [5]. 

When activation-related signal changes are very small, even slight 

misregistration will lead to significant artefacts after baseline subtraction. 

This leads to two types of errors summarized in Table 3.1 [81][38]: 

I. Type-I error (False positive): is rejecting the null hypothesis 

when in fact it is true. An example is identifying a signal, which 

was not present. The probability of this type of error is known as 

a. 

II. Type-II error (False negative): is accepting the null hypothesis 

when in fact it is false. An example is not identifying a signal, 

which was present. The probability of this type of error is known 

as la 
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Statistical Decision 

State of the null hypothesis 

True False 

Reject Null Hypothesis 
Type I error 

(False positive) 
Correct 

Accept Null Hypothesis Correct 
Type II error 

(False negative) 

Table 3.1 Type-I and Type-II errors. 

a and /3 risks are inter-related, as the decrease of one risk would cause the 

increase of the other and vice versa. a and 8 risks are also related to the 

size of the sample [82]. 

These errors raise concerns in relation to the reliability and repeatability of 

the registration process (pre-processing stage). The same person 

performing under identical experimental conditions may yield different 

measurements, or, different subjects performing under identical 

experimental conditions may yield similar measurements [3]. Statistical 

methods are usually used to process the acquired images. Due to the lack 

of a universally accepted statistical method to analyse fMRI data, the 

statistical methods used may be another factor contributing to these 

concerns. This leads to a need of some form of a quality control 

methodology, which performs comparisons between different activation 

detection methods for neuro-fMRI. 
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3.6 Validation of Motion Correction 

It is highly desirable to provide an estimate of how accurate the registration 

actually is. There are two main reasons for that. The first is to ascertain 

whether the registration is good enough for a particular clinical application 

or for algorithm comparison. The second reason is for decision making in 

regards to patient management. The accuracy of a registration 

transformation cannot be summarized by a single number as it is spatially 

varying over the image [63]. 

There are different approaches to measuring the registration accuracy. One 

approach utilizes fiducial points, where the root mean square (RMS) 

distance is calculated between corresponding fiducials after registration 

and transformation [64]. Another approach is using a gold standard 

method, where the correct registration transformation is known and it is 

utilized for comparison purposes. Gold standards can be obtained using 

simulated data (images are often not very realistic), controlled phantom 

studies and invasive markers [63;67]. Due to the unrealistic nature of the 

gold standard calculations, registration accuracy can be obtained by 

measuring the consistency of the transformations. This is done by 

calculating the transformations for different images, then applying all the 

transformations one at a time in turn to complete a circuit. This will give the 

identity transformation. Due to the correlation between the errors, this 

approach will tend to underestimate the true error of the algorithm. An 
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alternative approach is to inspect the images visually but it is prone to the 

observer producing too many false negatives or false positives. 

Medical image registration has attracted considerable research activity in 

devising and validating algorithms. Although, the accuracy of many 

schemes have been verified on synthetic data, the ultimate validation is still 

that the results are clinically useful and trusted. There is ongoing research 

in measures of accuracy studies [63;66;67]. 

3.7 Summary 

Correction for subject motion is an important step in the analysis of fMRI 

time-series of the brain. This is because signal changes in correspondence 

to hemodynamic response to neural activity can be small compared to 

signal changes resulting from subject motion. This chapter presented the 

applications of image registration, the classification of registration 

techniques, registration steps, causes of misregistration and validation of 

the motion correction. The next chapter presents the post registration step 

of data analysis using statistical procedures. 
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Chapter 4 

Statistical Procedures for fMRI  

4.1 Introduction 

In most fMRI setups, images are acquired during alternating task and 

control conditions. Changes in MRI signals due to brain activity are small 

compared to noise. Thus, statistical methods and signal averaging are 

frequently used to distinguish signals from noise in the data. The analysis 

of the image series is based on the computation of a statistical map and 

then the extraction of the statistical inferences from it [3;9;12;48;82]. 

Statistical methods for detecting and localising brain activation are divided 

into: 

1. Non-parametric methods: These test the hypothesis with 

minimal assumptions and are thus less dependent on a specific 

statistical model. Often, independence of the samples is 

assumed [83]. Therefore, nonparametric methods are also 
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called distribution free because they make no assumptions 

about the frequency distributions of the variables being 

assessed. Non-parametric methods have an advantage over the 

parametric methods when the parametric assumptions are not 

correct [3]. The most widely used of these methods is the chi-

square test, which tests whether the population medians are 

equal [84]. Other widely used nonparametric tests are: 

Kolmogorov-Smirnov test, Wicoxon rank sum test, median test 

and Spearman's rank correlation coefficient [47;85;86]. 

Randomisation/permutation test theory is one type of 

nonparametric test, and is most appropriate when the sample 

sizes are small, where it is less likely that the samples will follow 

the normal distribution. Randomisation/permutation test theory 

has been introduced by Holmes at al [87;88], and has been 

proposed for neuro-fMRI by Bullmore et al. [89]. The idea behind 

this method is simply that the data is exchangeable, if the 

temporal ordering of the data were to be irrelevant [90]. In other 

words, consider the data at a particular voxel where there is no 

difference between the two conditions ("rest" and "activation" 

conditions). In this case, the data would have arisen whatever 

the condition and, therefore, it is deemed exchangeable, and the 

labelling will be arbitrary. In this sense, the data is regarded as 

fixed and the experimental design as random. The null 
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hypothesis asserts that the distribution of the data for both 

conditions have the same mean, and hence are the same. The 

"mean difference" statistic is calculated for each labelling, which 

forms the permutation distribution. The distribution is then 

compared to a threshold and the p-value is calculated. For a test 

at given a level, the null hypothesis is rejected if the p-value is 

less than a, and it will be concluded that there is significant 

evidence against the null hypothesis of no activation at this 

voxel at level a [88]. 

2. Parametric methods: these dominate the current world of neuro-

fMR1 statistical procedures and are used when the data are 

normally distributed [60]. They are composed of two stages [11]: 

a. Application of a voxel by voxel time dependent analysis: 

This starts with the assumption that the data in the image 

can be accounted for by random noise fluctuations, 

which is known as the null hypothesis. Tests of the 

significance of the data against the hypothesis are 

performed. The voxels for which the test statistics 

exceed the threshold are then classified as active 

relative to the comparison made [91]. The voxel based 
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null hypothesis is generally implemented as a correlation 

measure. 

b. A regional analysis of clusters: the significance of any 

data that fails the hypothesis is tested against observing 

a particular size of regions. 

This approach is reasonably effective for a wide variety of 

testing methods, but a basic problem is choosing the 

threshold [91]. Some of the tests that are used are: 

Student's t-test, cross-correlation analysis, Fourier analysis, 

z maps, and receiver operating characteristic analysis 

(ROC) [81]. The most frequently occurring parametric 

statistical procedures in current neuro-fMRI use linear 

methods. The General Linear Model (GLM) is often used 

because it works well in a wide range of applied areas [53]. 

It is used to identify regions of grey matter that are 

significantly related to the particular effects under study. 

Following the application of the GLM, the significance of any 

differences is ascertained using the theory of Gaussian 

random fields [3;92]. 
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3. Simulation methods: used to estimate the significance of data in 

problems that are otherwise intractable. They are dependent on 

adequate characterization and modelling of image noise. The 

number of simulations must be sufficiently high to determine the 

tails of probability distributions with high precision. 

4.2 General Linear Model (GLM) 

The General Linear Model (GLM) is a general framework that underlies 

most of the statistical analyses that are used in applied and social research 

and it is one of the most important tools in the statistical analysis of data. It 

is the foundation for the t-test, Analysis of Variance (ANOVA), Analysis of 

Covariance (ANCOVA), regression analysis and many of the multivariate 

methods including factor analysis, cluster analysis, multidimensional 

scaling, discriminant function analysis, canonical correlation and others. It 

is assumed that the fMRI time series is a well described convolution of a 

certain hemodynamic response function with an experimental design 

sequence, corrupted by Gaussian noise. Therefore, the problem of fMRI 

data analysis is reduced to the general linear statistic problem [47]. The 

GLM is based on two assumptions: a normal distribution of the data 

residuals and their independence of errors. GLM is used to make statistical 

inferences by performing univariate tests at each and every voxel to 

produce a so-called "statistical parametric map" [53]. It uses a statistical 
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procedure (t-test) to test the hypothesis that the data in the image are all 

due to random noise (with a predefined probability p-value). After fitting the 

model, the hypothesis is valid as long as the residuals are identical and 

normally distributed. 

To explain mathematically [93], if we conduct an experiment, and we 

measure a response variable Y1, where j represents the observation, and if 

each observation contains a set of variables x k , where k represents the 

variable index, then the general linear model can explain the variations in Yi 

in terms of a linear combination of the variables xi!, plus an error term: 

Yi = Xj1131 	Xj2132 	.. 	Xj1(13k Ej 
	 (4.1) 

Where fik  are unknown parameters corresponding to each variable. The 

model is assumed to fit such that the errors, sf, are independent and 

identically distributed normal random variables with zero mean and 

variance 02. 

The general linear model is also known as regression analysis, or more 

correctly "linear regression". The simplest example of the GLM is a linear 

regression against one variable, where only one variable xi  is measured for 

each observation. The model is thus written as follows: 
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Yj 	}1. + XjI3 + Ej 
	 (4.2) 

where p is the Y intercept when x = 0 and fl is the regression slope. e is an 

error term that describes the vertical distance from the straight line to each 

point. It is termed an "error" because it is the degree to which the line is in 

error in describing each point [94]. 

4.3 The t-test 

The t-test assesses whether the means of two groups are statistically 

different from each other. The difference is judged relative to the spread or 

variance of their scores. In essence, the t-test is normalizing the differences 

between brain scans in a voxel-by-voxel basis. The normalization causes 

the statistic to be identically behaved, everywhere in the context that there 

is no activation. The formula for the t-test is a ratio of the difference 

between the two means or averages (represented by xl  and x2) to the 

standard error of the difference as shown below. The standard error of the 

difference (variability of groups) is the square root of the sum of the 

variances (square of standard deviation) divided by the number of points in 

that group. 

t - 

 

,X1  - .X2  (4.3) 

  

livar, var2  _ ± 
ni 	n2  
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Where x1  and x2  are the means, var., and var2  are the variances and n1  and 

n2  are the number of points in group 1 and group 2 respectively. Therefore, 

the t statistic is the least squares estimate of the slope, divided by a 

measure of the error of the slope, and is therefore an index of how far the 

slope differs from zero, given the error. Once the t value is computed, we 

need to set a risk level (a), which is the probability of getting a false 

positive. For statistical comparisons between two groups, a null hypothesis 

is tested. The null hypothesis is normally that there is no change anywhere 

in the brain. a is the probability of getting false positives even if the null 

hypothesis is true. The distribution of the t statistic is known, where each 

value for t corresponds to the probability of false positives when the null 

hypothesis is true (a or the uncorrected p-value). Statistical tables are 

available to test whether the t value is large enough to be significant i.e. 

that the difference between the groups is not likely to have been a chance 

finding. The threshold is calculated so that if no activation was present, 

then the maximum t statistic searched over a given brain volume would 

exceed that threshold with a probability of a. The t statistic is then 

compared to the threshold. If the t statistic was larger than the threshold, 

then activation at that point is declared statistically significant at level a 

[95;96]. 

How high should we set the t threshold to make sure that the remaining 

activations are indeed too high to be expected by chance? This is known as 
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the multiple comparison problem [96]. There are different methods to deal 

with this problem. One standard method for dealing with this problem is to 

use the Bonferroni correction. For the Bonferroni correction, one sets the p-

value threshold for accepting the test as being significant as al (number of 

tests), where a is the false positive rate you are prepared to accept. In most 

cases the Bonferroni threshold will be too conservative, because the 

Bonferroni correction assumes the independence of tests and it does not 

take into account the correlation of voxels with their neighbours. Random 

Field Theory (RFT) is one of such methods used to solve this problem. 

Once the t statistic is calculated, SPM transforms it to Z scores [83]. The Z 

scores are the numbers from the unit normal distribution (mean 0 and 

sd/variance 1) that would give the same p value as the t statistic. Once the t 

statistic has been converted into Z scores, the smoothness of Z is 

estimated by calculating the covariance matrix of the partial derivatives of 

Z. This requires the estimation of the covariance matrix of the partial 

derivatives of the errors, which is based on the residual fields (FSL uses an 

alternative smoothness estimator which is accurate for small spatial 

smoothness). The FWHM is then calculated for the observed smoothness, 

where FWHM is the width of the smoothing kernel at half the maximum of 

the height of the Gaussian [95;97]. The primary reason for smoothing is to 

increase the signal to noise ratio and to allow intersubject averaging by 

blurring differences between subjects [7;9]. The resels are then used to 

work out the expected Euler Characteristic (EC) of the image, when 
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thresholded at various levels of Z scores. The expected EC is the number 

of clusters in the image after it has been thresholded and it represents the 

probability of getting one or more clusters at that level of threshold 

(corrected p-value). 

Most statistical packages for functional imaging data create statistical 

parametric maps. They are used to identify functionally specialized regions 

in the brain. Statistical parametric maps refer to image processes of a 

statistical parameter. These maps have a value for a certain statistic at 

each voxel in the brain, which is the result of the statistical test done on the 

scan data for that voxel. The t-test is one of such statistical tests which is 

used in the SPM package [2;94;98]. 

4.4 SPM 

There are several public domain algorithms available for fMRI data 

analysis. SPM is a widely used algorithm package written in Matlab. It was 

developed originally by K. Friston [99;100], the methodology and the 

concept underlying the statistical parametric mapping are described and 

SPM was made available freely to the functional imaging community in 

1991. SPM94 was the first major revision of the SPM software. SPM95, 

SPM96, SPM99 and SPM2 are based on SPM94, and represent the 

ongoing theoretical advances and technical improvements. SPM is now 
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being developed by the methodology group at the Wellcome Department of 

Cognitive Neurology at UCL. 

SPM is based on the General Linear Method (GLM). SPM uses the general 

linear model to find task-specific, voxel-based differences in the magnitude 

of the BOLD signal. It applies the GLM to an fMRI time series and tests 

whether the activation evoked by the task is significantly greater than the 

activation at a base level [47]. The underlying similarity measure is the 

squared error term, or more specifically, the sum of the squared differences 

between images. GLM is used to estimate some parameters that could 

explain the data. The Gaussian Random Field Theory (RFT) is used to 

solve the multiple comparison problem that ensues when making 

inferences over a volume of the brain and takes into account the fact that 

neighbouring voxels are not independent. It provides a method for 

correcting p-values for the search volume of a SPM [101]. 

SPM examines every voxel location across all images and computes a 

parametric map containing a parameterised value at each voxel. The 

parameterised value is generally some form of a Student's t-test, which 

estimates the likelihood that a comparison of image groups matches a 

given model that explains their possible differences. The t-test is based on 

the signal change relative to the residual variance. The residual variance is 

computed from the sum of squared differences between the data and the 
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model to which it is fitted. Motion artefacts add to this residue and reduce 

the sensitivity of the test to true activations, therefore, realignment of the 

data is required prior to the statistical analysis [12]. The resulting statistical 

parameters are assembled into an image or a map — the statistical 

parametric map (SPM). In these maps, the statistical parameter represents 

the amplitude of the differential BOLD measurement relative to noise 

[6;101]. 

SPM99 is divided into three main sections: 

1. Spatial pre-processing: This contains tools for realigning, slice 

timing, smoothing, coregistration, normalization, and 

segmentation. 

2. Model specification and parameter estimation: This contains the 

buttons necessary for specifying the model which best describes 

the task, and then using that model to fit it to the data. 

3. Results: Making inferences about those parameter estimates. 

Tools in this category display the statistical results of fitting the 

model to the data. 

There is also a separate section that contains miscellaneous functions and 

utilities that are included with SPM. 
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4.4.1 Limitations of SPM 

Despite its success statistical parametric mapping has a number of 

fundamental limitations. 

1. The p-value ascribed to a particular effect is the probability of 

getting the observed data in the effect's absence. It cannot reject 

the alternative hypothesis (that the activation has not occurred). 

2. The probability of an effect being zero is very small. Having 

thousands of scans entering some fixed-effect analyses of fMRI 

data will produce a significant effect at every voxel. 

3. Correction or adjustment of p-value to resolve the multiple 

comparison problem. The threshold increases with the search 

volume which will affect the p-value, but the probability that any 

voxel has activated does not change with the search volume. 

4.4.2 SPM99 vs. SPM2 

SPM2 was released in May 2003. It has introduced some new features, 

which attempt to tackle some of the above-mentioned issues. 

The focus of the comparison will cover improvements and the new 

functionalities introduced. Some of the main new features are: 
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1. Inference: Classical inference was used in SPM99. It uses the 

Gaussian Random Field theory to correct for the threshold. This 

approach is less sensitive or powerful with large search volumes 

because the probability that any voxel has activated does not 

change with the search volume and yet the p-value does. It is used 

to adjust the p-value to protect against false positives over the 

search volume, which is known as Family Wise Error Rate (FWER). 

It produces statistical parametric maps (SPM). It is the probability of 

getting the data, given no activation (the null hypothesis is true). 

The increase of the search volume induces a multiple comparison 

problem where correction or adjustment for the p-values is required. 

This causes the classical inference to become less sensitive or 

powerful [102]. SPM2 introduced Bayesian inference as well as the 

classical inference. In the Bayesian inference it uses the Empirical 

Bayesian Theory where the Bayesian estimation requires 

informative priors on the parameters. The posterior probability used 

in Bayesian inference is the probability distribution of the activation 

given the data [103]. The probability of activation at any voxel is the 

same regardless whether we're analysing that voxel or the whole 

volume and it does not need a p-value adjustment. It produces 

Posterior Probability Maps (PPM) [102]. In the Classical inference 

SPM2 introduced a new measure known as the False Discovery 

Rate (FDR) to correct for the p-values. 
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FWER vs. FDR: 

Simultaneous testing of multiple hypotheses requires the setting of 

a threshold that would deem the activations too high to be expected 

by chance. This is achieved by using measures of specificity, which 

represent the probability of not detecting a signal when there is 

none (true inactive). SPM99 used a Family-Wise Error Rate 

(FWER) to correct for the threshold which is controlled by random 

field theories. Family-Wise Error Rate (FWER) is the standard 

measure of Type I errors in multiple testing [104]. It controls the 

chance of any false positive [91;105-107]. 

A new measure for correcting the threshold was introduced in 

SPM2, known as the False Discovery Rate (FDR). The False 

Discovery Rate (FDR) is a new approach for the multiple 

comparison problem. It controls the expected proportion of false 

positives among the suprathreshold voxels (rejected hypotheses 

that are false positives) [91;105-107]. 

FDR — 
# of falsely rejected voxels 
# of rejected voxels in total 

(4.4) 

So when we choose the p-value to be 0.05, for FWER this means 

that we are setting the probability of any false positive (one or more) 
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in the search volume to 5%, for FDR we will be setting the 

probability of false positives among the suprathreshold voxels to 5% 

(on average). The "On average" phrase guarantees that if the 

experiment is replicated many times, then the FDR over those 

replications would be no bigger than 5%, but for any particular data 

analysis, the actual FDR might be larger than 5% [91;108]. 

FDR is a more lenient measure of false positives. It cannot draw 

definitive conclusions about the extent of the effect, but we are 

protected against false negatives claims where there is no activation 

whatsoever. 

From a practical point of view, the FWER is very conservative 

compared to FDR. Results obtained with FWER will have less 

activation than those obtained by FDR. If we have results significant 

at a FWER corrected threshold, we have very strong evidence of 

our effect. On the other hand, if we find results significant with FDR, 

but not with FWER, we also have evidence of our effect, but not as 

strong as with a FWER threshold. FWER tends to have more Type-

II errors (false negatives — signal loss), while FDR tends to have 

more Type-I errors (false positives — more activation) [108]. 

Note: the p-value chosen by the user during data analysis which is 

used to control either FWER or FDR, is referred to differently in the 
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publications. In FWER, the p-value supplied by the user is known as 

a which is used subsequently to calculate the p-value (p = a I # of 

tests). In FDR, the p-value supplied by the user is known as q, 

which is used subsequently to calculate the p-value [91]. 

2. Similarity Measure: SPM99 uses an ordinary least square method. It 

estimates the parameters that would minimize the sum of squares 

of the residuals. SPM2 uses weighted least square method. It 

estimates the parameters that would minimize the weighted sum of 

the squares of the residuals [109]. 

3. Dynamic causal modelling (DCM): enables inferences about 

interregional coupling (connection strength) by viewing all measured 

brain responses as evoked by experiment design. (e.g. how 

attention increases or decreases the effective connectivity from 

posterior parietal cortex to V5) [109]. 

4. Hemodynamic modeling: enables inferences about a single voxel or 

region to be drawn [109]. 

5. Hemodynamic Deconvolution: deconvolves the observed fMRI time-

series to estimate the underlying neural response [109]. 
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6. Image orientation: SPM99 analyzes data using a left-handed 

coordinate system where some of the images may appear flipped. 

