University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2013

Jun 25th, 4:30 PM - 4:50 PM

Concurrent Sessions C: Multi-Dimensional Modeling and Fish Passage Restoration - Some Aspects of Fish Behaviour and Hydraulics Which May Affect Passage Effectiveness

Christos Katopodis *Katopodis Ecohydraulic s Ltd.*

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Katopodis, Christos, "Concurrent Sessions C: Multi-Dimensional Modeling and Fish Passage Restoration - Some Aspects of Fish Behaviour and Hydraulics Which May Affect Passage Effectiveness" (2013). *International Conference on Engineering and Ecohydrology for Fish Passage*. 72.

https://scholarworks.umass.edu/fishpassage_conference/2013/June25/72

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Some aspects of fish behaviour and hydraulics which may affect passage effectiveness

Christos Katopodis, Katopodis Ecohydraulics Ltd. <u>KatopodisEcohydraulics@shaw.ca</u> Winnipeg, MB, CANADA

International Conference on Engineering & Ecohydrology for Fish Passage

Oregon State University, Corvallis, June 25-27, 2013

Fish passage developments

- Trial and error & empiricism characterized early efforts to develop fish passage systems.
- Often there still is a mindset that fishways are too expensive or some species do not use them and fish passage systems should not be considered.
- To keep costs low, fishways of steepest possible slopes, shortest lengths, smallest dimensions and simplest designs were usually built, often targeting single "valuable" species and compromising passage effectiveness.

Fish passage effectiveness

- Often a passage system type is ineffective, because its hydraulic characteristics are a poor match for the needs and behaviour of each fish species.
- Often fish passage systems are introduced well after barriers are built and only after fish populations have declined appreciably, challenging recovery efforts and effectiveness.
- Flow is a key factor in attracting and guiding fish, yet frequently fish passage has low priority or is essentially neglected in flow management decisions.

Ecology , Hydrology, Biology, Morphodynamics & Hydraulics are all important for fish movements & habitat use, yet frequently not all ecohydraulic aspects are considered.


Fish move upstream - downstream, or longitudinally

www.river2d.ualberta.ca

Katopodis spearheaded model development

Fish move laterally or sideways if channels are connected

Fish may use ground water connections

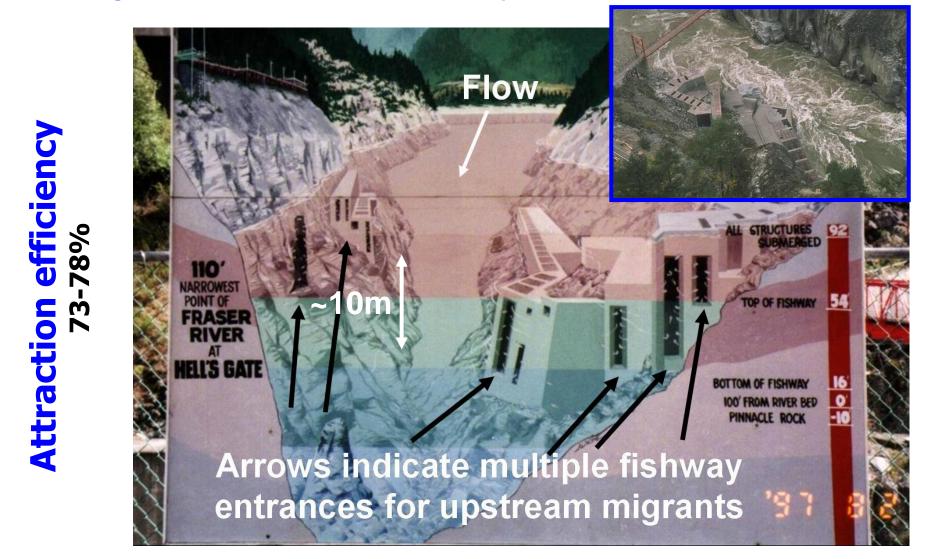
Fish passage effectiveness

Characteristics of highly effective *upstream* or *downstream* fish passage systems:

- 1. Use is compelled by the **migratory needs** of specific species and availability of suitable habitat *upstream* or *downstream* of a barrier
- 2. Are **easy to locate** by the migratory fish community as they offer topographical and flow conditions that species *seek rather than avoid*
- 3. Combine morphological features and hydrodynamic conditions which match fish biomechanical capabilities and are suitable for **efficient transport**