SPM2 analyses data using either system (left-handed or right-

handed) in accordance with the handedness of the images [109]. 

7. Temporal autocorrelation: The GLM can be used to explain fMRI 

data sets as a linear combination of a set of variables plus an error 

term. Rewriting equation (4.1) as a matrix: 

Y=X[3+6 	 (4.5) 

Where Y is the fMRI time-series (observed pixel values). X is the 

design matrix which represents the BOLD response arising from a 

neural cause. /1 is a vector of parameters, the magnitude of which 

would provide information regarding the presence or absence of 

activation, and e is the error [97;110-112]. 

fMRI data is contaminated with artefacts, causing the residuals of 

an fMRI analysis to be temporally auto-correlated. The artefacts 

stem primarily from low-frequency drifts due to hardware 

instabilities, temporally aliased cardiac pulsation and respiratory 

sources, un-modelled neuronal activity and residual motion artefacts 

not accounted for by rigid body registration methods [111;112]. 
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There are three typical approaches to finding fl. The first method 

assumes the independence of errors and uses the usual least 

squares estimate as shown below: 

13 = (x'x)'l x'Y 	 (4.6) 

Where (X'X)'lX.  is the pseudo-inverse of X. If error autocorrelation is 

ignored, it will lead to under-estimation of the variance and an 

overestimation of the significance leading to too many false 

positives [110]. The other two approaches, pre-whitening and pre-

colouring account for dependent errors, where their estimates can 

be written as: 

13 = ((KX)KX)-1  (KX)KY 	 (4.7) 

Where K is the (de)correlating matrix. In pre-whitening, K is chosen 

such that KVK is the identity matrix, where V is the correlation 

matrix of the errors. In pre-colouring, K is chosen such that KVK.  

KK [110]. 

SPM 99 uses a pre-colouring approach: by temporal blurring and 

smoothing the data, this will cause more dependence but the form 

of dependence induced will be known. Assume the intrinsic 
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autocorrelation is negligible compared to smoothing. Then correct 

the GLM inferences based on the known autocorrelation [1]. 

SPM2 (and FSL) uses a pre-whitening approach: if we know the 

autocorrelation exactly then we can undo the dependence by de-

correlating the data and the model then proceed as with the 

independent data. Obtaining accurate estimates of the 

autocorrelation is a problem and requires some regularisation 

(spatial smoothing) [1]. 

The table below provides a summary of the above discussion. 

Advantage Disadvantage Software 

Independent Simple 
Inflated 

significance 
All 

Pre-colouring 

Avoids 
autocorrelation 

estimates 

Statistically 
inefficient 

SPM99 

Pre-whitening 

Statistically optimal 

for series 
characterised by 
autocorrelation 

functions 

Requires precise 
autocorrelation 

estimates 

FSL, SPM2 

Table 4.1 Table of summary adapted from Nichols [1]. 
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4.5 Reproducibility of fMRI 

Image analysis in fMRI activation studies is used mainly to detect and 

delineate the image areas that have a signal intensity time course, which 

can be related to the experimental parameters. Statistical parametric maps 

(SPM) are created where either a non-active or active is assigned to each 

voxel [83]. The use of fMRI technique for cognitive and clinical purposes 

requires reliable results [113;114]. Variability often exists in the magnitude, 

spatial distribution and statistical significance of the resulting fMRI maps 

due to differences in equipment, and other site-specific differences [115]. 

Reproducibility and comparability studies of these activation patterns in the 

brain are required to provide confidence in the results obtained. They need 

to provide a measure of how well an experimental result can be reproduced 

in different sessions [47]. Reliable results are required for within single 

subjects measured at different times, for comparisons between subjects or 

patients as well as for diagnostic examinations [113]. 

There have been some Multi-Institutional studies to evaluate the effects of 

factors such as subject, study site, filed strength, vendor, k-space, visit and 

repeated run on the fMRI reproducibility. Some have found a significant 

variability between subjects, less variability in 3T and 4T compared to 1.5T 

and some variability across runs [115]. While others observed the same 

general findings across sites regardless of differences in image acquisitions 

and analytic tools used, suggesting a strong evidence of reproducibility, 
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reliability and comparability of results [114]. Other studies investigated the 

reproducibility of activation patterns obtained using 4 Tesla and compared it 

with 1.5 Tesla systems and found that the reproducibility is dependent on 

region and subject and better than at 1.5 T [116]. Some studies also found 

that the reproducibility results are not the same for all activated areas in the 

brain and that there is a substantial variation in the volume of activation 

[117]. Other studies investigated the use of contextual information in the 

detection of fMRI activations and found it to be the most reproducible 

method in comparison to other methods (i.e. Bonferroni) [83]. 

More studies are required for an insight into reproducibility of fMRI 

measurements and especially in confounding factors and improved task 

design [117]. 

4.6 Summary 

fMRI statistical procedures were discussed, presenting the basic concepts 

of the linear general model, the t-test, a detailed description of SPM99 and 

its updates in SPM2, and a review of the reproducibility of fMRI. The next 

chapter will describe the data sets used, the methods utilized in the 

analysis, the actual investigations of the data sets using the methods 

described, and the results of these investigations. 
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Chapter 5 

Methods  

5.1 Introduction 

This chapter begins with a description of the experimental design and data 

acquisition, followed by a description of the data sets used in the analysis. 

The data sets cover the somatosensory motor cortex as well as the visual 

cortex. It then describes the analysis methods utilized in this work (SPM99, 

SPM2, AIR and the correlation method). It also contains a description of the 

analysis methods using histograms and empirical methods utilised in the 

normality study and an explanation of the HRF deconvolution method used 

in the extraction of HRF signals. 
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5.2 Experimental Design and Data Acquisition 

Due to the low signal-to-noise ratio, subjects usually perform two or more 

very different tasks. The simplest are simple activation experiments 

comparing an activation condition with a rest condition, which alternate 

periodically [90]. Paradigm design is an important issue in the practical 

application of MRI to mapping brain function. It needs to be investigated as 

often even minor changes in the stimulus presentation may qualitatively 

alter the results by implicitly changing the original question. For example, 

doubts have been raised in regards to whether the use of the 

neuropsychological test protocol is a good representation of the original 

scientific question into an MRI-compatible paradigm [29]. 

5.2.1 Summary of Data 

There are 3 data sets used in the analysis: 

1. (Data Set 1): The first set is performed on a single healthy 

experienced right-handed male subject of 42 years old, repeated 

in 14 sessions. It was a right hand finger tapping experiment. 

The experiment was self-paced right-hand tapping at a rate of 

2.5 taps per second. Auditory instructions of the On-Off pattern 

of the task was received via the scanner head phones. The 

tapping was random and non directed. The data were acquired 

using a Siemens 1.5 T Vision scanner using Numaris v33B and 
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a Circularly Polarised (CP) coil head. The data used were BOLD 

EPI fMRI multi-slice images of 128x128 pixels from a single 

subject, each volumetric data set is composed of 10 slices and 

each session is composed of 35 volumes (the first 5 volumes 

were discarded from the analysis to avoid T1  effects in the initial 

scans), voxel size (2mm x 2mm x 5mm). TR (interscan interval) 

= 6 seconds, TE (echo time) = 54ms, FOV of 240 mm, and the 

slice thickness was 5mm. Slices were aligned with the AC-PC 

(anterior commissure - posterior commissure) line. The task was 

a right-hand tapping at a rate of 2.5 taps per second. The 

tapping followed an off-on pattern (Boxcar function) for 5 

volumes each as shown in Fig. 5.1. The boxcar is structured so 

that it has a unit magnitude throughout the performance of the 

task and zero amplitude during periods of rest. 

On: indicates the 

Patient is 

engaged in finger 

tapping. 

Off: indicates no 

voluntary motion. 

ON ON ON 

.. _ 

. _ 

OFF OFF OFF 

6 
	

10 
	

15 
	

23 

Time (scans) 

0.6 

0.6 

0.4 

01 

0 

Fig. 5.1 On-Off (boxcar Function). 
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2. (Data Set 2): Set two is a visual experiment with a full-field 

flickering chequerboard chosen to evoke the occipital activation 

and acquired using a 1.5T scanner with a Circularly Polarised 

(CP) head coil. The visual stimulation was presented to the 

subjects via a projector set-up at the back of the magnet bore. 

The stimulus flashed at a frequency of 7 Hz. The data acquired 

used were BOLD EPI fMRI images of 128x128 pixels from 4 

subjects (2 male and 2 female, 2 albino and 2 healthy), each 

volumetric data set is composed of 12 slices and each session 

is composed of 84 volumes. The slices were aligned parallel to 

calcarine fissue and did not cover the whole brain, but only the 

primary visual cortex. TR (interscan interval) = 3 seconds, TE 

(echo time) = 54ms, FOV of 240 mm, pixel size 1.88mm x 

1.88mm, and the slice thickness was 4mm. The experiment 

followed an off-on pattern (Boxcar function) for 6 volumes each. 

3. (Data Set 3): The third set is also a visual experiment acquired 

using a Siemens Trio 3T scanner with 8 channel head array coil. 

The stimulus was a common flashing chequerboard created in 

matlab. It was a circular stimulus measuring 10cm in diameter 

and flashed at a frequency of 7 Hz. The stimulus comprised of 

an equal number of segments of two different shades of grey. 

The contrast between the two shades was user defined with the 

101 



Chapter 5: Methods 

maximum contrast being when the two tones were black and 

white respectively. The contrast was based on a sinusoidal 

waveform, with black being the peak of the waveform and white 

the trough. The visual stimulation was presented to the subjects 

via a projector set-up at the back of the magnet bore. The data 

used were BOLD EPI fMRI images of 128x128 pixels from 5 

subjects, each volumetric data set is composed of 22 slices and 

each session is composed of 84 volumes. Slices were aligned 

with the AC-PC (anterior commissure - posterior commissure) 

line. TR (interscan interval) = 3 seconds, TE (echo time) = 

54ms, FOV of 240 mm, pixel size of 1.88mm x 1.88mm, and the 

slice thickness was 4mm. The experiment followed an off-on 

pattern (Boxcar function) for 7 volumes each. The blocks of 

stimulus and rest were repeated 6 times, resulting in 84 

measurements being acquired. This data was acquired with two 

contrasts, 100% and 10% contrast, evoking two different levels 

of activation. 

5.3 Data Analysis Methods 

The basic objective in the analysis of functional imaging experiments is to 

identify voxels that show signal changes that vary with changing brain 

states of interest across the serially acquired images [7]. We have 
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compared results obtained using SPM99 and SPM2 with the correlation 

method based on a simple inner product, where the lengths of a template 

and the time series extended from one voxel are normalized to unity. The 

purpose of this is to rapidly be able to alter the predicted activation function, 

to automatically generate results and to permit automatic HRF extraction. 

We also studied the effect of the realignment process on activation. We 

used both SPM and AIR for the realignment process, and used the 

correlation method to identify areas of activation. A comparison study of the 

effect of the realignment process on the activation results has then been 

performed. 

5.3.1 SPM99 and SPM2 

Chapter 4 contained a detailed description of SPM including a comparison 

between SPM99 and SPM2. 

The data is required to undergo a series of pre-processing steps prior to the 

analysis. The pre-processing step for SPM99 comprised of three stages as 

summarized in Table 5.1. The data were first realigned to correct for 

subject movement and this created output r*files, then the realigned data 

were normalized to a standard space using a modified SPM EPI template 

and this created nr* output files. The normalization process is required to 

account for differences in individual anatomy, but is also applied to single- 
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subject experiments to allow localization in the standard reference frame 

[90]. Finally, the nr* data were smoothed using a smoothing kernel to 

suppress unwanted high frequency noise and enhancing low frequency 

signal, this created snr* output files. 

Step Input Output 

Registration *.img 

1. r*.img,hdr 
2. meanoriginalimage.img,hdr (if 
chosen) 
3.realignment_params_*original 
image.txt 
4. spm99.ps 

Normalization 
1. meanoriginalimage.img 
2. r*.img 

1. nr*.img,hdr 
2. nmeanoriginalimage.img,hdr 
3. meanoriginalimage_sn3d.mat 
4. spm99.ps 

Smoothing nr*.img snr*.img,hdr 

Table 5.1 Pre-processing steps in SPM99. The left column identifies the 

step in the processing, the middle column identifies the input files 

generated on and the right column identifies the output files generated. 

The second step was to specify a model, which described the task by 

convolving the boxcar function with the hemodynamic response function 

(HRF) to give a function shown in Fig. 5.2. This function mimics the 

paradigm or stimulation protocol. It represents the ideal brain activation 

expected and it is the model to be used for fitting the data [29]. 
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Fig. 5.2 Boxcar function convolved with HRF. We refer to this as the 

predicted activation signal p(n). 

Then, the specified model was used to fit to the data. SPM99 uses the least 

square method as a similarity measure. The threshold was chosen to give a 

p-value of 0.001 (the probability of identifying a significant region by chance 

is 0.001). The activated areas were then displayed, superimposed on a 

"glass brain" and superimposed in colour on the mean volume. 

The pre-processing stage for SPM2 produces the following files shown in 

Table 5.2: 
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Step Input Output 

Registration *.img 

1. r*.img,hdr 

2.  
meanoriginalimage.img,hdr 
(if chosen) 
3. rp_*original image.txt 
4. spm2.ps 

Normalization 
1. meanoriginalimage.img 
2. r*.img 

1. wr*.img,hdr 

2.  

meanoriginalimage.img,hdr 
3.  
eanoriginalimage_sn3d.mat 
4. spm2.ps 

Smoothing wr*.img swr*.img,hdr 

Table 5.2 Pre-processing steps in SPM2. The left column identifies the step 

in the processing, the middle column identifies the input files generated on 

and the right column identifies the output files generated. 

5.3.2 Automated Image Registration (AIR) 

AIR is a registration package developed by the Laboratory of Neurolmaging 

at the University of California, Los Angeles. It is designed for performing 

both intra-modality and inter-modality, intra-subject registration. It also 

performs inter-subject registration such as registering scans of pairs of 

subjects to each other or registering subjects to atlas template. 
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The version of the package used is AIR 5.2.5 which was downloaded from 

the AIR webpagel. The software is written in ANSI C [118] and accepts 

images of the ANALYZE format developed by the Biomedical Imaging 

Resource at the Mayo Clinic. For each ANALYZE image there are two files 

associated, a header file (.hdr) and an image file (.img). The header file 

contains information about the image xyz dimensions, image xyz voxel 

size, the global maximum and minimum of the image and the size of the 

header file. The image file is a simple raw data file. It consists of the 

intensity values of the entire 3D volume saved row by row, plane by plane. 

The package supports 8 bit and 16 bit images. 

5.3.3 Correlation Method 

The algorithms of the correlation method are presented in Appendix B. The 

amount and location of activation detected depends on the reference 

function chosen. The alternative method uses the inner product as the 

similarity measure2. It is equivalent to the correlation coefficient of two de-

meaned signals described by Bandettini et al. [119]. The inner product 

involves normalizing the lengths of the signals (after removing the means), 

and the angle between them gives a scaled measure of how close or 

similar the two signals are in accordance to the following equation: 

I  http://bishopw.loni.ucla.edu/AIR5/  
2  The similarity measure is not a cross correlation, as the cross correlation has a shift. It is a 
normed inner product. 
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> 
COS(0) 	

<  x,y 
 

II x'11211 Y 112 

Where <x,y> denotes the inner product of x and y, and 11x112  and Ily112 

denote the 2-norm of x and y. x represent the trace of voxel values across 

the volume (time-series) and y represents the model used to fit the data. 

The value of 0 ranges between 0 degrees (good match of signals) and 90 

degrees (no match of the signals). 

We analysed the data without any pre-processing (realignment) as we have 

compared results obtained after realignment and found them to be almost 

identical. We also removed the mean of the data and the template. The 

same model was used as that in SPM. Changes in the signal were detected 

by thresholding the signal of the resting state image. The threshold was 

chosen to give the required p-value in accordance with the following 

equation [119]: 

TH AIV7 

p= 1 
71- 

2 	
le-12  dt 

Where N is the number of degrees of freedom and TH is the threshold. 

(5.1) 

(5.2) 
0 
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5.4 Methods of Analysis using Histograms 

The test of the normality is an important part of the analysis because it is 

crucial to the inference of SPM. We would also like to investigate the 

possibility of developing a measure of normality as an indication of the 

activity/non-activity of the voxels, where active areas show patterns that 

deviate from normality compared to non-active areas. Subsets of data were 

chosen from each data set. It included active areas, background out of 

brain areas, white matter areas and grey matter areas. The subsets were 

then analysed using a Matlab script (Appendix A). The analysis begins with 

calculating the mean signal of all active voxels within the subset. 

Mean across all voxels within the subset - 	 (ixyz )  

N 
(5.3) 

Where i is the intensity at positions x, y and z for each voxel, and N is the 

total number of voxels. The mean signal is then subtracted from the signal 

at each voxel. 

lxyz  = ixy, - mean 	 (5.4) 

The mean of the resultant signals (1.10 is calculated (as well as the 

minimum and maximum signals). 
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Mean of lxy, — 
E (/ 

xYz)  
N 

(5.5) 

A histogram representing the difference between the signal at that region 

and the mean signal is then produced. The difference was then analysed 

using the K-S test in SPSS®  package to check for the normality of the signal 

distribution and a comparison table was produced. 

5.5 HRF Deconvolution 

The effect of the variations of the hemodynamic response function on the 

activation was investigated. This was achieved by comparing the 

activations obtained using SPM HRF and the ones obtained using the 

mean extracted HRF. The HRF signal was retrieved from the activation 

signal by deconvolving it with the boxcar signal. This process was then 

automated as described below: 

After the design matrix has been formulated, the boxcar signal is derived 

from SPM in the form of a periodic square waveform, fB(n) of length N. This 

waveform is then analysed to find the fundamental frequency, a process 

which obviates the need to re-enter parameters pertaining to the design 

matrix in the subsequent analysis. It also leaves the route open for later 

work on deriving the fundamental harmonic from activation data itself. 
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The process is then as follows: 

Compute the DFT of fB(n) using 

N-1 
FB (k) Ef8(n)e24kn/N 

n=0 

Find the bin number at which F8(k) takes a maximum value 

/co  = argmaxIFB (k)1} 
kEELN/2-11 

From this, an initial signal with the shape of a course-resolutioned skewed 

discrete triangular function, ho  is defined, with a width equal to /co. This 

serves only to initialise the candidate HRF. An example of the initial 

function is illustrated in Figure 5.3 below. 

Fig. 5.3 Initial function used to initialise the candidate HRF. 

(5.6) 

(5.7) 
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n 	(n)—  < fe(n) >  n112  
r RS — 

Ilf  s (n)—<fs(n)>n1122 

This kc, dimensional vector is then placed into an optimisation routine to find 

the estimate of HRF that minimises the residual between the predicted 

activation and the measured activation, subject to a penalty term that 

enforces smoothness on the HRF: 

= ho 	 (5.9) 

= arg min{Dfs  (n)— f B  h 11 2  +21  1Vh 
hc  c1122} 

And where ® denotes convolution between vectors. V denotes the discrete 

first order derivative along the elements of the vector (discrete time) not a 

derivative in kJ  dimensional space. 

(5.8) 

(5.10) 

=  fe —\f.\ ,,12  

— (fs 112 

And where 
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N-1 
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and II • 112 denotes the 2-norm. 

Note that we do not use the more common term "variance" although 

variance is often (incorrectly) used in this context. Nevertheless, the 

closer the ratio pRs to 0, the smaller the residual energy is, and therefore 

the closer the result of the predicted activation to the true activation signal. 

The pseudo code for the above mentioned process is as follows: 

• Load "activation signal". 

• Load "boxcar signal". 

• Calculate the length of one period of the "boxcar signal". 

• A candidate hrf signal is first set to equal zeros with at most 

the length of one period of the boxcar signal. 

• A subroutine is used to convolve the candidate hrf signal with 

the "boxcar signal" to give a "predicted signal". 

• fminsearch is a search tool used within the script to do the 

following: 

1. The "predicted signal" is compared to the "target 

signal" (activation signal) by finding the difference 

between the two signals. 

2. The residual consists of: the difference between the 
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signals, and a penalty term used to smooth the hrf 

signal. 

3. The residual is used to adjust the candidate hrf 

signal. 

4. The process (1 to 3) is repeated until the difference 

between the two signals is minimized. 

5. End; 

• The calculated hrf (with minimum residual) is convolved with 

the "boxcar signal" to give the "predicted activation signal". 

• Calculate the residual between the "predicted activation signal" 

and the "target signal". 

• Calculate ratio of energy of the residual to the energy of the 

original activity pattern. 

• End; 

5.6 Summary 

This chapter presented a description of the experimental design and the 

data acquisition. It also presented a description of the data sets used in the 

analysis, which comprised somatosensory motor cortex data as well as 

some visual cortex data. A description of the methods utilized in the 

investigation (SPM99, SPM2, AIR and the correlation method) were also 

explained in detail. Histograms utilised in the normality study were 

described as well as an explanation of the HRF deconvolution method used 

in the extraction of HRF signals. 
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Chapter 6 

Registration and Reproducibility 

6.1 Introduction 

Reproducibility and comparability studies of activation patterns in the brain 

are required to provide confidence in the results obtained. This study 

investigates the reproducibility of activation patterns obtained using 

SPM99, SPM2, AIR and the correlation method. The effect of FWER and 

FDR was also investigated. A normality study was also conducted to 

investigate the possibility of developing a measure of normality as an 

indication of the activity/non-activity of the voxels. 
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6.2 Standard Measures of Reproducibility 

The reproducibility of fMRI was discussed in detail in section 4.5. A 

standard analysis of data using SPM involves finding the total number of 

active voxels, the strength of the BOLD signal and the position. The 

following is an analysis of Data Set 1. 

6.2.1 SPM Results 

Data Set 1 (week 16) was first analysed using SPM99 (SPM parameters 

are in Appendix C) The first five sets of data were discarded from each 

session to avoid the T1 effects in the initial scans and to ensure that the 

magnetization is in a steady state for accurate alignment [8]. After the pre-

processing steps of realignment, normalization and smoothing, a model is 

specified and is fitted to the data with a predefined probability value (p-

value). 

The results show activations in the sensorimotor cortex. The activated 

areas were then displayed, superimposed on a "glass brain" and 

superimposed in colour on the mean volume as shown in Fig. 6.1. 
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activation 

SPM{ 

is 
1,  
19 
21 
23 
25 

Design matrix 

Fig. 6.1 SPM99 Results with a p-value of 0.001. 

The data on the "glass brain" is the collapsed data in a single plane. The 

cross-hair indicates the current location relative to the Anterior Commisure 

(AC). The bar-graph on the right is a graphical representation of the 

contrast, or pattern of on-off signal. It is known as the design matrix and 

embodies any non-random and measurable factor that can affect the image 

intensity [9]. Variations within each dark or light bar are due to the HRF, 

where the most negative number in the column will be nearest to black and 
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the most positive will be nearest to white. The grey box at the upper right 

indicates the particular contrast we're looking at. The image at the bottom 

of Fig. 6.1 shows single sagittal, coronal, and axial planes with SPM 

activations overlaid on the mean volume. The colour bar to the right shows 

the corresponding t-value for a particular colour. Activations on brain are 

voxels that have statistical parameters greater than a given statistical 

threshold. 

The same data (Data Set 1: week 16) were then analysed using SPM2 

(SPM parameters are in Appendix C). After fitting the model to the data, the 

results show the activated areas superimposed on a "glass brain" as 

displayed below in Fig. 6.2: 

active 

Fig. 6.2 SPM2 activation superimposed on glass brain with p-value of 

0.001. 
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6.2.2 Correlation Method Result 

The same data (data Set 1: week 16) were then analysed using the 

correlation method. 

The result of the analysis is shown in Fig. 6.3, where we can see the 

activation areas superimposed on the mean volume (10 slices). 

140 

120 

100 

80 

60 

40 

20 

Fig. 6.3 correlation method results with a p-value of 0.001. Slices 1-10 are 

displayed from top left to bottom right. The circled scan (8) is magnified in 

Fig. 6.4. 
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We can investigate the activation area in one particular slice. In Fig. 6.4, we 

have magnified the 8th  slice. The activation cluster is composed of 8 voxels. 
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Fig. 6.4 Activation in slice 8 using the correlation method. (The colour 

overlay represents the activated area). 

We trace the signal at each voxel across the data acquisitions and plot it 

alongside the fitted model. Fig. 6.5 shows the plot at voxel (52,44), we can 

see that the shape of the model fits the shape of the signal very well. Note 

that both the actual data (fs) and the template (µ) are normalized to have 

unit "length": i.e. (see chapter 5, page 110) 

11 L 12= 1  

And 	1111112= 1 

120 



20 

40 20 

J 	1 

20 20 	40 	 Time (scans) 

-0 • -100
0 

—c- 100 
E 

0 

-100 
0 

100 

0 

100 

50 

0 

40 
50

0 

Chapter 6: Registration and Reproducibility 

Plot of function at (52.2604,44.1023) 
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Fig. 6.5 Intensity at each voxel across time at one point in space. 

The next step was to investigate the amplitude of the signal at each voxel 

within the cluster (temporal mean subtracted) as shown in Fig. 6.6. 

Fig. 6.6 Signal amplitude at each voxel across the volumes. 

Tapping 
	

Tapping 	Tapping  
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Table 6.1 below summarises the results of the analysis (percentage of 

activation) using SPM99, SPM2 and the correlation method. 

SPM99 SPM2 
Correlation 

method 

Realigned Data 2.3% 2.6% 0.26% 

Table 6.1 Percentage of activation results for the finger tapping data (Data 
Set 1) with p-value of 0.001. 

We found that there is more activation in SPM2 and in SPM99 in 

comparison to the correlation method. The percentage of the active voxels 

was found to be 2.6% in SPM2 and 2.3% in SPM99 and it was found to be 

0.26% in the correlation method. 

The analysis was repeated with a 4 subject visual data set (Data Set 2) 

(128x128x12x84). The results are shown in the Table 6.2 below. 

SPM99 SPM2 
Correlation 

method 

Subject 1 0.04% 0.09% 0.11% 

Subject 2 0.11% 0.26% 0.11% 

Subject 3 0.10% 0.15% 0.06% 

Subject 4 0.08% 0.12% 0.12% 

Table 6.2 Percentage of activation results for the four subject visual data 
(Data Set 2) with p-value of 0.001. 
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Both sets of data show similar results where there is more activation using 

SPM2 in comparison to SPM99, but there seem to be no clear pattern for 

the results obtained using the correlation method. 

In summary, for the finger tapping data, results obtained using SPM2 and 

the SPM99 showed similar results. In the visual data we were unable to 

establish a relationship between results obtained using the correlation 

method and SPM2, as results varied across subjects. The overall 

observation is that results obtained using SPM2 always show more 

activation compared to results obtained using SPM99 for both data sets. 

6.3 Simulated Data Results 

This result has lead to the next step in our analysis, which tries to 

investigate the accuracy of the results obtained in SPM. This required 

having a set of data, which enabled us to have total control over the size 

and strength of the signal in active areas. A fake data set was created to 

simulate the finger tapping experiment (Data Set 1) and introduced the 

required active areas. The simulated data was created, by replicating a 

volume chosen randomly from the real finger tapping data set. Volume 10 

of week 16 was replicated 30 times. Two areas (cube of 4x4x4 voxels in 

size: (56:59,56:59,7:10) and (75:78,75:78,3:6)) of activation were chosen to 

have an off-on pattern for 5 volumes each, and the strength of the 
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activation signal was set to be a percentage of the average signal in the 

image (1%). A normally distributed noise with 0 mean was also added to 

the image for a realistic simulation of the data. The noise was generated 

using a randomisation Matlab command and negative values were set to 0 

(see Appendix A). Data was analysed in SPM99, SPM2 and the con-elation 

method with the same pre-processing steps. Data analysis results in 

SPM99 are shown below in Fig. 6.7. 

rAxsign matrix 

Fig. 6.7 SPM99 results with a p-value of 0.001. 

Results using SPM99 show a good identification of active areas in the axial 

plane with 0.12% activation. 

Data analysis results in SPM2 are shown below in Fig. 6.8. 
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active 

Fig. 6.8 SPM2 results with a p-value of 0.001. 

Results using SPM2 again show a good identification of active areas in the 

axial plane with 0.13% activation. 

Results using the correlation method correctly identify the two active areas 

in the precise position and shape as shown in Fig. 6.9. The percentage of 

the activation was 0.08%. 
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Amplitude by IP 
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Fig. 6.9 correlation method results with a p-value of 0.001. 

Therefore, results obtained using SPM99 and SPM2 show similar results 

and include more activation compared to results obtained using the 

correlation method. 

6.4 Comparison of realigned data Using SPM99, SPM2 

and AIR 

This study investigates the reproducibility of activation patterns obtained 

after realigning using SPM99, SPM2 and AIR. The finger tapping data set 

(Data Set 1) was realigned using SPM99 and SPM2 and AIR, and then 
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analysed for maximum activation. The following table summaries the 

results: 

SPM99 SPM2 AIR 

Week16 0.82 0.82 0.79 

Week17 0.82 0.84 0.76 

Week19 0.87 0.83 0.89 

Week20 0.86 0.87 0.68 

Week22 0.85 0.84 0.80 

Week29 0.91 0.89 0.86 

Week30 0.80 0.79 0.79 

Week33 0.85 0.90 0.80 

Week34 0.84 0.91 0.70 

Week36 0.87 0.83 0.82 

Week37 0.91 0.91 0.91 

Week38 0.86 0.86 0.69 

Week39 0.87 0.86 0.86 

Week42 0.90 0.90 --- 

Mean (SD) 0.86 (± 0.03) 0.86 (+ 0.04) 0.80 (± 0.07) 

p-value 
SPM99 vs. SPM2 

0.861749 
SPM99 vs. AIR 

0.00778 

SPM2 vs. AIR 
0.007885 

Table 6.3 Similarity measure comparison between SPM99, SPM2 and AIR. 

The values above are measures of similarity (calculated using the 

correlation method). The higher the value, the more similar the signals are. 

From the above results we can clearly identify that in almost all cases, the 

127 



Chapter 6: Registration and Reproducibility 

realigned data using SPM show better results in regards to the similarity 

measure in comparison to the same data realigned using AIR. We can also 

see that the realigned data using SPM99 show similar results compared to 

those realigned using SPM2. 

The visual data (Data Set 3) was also analysed and the results are shown 

below in table 6.4: 

Range (Mean) Range (mean) Range (Mean) 

SPM99 SPM2 AIR 

finger tapping (Data 

set 1: weeks 

16,17,33,42) 

0.80 - 0.91 (0.87) 

Realigned finger 

tapping (Data set 1: 

weeks 16,17,33,42) 

0.82 — 0.90 (0.84) 0.79 — 0.91 (0.86) 0.00 — 0.80 (0.59) 

Visual (Data Set 3: 

100% contrast all 

subjects) 

0.71 — 0.90 (0.81) 

Realigned visual 

(Data Set 3: 100% 

contrast 

0.77 — 0.91 (0.83) 0.77 — 0.91 (0.83) 0.58 — 0.86 (0.75) 

Visual (Data Set 3: 

10% contrast all 

subjects 

0.54 — 0.85 (0.71) 

Realigned visual 

(Data Set 3: 10% 

contrast 

0.00 — 0.85 (0.63) 0.57 — 0.85 (0.75) 0.00 — 0.74 (0.54) 

Table 6.4 Mean and range value of similarity measure at active areas. 

128 



Chapter 6: Registration and Reproducibility 

From the results, we can conclude that for the finger tapping data, the 

realignment process using SPM99, SPM2 and AIR all cause a decrease in 

the similarity measure. For the visual data, the realignment process has the 

effect of: increasing the similarity measure and the cluster size when using 

SPM2, decreasing the similarity measure when using AIR, but give 

contradictory results when using SPM99. We can also conclude, that the 

reduction in contrast (100% to 10%) has the effect of decreasing the 

similarity measure and the cluster size. 

6.5 Comparison of Realigned versus Non Realigned 

Data in SPM2 

An investigation of the effect of realignment was conducted using SPM2. 

The finger data set (Data Set 1) was realigned using SPM2 and then 

analysed for maximum activation. The following table summaries the 

results of the comparison between the realigned and the non realigned 

data: 

Realigned Non realigned 

Week16 0.82 0.80 

Week17 0.84 0.85 

Week19 0.83 0.89 

Week20 0.87 0.88 

Week22 0.84 0.89 
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Week29 0.89 0.89 

Week30 0.79 0.78 

Week33 0.90 0.90 

Week34 0.91 0.91 

Week36 0.83 0.84 

Week37 0.91 0.91 

Week38 0.86 0.86 

Week39 0.86 0.85 

Week42 0.90 0.91 

Mean (SD) 0.86 (+ 0.04) 0.87 (+ 0.04) 

p-value 0.202464 

Table 6.5 Similarity measure comparison between realigned and non 

realigned data. 

We can see that the non realigned data using SPM2 show better results 

compared to those realigned. But from the p-value, that difference will be 

deemed insignificant. We would expect a significant difference between the 

realigned and the non realigned data, but the extent of movement in the 

data was very small (in the region of 0.1 mm) which might explain these 

otherwise surprising results. 
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6.6 Comparison of reproducibility using FWER and 

FDR in SPM2 

The effect of FWER and FDR was also investigated. Data Set 1 was 

analysed using SPM2 to investigate the reproducibility using FWER and 

FDR across all the sessions. Figure 6.10 below show the results obtained 

when realigning the data using SPM2 without using either FWER or FDR. 

The percentage of the activation was 0.2%. 

active 

 

',Att.  at 1:01 

SPM1T24) 

Fig. 6.10 Analysis of data set 1 using SPM2 with a p-value of 0.001. 
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The same data set was displayed using the FWER (p-value 0.05) as shown 

in Figure 6.11 below. The percentage of the activation was 0.01%. 

active 
	reqliqnod 14.1th 

Fig 6.11 Analysis of data set 1 in SPM2 using FWER with a p-value of 0.05. 

The data was then displayed using the FDR (p-value 0.05) as shown below 

in Figure 6.12. The percentage of the activation was 0.03%. 
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realigned with FOR 

active 

Fig 6.12 Analysis of data set 1 in SPM2 using FDR with a p-value of 0.05. 

From the figures, we can see that the results presented for the realigned 

data without using FWER or FDR show a significant increase in the 

activation compared to results using the FWER and FDR. We can also see 

that using the FWER give a more conservative result (less activation) 

compared to using the FDR. 
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6.7 Normality tests 

The test of the normality is an important part of the analysis because it is 

crucial to the inference of SPM. We would also like to investigate the 

possibility of developing a measure of normality as an indication of the 

activity/non-activity of the voxels, where active areas show patterns that 

deviate from normality compared to non-active (in brain) areas, due to the 

noise related to the blood flow in the active areas. We would also expect 

the background (out of brain) areas to be non normal. Subsets of data were 

chosen from each data set. It included active areas (active), potentially 

active areas (Pv), background out of brain areas (B), white matter areas 

(W) and grey matter areas (G). The subsets were then analysed using a 

Matlab script (Appendix A) to produce a histogram representing the 

difference between the signal at that region and the mean signal as shown 

in Fig. 6.13 below. 

134 



200 	  15 

10 

100 0 

5 

-200 	  0 
0 10 20 30 -100 

Total number of pixels =180 

Chapter 6: Registration and Reproducibility 

Meal -zij hal mil MI' aid Flacliarzl 
1000 	  15 

500 

0 

1000 

500 

0 	 0.2 
lg. 	20 .IlVOXe 	

eat w itt  ' 001.0 0 	0 30 	PktDeu. F ran el-11,1d. IA Olghals 1(114 Meal; 

	

15 200 	 r, 
10 

H ktg ran [(fall data 
0.2 

0 

NonaleclAitcort 

..?",.%.".014,A.,....• 

----\,--7----\__./- 10 

5 

100 

0 

0  	0 	 -200 
Melig ral arA g It akd ;AR! ack)Aigckv 21WtDev.fran At OITA Pataij 	0 

	
20 
	

40 

Fig. 6.13 The top left graph is a plot of the mean signal of all the voxels in 

the subset and the minimum and the maximum signal. The top middle 

graph is a histogram of the all the data. The top right graph is a plot of the 

cross correlation. The centre left graph is a plot of the signal at each voxel 

in the subset. The centre middle graph is a histogram of the deviation from 

the temporal mean. The centre right graph is a plot of the signals minus the 

mean. The bottom left graph is a plot of the mean signal of the previous plot 

(i.e. plot of signals minus the mean) and the minimum and the maximum 

signal. The bottom middle graph is a histogram of the deviation from the 

mean. 
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The difference was then analysed using the K-S test in SPSS package to 

check for the normality of the signal distribution and a comparison table 

was produced. The results are displayed in Appendix B. The most 

significant results are shown in table 6.6: 

Range (Mean) Range (Mean) Range (Mean) 

SPM99 SPM2 AIR 

Finger tapping (data 

Set 1: weeks 

16,17,33,42) 

0.76 — 0.99 (0.91) 

Realigned finger 

tapping (Data Set 1: 

weeks16,17,33,42 

0.33 — 0.97 (0.70) 0.61 — 0.93 (0.81) 0.01 — 0.78 (0.52) 

Visual (Data Set 3: 

100% contrast all 

subjects 

0.06 — 0.76 (0.44) 

Realigned visual (Data 

Set 3: 100% contrast 
0.19 — 0.99 (0.73) 0.27 — 1.0 (0.78) 0.09 — 0.51 (0.29) 

Visual (Data Set 3: 

10% contrast all 

subjects 

0.09 —1.0 (0.73) 

Realigned visual (Data 

Set 3: 10% contrast 
0.12 — 0.98 (0.58) 0.15 — 0.99 (0.60) 0.00 — 0.72 (0.34) 

Table 6.6 Mean and range value of signal distribution normality in active 

areas. 

The values above are measures of the normality of the signal distribution. 

The higher the value, the closer the signal distribution is to normality. 
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From the results above, we can conclude that realigning the data (finger 

tapping data and visual data 10% contrast) using SPM99, SPM2 and AIR 

causes a decrease in the normality of active areas. However, realigning the 

visual data 100% causes an increase in the normality of the active areas in 

the data. This study also extended to include the effect of the contrast 

(100% versus 10%) on the normality of active areas. It was found from the 

above that there is an increase in the normality with the decrease of the 

contrast (from 100% to 10%). 

The table below summarizes the results related to the normality of the 

active/non-active areas in the data. 

active Pv B W 	1  G 
Finger 
tapping 

(16,17,33,42) 
0.91 0.84 0.73 0.87 0.77 

Realigned 
finger 

tapping 
(16,17,33, 

42) 

0.81 0.56 0.35 0.85 0.80 

Visual 100% 0.44 0.21 0.65 0.59 
Realigned 

Visual 100% 
(SPM2) 

0.78 0.42 0.80 0.63 

Visual 10% 0.73 0.26 0.54 0.42 
Realigned 
visual 10% 

(SPM2) 
0.60 0.40 0.77 0.63 

Table 6.7 Mean value of signal distribution normality at active and non- 

active areas. 
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The results above show that there is a clear difference in normality between 

active areas and background areas (out of brain areas). However, there 

seems to be no clear pattern to distinguish the normality between active 

areas and in brain non-active areas. Therefore, the normality results did not 

provide conclusive evidence to support our study of using the normality as 

an indication of the activity/non-activity (in brain areas) of the voxels. 

Another observation is that the realignment seem to cause an increase in 

the normality of the in brain non-active areas for the visual data, but causes 

a decrease in the normality for the in brain non-active areas for the finger 

tapping data. 

6.8 Summary 

A standard analysis of data involves finding the total number of active 

voxels, the strength of the BOLD signal and the position. Analysis of the 

effect of the realignment process on the activation using different methods 

(SPM99, SPM2 and the correlation method) was detailed and a comparison 

of the number of active voxels was carried out. It was found that in general 

more activation was present using SPM2 compared to SPM99. 

A comparison of the similarity measure obtained was performed to identify 

the differences of aligned data using different analysis methods (SPM99, 

138 



Chapter 6: Registration and Reproducibility 

SPM2 and AIR). Realigned data using SPM showed better results 

compared to those obtained using AIR. 

Comparing the effect of the realignment process on the similarity measure. 

From the results, we can conclude that for the finger tapping data, the 

realignment process using SPM99, SPM2 and AIR all cause a decrease in 

the similarity measure. For the visual data, the realignment process has the 

effect of: increasing the similarity measure and the cluster size when using 

SPM2, decreasing the similarity measure when using AIR, but give 

contradictory results when using SPM99. We can also conclude, that the 

reduction in contrast (100% to 10%) has the effect of decreasing the 

similarity measure and the cluster size. 

A comparison of the similarity measure obtained was performed to identify 

the differences between aligned and non-aligned data in SPM2. Better 

results were obtained in non realigned data. The extent of movement in the 

data was checked and found to be very small (in the region of 0.1 mm) 

which might explain these otherwise surprising results. 

The effect of FWER and FDR was also investigated. Results show more 

activation using FDR compared to FWER. 
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A normality study was also conducted. The effect of the realignment 

process on the normality of active areas was investigated. For the finger 

tapping data and the visual data 10% contrast, realigning using SPM99, 

SPM2 and AIR caused a decrease in the normality of active areas. 

However, realigning the visual data 100% caused an increase in the 

normality of the active areas in the data. 

This study also extended to include the effect of the contrast (100% versus 

10%) on the normality of active areas. It was found that there is an increase 

in the normality with the decrease of the contrast (from 100% to 10%). 