Fish passage effectiveness

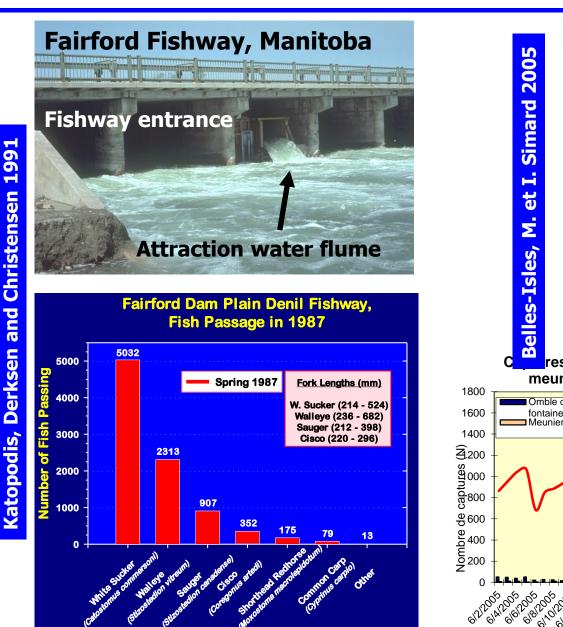
These factors relate to:


- **1. Species motivation** (*required versus tentative movements*) and availability of suitable habitat
- 2. Attraction efficiency (probability that fish will locate the upstream fishway entrance or be actively guided downstream); *depends more on biological factors*
- **3. Passage efficiency** (probability fish will move through passage system); *depends more on passage system design features*

NOTE: *Any one of these factors* or any combination of the three may limit overall system passage effectiveness.

Hell's Gate, BC, Canada: Challenges for fish to locate fishway entrances

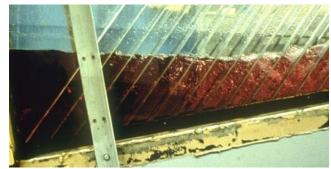
efficiency -78%



Attraction efficiency

Mactaquac fish lift, St. John River, NB Power, Canada:

Challenges for fish to locate collection gallery and fish lift entrance


><>> \circo Katopodis κε Ecohydraulics Ltd. 2005 Lac Portneuf, Attraction Quebec Simard water нi et Σ. **Belles-Isles**, meuniers noirs dans la cage de montaison 25 Brook trout (navy blue) Omble de fontaine White sucker Meunier noir 20 Température ([©]C) 16718710205 ALLOS DOS Date 628 6301005 12205 11212 1141205

61212005

Passage efficiency

 $\kappa \varepsilon \xrightarrow{> <>> \heartsuit Katopodis}{Ecohydraulics Ltd.}$

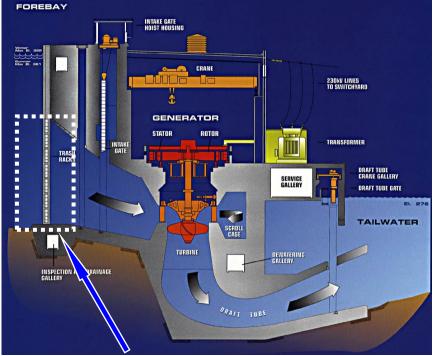
Culvert installed in 1979, Liard Highway, N.W.T., Canada

Nature-like fishways

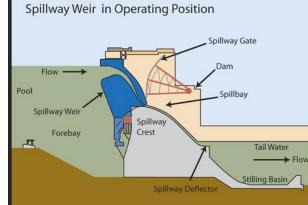
River Flow

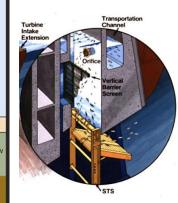
Lower Churchill River Weir (2300 m wide)

Beaver River, Thornbury, Ontario, Canada


Photo: 10 Sept. 2008

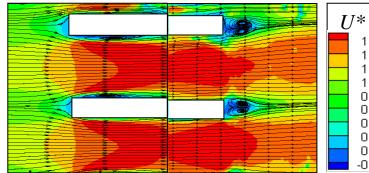
Goose Creek Culvert Fishway

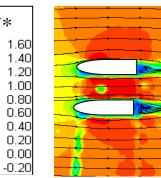

Near the Arctic coast of Manitoba, Canada


Main Fishway Main Fishwide

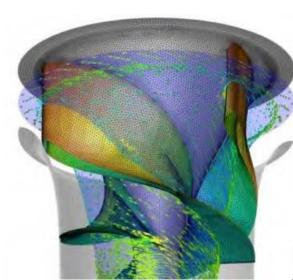
$\kappa \varepsilon \xrightarrow{> <>> \heartsuit Katopodis}{Ecohydraulics Ltd.}$