The normality study showed a clear difference in normality between active 

areas and background areas (out of brain areas). It also showed that the 

realignment seem to cause an increase in the normality of the in brain non-

active areas for the visual data, but cause a decrease in the normality for 

the in brain non-active areas for the finger tapping data. The possibility of 

using the normality as an indication of the activity/non-activity (in brain 

areas) of the voxels was also investigated. However, the standard K-S test 

for normality did not indicate a statistically significant difference between 

active and non active regions within the brain, thus suggesting that a 

normality test on its own will not be able to distinguish active from non-

active regions. 
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Chapter 7 

HRF and Reproducibility 

7.1 Introduction 

This chapter investigates the HRF signal reproducibility. The effect of the 

phase shift of the HRF signal on activation is analysed, followed by a 

detailed description of the empirical extraction of the HRF signal from the 

data. A comparative study of the effect of different HRF signals has on the 

similarity measure and the ratio of energy is also carried out. These 

differences are then presented graphically as ROC curves. Some clinical 

application of individual's HRF extraction analysis is included. 

7.2 Phase shift 

In order to optimise the sensitivity of activation detection, the hemodynamic 

response function should be modelled accurately [120]. The effect of the 

change in the phase shift of the hemodynamic response function (HRF) 

141 



Chapter 7: HRF and Reproducibility 

signal convolved with the boxcar signal (predicted activation signal) on the 

active areas was investigated. The change of the phase shift was tested on 

the realigned finger tapping data set (Data Set 1). The phase shift was 

changed between -9dt to + 13dt, where dt is the time increment and is 

equal to 0.375 sec. The data was then analysed using SPM2 and the 

correlation method. The results are shown below in table 7.1. 

Phase shift SPM2 (active voxels) 
Correlation method 
(active voxels and 
similarity measure) 

-9 dt (-.3.375 sec) 981 256 (0.73) 

-7 dt (-2.625 sec) 1113 286 (0.73) 

-6 dt (-2.25 sec) 1216 313 (0.73) 

-5 dt (-1.875 sec) 1300 345 (0.73) 

-3 dt (-1.125 sec) 1439 383 (0.75) 

-2 dt (-0.75 sec) 1486 408 (0.77) 

-1 dt (-0.375 sec) 1506 422 (0.78) 

0 dt (0 sec) 1510 432 (0.79) 

+1 dt (0.375 sec) 1486 435 (0.80) 

+2 dt (0.75 sec) 1477 447 (0.81) 

+3 dt (1.125 sec) 1462 449 (0.82) 

+4 dt (1.5 sec) 1441 446 (0.83) 

+6 dt (2.25 sec) 1433 454 (0.84) 

+8 dt (3 sec) 1468 468 (0.85) 

+10 dt (3.75 sec) 1488 471 (0.86) 

+11 dt (4.125 sec) 1477 487 (0.85) 

+12 dt (4.5 sec) 1453 488 (0.84) 

+13 dt (4.875 sec) 1435 491 (0.83) 

Table 7.1 Effect of phase shift on activation in SPM2 and the correlation 

method. 
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From the above results we can see that using the correlation inner product 

method, it was found that the maximum number of activation was at shift 

+13dt, even though, the maximum similarity measure was found at shift 

+10dt. In SPM2, the maximum number of activations was found at shift Odt. 

Figure 7.1 below shows a plot of the activation versus the phase shift in 

SPM2. 

1600 

1500 

1400 

1300 

1200 

1100 

1000 

90910 	 -5 	 0 	5 	 10 	 15 
at 

Fig. 7.1 Plot of SPM2 results of number of active voxels versus the phase 

shift. 

We can see that there is a linear relationship between the phase shift and 

the total number of active voxels for negative phase shifts until 0 phase 

shift where it reaches a plateau. 
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Figures 7.2 and 7.3 below display the results obtained using the correlation 

method. 
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Fig. 7.2 Plot of correlation method results of number of active voxels versus 

the phase shift. 

Again, we can see that there is a linear relationship between the phase shift 

and the total number of active voxels for negative phase shifts until 0 phase 

shift.  

dt 

Fig. 7.3 plot of correlation method results of the similarity measure versus 

the phase shift. 
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We can see a linear relationship between the similarity measure and the 

phase shift for the range of -5dt to 10dt. The maximum activation peaks at 

a shift of 10 dt (3.75 sec) using the correlation inner product method. This 

corresponds to the position of the second maximum in Figure 7.1 indicating 

that there is some significance to the shift of 10 dt (3.75 sec). It is not clear 

why the second peak does not appear in Figure 7.2. 

7.3 Empirical HRF extraction 

We discussed the method of HRF extraction in chapter 5 section 5.5. Here, 

w present the results of HRF extraction. It was concluded that the HRF 

signal varies with subjects, sessions, regions in the brain, etc. So we 

decided to investigate the effect of variations of the hemodynamic response 

function on the activation observed in the finger tapping experiment and the 

visual data. Fig. 7.4 shows the HRF signal extracted from the activation 

signal used in SPM. In the finger tapping experiment (Data Set 1), the 

empirical activation signal was extracted from the data (week 16) by 

collapsing the averaged 2D signal, within the slice, at the maximum 

activation (50,54,9,:) in the image. The HRF signal extracted from the 

collapsed average signal at maximum activation is shown in Fig. 7.5. 

Repeating the analysis with the new activation signal improved the 

maximum activation of the image and the signal similarity measure 

changed from 0.79 to 0.87. On the other hand, collapsing the averaged 3D 
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signal (multi-slice at maximum activation) caused a decrease in the signal 

similarity measure to 0.70. The HRF signal extracted from the collapsed 

average 3D signal at maximum activation represents the mean of the 

activation in 3D cluster (multi-slice) around the maximum activation and is 

shown in Fig. 7.6. From these results, we can conclude that the choice of 

hemodynamic response function has an effect on the activation. 

From the results shown below, we can see a difference in the shape and 

the amplitude of the HRF signals. 

hrf signal from deconvolving hrfwithboxcar signal with boxcar signal used in spm 
0.9 	  
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0.2 

0.1 

O 

     

      

-0.10 	 2 	4 	6 10 	12 14 	16 
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Fig. 7.4 HRF signal used in SPM. 
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Time (sec) 

Fig. 7.5 HRF signal of collapsed average signal at maximum activation. 
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Fig. 7.6 HRF signal of the collapsed average 3D signal at maximum 

activation. 

The next step was to select some data subsets (from Data set 1): 4 to be 

located in the grey matter (GM), 4 in the white matter (WM), some active 

areas (A), 2 at potentially active areas (visual cortex: Pv), and 4 

background or out-of-brain areas (B). The HRF signal was then extracted at 

these positions. The results for week 16 are shown below (description of 

the ratio of energy is detailed in section 5.5): 
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Week 16: 
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A1:Active area (50,54,9): 
Ratio of energies = 0.5 

A2: Active area (49:50.54,9): 
Ratio of energies 

A3: Active area (43:45,52:53,8): 
Ratio of energies = 0.47 

Pvl: Visual cortex1: 
Ratio of energies = 0.91 

Pv2: Visual cortex2: 
Ratio of energies = 0.80 

B1: Background 1: 
Ratio of energies = 0.87 

B2: Background 2: 
Ratio of energies = 0.801 

B3: Background 3: 
Ratio of energies = 0.92 

B4: Background 4: error: 
Ratio of energies = 0.89 

WM 1: 
Ratio of energies = 0.95 

WM 2: 
Ratio of energies = 0.90 

WM 3: 
Ratio of energies = 0.77 

WM 4: 
Ratio of energies = 0.92 

GM 1: 
Ratio of energies = 0.88 

GM 2: 
Ratio of energies = 0.98 

GM 3: 
Ratio of energies = 0.80 

GM 4: 
Ratio of energies = 0.82 

Table 7.2 Summary of ratio of energies for each subset for finger tapping 

data. 

It is very evident from the results that we can only retrieve the HRF signal 

from areas of activation, and that the HRF signal varies at different areas of 

activation in the brain. It also appears that the ratio of energies of active 

regions is lower than that of other regions in or out of brain. 

The HRF signals of active areas for individual weeks are shown below in 

figures 7.7 to 7.20: 

hrf signal extracted from all active areas fir_iir week 16 
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Fig. 7.7 HRF signal extracted from all active areas for week 16. 
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hrf signal extracted from all active areas for weal< 17 
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Fig. 7.8 HRF signal extracted from all active areas for week 17. 
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Fig. 7.9 HRF signal extracted from all active areas for week 19. 
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Fig. 7.10 HRF signal extracted from all active areas for week 20. 
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Fig. 7.11 HRF signal extracted from all active areas for week 22. 

hrf signal extracted from all active areas for week 29 
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Fig. 7.12 HRF signal extracted from all active areas for week 29. 
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Fig. 7.13 HRF signal extracted from all active areas for week 30. 
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hrf signal extracted from all active area. for week 33 
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Fig. 7.14 HRF signal extracted from all active areas for week 33. 
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Fig. 7.15 HRF signal extracted from all active areas for week 34. 
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Fig. 7.16 HRF signal extracted from all active areas for week 36. 
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Fig. 7.17 HRF signal extracted from all active areas for week 37. 
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Fig. 7.18 HRF signal extracted from all active areas for week 38. 
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Fig. 7.19 HRF signal extracted from all active areas for week 39. 
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hnT signal astrastacl fron-i wll acne. areas fnr wmak 42 
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Fig. 7.20 HRF signal extracted from all active areas for week 42. 

The standard deviation of the HRF signal and the mean signal of all active 

areas across the weeks +1- 1 and 2 standard deviation is shown below in 

Fig. 7.21: 
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Fig. 7.21 Mean signal and standard deviation of the finger tapping 

smoothed HRFs. 
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The same process was repeated for the visual data where the results for 

subject 1 100% contrast are shown below: 
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GM4 

Time (sec) 

Al: Active (60:62,17,8): 
Ratio of energies =0.67 

Bl: Background (18:20,18:20,11): 
Ratio of energies =0.98  

B2: Background 2: 
Ratio of energies =0.95 

B3: Background 3: 
Ratio of energies = 0.99 

B4: Background 4: 
Ratio of energies =0.98 

WM 1: 
Ratio of energies =0.95 

WM 2: 
Ratio of energies =0.81 

WM 3: 
Ratio of energies =0.86 

WM 4: 
Ratio of energies =0.95 

GM 1: 
Ratio of energies =0.91 

GM 2: 
Ratio of energies =0.82 

GM 3: 
Ratio of energies =0.92 

GM 4: 
Ratio of energies =0.98 

Table 7.3 Summary of ratio of energies for each subset for visual data. 

The visual data results confirm the finger tapping results obtained 

previously. 

For the 100% contrast the HRF signals at the active voxels in each subject 

are shown in Fig. 7.22 to Fig. 7.26 below: 
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HRF signal extracted at active subject 1 
0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

O  

     

    

-0.01 

-0.02 0 2 	4 	6 	6 	10 12 

77  

14 16 

Time (sec) 

Fig. 7.22 HRF signal at active voxel in subject 1 (100% contrast). 
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Fig. 7.23 HRF signal at active voxel in subject 2 (100% contrast). 
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Fig. 7.24 HRF signal at active voxel in subject 3 (100% contrast). 
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HRF signal extracted at active subject 4 
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Fig. 7.25 HRF signal at active voxel in subject 4 (100% contrast). 
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Fig. 7.26 HRF signal at active voxei in subject 5 (100% contrast). 

The standard deviation of the HRF signal and the mean signal of all active 

areas across the subjects (100% contrast) plus and minus one and two 

standard deviation is shown below in Fig. 7.27: 
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Fig. 7.27 Mean and standard deviation of the visual 100% contrast 

smoothed HRFs. 

For the 10% contrast the standard deviation of the HRF signal and the 

mean signal of all active areas across the subjects plus and minus one and 

two standard deviation is shown below in Fig. 7.28: 
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Fig. 7.28 Mean and standard deviation of the visual 10% contrast smoothed 

HRFs. 

7.4 Comparisons of HRFs 

Table 7.4 shows a comparison between the mean HRF and the SPM HRF 

for the finger tapping data (Data Set 1): 

Time to Peak 
Ratio of +ve to —ye 

amplitude 

Mean HRF 5 sec. 7.07/1 

SPM HRF 5 sec. 8/1 

Table 7.4 Comparison of the mean and the SPM HRF signals for the finger 

tapping data set. 
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Table 7.5 shows a comparison between the individual's HRF signals in the 

finger tapping data set (Data Set 1) and the mean HRF signal: 

Time to Peak (sec.) 
Ratio of +ve to —ve 

amplitude 

Week 16 5 2.5/1 

Week 17 5 3.5/1 

Week 19 5 3.5/1 

Week 20 5 16/1 

Week 22 5 4.5/1 

Week 29 5 14/1 

Week 30 5 6/1 

Week 33 5 10/1 

Week 34 5 10/1 

Week 36 5 3/1 

Week 37 5 4/1 

Week 38 5 5/1 

Week 39 5 12/1 

Week 42 5 6/1 

Mean HRF (SD) 5 (0) 7.07/1 (± 4.28) 

Table 7.5 Comparison between the individual's HRF signals and the mean 

HRF signals for the finger tapping data set. 

Table 7.6 shows a comparison between the mean HRF and the SPM HRF 

for the visual data (Data Set 3, 100% and 10% contrast): 
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Time to Peak 
Ratio of +ve to —ve 

amplitude 

Mean HRF 100% contrast 6 sec. 5/1 

Mean HRF 10% contrast 6 sec. 5/1 

SPM HRF 5 sec. 8/1 

Table 7.6 Comparison of the mean 100%, 10% and SPM HRF signals for 

the visual data set. 

Table 7.7 shows a comparison between the individual's HRF signals in the 

100% contrast (Data Set 3) and the mean HRF signal: 

Time to Peak 
Ratio of +ve to —ve 

amplitude 

Subject 1 (100%) 5 sec. 7/1 

Subject 2 (100%) 7 sec. 2/1 

Subject 3 (100%) 6 sec. 3/1 

Subject 4 (100%) 6 sec. 4/1 

Subject 5 (100%) 7 sec. 2/1 

Mean HRF (SD) 6.2 sec. (+ 0.8) 3.6/1(+ 2.1) 

p-value for Motor vs. 
visual 

0.033 0.03 

Table 7.7 Comparison of the individual 100% and mean HRF signals for the 

visual data set. 

Table 7.8 shows a comparison between the mean finger tapping (Data Set 

1) HRF and the mean visual (Data Set 3) HRF signal: 
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Time to Peak 
Ratio of +ve to —ye 

amplitude 

Mean HRF (Data Set 1) 5 sec. 6/1 

Mean HRF (Data Set 3, 
100% contrast) 

6 sec 5/1 

Mean HRF (Data Set 3, 

10% contrast) 
6 sec. 5/1 

Table 7.8 Comparison of the mean 100% visual, 10% visual and finger 

tapping HRF signals. 

We can conclude from the above results that the HRF signal varies 

between the somatosensory cortex and the visual cortex, and that there are 

differences between the SPM HRF and the mean HRFs extracted from the 

finger tapping data (Data Set 1) and the visual data (Data Set 3). There are 

also very clear differences between the subject's individual HRF signals 

and the mean signal in terms of the time to peak and the ratio of +ve to —ve 

amplitude. 

The next step was to look for activation using the extracted mean 

unsmoothed predicted activation signal for the finger tapping, which is 

shown in Fig. 7.30, and the SPM activation signal for the data shown in Fig. 

7.33. Figure 7.29 shows the unsmoothed mean extracted HRF. Figure 7.31 

shows an interpolated smoothed mean HRF signal and Figure 7.32 shows 

the SPM HRF signal. 
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Finger tapping set with threshold = 0.68, the threshold was chosen to be 

the highest threshold to give any activation. 
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Fig. 7.29 Unsmoothed mean extracted HRF. 
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Fig. 7.30 Unsmoothed mean extracted HRF convolved with the 

boxcar signal. 
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Fig. 7.31 Interpolated smoothed mean HRF (samples at 0.375 per sec.). 
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Fig. 7.32 SPM HRF signal. 
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Fig. 7.33 SPM HRF signal convolved with the boxcar signal. 
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Some of the results are shown below. The activation is superimposed on 

the slice with the maximum activation, and the graph to the right shows the 

time series at that particular voxel with the maximum activation. 

Week 17: max. activation using the extracted mean unsmoothed predicted 

activation signal = 0.82 in slice 8 with cluster size of 4 as shown in figure 

7.34 
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Fig. 7.34 Activation superimposed on brain and plot of active voxel at 

maximum activation. 

Maximum activation using the SPM activation signal = 0.79 in slice 8 with a 

total number of 3 voxels in the cluster as shown in Figure 7.35. 
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Fig. 7.35 Activation superimposed on brain and plot of active voxel at 

maximum activation. 

From the Figures 7.34 and 7.35 above we can see that the graphs on the 

right hand side are identical which shows the time series at the voxel with 

the maximum activation. 

The same process was repeated for the visual data using the extracted 

mean predicted activation signal shown in Figure 7.37 and the SPM 

activation signal for the data shown in Figure 7.39 with a threshold of 0.6. 

Again the threshold was chosen to be the highest threshold to give any 

activation. 

Figure 7.36 shows the unsmoothed mean extracted HRF and Figure 7.38 

shows the SPM HRF signal. 
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Fig. 7.36 Unsmoothed mean extracted HRF. 
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Fig. 7.37 Unsmoothed mean extracted HRF convolved with the boxcar 

signal. 
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Fig. 7.38 SPM HRF signal. 
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Fig. 7.39 SPM HRF signal convolved with the boxcar signal. 

Some of the results are shown below. The activation is superimposed on 

the slice with the maximum activation and the graph to the right shows the 

time series at that particular voxel with the maximum activation. 

Subject 1: 

Maximum activation using the extracted mean unsmoothed predicted 

activation signal = 0.82 in slice 8 with a total number of 8 voxels in the 

cluster as shown below in figure 7.40. 
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Fig. 7.40 Activation superimposed on brain and plot of active voxel at 

maximum activation. 

Maximum activation using the SPM activation signal = 0.80 in slice 8 with a 

total number of 8 voxels in the cluster as shown in figure 7.41. 
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Fig. 7.41 Activation superimposed on brain and plot of active voxel at 

maximum activation. 
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Again the Figures 7.40 and 7.41 above show that the graphs on the right 

hand side are identical which represents the time series at the voxel with 

the maximum activation. 

The same process was repeated for the realigned finger tapping data and 

the realigned 100% contrast visual data. 

Type-I and Type-II errors concept can be applied to the results obtained as 

shown in Table 7.9 below, which represents a scheme for comparing the 

results of different method of activation detection. 

Statistical Decision 

State of the null hypothesis of the correlation method 
Correlation method 
results: activation. 

Correlation method 
results: no activation. 

SPM results: Reject Null 
Hypothesis (no 

activation) 
incorrect correct 

SPM results: Accept Null 
Hypothesis (activation 

present) 
correct incorrect 

Table 7.9 Scheme for comparing results of different methods of activation 

detection. 

The results are summarized below in Tables 7.10 to 7.13: 
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Active set using mean 
HRF 

Inactive set using mean 
HRF 

Inactive set using SPM 
HRF 

20 34454 

Active set using SPM 
HRF 

24 1 

Table 7.10 Finger tapping results. 

Active set using mean 
HRF 

Inactive set using mean 
HRF 

Inactive set using SPM 
HRF 

4 84690 

Active set using SPM 
HRF 

33 0 

Table 7.11 Visual data 100% contrast results. 

Active set using mean 
HRF 

Inactive set using mean 
HRF 

Inactive set using SPM 
HRF 

19 34157.5 

Active set using SPM 

HRF 
23 1.5 

Table 7.12 Realigned finger tapping results. 

Active set using mean 
HRF 

Inactive set using mean 
HRF 

Inactive set using SPM 
HRF 

10 84292 

Active set using SPM 
HRF 

115 7 

Table 7.13 The Realigned visual data 100% contrast results. 
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In the tables 7.10 -7.13 above, the active/active cell contains the total 

number of voxels that are active in the data set analysed using SPM HRF 

and the data set analysed using the mean HRF. The inactive/active cells 

contain the total number of voxels that are active in the data using SPM 

HRF but inactive in the data using mean HRF and vice versa. The 

inactive/inactive cell contains the total number of voxels that are inactive in 

the data analysed using both SPM HRF and the mean HRF. The above 

results were represented in the form of Receiver Operating Characteristic 

(ROC) curves for different thresholds [121]. The curves represent a trade-

off between sensitivity and specificity [85]. ROC curves are plotted using a 

(Type I error) and 1-16 (where /3 is the Type II error). The intersection of the 

45° line with the a vs. 1-16' plot indicates the threshold for which Type-I and 

Type-II errors have equal values [81]. 