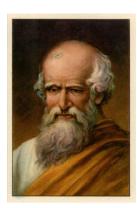
Bar racks or Trashracks

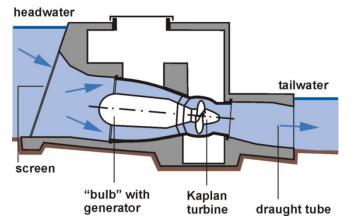




Fish screens


Katopodis, Lemke and Ghamry 2011 Tsikata, Katopodis and Tachie 2009

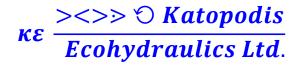

Helical or Alden turbine (DOE-EPRI 2011)


 $\kappa \varepsilon \xrightarrow{> <>> \heartsuit Katopodis}{Ecohydraulics Ltd.}$

High fish survival turbines

Modified Kaplan turbine Columbia River dams

Archimedes screw & Kaplan turbine (DWA 2005)



Fishway (u/s)Grand River, Ontario, Denils of 10% & 20% slope, (Bunt, Katopodis & McKinley, 1999)Big Carp River, Ontario, Vertical slot trap & sort, (Pratt et al. (Katopodis) 2009)	
Grand River, Ontario, Denils of 10% & 20% slope, (Bunt, Katopodis & McKinley, 1999)	Si
Big Carp River, Ontario, Vertical slot trap & sort, (Pratt et al. (Katopodis) 2009)	
Cobourg Brook, Ontario Vertical slot trap & sort, (Pratt et al. (Katopodis) 2009)	
Pool-and-orifice, Scotland, (Gowans et al. 1999) Pool-and-overfall, Scotland,	4
Pool-and-overfall, Scotland, (Gowans et al. 2003)	4
(Gowans et al. 2003) Nature-like fishways, Europe, (Aarestrup et al. 2003; Calles and Greenberg 2005) Vertical slot, Australia, (Stuart et al. 2008)	
Vertical slot, Australia, (Stuart et al. 2008)	
Vertical slot, Australia, (White et al. 2011)	
6	_
Hell's Gate, Fraser River, B.C., Original vertical slots, (Hinch and Bratty 2000)Columbia River pool and weir fishways over 6 consecutive dams (Muir & Williams 2012)	s
Columbia River pool and weir fishways over 6 consecutive dams (Muir & Williams 2012)	C Avera Per

	Species	Attraction efficiency	Passage efficiency
	White sucker	50% and 59%	55% and 38%
	Smallmouth bass	82% and 55%	36% and 33%
sort,	White sucker	97-98%	36-88%
	Rock bass	26-33%	0-14%
sort,	White sucker	82-85%	6-9%
	Rainbow trout	12-58%	12-25%
999)	Atlantic salmon	-	100%
	Atlantic salmon	-	72%
al.	Salmonids	-	39-52%
	Common carp	-	81%
	Bony herring	-	26%
	Silver perch	-	15%
	Golden perch	-	11%
cal	Sockeye salmon	73-78%	100%
r 6	Chinook salmon Average through 6 dams Per-project survival		84% 97%

Dunvegan Hydro Project

One of 10 Bypasses for downstream migrants; **Bypasses** also serve as spillways. Guide wall and submerged conduits for directing attraction flows provided after water used for power production. Fishway Ramp/Sluiceway Flow 21 cms Generation Flow All Units Operating 900 cms Spillway Floy 78 cm s

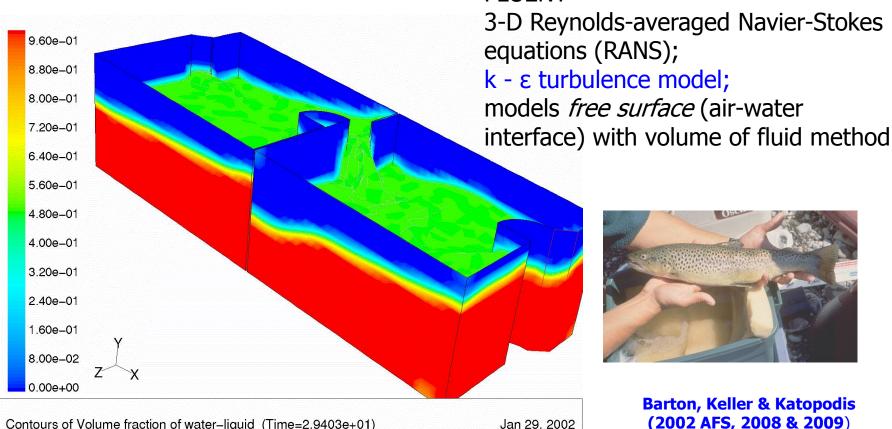
> Generation Flow All Units Operating 900 cms

Fishway Ramp/Sluiceway Flo

1.0 m/s contour

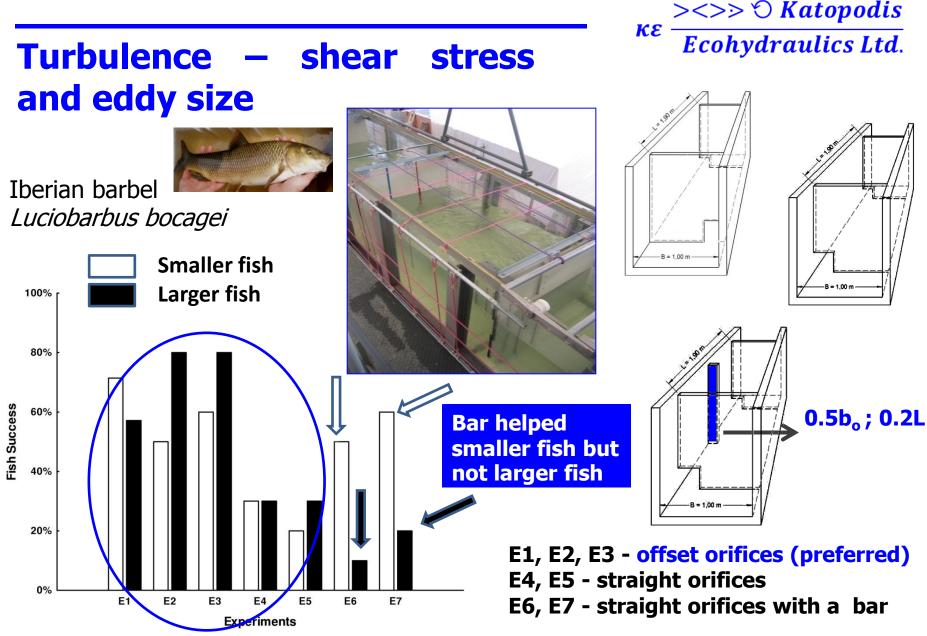
50% Exceedence Discharge

Flow

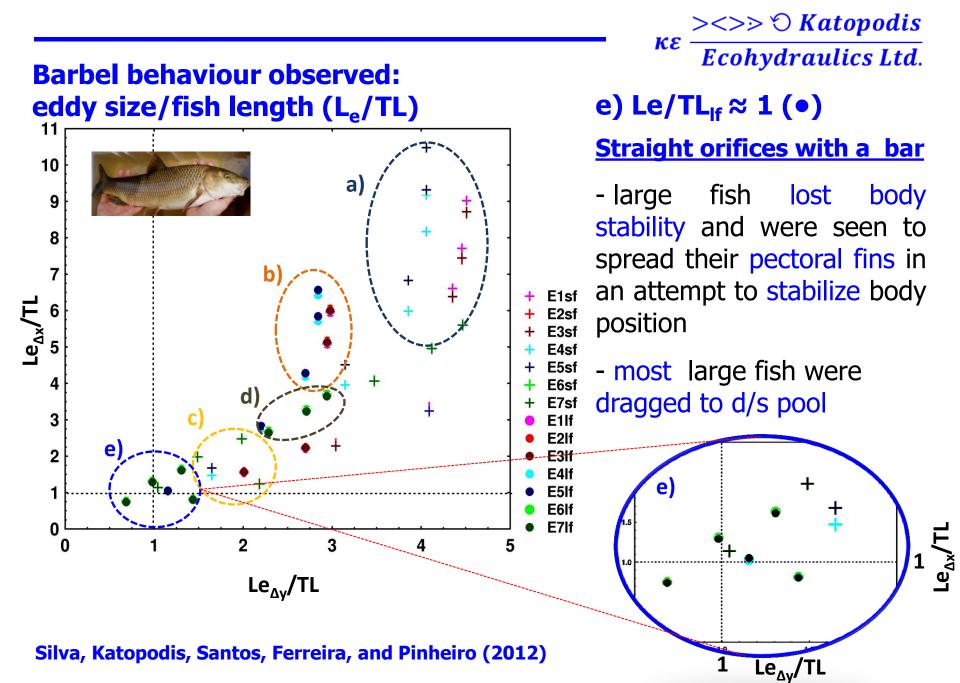

Flow

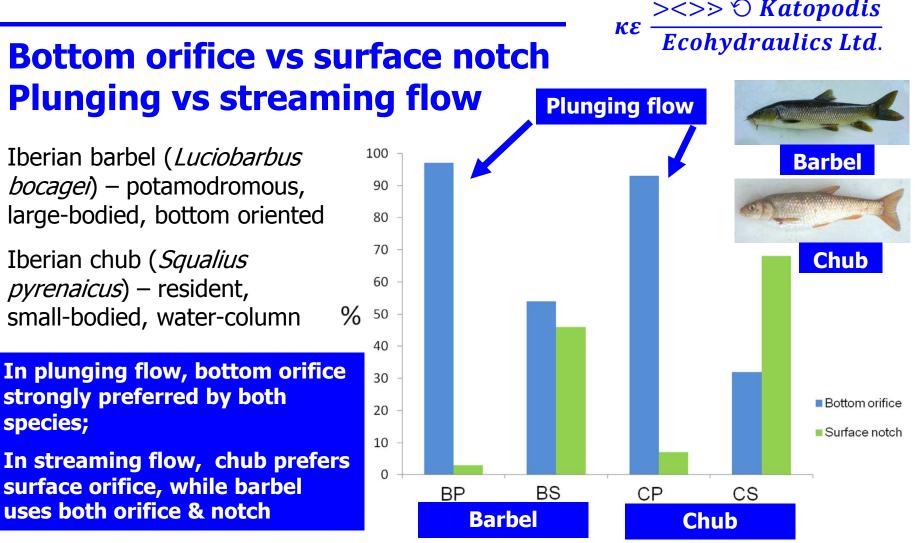
Fishway for upstream migrants generating nature-like flow features; one on each river bank.

$\kappa \varepsilon \xrightarrow{> <>> \heartsuit Katopodis}{Ecohydraulics Ltd.}$

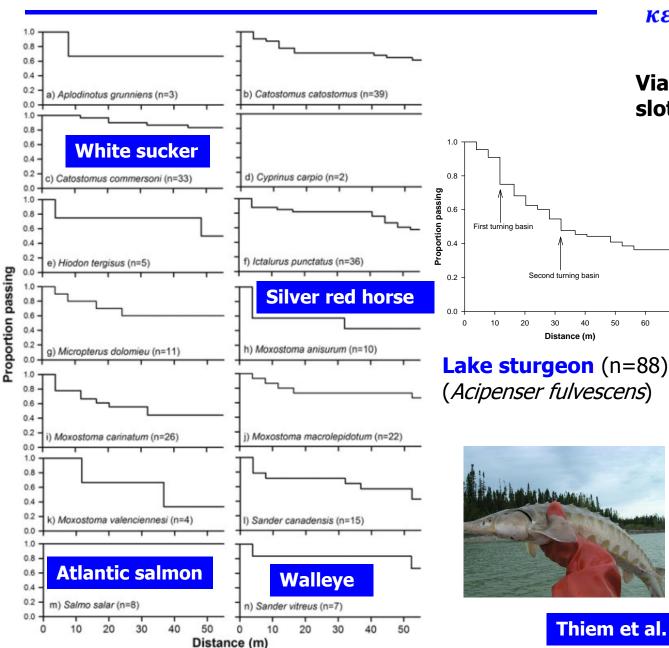

CFD modeling

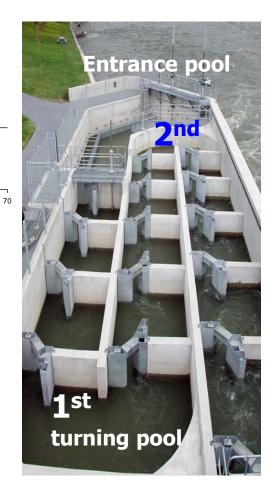
CFD models are capable of simulating fishway hydraulics quite well as long as they are verified with laboratory or field data.




FLUENT

Contours of Volume fraction of water–liquid (Time=2.9403e+01) Jan 29, 2002 FLUENT 5.5 (3d, segregated, rngke, unsteady)


Silva, Katopodis, Santos, Ferreira, and Pinheiro 2012


Proportions of upstream movements for each species by opening type and flow regime. BP – Barbel in plunging flow regime; BS – Barbel in streaming flow regime; CP – Chub in plunging flow regime; CS – Chub in streaming flow regime.