For the purpose of creating the ROC curves, the above procedure was 

repeated for the realigned finger tapping data, the realigned 100% contrast 

visual data and the realigned 10% contrast visual data, with 10 different 

thresholds. For the finger tapping data, the threshold range was between 

0.068 and 0.68 with increments of 0.068. For the 5 subject visual data, the 

threshold range was between 0.06 and 0.6 with increments of 0.06. The 

results are shown below. 
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ROC curves for finger tapping data (Data Set 1): 

All the sessions were realigned with each other using SPM. The realigned 

data were then analysed for active areas with 10 different thresholds using 

the SPM activation signal and the mean predicted activation signal. The 

true active area was chosen by cross analysing all the active areas for the 

sessions obtained using the SPM signal at maximum activation as shown in 

the "True Active Recipe" below: 

Realign the 100% contrast and the 10% contrast for each 

subject together (Data Set 3) and all sessions together (Data 

Set 1). 

Find the maximum activation using the SPM HRF at a very high 

threshold (the highest threshold that would produce activation). 

Choose a 3D cluster that is active in both contrasts for each 

subject (Data Set 3) and in all sessions (Data Set 1). 

This cluster is used as the gold standard. 

The true active cluster for the finger tapping data (Data Set 1) was chosen 

to be a 1x2x3 cluster of coordinates ( 44 , 52:53 , 6:8 ). 

The ideal ROC curve should have an immediate sharp rise to the saturation 

point of 1 (True Positive) and continues at that level. We found the ROC 

curves to give better results for finding activation using the mean predicted 
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activation signal compared to SPM activation signal in 10 cases out of 14 

and only one case shows a better result using the SPM activation signal. 

Some of the results are shown in Fig. 7.42 and 7.43 below. 

ROC plot for week 17 using the Convex Hull 

False Positive 

Fig. 7.42 ROC curve for the realigned week 17. 
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Fig. 7.43 ROC curve for the realigned week 19. 

The above figures show better results using the mean predicted activation 

signal compared to the SPM activation signal. 
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ROC plot for week 29 using the Convex Hull 

Fig. 7.44 ROC curve for the realigned week 29. 

Figure 7.44 above shows better results using the SPM activation signal 

compared to the mean predicted activation signal. 

ROC curves for the Visual data (Data Set 3): 

The 100% contrast data was realigned with the 10% contrast data. The 

realigned data were then analysed for active areas with 10 different 

thresholds using the SPM activation signal and the mean predicted 

activation signal. The true active cluster was chosen by cross analysing the 

active areas obtained using the SPM signal for the 100% contrast and the 

10% contrast at maximum activation. The true active cluster was chosen for 

each subject independently. The true active cluster for subject 1 is 2x4x2 

cluster with coordinates of (18:19 , 72:75 , 8:9). The true active cluster for 

subject 2 is 1x5x3 cluster with coordinates of (19 , 8:10 , 67:71). The true 

active cluster for subject 3 is 2x3x3 cluster with coordinates of (18:19 , 

ti p  
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67:69 , 8:10). The true active cluster for subject 4 is 2x1x3 cluster with 

coordinates of ( 19:20 , 53 , 8:10 ). The true active cluster for subject 5 is 

1x2x2 cluster with coordinates of (20 , 75:76 , 9:10). The ROC curves are 

shown in the Figures 7.45 to 7.49 below: 

ROC plot for subject 1 10% contrast using the Convex Hull 
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Fig. 7.45 ROC curve for the realigned 10% contrast subject 1. 

False Positive 

Fig. 7.46 ROC curve for the realigned 10% contrast subject 2. 
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ROC plot for subject 3 10% contrast using the Convex Hull 
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False Positive 

Fig. 7.47 ROC curve for the realigned 10% contrast subject 3. 
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Fig. 7.48 ROC curve for the realigned 10% contrast subject 4. 
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ROC plot for subject 5 10% contrast using the Convex Hull 

False Positive 

Fig. 7.49 ROC curve for the realigned 10% contrast subject 5. 

All the figures above show better results using the mean predicted 

activation signal compared to the SPM activation signal. Our choice of the 

True Active cluster in the above analysis is conservative, as there is the 

possibility that for low thresholds, the false positive count is elevated 

artifactually which results in the flattening of the ROC curve, therefore the 

most important part of the ROC curve is the initial slope. 

An important issue to consider is the validation of the ROC curve. To do 

that we looked at ROC curves for a randomized realigned finger tapping 

session. Week 17 was chosen for the randomization. The 100 run 

randomization was created using a Matlab command. The results for the 

first 5 runs are shown below: 
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ROC plot for week 17 runt using the Convex Hull 
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Fig. 7.50 ROC curve for the realigned week 17 runt. 

Figure 7.50 above shows the ROC curve for the realigned week 17 run 1. It 

is obvious from the curve that the randomized data show a flatter curve in 

comparison to the non-randomized data. The results of the other 4 runs are 

shown in Figures 7.51 to 7.54 below: 
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Fig. 7.51 ROC curve for the realigned week 17 run2. 
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Fig. 7.52 ROC curve for the realigned week 17 run3. 
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ROC plot for week 17 run4 using the Convex Hull 

False Positive 

Fig. 7.53 ROC curve for the realigned week 17 run4. 
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ROC plot for week 17 run5 using the Convex Hull 
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Fig. 7.54 ROC curve for the realigned week 17 run5. 

Overall, the results show that the randomized data have a flatter curve in 

comparison to the non-randomized data. Some of the randomized results 

illustrate the presence of activation. This is due to the fact that the 

randomization process does not take into account the on-off pattern, and it 

was noted that some of the randomized sequences did have a structured 

format. Repeating the analysis for 100 runs, it was found that there is no 

significant difference between results obtained using the mean 

hrfwithboxcar compared to those obtained using the SPM hrfwithboxcar 

signal. Consulting a statistician3, we found that although it is possible to plot 

the mean ROC curves, it was not possible to plot the mean pseudo ROC 

curve. Therefore the mean false positive signal versus the threshold was 

presented as shown below in Figure 7.55. 

Dr. JefferyNg Sing Kwong, Imperial College London 
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Fig. 7.55 Mean of False Positives vs. the Threshold. 

We can also see that as the threshold increases, the number of false 

positives decreases. 

The variance of the false positives from the mean also seem to be very 

small as shown below in Figure 7.56. 

Fig. 7.56 Variance of False Positives from the mean. 
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7.5 Clinical Application 

Two data sets are acquired from 5 subjects with a known tumour on the 

right side of the brain. The first set was a left hand finger tapping while the 

other set is a right hand finger tapping. The data were acquired using a 

Siemens 1.5 T Vision scanner. The data are BOLD EPI fMRI multi slice 

images of 128x128 pixels, where each volumetric data set is composed of 

14 slices and each session is composed of 35 volumes (the first 5 volumes 

were discarded from the analysis to avoid T1  effects in the initial scans). TR 

= 6 seconds. The tapping followed an off-on pattern (boxcar function) for 5 

volumes each. 

Figures 7.57 and 7.58 show the results for the realigned right hand finger 

tapping using SPM2 and the correlation method respectively for patient 1. 
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active 
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Fig. 7.57 SPM2 results for the right finger tapping activation. 
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Fig. 7.58 The correlation method results for the right finger tapping 

activation using the SPM activation signal (patient 1). 
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Maximum activation is found in slice 11 with a similarity measure of 0.914. 

The HRF signal at maximum activation (46,38,11) is shown below in Figure 

7.59. 

Time (scans) 

Fig. 7.59 HRF signal extracted from the maximum activation (patient 1 — 

right hand). 

The process was repeated for the other 4 patients and their individual HRF 

signals are shown below in figures 7.60 to 7.63: 
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Fig. 7.60 HRF signal extracted from the maximum activation (patient 2 — 

right hand). 
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Fig. 7.61 HRF signal extracted from the maximum activation (patient 3 — 

right hand). 
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Fig. 7.62 HRF signal extracted from the maximum activation (patient 4 — 

right hand). 
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Fig. 7.63 HRF signal extracted from the maximum activation (patient 5 — 

right hand). 

The mean HRF signal for the right hand finger tapping was then calculated 

and the signal is shown below in figure 7.64: 

4 	5 
Time (scans) 

Fig. 7.64 The mean of the HRF signals extracted from the maximum 

activation across patients (right hand). 

And the mean hrfwithboxcar signal is shown below: 
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Fig. 7.65 The mean HRF signal convolved with the boxcar signal (right 

hand). 

The process was repeated using the mean extracted HRF signal and the 

results are shown below in Figures 7.66 to 7.70. 
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Fig. 7.66 The correlation method results for the right finger tapping 

activation using the mean extracted activation signal for patient 1. 
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Fig. 7.67 The correlation method results for the right finger tapping 

activation using the mean extracted activation signal for patient 2. 
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Fig. 7.68 The correlation method results for the right finger tapping 

activation using the mean extracted activation signal for patient 3. 
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Fig. 7.69 The correlation method results for the right finger tapping 

activation using the mean extracted activation signal for patient 4. 
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Fig. 7.70 The correlation method results for the right finger tapping 

activation using the mean extracted activation signal for patient 5. 

The maximum activation is found in slice 11 (for patient 1) with a similarity 

measure of 0.91. The table below summarises the data for all subjects: 
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Right 
Hand Patient1 Patient2 Patient3 Patient4 Patient5 

SPM HRF 0.91 0.75 0.86 0.86 0.76 
Mean HRF 0.91 0.75 0.84 0.91 0.76 
Table 7.14 summary of the similarity measure results for each patient using 

the SPM HRF and the mean extracted HRF signals (right hand). 

From the results above we can conclude that there is no real difference in 

regards to the similarity measure between the data analysis using the SPM 

HRF and the mean HRF for the right hand. 

The true active cluster for the finger tapping data was chosen to be a 2x1x2 

cluster of coordinates (45:46 , 83 , 11:12). The ROC curve for the results 

obtained using the SPM activation signal and the mean extracted predicted 

activation signal is shown in Figure 7.71. 

ROC plot for rightfinger using the Convex Hull 

False Positive 

Fig. 7.71 ROC curve for the realigned right finger tapping. 
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The ROC curve above shows better results using the SPM HRF compared 

to the results using the mean HRF. 

The process was repeated for the realigned left hand finger tapping and 

Figures 7.72 and 7.73 show the results for the realigned left hand finger 

tapping using SPM2 and the correlation method respectively for patient 1. 

active 

. ;;P 	re Viiif:i;:r• 

05 1 1.5 2 25 
Design matrix 

Fig. 7.72 SPM2 results for the left finger tapping activation (patient 1 — left 

hand). 
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Fig. 7.73 The correlation method results for the left finger tapping activation 

using the SPM activation signal (patient 1 — left hand). 

Maximum activation is found in slice 12 with a similarity measure of 0.913. 

The HRF signal at maximum activation (82,46,12) is shown below in Figure 

7.74. 

• 
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Fig. 7.74 HRF signal extracted from the maximum activation (patient 1 — left 

hand). 
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The process was repeated for the other 4 patients and their individual HRF 

signals are shown below in figures 7.75 to 7.78: 
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Fig. 7.75 HRF signal extracted from the maximum activation (patient 2 — left 

hand). 
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Fig 7.76 HRF signal extracted from the maximum activation (patient 3 — left 

hand). 
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Fig 7.77 HRF signal extracted from the maximum activation (patient 4 — left 

hand). 
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Fig 7.78 HRF signal extracted from the maximum activation (patient 5 — left 

hand). 

The mean HRF signal for the right hand finger tapping was then calculated 

and the signal is shown below in figure 7.79. 
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Fig 7.79 The mean of the HRF signals extracted from the maximum 

activation across patients (left hand). 

And the mean hrfwithboxcar signal is shown below: 
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Fig 7.80 The mean HRF signal convolved with the boxcar signal (left hand). 

The process was repeated using the mean extracted HRH signal and the 

results are shown below in Figures 7.81 to 7.85. 
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Fig. 7.81 The correlation method results for the left finger tapping activation 

using the mean extracted activation signal (patient 1). 
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Fig 7.82 The correlation method results for the left finger tapping activation 

using the mean extracted activation signal (patient 2). 
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Fig 7.83 The correlation method results for the left finger tapping activation 

using the mean extracted activation signal (patient 3). 
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Fig 8.84 The correlation method results for the left finger tapping activation 

using the mean extracted activation signal (patient 4). 
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Fig 8.85 The correlation method results for the left finger tapping activation 

using the mean extracted activation signal (patient 5). 

The maximum activation is found in slice 12 (for patient 1) with a similarity 

measure of 0.905. The table below summarises the data for all subjects: 

Left Hand Patient1 Patient2 Patient3 Patient4 Patient5 
SPM HRF 0.91 0.82 0.85 0.87 0.86 
Mean HRF 0.92 0.81 0.85 0.87 0.88 
Table 7.15 summary of the similarity measure results for each patient using 

the SPM HRF and the mean extracted HRF signals (left hand). 

From the results above we can conclude that there is no real difference in 

regards to the similarity measure between the data analysis using the SPM 

HRF and the mean HRF for the left hand. 

The ROC curve for the results obtained using the SPM activation signal 

and the extracted predicted activation signal is shown in Figure 7.86. 
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Fig. 7.86 ROC curve for the realigned left finger tapping. 

The ROC curve above shows better results using the mean HRF compared 

to the results using the SPM HRF. 

Overall, in the right finger tapping, the results appear to be better using the 

SPM HRF. In the case of the left finger tapping, the results show that even 

though the similarity measure did not seem to improve using the mean HRF 

compared to the SPM HRF, the ROC curve illustrated better results using 

the mean HRF in the left finger tapping. Considering that the tumour is in 

the right side of the brain, then we would expect the left finger tapping to 

most likely be affected, and therefore, our results seem to indicate that an 

HRF signal extracted from the subject's data tend to produce better ROC 

curves. This strengthens our argument for the need to customize the HRF 

1.5 

o o 
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signal as opposed to a standard SPM HRF signal which is based on a 

group of healthy subjects and does not necessarily apply across all patient 

groups, some of which may have abnormal vascularization. 

7.6 Summary 

This chapter presented an investigation which concentrated on the 

differences in the hemodynamic response function across subjects, 

sessions, and regions in the brain. We can conclude from the results that 

the HRF signal varies between the somatosensory cortex and the visual 

cortex, and that there are differences between the SPM HRF and the mean 

HRFs extracted from the finger tapping data (Data Set 1) and the visual 

data (Data Set 3). There are also very clear differences between the 

subject's individual HRF signals and the mean signal in terms of the time to 

peak and the ratio of +ve to —ve amplitude. 

The effect of the phase shift of the HRF signal on activation is analysed. It 

was found that using the correlation method, the maximum number of 

activation was at shift +13dt (4.875 sec), even though, the maximum 

similarity measure was found at shift +10dt (3.75 sec). In SPM2, the 

maximum number of activations was found at shift Odt (0 sec). 
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A detailed description of the empirical extraction of the HRF signal from the 

data was described. A comparative study of the effect of different HRF 

signals has on the similarity measure and the ratio of energy is also carried 

out. It is very evident from the results that we can only retrieve the HRF 

signal from areas of activation, and that the HRF signal varies at different 

areas of activation in the brain. It also appears that the ratio of energies of 

active regions is lower than that of other regions in or out of brain. This 

does suggest that there are no other significant event-correlated activations 

present other than those that are well described by a Hemodynamic 

Response Function that is close to the initial (ho) candidate solution (see 

chapter 5 section 5.5). We can also conclude that the ratio of energy might 

be used as a test of activity/inactivity even if there is uncertainty in the 

precise form of the HRF. 

The differences in activations obtained using the SPM HRF and the mean 

extracted HRF signals are compared by presenting them graphically as 

ROC curves. They showed that in general the results were better using the 

mean predicted activation signal compared to the SPM activation signal. 

Some clinical application of our analysis is also included utilising all the 

methods discussed previously. 
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The next chapter will provide a detailed discussion of the results obtained, 

presenting a conclusion of the work and suggestions for future directions of 

this work. 
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Chapter 8 

Conclusions and Future work 

This study has extensively studied and compared the role of commonly 

used data analysis techniques in functional magnetic resonance imaging. A 

detailed investigation into the effect of the assumed hemodynamic 

response function on activation strength and reproducibility has also been 

performed. Below I summarise the results obtained during this work and 

compare the results to those in the literature. 

Realignment & Maximum activation: 

The effect of the realignment process on fMRI activation was previously 

investigated using generic tools by [49;122;123] using a computer-

generated phantom. The effect of the realignment process on activation 

was here thoroughly investigated using SPM99, SPM2 and AIR as 

realignment tools. Activation statistics were compared in active and non-

active regions in both finger tapping and visual cortex experiments with and 

without realignment, and using both the in-built detection algorithms in SPM 
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and using a simple, correlation signal detection process that is analogous 

to that of SPM (linear model). 

We found that the total number of active voxels and cluster size were 

greater using SPM2 compared to SPM99, and that the realignment using 

SPM in general produced better similarity measures compared to AIR. In 

selecting 4 weeks of Data Set 1 to compare the effect of alignment on 

activation strength, we found that for the finger tapping data, the 

realignment process using SPM99, SPM2 or AIR caused a reduction in the 

maximum similarity measure observed in the brain (Table 6.4). This is 

addressed more fully below. 

For the visual data, the realignment caused an increase in the maximum 

similarity measure using SPM2, a decrease using AIR, but gave 

contradictory results using SPM99 (Table 6.4). Similar work was conducted 

by Freire et al. [49] which investigated the effect of different realignment 

methods, based on different similarity measures, on registration. Their 

study concluded that the German McClure (GM) estimator was found to be 

more robust than the usual difference of squares measured but that more 

work is required to compare the various robust metrics that are proposed in 

the literature. We also noted that the reduction of the stimulus contrast had 

the effect of decreasing the maximum similarity measure. In general, a 
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bigger similarity measure does imply larger cluster size (suprathreshold 

regions) and vice versa. 

A more extensive (all weeks of Data Set 1) study, presented in Table 6.5, of 

the effect of realignment against non-realignment using SPM2, confirmed 

the surprising result of Table 6.5, where the non-realigned data led to 

similar matches of predicted to actual data compared to the realigned data. 

This might be due to the fact that the movement present in the data was 

very small (in the region of 0.1 mm). The effect of attempting to realign data 

with such small (sub-pixel) movements may actually lead to a reduction in 

the coherence of the activation pattern due to interpolation errors (see 

Chapter 3 section 3.4). Non peer reviewed studies4  have also found that 

small fast movements can have as much effect on the time course as large 

slow ones. The effect of realignment in the process of measurement noise 

may be to introduce precisely such artefacts into the data. 

Realignment & Normality: 

A normality study was conducted using the K-S test in the SPSS®  package 

to investigate the effect of realignment on the active areas. The normality 

assumption is an important property to establish, as it underlies the most 

popular signal detection strategies used in fMRI. 

4  http://merlin.psych.arizona.edui—dpat/Public/Imaging/SPM/spm2docs/ 
spm2 analysis defaults.html  
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For the finger tapping data, the realignment was found to cause a decrease 

in the normality of the signal deviation from the temporal mean (mean 

across time) (see Table 6.6) in the active areas of the brain. This is most 

likely to be due to variation in activation amplitudes within the cluster with 

respect to the mean activation within the cluster. Further steps to 

investigate this are proposed in Future Work. 

For the visual data, separate comparisons were performed on the normality 

statistic of active areas for varying stimulus contrast and with and without 

realignment. For the 10% contrast data, the realignment process (using 

SPM99, SPM2 or AIR) resulted in a decrease in the normality of active 

areas (Table 6.6), consistent with the finger tapping data (Table 6.6). 

However, for the visual 100% contrast, the realignment caused an increase 

in the normality of the active areas. This might be due to the 100% contrast 

leading to near maximum stimulation quite consistently within clusters, 

implying that all intra cluster voxels shared similar amplitudes. 

We found that decreasing the contrast caused an increase in the normality 

of active areas (Table 6.6), but this is in the absence of realignment, where 

the motion is unlikely to be as small as for the finger tapping experiments 

(longer sequence, and visible motion was present). 
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The normality study was extended to investigate the effect of realignment 

on inactive areas as well. 

There was a clear difference between the normality of active areas and the 

background out-of-brain areas, where, the active areas were less normal 

than the background areas (Table 6.7). This is because background areas 

are more likely to deviate from the temporal mean due to pure noise 

effects, and are thus more likely to display normality [124]. 

The realignment process seems to cause an increase in the normality of 

the in brain non-active areas for the visual data (Table 6.7), but causes a 

decrease in the normality for the in brain non-active areas for the finger 

tapping data (Table 6.7). There are two possible explanations for this, one 

of which is that there is significant non-random temporal structure in the 

non-active brain areas which realignment emphasizes. However, it may 

also be due to the fact that, as pointed out earlier, that the motion in the 

finger tapping experiments was sub-pixel, so that the effect of applying a 

realignment process is to introduce interpolation artefacts. No comparative 

studies of this nature could be found in the literature. 

No conclusive evidence was found to support the hypothesis that the 

normality may be used as a detector of activity in brain areas, but this 

cannot be completely ruled out based on the arguments presented above. 
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Effect of Phase Shift on activation patterns: 

By using both SPM2 and a correlation detection algorithm based on the 

normalised inner product, the effect of introducing phase shifts into the 

Hemodynamic Response Function on activation detection was also 

investigated (Chapter 7, section 7.2). The effect of the phase shift was to 

change the activation levels for both techniques. Using the correlation 

method produced maximum activation, in terms of the total number of 

active voxels, at a non-zero phase shift, whilst the maximum activation 

using SPM2 was found at zero phase shift. For this comparison, standard 

SPM protocols were used, but the HRF was modified externally. 