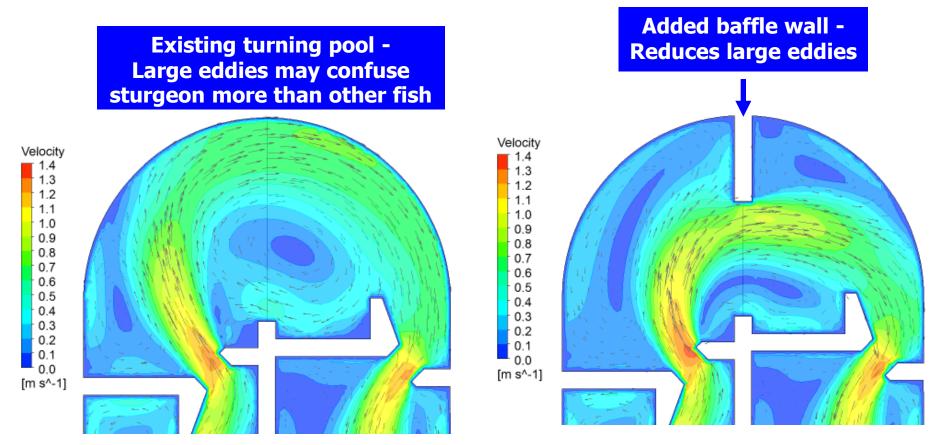
Branco, Santos, Katopodis, Pinheiro and Ferreira (2013)

Vianney-Legendre vertical slot fishway, Quebec

Thiem et al. (Katopodis) 2011; 2013

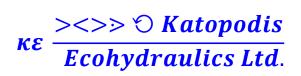
50

60


Fish passage efficiencies

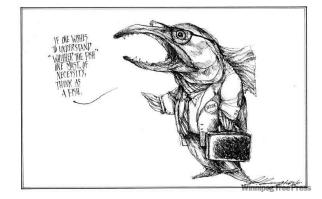
Fishway (u/s)		Species	Passage efficiency	
Vianney- Legendre Vertical slot,	Acipenseridae Catostomidae	Lake sturgeon (<i>Acipenser fulvescens</i>) Longnose sucker (<i>Catostomus catostomus</i>)	36.4% 48.7%	
Richelieu River, Quebec.	Shor	White sucker (Catostomus commersoni)Silver red horse (Moxostoma anisurum)River red horse (Moxostoma carinatum)thead red horse (Moxostoma macrolepidotum)Greater red horse (Moxostoma valenciennesi)	75.8% 30.0% 30.8% 45.5% 25.0%	
(Thiem et al. (Katopodis) 2011 and 2013)	Cyprinidae Centrarchidae Ictaluridae	Common carp (<i>Cyprinus carpio</i>) Smallmouth bass (<i>Micropterus dolomieu</i>) Channel catfish (<i>Ictalurus punctatus</i>)	100% < 63.6% 52.8%	
	Percidae Salmonidae Sciaenidae	Sauger (<i>Sander Canadensis</i>) Walleye (<i>Sander vitreus</i>) Atlantic salmon (<i>Salmo salar</i>) Freshwater drum (Aplodinotus grunniens)	40.0% 57.1% 100% 66.7%	

NOTE: Lake sturgeon were placed in the fishway; some spawn d/s & may not need to move u/s; this may have affected passage efficiency



Turning pools - Vianney-Legendre fishway

Velocity magnitudes and directions at a plane 0.5 the turning pool depth. ANSYS CFX; 3-D Reynolds averaged Navier-Stokes equations (RANS); models *free surface* (air-water interface) with volume of fluid method; k - ε turbulence model


Marriner et al. (Katopodis) 2013 (submitted)

Conclusions

- Management decisions, as well as biological and physical factors affect fish passage effectiveness; several of these factors lack careful study for many species
- Fish attraction and guidance aspects are the most challenging, highly site- & species- specific, and may dominate overall effectiveness
- Adapting passage systems to species-specific biological needs and behaviour, as well as providing suitable hydraulic conditions remain the most critical aspects for effectiveness

Do your best to "think like a fish"... but remember that fish have the last word!

Classical Hellenic thinking:

«Γηράσκω αεί διδασκόμενος»

"I grow older ever in a state of learning"

Thank you! Questions?