Comparison of SPM HRF and individualised HRF: 

We studied the differences in the Hemodynamic Response Function, and it 

was concluded that the HRF varies with subjects, sessions, and regions in 

the brain in strong agreement with findings by other researchers [6;22;24] 

see also [28;31-33;120]. Subsequently, this has lead to the decision to 

investigate the effect of variations of the Hemodynamic Response Function 

and the predicted activation signal on the activation size and signal 

similarity measure observed in the data. We concluded that the choice of 

Hemodynamic Response Function affects the predicted activation signal 

which subsequently has an effect on the activation (cluster) size and signal 

activation level. This also is in accordance with the literature [120;125]. The 

average hemodynamic response signal extracted from the slice with 
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maximum activation generated both a larger activation cluster and higher 

similarity measures compared to those obtained using the collapsed 

average signal extracted from multiple slices (3D) at maximum activation. 

This is probably because the slice timing information was not taken into 

account in this study (see Future Work). 

Activity versus Inactivity: Residual Signal Energy 

In this component of the work, the ability to automatically extract 

individualised HRF's, and HRF's for different brain areas was investigated. 

We selected some data subsets: 4 (clusters of voxels) to be located in the 

grey matter, 4 in the white matter, some active areas, 2 at potentially active 

areas (visual cortex), and 4 background or out of brain areas. We 

attempted to extract HRF signals at these positions. It was evident from the 

results that: 

(a) The ratio of the energy of the residual to the energy of the signal 

in the active regions is much lower than that of other regions in or 

out of brain, implying that the model of a box-car stimulus convolved 

with a presumed (non-zero) HRF is invalid in explaining the non-

active areas. This implies, as expected, that we can only retrieve 

the HRF signal from areas of activation, (but see below for a 

clarification of this). 
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(b) The HRF signal varies at different areas of activation in the 

brain, implying also the nature of the stimulus, and varies across 

sessions for the same individual, and subjects. 

This does also suggest that there are no other significant event-correlated 

activations present other than those that are well described by a 

Hemodynamic Response Function that is close to the initial (h0) candidate 

solution (see Chapter 5 section 5.5). We can also conclude that the ratio of 

residual to signal energy might be used as a test of activity/inactivity even if 

there is uncertainty in the precise form of the HRF. 

The mean HRF signal of all active areas across all the weeks, in the case 

of the finger tapping data, and across all subjects for the 10% contrast and 

the 100% contrast, in the case of the 5 subject visual data, was calculated 

and then used to look for the activation at these data sets. The process was 

repeated with ten different thresholds and the results were represented 

using ROC curves (Figures 7.42 to 7.49). In the case of the finger tapping 

data, it was evident from the curves that better results were obtained in 

finding activation using the mean predicted activation signal compared to 

the SPM activation signal in 10 cases out of 14, and only one case shows a 

better result using the SPM activation signal. In the case of the 5 subject 

visual data, all the curves showed better results using the mean predicted 

activation signal compared to the SPM activation signal (Figures 7.42 to 
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7.49). This indicates that better results are obtained when using a 

hemodynamic response extracted from the actual data as opposed to a 

standard hemodynamic response. The results of other studies [31;120] are 

consistent with our results. 

ROC curves were also illustrated for a randomized realigned finger tapping 

session with 100 different runs (Figures 7.50 to 7.54). Overall, the results 

show that the randomized data have a flatter curve, further from the ideal 

ROC characteristic [121], in comparison to the non-randomized data. This 

is generally associated with random classification in the detection sense. 

Clinical Data Analysis feasibility study 

Some clinical applications of our analysis are also included utilising 

methods discussed previously. The clinical data was 5-subjects all engaged 

in unilateral finger tapping, all with tumours on the right hand side of the 

brain. 

The HRF was extracted from active areas (during left and right finger 

tapping, then averaged separately) as detected using the SPM HRF. These 

individualised, and "side-tailored" HRF's were then applied to detecting 

activation. 
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For the right-hand finger tapping, the pseudo ROC curve (Figure 7.71) 

obtained using the SPM HRF was better compared to that using the 

extracted HRF from the left side of the brain. In the case of the left finger 

tapping, the results show that even though the similarity measure did not 

seem to improve using the extracted HRF compared to the SPM HRF, the 

pseudo ROC curve (Figure 7.86) illustrated better results. Considering that 

the tumour is in the right side of the brain, one might expect that, provided 

adequate data is available to extract an adequate HRF, the left finger 

tapping ROC's would show greater differences between using an extracted 

HRF and the SPM HRF, obtained from normal individuals. 

The results obtained require careful explanation. First, the problem with 

averaging a small number of voxels across subjects is that the extracted 

HRF's might be expected to be quite noisy. Thus, the HRF is less likely to 

yield an improvement over the SPM HRF, which is extracted over a large 

number of individuals. In other words, the quality of the individualised HRF 

estimate is likely to be poor. This would lead to correspondingly poor 

results in the resulting ROC curve compared to using the SPM HRF. 

Indeed, the curve in Figure 7.71 illustrates this effect for the normal brain 

side. Interestingly, for high thresholds of the left-hand finger tapping (right 

brain, tumour-containing area), the difference using the SPM HRF and the 

extracted HRF is less pronounced. Indeed, at high thresholds, there seems 

to be slightly better performance due to the extracted HRF than with the 
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SPM HRF, in terms of lower false-positive rate for the a given (high) 

threshold, thus capturing more certain activation areas. 

However, great care, is required in assessing these results because the 

extracted HRF from a small number of voxels is certain to show great 

variability. Thus, the difference between ROC curve pairs is quite likely to 

be due simply to the quality of the estimate of the extracted HRF. In order 

to be able to make any conclusive statements about these (not 

unpromising) results, a much greater cohort of patients would be required, 

and some effort into improving the reliability of the HRF extraction process 

would be necessary. 

Future Work: 

There are many more exhaustive tests that could be performed on the 

available data using the directions suggested by the outcome of this work: 

1. Investigation into the effects of different similarity measures on detected 

activation using correlation methods (i.e. outside of SPM environment). The 

method employed was selected to be amplitude invariant. Phase invariant 

similarity measure could also be employed. 

2. The experiment suggest that the inter slice averaging to obtain the HRF 

yields poorer results than within slice averaging. This may be due to the 

218 



Chapter 8: Conclusions and Future work 

acquisition time effects on the scanner. Knowledge of the timing of the 

slices should allow better averaging results, by taking into account the 

sampling times of the signal acquisition. Furthermore, such timing 

information could be incorporated into the randomisation process used in 

chapter 6. 

3. More extensive work also needs to be done to compare the effect on 

detection of realignment when different cost functions and interpolation 

methods are used. These are discussed in Chapter 3. Among the 

promising ones are Mutual Information (MI) and moments matching. 

4. During this work, several independent tools have been developed for 

MRI activation detection and HRF extraction. Because of the ease of 

performing different types of analysis using these tools, they will be 

maintained and developed. In particular, enhancement to the histogram 

method (see Chapter 5, section 5.4 and Chapter 6 section 6.7) is being 

developed which takes into account a distribution to activation amplitudes. 

5. More extensive subject studies need to be done to assess the effect of 

individual HRFs on activation detection and any effects on the spatial 

extent of active clusters. However, this initial work does indeed suggest that 

it is both feasible and useful to tailor HRFs to individuals whenever 

sufficient scan data is available. 
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Matlab scripts 

Matlab script to load data in *.iMC1 format 

function vol = readimg(dimensions,Ntimes,Offset); 

% Script to test loading raw data in IMG format. 
% Assumes fixed size to volume of 128 x 128 x 10. 
% Assumes 2 bytes/voxel. 

Numberofvoxels = prod(dimensions); 
j = 0; 
vol = zeros([dimensions,Ntimes]); 

for i = Offset+1:0ffset+Ntimes; 
fid = fopen(sprintf('E:11HumanQADatafteek1611.. 
HQA16vol0 %.2d.img',i),Y,113'); 
[X,nread] = fread(fid,numberofvoxels,'uint16'); 
fclose(fid); 
X1= reshape(X,dimensions); 
j = j+1; 
vol(:,:,:,j) = X1; 

end; 
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Matlab script to calculate the amplitudes of the 
activation  

% Script to do some plots of activation profiles, and 
% to calculate amplitudes of activation. 

% 299 is cluster label at slice 8 
a = find(labelled_x(:) == 299); 
SizeOfCluster = length(a); 

for i = 1:SizeOfCluster 
m,n,o]= ind2sub(dimensions,a(i)); 
signal = squeeze(vol(m,n,o,:)); 
Amplitude(i) = signalu*hrfwithboxcar/.. 
norm(hrfwithboxcar))^2; 
subplot(3,3,i); 
plot(1:30,squeeze(vol(m,n,o,:)),1:30,Amplitude(i)*hriwith 	boxcar) 

end; 

Matlab script for connected component labelling of the 
clusters  

function labelled_x = connected_component_labelling3D(x,k) 

%k = 3; % number of z dimensions 
% clusters 3D matrix and labels the clusters. 

labelled_x = bwlabeln(x,6); 
map = [0 0 0let(200)]; 

for y = 1:k; 
figure;imshow(labelled_x(:,:,y)+1,map,'notruesize'); 
% display the clusters. 

end; 

% returns values in matrix without repetition. 
a = unique(labelled_x); 
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numberofvalues = prod(size(a)); 
firstclusternumber = a(2,1); 
lastclusternumber = a(numberofvalues,1); 

% calculate the number of clusters in 3D matrix. 
numberofclusters = numberofvalues - 1; 

% calculate the total number of elements in each matrix 
numberofelements = prod(size(Iabelled_x)); 

% reshape labelled_x into a string. 
reshaped_labelled_x = reshape(labelled_x,1 ,numberofelements); 

% set the size of insignificant clusters matrix. 
insignificantclusters = cell(1,numberofclusters); 

if numberofclusters >= 1 
d = 1; 
c = reshaped_labelled_x; % reshaped_labelled_x in 2D 

for i = firstclusternumber : lastclusternumber; 

% finds elements in matrix with values equal to cluster 
number. 
b = find(labelled_x==i); 

% check for number of elements in each cluster. 
if prod(size(b)) <= 2 

% save insignificant clusters in insignificantclusters. 
insignificantclusters(1 ,d) = {b}; 

% discard of elements that form an insignificant cluster. 

for j = 1:numberofclusters 
r = insignificantclusters{j}; 
c(1 ,r) = 0; 

end; 
end; 
d=d+1; 

end; 
else 
end; 
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labelled_x = reshape(c,size(x)); 

% display significant clusters only. 
for y = 1:k; 

figure;imshow(labelled_x(:,:,y)+1,map,'notruesize'); 
end; 

Matlab script to find activation in the data loaded  

clear;close all; 

% Script to look for activation in raw data. 

Ntimes = 30; Offset = 4; dimensions = [128 128 10]; 

%recalls function readimg. 
vol = readinng(dimensions,Ntimes,Offset); 

k = dimensions(1,3); 

%calculate mean of volumes across time. 
collapsed_time = mean(vol,4); 

% This removes time-averaged values from each voxel. 
for i = 1:Ntimes, 

vol(:,:,:,i) = vol(:,:,:,i) - collapsed_time; 
end; 

load hrfwithboxcar; hrfwithboxcar = dummy(:,1); 

% Threshold to get rid of out of brain pixels. 
T = uint8(collapsed_time > 150); 

hrfwithboxcar = hrfwithboxcar - mean(hrfwithboxcar); 
reshaped_vol = reshape(vol,[prod(dimensions),Ntimes]); 
normalised_hrf = hrfwithboxcar/norm(hrfwithboxcar); 
volnorms = sqrt(sum(reshaped_vol.*reshaped_vo1,2)); 
InnerProduct = (reshaped_vol*normalised_hrf)./volnorms; 
InnerProduct = reshape(InnerProduct,dimensions).*double(T); 

% Threshold to get rid of in brain insignificant pixels. 
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Threshold = 0.5; 

mask = (InnerProduct > Threshold); 
InnerProduct = mask .* InnerProduct; 

for i = 1:Ntimes, 
NormalisedSignals(:,:,:,i) = vol(:,:,:,i)./reshape.. 
(volnorms,dimensions); 

end 

clear volnorms; clear T; 

labelled_x = connected_component_labelling3D(InnerProduct,k); 
%idispquant(InnerProduct(:,:,8),squeeze(NormalisedSignals(:,:,8,:))); 

Matlab script to visualize regions of activation 

% Script to visualise regions of activation. 
% Assume we have ccon -labelled regions of activation in 3D vol. 

Biggest = max(max(max(collapsed_time))); 
Smallest = min(min(min(collapsed_time))); 
Scale = (Biggest-Smallest)/128; 

collapsed_time = (collapsed_time - Smallest)/Scale; 
InnerProduct = InnerProduct.*(labelled_x > 0); 

BiggestlP = max(max(max(InnerProduct))); 
SmallestIP = min(min(min(InnerProduct))); 
ScalelP = (BiggestlP-SmallestlP)/25; 

collapsed_time = collapsed_time + (labelled_x>0).*(InnerProduct/ScalelP); 
[a]=find(reshape(labelled_x>0,[128*128*10,1])); 

for i = 1:length(a); 
collapsed_time(a(i)) = 128+InnerProduct(a(i))/ScalelP; 

end; 

%D1=smooth3(labelled_x,igaussian',[3 3 3]); 
%p = patch(isosurface(collapsed_time(60:128,1:80,:), 25), 'FaceColor', 
'blue', 'EdgeColor', 'none'); 
%p2 = patchasocaps(collapsed_time(60:128,1:80,:), 15), 'FaceColor', 
'interp', 'EdgeColor', 'none');  

224 



%view([51 -16]); axis tight; daspect([1 1 .4]); 

hotmap = hot(50); 
actmap = hotmap(16:40,:); 
graynnap=grey(128);map = [graymap; actmap]; 
montage(reshape(collapsed_time, [128, 128, 1,10]), map);colorbar; 

%camlight; lighting gouraud 
%isonormals(D1, p); 

Matlab script to plot histograms of subclusters 

% Script to generate a "multiplot" of the 

% data in block of data. The function requires 

% an input 4D block of data, generating a series 

% of plots that illustrate the spatiotemporal 

% relationships 

% Plots to be done 

% (1) Mean signal in block as a function of time 

% (2) Cross-Correlation between space-time lines 

% (3) PDF total data 

% (4) PDF of data along each space-time line 

% (5) DFT, one sided of data along space-time means 

% Assumes that "vol" is already constructed 

% (may need to run analysevols) 

Lm = 3; 

Ln = 3; 

NBins = 50; 

time = 84; 

timeaxis = 1:time; 

for i = 1:time 
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meansignal(i) = mean(mean(mean(newvol(:,:,:,i)))); 
end; 

for i = 1:time 
data = newvol(:,:,:,i); 

maxdata(i) = max(data(:)); 
mindata(i) = min(data(:)); 

end; 

subplot(Lnn,Ln,1);plot(timeaxis,meansignal,timeaxis,maxdata,T.-

1,timeaxis,mindata,1g.-'); 
h=title('Mean signal and Min and Max in 1x2x1:(54,49-50,9)voxels'); 

set(h,'FontSize',6); 

data = squeeze(newvol(:,:,:,:)); 

BinRange = max(maxdata)-min(mindata); 
Bins = min(mindata):BinRange/(NBins-1):max(maxdata); 
subplot(Lm,Ln,2);[N,H]=hist(data(:),Bins); 

bar(H, N); 
h=title('Histogram of all data'); 

set(h,'FontSize',6); 

subplot(Lm,Ln,3); 
C = xcorr(meansignal-mean(meansignal),meansignal,'coeff); 

plot(1:length(C),C); 
h=xlabel('Lag');set(h,'FontSize',6); 
h=title('Nomialised Autocorr'); 
set(h,'FontSize',6); 
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spacetimeline = []; 

for i = 1:size(newvol,1); 

for j = 1:size(newvol,2); 

for k = 1:size(newvol,3); 

spacetimeline = [spacetimeline, squeeze(newvol(i,j,k,:))]; 

end; 

end; 

end; 

subplot(Lm, Ln,4);plot(timeaxis,spacetimeline); 

h=title(All Voxels'); 

set(h,'FontSize',6); 

mu = mean(spacetimeline); 

mumat=(kron(mu',ones(1,time)))'; 

spacetimedev = spacetimeline-mumat; 

% C = cov(spacetimedev'); 

% [V,D]=eig(C); 

% PI = V(:,30:-1:28); 

% subplot(Lm,Ln,5);plot(timeaxis,P1'); 

% h=title('First 3 Eigenvectors'); 

Vo set(h,'FontSize',6); 

%Now, let's subtract the mean value from each spacetimeline 

subplot(Lm,Ln,5); 

hist(spacetimedev(:),40); 

h=title('Hist:Dev. From Temp. Mean with Pos'); 
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set(h,'FontSize',6); 

subplot(Lm,Ln,6); 

plot(spacetimedev); 

h=title('Signals Minus Means'); 

set(h,'FontSize',6); 

subplot(Lm, Ln,7); 

mindevsignal = min(spacetimedev'); 

maxdevsignal = max(spacetimedev'); 

meandevsignal = mean(spacetimedev'); 

plot(timeaxis,meandevsignal,timeaxis,maxdevsignal,'Cjimeaxis,mindevsig 

nal,'g:'); 

h=title('Mean signal and Min and Max in spacetimedev'); 

set(h,'FontSize',6); 

NVoxels = 2; 

devdev=spacetimedev-kron(ones(1,NVoxels),meandevsignal'); 

subplot(Lm,Ln,8); 

hist(devdev(:),NBins); 

h=title('Hist:Dev. From Mean Signal Pattern'); 

text(2,5,Fotal number of pixels =' num2str(prod(size(newvol)))]); 

set(h,'FontSize',6); 
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Matlab script to plot ROC curves after the calculation  
of the false positive and the false negative of activation  

clear all; %close all;cic 

load 

CAresearch\mymatlab\activation\FTmeanactiveallweeks\activemeanR17 % 

loading active areas in visual data using the mean hrf 

%load j:\5submeanactivel  01activemeanRa11510 

Al = Areas; %Areas conatin all the active areas found for 10 different 

thresholds 

load CAresearch\rnymatiab\activation\FTspmactiveallweeks\activespmR17 

% loading active areas in visual data using the mean hrf 

%load j:15subspmactive10\activespmRa11510 

A2 = Areas; 

ActivationTemplate = zeros(128,128,10); % activation template for the 

finger tapping data 

% for y = 75:76 

% 	for x = 20 

% 	for z = 9:10 
ok 	ActivationTemplate(y,x,z) = 1; 

% 	end; 

% end; 

% end; 

% 2x1x3 

for y = 44 
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for x = 52:53 

for z = 6:8 

ActivationTemplate(y,x,z) = 1; 

end; 

end; 

end; 

% collapsed_time = mean(vol,4); 

% T = uint8(collapsediime > 250); % threshold to eliminate out of brain 

voxels 

% A=find(T(:,:,:)==1); % finds the total number of voxels with value = 1 (in 

brain voxels) 

% total number of finger tapping in brain voxels = 30366 

% total number of 5 subject visual in brain voxels = 84696 

% InBrainVoxels = 30366; % for finger tapping 

setAl = cell(1,10); 

for threshold = 1: prod(size(A1)) % number of thresholds (i.e. 10) 

% number of active areas for each threshold 

numberofsetsl = prod(size(Al{threshold}.active)); 

if numberofsetsl > 1 

for i = 1:numberofsets1 

setAl {1,threshold}= [setAl {1,threshold} ; 

Al {threshold}.active{i}.Positions]; 

end; 

elseif numberofsetsl == 1 

setAl {1,threshold} = Al {threshold}.active{1}.Positions; 

else 
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setA1 {1,threshold} = 0; 

end; 

end; 

for i = 1:10 

tempi = zeros(128,128,10); % finger tapping 

%tempi = zeros(128,128,22); % visual data 

if isempty(setA1{i}) 

tempi = tempi; 

else 

tempind1 = 

sub2ind(size(temp1),setA1{i}(:,1,:),setA1{i}(:,2,:),setA1(i)(:,3,:)); 

tempi (tempind1) = 1; % set all active areas in 1st set to 1 

TruePositivel = ActivationTemplate .* tempi; 

TPLocationl = find(TruePositive1==1); 

TP1(i) = size(TPLocationl,1); 

RatioOfTP1(i) = TP1(i) / 6; % 8 is the size of the true positive cluster 

chosen in 

ActivationTemplate 

FP1(i) = size(setA1(i),1) - TP1(i); 

RatioOfFP1(i) = FP1(i) / 30360; 

end; 

end; 

setA2 = cell(1,10); 

for threshold = 1: prod(size(A2)) % number of thresholds (i.e. 10) 

numberofsets2 = prod(size(A2{threshold}.active)); % number of 

active areas for 

each threshold 
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if numberofsets2 > 1 

for i = 1:numberofsets2 

setA2 {1,threshold}= [setA2{1,threshold} ; 

A2{threshold}.active{i}. Positions]; 

end; 

elseif numberofsets2 == 1 

setA2{1,threshold} = A2{threshold}.active{1}. Positions; 

else 

setA2{1,threshold} = []; 

end; 

end; 

for i = 1:10 

%temp2 = zeros(128,128,22); % visual data 

temp2 = zeros(128,128,10); % finger tapping 

if isempty(setA2{i}) 

temp2 = tern p2; 

else 

tempind2 = 

sub2ind(size(temp2),setA2{i}(:,1,:),setA2{i}(:,2,:),setA2{i}(:,3,:)); 

temp2(tempind2) = 1; % set all active areas in 2nd set to 1 

TruePositive2 = ActivationTemplate .* temp2; 

TPLocation2 = find(TruePositive2==1); 

TP2(i) = size(TPLocation2,1); 

RatioOfTP2(i) = TP2(i) / 6; % 18 is the size of the true positive 

cluster chosen in ActivationTemplate 
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FP2(i) = size(setA20,1) - TP2(i); 

RatioOfFP2(i) = FP2(i) / 30360; 

end; 

end; 

% figure; 

% plot(RatioOfFP1,RatioOfTP1,'-.ro',RatioOfFP2,RatioOfTP2,'-xb'); 

% %axis([0 0.6 0 1.1]);title('ROC plot for subject 5 10% contrast '); 

% axis([0 0.4 0 1.5]);title('ROC plot for week 17 runl '); 

% h = legend('using mean hrfwithboxcar','using spm hrfwithboxcar',4); 

%h = legend('100% contrast:1 0% contrast',2); 

%New Improved ROC; does not need Gaussian-ness and is easy. 

%Called the "Convex Hull of the ROC" 

FMM1 = RatioOfFP1; 

TMM1 = RatioOfTP1; 

idxl = unique(convhull(FMM1, TMM1)); 

FMMCHI = FMM1(idx1(1:end-1)); 

TMMCHI = TMM1(idx1(1:end-1)); 

%figure;plot(FMM1,TMM1,1mx',FMMCH1,TMMCH1,'m'); 

FMM2 = RatioOfFP2; 

TMM2 = RatioOfTP2; 

idx2 = unique(convhull(FMM2, TMM2)); 

FMMCH2 = FMM2(idx2(1:end-1)); 

TMMCH2 = TMM2(idx2(1:end-1)); 
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%figure; 

plot(FMM1,TMM1:ro',FMMCH1,TMMCH 1:-

.ro',FMM2,TMM2,1bx',FMMCH2,TMMCH2,'-bx'); 

%axis([0 0.4 0 1.2]);title('ROC plot for subject 5 10% contrast using the 

Convex Hull'); 

axis([0 0.4 0 1.5]);title('ROC plot for week 17 run5 using the Convex Hull'); 

h = legend('raw points using mean hrfwithboxcar','CH using mean 

hrfwithboxcar','raw points using spm hrfwithboxcar','CH using spm 

hrfwithboxcar',4); 

Matlab script to calculate the mean signal and the 
standard deviation for a group of signals  

% Script to load and check reproducibility 

DirList = dir Cres_n; 

TR = 1; % Hack 

Q =[]; 
for i = 1:length(DirList) 

DirName = DirList(i).name; 

FileList = dir([DirName,V,DirName,'Al); 

eval(['cd ',DirName]); 

for j = 1:length(FileList); 

LoadString = ['load ',FileList(j).name]; 

eval(LoadString); 

Q = [Q,hrf]; 

end; 

cd ..; 

end; 

Q = Q'; 
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% Because these have different energies (arising from possibly different 

% amplitude signals), we normalise all the signals by the 2-norm 

[M,N] = size(Q); 

for i = 1:M 

NQ(i,:) = Q(i,:)/norm(Q(i,:)); 

end; 

MNQ = mean(NQ); 

S = std(NQ); 

SL = MNQ - S; SU = MNQ + S; 

S2L = MNQ - 2*S; S2U = MNQ + 2*S; 

H1=plot((1:N)*TR,MNQ);hold on; 

H2=plot((1:N)*TR,SL,1r--'); 

H3=plot((1:N)*TR,SU,'r--'); 

H4=plot((1:N)*TR,S2L;g--'); 

H5=plot((1:N)*TR,S2U,'g--'); 

legend([H1,H2,H4],'Mean HRF','Mean fpm 1 SD','Mean 2 \pm SD'); 

xlabel('Time (scans)'); 

ylabel('Response (normalised)'); 

fig ure(2); 

plot((1:N)*TR,S); 

xlabel('Time (s)'); 

ylabel('Standard Deviation of HRF'); 
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Matlab script to create simulated data 

%clear; 
%close all; 

% Script to create activation in raw data 
Ntimes = 30;Offset = 0;dimensions = [128 128 10];percentagel = 
1.5;percentage2 = 1.5; 
vol=readimgfake(dimensions,Ntimes,Offset); % recalls function 
readimgfake 

% hrfwithboxcar shifted to give an on-off pattern 
load hrfwithboxcarhighres; % original hrfwithboxcar 
hrfwithboxcar = X([0:29]*fMRI_T + fMRI_TO + 32,:); 
hrfwithboxcar=hrfwithboxcar(7:30); 
hrfwithboxcar=[hrfwithboxcar;hrfwithboxcar(5:10)]; 

% m1 = 1; 
% 	for slicel = 7:10; % positions of activation in area 1 - cube: 4x4x4) 
% 	for positionofactivationxl = 56:59; 
% 	for positionofactivationyl = 56:59; 
% 	activationvalue1(positionofactivationx1,positionofactivationy1) 
= Rvol(positionofactivationx1,positionofactivationy1,slice1,1))]; 
% 	activationarray1(m1) 
=[activationvalue1(positionofactivationx1,positionofactivationy1)]; 
% 	m1 = ml + 1; 
% 	end; 
% 	end; 
% end; 

m1 = 1; 
for slicel = 7:9; % positions of activation in area 1 - star: 3x3x3) 

for positionofactivationxl = 56; 
for positionofactivationyl = 57; 

activationvalue1(positionofactivationx1,positionofactivationy1) = 
Rvol(positionofactivationx1,positionofactivationy1,slice1,1))]; 

activationarray1(m1) 
=[activationvalue1(positionofactivationx1,positionofactivationy1)]; 

m1 = m1 + 1; 
end; 

end; 
for positionofactivationxl = 57; 

for positionofactivationyl = 56:58; 
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activationvalue1(positionofactivationx1,positionofactivationy1) = 
Rvol(positionofactivationx1,positionofactivationy1,slice1,1))]; 

activationarray1(m1) 
=[activationvaluel(positionofactivationx1,positionofactivationy1)]; 

m1 = m1 + 1; 
end; 

end; 
for positionofactivationxl = 58; 

for positionofactivationyl = 57; 
activationvalue1(positionofactivationx1,positionofactivationy1) = 

[(vol(positionofactivationxl , positionofactivationyl ,slice 1,1))]; 
activationarray1(m1) 

=[activationvaluel (positionofactivationxl positionofactivationyl )J; 
m1 = ml + 1; 

end; 
end; 

end; 

% activation created by finding the average and then adding a 
percentage of activation 

valueofactivationmean1 = mean(activationarray1); 
percentageofactivation1 = valueofactivationmean1 * percentage1/100; 
valueofactivationmaxl = valueofactivationmean1 + 

percentageofactivationl; 
valueofactivationminl = valueofactivationmean1 - 

percentageofactivationl; 
boxcaractivation1 = hrfwithboxcar * (valueofactivationmaxl -

valueofactivationminl) + valueofactivationminl; 

% 	% activation created by finding the maximum and minimum 
% valueofactivationmaxl = max(activationarray1); 
% valueofactivationminl = min(activationarrayl); 
% highl = repmat(valueofactivationmax1,1,5); 
% 	lowl = repmat(valueofactivationmin1,1,5); 
% 	cycle1 = [highl lowl]; 
% 	boxcaractivation1 = repmat(cycle1,1,3); 
% 	boxcaractivationl = hrfwithboxcar * (valueofactivationmaxl -
valueofactivationminl) + valueofactivationminl; 
% 	%boxcaractivationl = boxcaractivation1 .* hrfwithboxcar'; % activation 
convolved with hrfwithboxcar signal 

% for slicel = 7:10; % slices that contain activation in area 1 - cube: 4x4x4 
% 	for positionofactivationxl = 56:59; 
cyo 	for positionofactivationyl = 56:59; 
ok 	for count = 1:Ntimes; 
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% 	vol(positionofactivationx1,positionofactivationy1,slice1,count) 
= boxcaractivation1(count); 
% 	end; 
% 	end; 
% 	end; 
% end; 

for slicel = 7:9; % slices that contain activation in area 1 - star: 3x3x3 
for positionofactivationxl = 56; 

for positionofactivationyl = 57; 
for count = 1:Ntimes; 
vol(positionofactivationx1,positionofactivationy1,slice1,count) = 

boxcaractivation 1(count); 
end; 

end; 
end; 
for positionofactivationx1 = 57; 

for positionofactivationyl = 56:58; 
for count = 1:Ntimes; 

vol(positionofactivationx1,positionofactivationy1,slice1,count) = 
boxcaractivation1(count); 

end; 
end; 

end; 
for positionofactivationx1 = 58; 

for positionofactivationyl = 57; 
for count = 1:Ntimes; 
vol(positionofactivationx1, positionofactivationy1,slice1, count) = 

boxcaractivation 1(count); 
end; 

end; 
end; 

end; 

% 	m2 =1; 
% 	for slice2 = 3:6; % positions of activation in area 2 - cube: 4x4x4) 

for positionofactivationx2 = 75:78; 
% 	for positionofactivationy2 = 75:78; 
% 	activationvalue2(positionofactivationx2,positionofactivationy2) 
= [(vol(positionofactivationx2,positionofactivationy2,slice2,1))]; 
% 	activationarray2(m2) 
=[activationvalue2(positionofactivationx2,positionofactivationy2)]; 

m2 = m2 + 1; 
end; 

end; 
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% end; 

m2 =1; 
for slice2 = 3:5; % positions of activation in area 2 - star: 3x3x3) 

for positionofactivationx2 = 75; 
for positionofactivationy2 = 76; 

activationvalue2(positionofactivationx2,positionofactivationy2) = 
[(vol(positionofactivationx2,positionofactivationy2,slice2,1))]; 

activationarray2(m2) 
=[activationvalue2(positionofactivationx2,positionofactivationy2)]; 

m2 = m2 + 1; 
end; 

end; 
for positionofactivationx2 = 76; 

for positionofactivationy2 = 75:77; 
activationvalue2(positionofactivationx2,positionofactivationy2) = 

((vol (positionofactivationx2, positionofactivationy2,slice2, 1))]; 
activationarray2(m2) 

=[activationvalue2(positionofactivationx2,positionofactivationy2)]; 
m2 = m2 + 1; 

end; 
end; 
for positionofactivationx2 = 77; 

for positionofactivationy2 = 76; 
activationvalue2(positionofactivationx2,positionofactivationy2) = 

[(vol(positionofactivationx2,positionofactivationy2,slice2,1))]; 
activationarray2(m2) 

=[activationvalue2(positionofactivationx2,positionofactivationy2)]; 
m2 = m2 + 1; 

end; 
end; 

end; 

% activation created by finding the average and then adding a 
percentage of activation 

valueofactivationmean2 = mean(activationarray2); 
percentageofactivation2 = valueofactivation mean2 * percentage2/100; 
valueofactivationmax2 = valueofactivationmean2 + ' 

percentageofactivation2; 
valueofactivationmin2 = valueofactivationmean2 - 

percentageofactivation2; 
boxcaractivation2 = hrfwithboxcar * (valueofactivationmax2 - 

valueofactivationmin2) + valueofactivationmin2; 

% 	% activation created by finding the maximum and minimum 
% 	valueofactivationmax2 = max(activationarray2); 
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% 	valueofactivationmin2 = min(activationarray2); 
% 	high2 = repmat(valueofactivationmax2,1,5); 
% 	low2 = repmat(valueofactivationmin2,1,5); 
% cycle2 = [high2 low2]; 
% 	boxcaractivation2 = repmat(cycle2,1,3); 
% 	%boxcaractivation2 = boxcaractivation2 .* hrfwithboxcar'; % activation 
convolved with hrfwithboxcar signal 
% 	boxcaractivation2 = hrfwithboxcar * (valueofactivationmax2 -
valueofactivationmin2) + valueofactivationmin2; 

% 	for slice2 = 3:6; % slices that contain activation in area 2 - cube: 
4x4x4 
% 	for positionofactivationx2 = 75:78; % positions of activation in area 
2) 
% 	for positionofactivationy2 = 75:78; 
% 	for count = 1:Ntimes; 
% 
vol(positionofactivationx2,positionofactivationy2,slice2,count) = 
boxcaractivation2(count); 
% 	end; 

end; 
% 	end; 
% end; 

for slice2 = 3:5; % slices that contain activation in area 2 - star: 3x3x3 
for positionofactivationx2 = 75; % positions of activation in area 2) 

for positionofactivationy2 = 76; 
for count = 1:Ntimes; 

vol(positionofactivationx2,positionofactivationy2,slice2,count) = 
boxcaractivation2(count); 

end; 
end; 

end; 
for positionofactivationx2 = 76; % positions of activation in area 2) 

for positionofactivationy2 = 75:77; 
for count = 1:Ntimes; 

vol(positionofactivationx2,positionofactivationy2,slice2,count) = 
boxcaractivation2(count); 

end; 
end; 

end; 
for positionofactivationx2 = 77; % positions of activation in area 2) 

for positionofactivationy2 = 76; 
for count = 1:Ntimes; 

vol(positionofactivationx2,positionofactivationy2,slice2,count) = 
boxcaractivation2(count); 
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end; 
end; 

end; 
end; 

% Addition of noise to the data 
for i = 1:Ntimes, 

noise = randn(dimensions); 
% remove negative values (set to zero); 
noise=reshape(noise,[(prod(dimensions)),11);j = find(noise<0); for 

k=1:length(j) noise(j(k))=0; end; noise=reshape(noise,dimensions); 
vol(:,:,:,i) = vol(:,:,:,i) + noise; 

end 

Matlab script to find the mutual active areas between  
two sets of data  

clear all; close all; 

i = 1; % i selects the threshold 1:10 

% algorithm to check if two data sets have any active voxels in common 

%load 

CAresearch1 mymatlab\activationTTspmactiveallweeks\activespm R16 % 

loading active areas in visual data using the mean hrf 

load J:15subspmactive100\activespmRa115100 % loading active areas in 

finger tapping using the mean hrf 

Al = Areas{i}; 

%load 

CAresearch\mymatlab\activation\FTspmactiveallweekslactivespmR17 % 

loading active areas in visual data using the mean hrf 

load JA5subspmactivel0\activespmRall510% loading active areas in visual 

data using the spm hrf 

A2 = Areas{i}; 
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tempi = zeros(128,128,22); % finger tapping data 

tem p2 = zeros(128,128,22); 

% finding the number of active voxels in data set 1 

numberofsets1 = prod(size(A1.active)); 

setA1 = []; 

if numberofsetsl > 1 

for i = 1:nunnberofsets1 

setA1 = [setA1 ; Al .active{i}.Positions]; 

end; 

else setA1 = A1.active{1}.Positions; 

end; 

% finding the number of active voxels in data set 2 

numberofsets2 = prod(size(A2.active)); 

setA2 = []; 

if numberofsets2 > 1 

for j = 1:numberofsets2 

setA2 = [setA2 ; A2.active{j}. Positions]; 

end; 

else setA2 = A2.active{1}.Positions; 

end; 

tempind1 = sub2ind(size(temp1),setA1(:,1,:),setA1(:,2,:),setA1(:,3,:)); 

Totalactive1 = prod(size(tempind1)); 
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%disp(['Total number of active voxels in set using the mean hrf =' 

num2str(Totalactive1)]) 

tempi (tempind1) = 1; % set all active areas in 1st set to 1 

tempind2 = sub2ind(size(temp2),setA2(:,1,:),setA2(:,2,:),setA2(:,3,:)); 

Totalactive2 = prod(size(tempind2)); 

%disp(['Total number of active voxels in set using the spm hrf = ' 

num2str(Totalactive2)]) 

%temp(tempind2) = temp(tempind2) + 1; 

%temp(setA2(:,1,:),setA2(:,2,:),setA2(:,3,:)) = 

temp(setA2(:,1,:),setA2(:,2,:),setA2(:,3,:)) + 1; % increment all active areas 

in temp by one. 

temp2(tempind2) = 1; 

a = tempi .*temp2; 

b = find(a==1); 

[x,y,z]=ind2sub(size(temp1),b); 

F=[x y z]; % contains all voxel that are active in both sets 
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Appendix B 

Results 

The table below contains the measures of normality and the total number of active voxels for subsets selected for all the data 

analysed. "Active" indicates area of activation, "pv" indicates area of potential visual activation, "B" indicates background out of 

brain area, "W' indicates a white matter area, and "G" indicates a grey matter area. 

Active/ 
numb 
er of activ activ pv1/ pv2/ B1/n B2/n B3/n B4/n W1/ W2/ W3/ W4/ G1/n G2/n G3/n G4/n 
voxels e2 e3 nov nov ov ov ov ov nov not nov nov ov ov ov ov 
0.76/6 0.89/ 0.92/ 0.98/ 0.69/ 0.78/ 0.70/ 0.74/ 0.90/ 0.79/ 0.98/ 0.50/ 0.65/ 0.56/ 0.94/ 0.72/ 

FT16 0 120 1920 1920 270 270 270 270 120 120 120 120 120 120 120 120 
0.94/1 0.99/ 1.00/ 0.96/ 0.87/ 0.80/ 0.76/ 0.84/ 0.89/ 0.96/ 0.96/ 0.89/ 0.95/ 0.92/ 0.31/ 0.97/ 

FT17 20 90 1920 1920 270 270 270 270 120 120 120 120 120 120 120 120 
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FT33 
0.995/ 
240 

0.79/ 
180 

0.50/ 
2250 

0.72/ 
1080 

0.68/ 
/270 

0.74/ 
270 

0.64/ 
270 

0.34/ 
270 

0.84/ 
180 

0.97/ 
120 

0.97/ 
120 

1.00/ 
120 

0.67/ 
120 

0.73/ 
120 

1.00/ 
120 

0.56/ 
120 

0.99/1 0.96/ 0.81/ 0.80/ 0.36/ 0.89/ 0.90/ 0.89/ 0.93/ 0.97/ 0.82/ 0.52/ 0.68/ 0.98/ 1.00/ 0.71/ 
FT42 80 120 1920 1920 270 270 270 270 120 120 120 120 120 120 120 120 

FT16_S 0.70/6 0.32/ 0.64/ 0.23/ 0.42/ 0.59/ 0.25/ 1.00/ 0.87/ 0.98/ 1.00/ 0.63/ 0.90/ 0.82/ 0.73/ 
PM2 0 1920 1920 270 270 270 270 120 120 120 120 120 120 120 120 
FT17_S 0.91/9 0.79/ 0.62/ 0.43/ 0.17/ 0.27/ 0.21/ 0.86/ 1.00 0.95/ 0.29/ 0.89/ 0.94/ 0.67/ 0.48/ 
PM2 0 1920 1920 270 270 270 270 120 /120 120 120 120 120 120 120 
FT33_S 0.92/2 0.74/ 0.93/ 0.88/ 0.65/ 0.50/ 0.61/ 0.16/ 0.19/ 0.99/ 0.82/ 1.00 0.60/ 0.97/ 0.81/ 0.74/ 0.69/ 
PM2 40 240 300 1350 1080 270 270 270 270 180 120 /120 120 120 120 120 120 
FT42_S 0.61/2 0.84/ 0.18/ 0.36/ 0.23/ 0.32/ 0.60/ 0.38/ 0.82/ 1.00/ 0.86/ 0.50/ 0.73/ 0.79/ 0.99/ 0.99/ 
PM2 40 180 1920 1920 270 270 270 270 120 120 120 120 120 120 120 120 

FT16_S 0.54/6 0.97/ 
PM99 0 180 
FT17_S 0.33/1 
PM99 20 
FT33_S 0.97/9 0.67/ 
PM99 0 240 
FT42_S 0.72/3 
PM99 60 

FT16_Al 0.76/6 0.78/ 
R 0 120 
FT33 Al 0.01/1 
R 80 
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0.50/4 0.15/ 0.11/ 0.06/ 0.00/ 0.00/ 0.03/ 
KSmoco 80 1920 1920 480 480 480 480 
Ksnomo 0.38/1 0.17/ 0.09/ 0.23/ 0.01/ 0.02/ 0.64/ 
co 80 1920 1920 480 480 480 480 
KSnomo 0.90/6 0.08/ 0.01/ 0.00/ 0.00/ 0.00/ 0.00/ 
col 00 1920 1920 480 480 480 480 

0.53/2 0.04/ 0.36/ 0.04/ 0.02/ 1.00 0.56/ 0.71/ 0.92/ 0.01/ 0.20/ 0.16/ 0.95/ 
100_51 52 756 756 756 756 /336 336 336 336 336 336 336 336 

0.06/6 0.11/ 0.10/ 0.29/ 0.18/ 0.77/ 0.72/ 0.44/ 0.72/ 0.38/ 0.48/ 0.81/ 0.71/ 
100_52 72 756 756 756 756 336 336 336 336 336 336 336 336 

0.38/8 0.05/ 0.34/ 0.15/ 0.17/ 0.55/ 0.58/ 0.19/ 0.88/ 0.00/ 0.24/ 0.86/ 0.62/ 
100_53 40 756 756 756 756 336 336 336 336 336 336 336 336 

0.46/3 0.01/ 0.09/ 0.22/ 0.21/ 0.87/ 0.36/ 0.64/ 0.94/ 0.76/ 0.87/ 0.34/ 0.68/ 
100_54 36 756 756 756 756 336 336 336 336 336 336 336 336 

0.76/3 0.55/ 0.23/ 0.68/ 0.27/ 0.53/ 0.22/ 0.70/ 0.63/ 0.99/ 0.97/ 0.91/ 0.84/ 
100_55 36 756 756 756 756 336 336 336 336 336 336 336 336 

100 51r 0.97/5 0.30/ 0.60/ 0.12/ 0.55/ 0.83/ 0.27/ 0.94/ 0.54/ 0.30/ 0.85/ 0.28/ 0.17/ 
-M2 SP 04 756 756 756 756 336 336 336 336 336 336 366 366 

100_52r 1.00/ 0.55/ 0.85/ 0.27/ 0.21/ 0.90/ 0.63/ 0.58/ 0.95/ 0.36/ 0.93/ 0.97/ 0.65/ 
_SPM2 672 756 756 756 756 336 336 336 336 336 336 336 336 
'OO 53r 1.00/ 0.99/ 0.37/ 0.28/ 0.19/ 0.24/ 0.80/ 1.00/ 0.94/ 0.92/ 0.90/ 0.88/ 0.94/ 0.15/ 0.60/ -M2 _ SP 1512 672 840 756 756 756 756 336 336 336 336 336 336 336 336 

0.59 0.65 
100_54r 0.55/5 0.32/ 0.15/ 0.39/ 0.81/ 0.71/ 9/33 0.92/ 0.69/ 0.98/ 4 / 0.23/ 0.88/ 
_ SPM2 04 756 756 756 756 336 6 336 336 336 336 336 336 
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100_55r 
_SPM2 

0.99/3 
36 

0.88/ 
504 

0.27/ 
336 

0.68/ 
756 

0.45/ 
756 

0.34/ 
756 

0.38/ 
756 

0.90/ 
336 

0.96/ 
336 

0.81/ 
336 

0.99/ 
336 

0.71/ 
336 

0.53/ 
336 

0.61/ 
336 

0.93/ 
336 

100_51r 0.19/3 0.73/ 
_SPM99 36 336 
100_52r 0.78/4 0.35/ 
_SPM99 20 504 
100_53r 0.99/7 0.66/ 0.99/ 
_SPM99 56 840 672 
100_54r 0.96/1 0.61/ 
_SPM99 68 336 
100_55r 0.84/1 0.88/ 
SPM99 68 252 

100_51r 0.19/2 0.32/ 
_AIR 52 252 
100_52r 0.38/5 0.09/ 
_AIR 04 252 
100_53r 0.51/8 0.17/ 
_AIR 40 672 
100_54r 0.46/1 0.28/ 
AIR 68 168 

100_55r 0.19/8 
AIR 4 

1.00/1 0.08/ 0.36/ 0.01/ 0.15/ 0.65/ 0.85/ 0.00/ 0.53/ 0.02/ 0.95/ 0.86/ 0.93/ 
10_51 68 756 756 756 756 336 366 336 336 336 336 336 336 
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10_52 
0.73/3 
36 

0.86/ 
336 

0.37/ 
756 

0.06/ 
756 

0.08/ 
756 

0.61/ 
756 

0.55/ 
336 

0.30/ 
336 

0.29/ 
336 

0.90/ 
336 

0.57/ 
336 

0.15/ 
336 

0.37/ 
336 

0.15/ 
336 

0.94/3 0.14/ 0.38/ 0.07/ 0.46/ 0.43/ 0.27/ 0.73/ 0.46/ 0.01/ 0.40/ 0.63/ 0.27/ 
10_53 36 756 756 756 756 336 336 336 336 336 336 336 336 

0.77/8 0.98/ 0.03/ 0.11/ 0.42/ 0.65/ 0.87/ 0.98/ 0.25/ 0.46/ 
10_54 4 168 756 756 756 756 336 336 336 336 

0.45/8 0.09/ 0.19/ 0.23/ 0.78/ 0.01/ 0.54/ 0.98/ 0.49/ 0.94/ 0.46/ 0.90/ 0.62/ 0.36/ 
10_55 4 84 756 756 756 756 336 336 336 336 336 336 336 336 

10_51r_ 0.15/2 0.50/ 0.98/ 0.46/ 0.86/ 0.68/ 0.90/ 0.92/ 0.86/ 0.90/ 0.08/ 0.85/ 0.17/ 
SPM2 52 756 756 756 756 336 336 336 336 336 336 336 336 
10_52r 0.23/8 0.99/ 0.96/ 0.30/ 0.07/ 0.17/ 0.83/ 0.76/ 0.98/ 0.48/ 0.82/ 0.46/ 0.88/ 0.66/ 
SPM2 40 504 756 756 756 756 336 336 336 336 336 336 336 336 
10_53r_ 0.51/5 0.60/ 0.08/ 0.55/ 0.07/ 0.09/ 0.88/ 0.90/ 0.39/ 0.87/ 0.78/ 0.85/ 0.30/ 0.92/ 
SPM2 04 504 756 756 756 756 336 336 336 336 336 336 336 336 
10_54r_ 0.96/3 0.96/ 0.17/ 0.71/ 0.57/ 0.42/ 0.82/ 0.90/ 0.93/ 0.87/ 0.87/ 0.42/ 0.87/ 0.09/ 
SPM2 36 336 756 756 756 756 336 336 336 336 336 336 336 336 
10_55r 0.57/8 0.50/ 0.56/ 0.23/ 0.07/ 0.59/ 0.10/ 0.88/ 0.43/ 0.56/ 0.56/ 0.90/ 0.23/ 0.59/ 0.93/ 
SPM2 4 84 84 756 756 756 756 336 336 336 336 336 336 336 336 

10_51r_ 0.73/1 
SPM99 68 
10_52r_ 0.85/6 0.47/ 
SPM99 72 252 
10_53r_ 0.61/5 0.12/ 
SPM99 04 336 
10_54r_ 0.33/1 0.98/ 
SPM99 68 168 
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10_55r_ 
SPM99 - 

10_51r_ 0.49/1 0.62/ 
AIR 68 168 
10_52r_ 0.72/5 0.17/ 
AIR 04 252 
10_53r 0.003/ 0.09/ 
AIR 252 168 
10_54r 0.27/8 
AIR 4 
10_55r 
AIR - 

The table below contains the similarity and normality measures and the mean values of only the active areas in the subsets 

chosen in all the data analysed. 

FT 
Finger 

tapping- 
SPM2 

Finger 
tapping- 
SPM99 

Finger 
tapping- 

AIR 
visua1100 Rvisual 

100 SPM2 - 
Rvisual 

100 SPM99 - 
Rvisual 

100 AIR - 
visual10 Rvisual 

10-  SPM2 
Rvisual 

10-  SPM99 
Rvisual 
10_AIR 

0.76 0.70 0.54 0.76 0.53 0.97 0.19 0.19 1 0.15 0.73 0.49 
0.89 0.91 0.97 0.78 0.06 1.00 0.73 0.32 0.73 0.23 0.85 0.62 
0.94 0.92 0.33 0.01 0.38 1.00 0.78 0.38 0.94 0.51 0.47 0.72 
0.99 0.61 0.97 0.46 0.55 0.35 0.09 0.77 0.96 0.61 0.17 
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0.995 0.74 0.67 0.76 0.99 0.99 0.51 0.45 0.57 0.12 0.003 
0.79 0.84 0.72 0.99 0.66 0.17 0.86 0.99 0.33 0.09 
0.99 0.93 0.88 0.99 0.46 0.98 0.60 0.98 0.27 
0.96 0.37 0.96 0.28 0.09 0.96 

0.27 0.61 0.19 0.50 
0.84 0.56 
0.88 

mean 
normality 
measure 

0.91 0.81 0.70 0.52 0.44 0.78 0.73 0.29 0.73 0.60 0.58 0.34 

0.80 0.82 0.82 0.79 0.80 0.85 0.85 0.80 0.71 0.69 0.69 0.71 
0.85 0.84 0.82 0.76 0.86 0.84 0.84 0.77 0.76 0.81 0.81 0.74 
0.90 0.90 0.85 0.80 0.90 0.91 0.91 0.86 0.85 0.85 0.85 0.65 
0.91 0.90 0.90 0.00 0.81 0.80 0.78 0.74 0.68 0.81 0.81 0.60 

0.70 0.77 0.77 0.58 0.54 0.57 0.00 0.00 

mean 
similarity 
measure 

at 
maximum 
activation 

0.87 0.86 0.84 0.59 0.81 0.83 0.83 0.75 0.71 0.75 0.63 0.54 
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Summary of the above tables:  

Finger Tapping: 

In all cases the signal distribution of the active areas was more 
normal than the signal distribution in the potentially active area 
(visual cortex). 
Signal distribution in the background (out of brain) areas was 
less normal than signal distribution in the active areas. 
White Matter: 
1. Week 16: s.d. of WM was more normal than s.d. of active 

area in all 4 cases. 
2. Week 17: s.d. of WM was more normal than s.d. of active 

area in 2 cases out of 4. 
3. Week 33: s.d. of WM was more normal than s.d. of active 

area in 2 cases out of 4. 
4. Week42: s.d. of WM was more normal than s.d. of active 

area in 2 cases out of 4. 
Grey Matter: 
1. Week 16: s.d. of GM was more normal than s.d. of active 

area in 3 cases out of 4. 
2. Week 17: s.d. of GM was more normal than s.d. of active 

area in 1 case out of 4. 
3. Week 33: s.d. of GM was more normal than s.d. of active 

area in 1 case out of 4. 
4. Week 42: s.d. of GM was more normal than s.d. of active 

area in 2 cases out of 4. 
Overall, s.d. in both WM and GM were more normal than 
background. 

Visual data: 

Background:  

100% contrast: 
1. Subjectl: Signal distribution in background is less normal 

than that in active areas. 
2. Subject2: Signal distribution in background is more normal 

than that in active areas. 
3. Subject3: Signal distribution in background is less normal 

than that in active areas. 
4. Subject4: Signal distribution in background is less normal 

than that in active areas. 
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5. Subject5: Signal distribution in background is less normal 
than that in active areas. 

Realigned data (100%): 
1. Subjectl: Signal distribution in background is less normal 

than that in active areas. 
2. Subject2: Signal distribution in background is less normal 

than that in active areas. 
3. Subject3: Signal distribution in background is less normal 

than that in active areas. 
4. Subject4: Signal distribution in background is less normal 

than that in active areas in 3 cases out of 4 
5. Subject5: Signal distribution in background is less normal 

than that in active areas. 

10% contrast: 
1. Subjectl: Signal distribution in background is less normal 

than that in active areas. 
2. Subject2: Signal distribution in background is less normal 

than that in active areas. 
3. Subject3: Signal distribution in background is less normal 

than that in active areas. 
4. Subject4: Signal distribution in background is less normal 

than that in active areas. 
5. Subject5: Signal distribution in background is less normal 

than that in active areas in 3 cases out of 4. 

Realigned data (10%): 
1. Subjectl: Signal distribution in background is more normal 

than that in active areas. 
2. Subject2: Signal distribution in background is less normal 

than that in active areas in 3 cases out of 4. 
3. Subject3: Signal distribution in background is less normal 

than that in active areas. 
4. Subject4: Signal distribution in background is less normal 

than that in active areas. 
5. Subject5: Signal distribution in background is less normal 

than that in active areas in 3 cases out of 4. 

White Matter:  

100% contrast: 
1. Subjectl: s.d. of WM was more normal than s.d. of active 

area all 4 cases. 
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2. Subject2: s.d. of WM was more normal than s.d. of active 
area in all 4 cases. 

3. Subject3: s.d. of WM was more normal than s.d. of active 
area in 3 cases out of 4. 

4. Subject4: s.d. of WM was more normal than s.d. of active 
area in 3 cases out of 4. 

5. Subject5: s.d. of WM was less normal than s.d. of active 
area in all 4 cases. 

Realigned data (100%): 
1. Subjectl: s.d. of WM was 

area in all 4 cases. 
2. Subject2: s.d. of WM was 

area in all 4 cases. 
3. Subject3: s.d. of WM was 

area in all 4 cases. 
4. Subject4: s.d. of WM was 

area in all 4 cases. 
5. Subject5: s.d. of WM was 

area in all 4 cases. 

10% contrast: 
1. Subjectl: s.d. of WM was 

area in all 4 cases. 
2. Subject2: s.d. of WM was 

area in 3 cases out of 4. 
3. Subject3: s.d. of WM was 

area in all 4 cases. 
4. Subejct4: s.d. of WM was 

area in all 2 cases. 
5. Subject5: s.d. of WM was 

area in all 4 case. 

Grey Matter:  

less normal than s.d. of active 

less normal than s.d. of active 

less normal than s.d. of active 

more normal than s.d. of active 

less normal than s.d. of active 

less normal than s.d. of active 

less normal than s.d. of active 

less normal than s.d. of active 

less normal than s.d. of active 

more normal than s.d. of active 

100% contrast: 
1. Subjectl: s.d. of GM was less normal than s.d. of active area 

in 3 cases out of 4. 
2. Subject2: s.d. of GM was more normal than s.d. of active 

area in all 4 cases. 
3. Subject3: s.d. of GM was more normal than s.d. of active 

area in 2 cases out of 4. 
4. Subject4: s.d. of GM was more normal than s.d. of active 

area in 3 cases out of 4. 
5. Subject5: s.d. of GM was more normal than s.d. of active 

area in all 4 cases. 
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Realigned data (100%): 
6. Subjectl: s.d. of GM was less normal than s.d. of active area 

in all 4 cases. 
7. Subject2: s.d. of GM was less normal than s.d. of active area 

in all 4 cases. 
8. Subject3: s.d. of GM was less normal than s.d. of active area 

in all 4 cases. 
9. Subject4: s.d. of GM was more normal than s.d. of active 

area in 3 cases out of 4. 
10. Subject5: s.d. of GM was less normal than s.d. of active area 

in all 4 cases. 

10% contrast: 
6. Subjectl: s.d. of GM was less normal than s.d. of active area 

in all 4 cases. 
7. Subject2: s.d. of GM was less normal than s.d. of active area 

in all 4 cases. 
8. Subject3: s.d. of GM was less normal than s.d. of active area 

in all 4 cases. 
9. Subejct4: s.d. of GM was less normal than s.d. of active area 

in all 2 cases. 
10. Subject5: s.d. of GM was less normal than s.d. of active area 

in 1 case out of 4. 

Phantom: Signal distribution of background is less normal than that of 
inside phantom. 

Overall: signal distribution in background is less normal than that in active 
areas. 

Comparison of moco and nomoco (filtered):  

1. Active area: s.d. of active area in nomoco is more normal 
than that in moco. 

2. Potential visual active: s.d. in nomoco is less normal than 
that in moco. 

3. Background: s.d. in nomoco is less normal than that in 
moco. 

Comparison of 100% contrast raw data and realigned data:  

1. Active area: s.d. of active area in realigned data is more 
normal than that in raw data. 
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2. Background area: s.d. in realigned data is more normal in 17 
cases out of 20 compared to raw data. 

3. White matter: s.d. in realigned data is more normal in 14 
cases out of 20 compared to raw data. 

4. Grey matter: s.d. in realigned data is more normal in 10 
cases out of 20 compared to raw data. 

Comparison of 10% contrast raw data and realigned data:  

1. Active area: s.d. of active area in realigned data is more 
normal than that in raw data in 2 cases out of 5. 

2. Background area: s.d. in realigned data is more normal in 13 
cases out of 20 compared to raw data. 

3. White matter: s.d. in realigned data is more normal in 12 
cases out of 18 compared to raw data. 

4. Grey matter: s.d. in realigned data is more normal in 11 
cases out of 18 compared to raw data. 

Comparison of 100% contrast to 10% contrast:  

1. Active area: s.d. of active area in 10% contrast data is more 
normal than that in 100% contrast data in 4 out of 5 cases. 

2. Background area: s.d. in 10% contrast data is more normal 
in 14 cases out of 20 compared to 100% contrast data. 

3. White matter: s.d. in 10% contrast data is more normal in 11 
cases out of 18 compared to 100% contrast data. 

4. Grey matter: s.d. in 10% contrast data is less normal in 12 
cases out of 18 compared to 100% contrast data. 

Mean value of similarity measure at active areas in:  

Finger tapping (16,17,33,42) 	= 0.86 
Visual (100% contrast) 	 = 0.81 

- Realigned visual (100% contrast) 	 = 0.83 
Visual (10% contrast) 	 = 0.71 

- Realigned visual (10% contrast) 	= 0.75 

Mean value of s.d. normality at active areas:  

- 	Finger tapping (16,17,33,42) 	= 0.81 
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Visual (100% contrast) = 0.44 
Realigned visual (100% contrast) = 0.78 
Visual (10% contrast) = 0.73 
Realigned visual (10% contrast) = 0.60 

From above results we can conclude that the realignment process has the 

effect of increasing the similarity measure and the cluster size. We can also 

conclude, that the reduction in contrast (100% to 10%) has the effect of 

decreasing similarity measure the cluster size. 
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Appendix C 

SPM parameters 

Realignment: 

SPM99 SPM2 
Number of subjects: Num subjects: 

Num sessions for subject: Num sessions, subj 1: 
Scans for subj 1, sess 1: Images, subj 1, sess 1: 

Which option? Coregister and 
Reslice Which option? Coregister & Reslice 

Reslice interpolation method? Sinc 
interpolation 

Create what? All Images + Mean 
Image 

Create what? All Images + Mean 
Image 

Adjust sampling errors? no 

Smoothing: 

SPM99 SPM2 
Smoothing {FWHM in mm}: 4 Smoothing {FWHM in mm}: 4 

Select scans: Select scans: 

Normalize: 

SPM99 SPM2 
Which Option? Determine 

Parameters & Write Normalised 
Which Option? Determine 

Parameters & Write Normalised 
# Subjects: 1 Template Image(s) 

Subj 1 — Image to determine 
parameters: Source mage, subj 1: 

Subj 1 - Images to write normalised: Images to write, subj 1 
Template image(s): 

Interpolation method? Bilinear 
Interpolation 
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Specifying a model: 

SPM99 SPM2 

fMRI models: What would you like to 
do? specify a model 

fMRI stats model setup:  specify design or data: design 

interscan interval: 6 interscan interval: 6 
scans per session: 30 scans per session: 30 

number of conditions/trials: 1 specify design in: scans  

name of condition/trial: trial 1 select basis set: hrf  

stochastic design: no model interactions (Volterra): no 
SOA: Fixed number of conditions/trials: 1 

SOA (scans) for trial 1: 10 name of condition/trial: trial 1 
Time to 1st trial (scans): 5 vector of onsets — trial 1: 5 15 25 

parametric modulation: none duration(s): 5  

are these trials : epochs parametric modulation: none 
select type of response: Fixed 

response (Box-car) 
user specified: 0 

convolve with hrf: yes 
add temporal derivatives: no 

epoch length (scans) for trial 1: 
interactions among trials (Volterra): 

no 
user specified regressors: 0 

Estimate a specified model: 

fMRI models: What would you like to 
do? Estimate a specified model. 

specify design or data: data 

select SPM fMRIDesMtx.mat select SPM.mat 

select scans for session 1 select scans for session 1 
remove global effects: none remove global effects: none 

High-pass filter? Specify High-pass filter? Specify 
cutoff period (secs): 120 cutoff period (secs): 128 

low-pass filter: hrf Correct for serial correlations? AR(1) 
Model intrinsic correlations? AR(1) Estimate: Select 
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Setup trial-specific F-contrasts: no 
estimate: now 

Results: 

Results: select SPM.mat Results: select SPM.mat 
Select contrasts Select contrasts 

Mask with other contrast(s): no Mask with other contrast(s): no 
Title for comparison: active Title for comparison: active 
Correct height threshold: no P value adjustment to control: none 

Threshold (T or p value): 0.001 Threshold (T or p value): 0.001 
& extent threshold (voxels): 0 & extent threshold (voxels): 0 
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