
University of Huddersfield Repository

Alviano, Mario, Calimeri, Francesco, Faber, Wolfgang, Leone, Nicola and Perri, Simona

Unfounded Sets and Well-Founded Semantics of Answer Set Programs with Aggregates

Original Citation

Alviano, Mario, Calimeri, Francesco, Faber, Wolfgang, Leone, Nicola and Perri, Simona (2011)

Unfounded Sets and Well-Founded Semantics of Answer Set Programs with Aggregates. Journal of

Artificial Intelligence Research, 42. pp. 487-527. ISSN 1076 - 9757

This version is available at http://eprints.hud.ac.uk/18494/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/16454099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Artificial Intelligence Research 42 (2011) 487-527 Submitted 7/11; published 11/11

Unfounded Sets and Well-Founded Semantics

of Answer Set Programs with Aggregates

Mario Alviano alviano@mat.unical.it

Francesco Calimeri calimeri@mat.unical.it

Wolfgang Faber faber@mat.unical.it

Nicola Leone leone@mat.unical.it

Simona Perri perri@mat.unical.it

Department of Mathematics

University of Calabria

I-87030 Rende (CS), Italy

Abstract

Logic programs with aggregates (LPA) are one of the major linguistic extensions to
Logic Programming (LP). In this work, we propose a generalization of the notions of un-
founded set and well-founded semantics for programs with monotone and antimonotone
aggregates (LPA

m,a programs). In particular, we present a new notion of unfounded set

for LPA
m,a programs, which is a sound generalization of the original definition for standard

(aggregate-free) LP. On this basis, we define a well-founded operator for LPA
m,a programs,

the fixpoint of which is called well-founded model (or well-founded semantics) for LPA
m,a

programs. The most important properties of unfounded sets and the well-founded seman-
tics for standard LP are retained by this generalization, notably existence and uniqueness
of the well-founded model, together with a strong relationship to the answer set seman-
tics for LPA

m,a programs. We show that one of the D̃-well-founded semantics, defined by
Pelov, Denecker, and Bruynooghe for a broader class of aggregates using approximating
operators, coincides with the well-founded model as defined in this work on LPA

m,a pro-
grams. We also discuss some complexity issues, most importantly we give a formal proof of
tractable computation of the well-founded model for LPA

m,a programs. Moreover, we prove

that for general LPA programs, which may contain aggregates that are neither monotone
nor antimonotone, deciding satisfaction of aggregate expressions with respect to partial
interpretations is coNP-complete. As a consequence, a well-founded semantics for general
LPA programs that allows for tractable computation is unlikely to exist, which justifies the
restriction on LPA

m,a programs. Finally, we present a prototype system extending DLV,

which supports the well-founded semantics for LPA
m,a programs, at the time of writing the

only implemented system that does so. Experiments with this prototype show significant
computational advantages of aggregate constructs over equivalent aggregate-free encodings.

1. Introduction

The use of logical formulas as a basis for a knowledge representation language was pro-
posed about 50 years ago in some seminal works of McCarthy (1959), and McCarthy and
Hayes (1969). However, it was soon realized that the monotonic nature of classical logic
(the addition of new knowledge may only increase the set of consequences of a theory in
classical logic) is not always suited to model commonsense reasoning, which sometimes is
intrinsically nonmonotonic (Minsky, 1975). As an alternative, it was suggested to represent

c©2011 AI Access Foundation. All rights reserved.

Alviano, Calimeri, Faber, Leone, & Perri

commonsense reasoning using logical languages with nonmonotonic consequence relations,
which can better simulate some forms of human reasoning, allowing new knowledge to in-
validate some of the previous conclusions. This observation opened a new and important
research field, called nonmonotonic reasoning, and led to the definition and investigation of
new logical formalisms, called nonmonotonic logics. The most popular nonmonotonic logics
are circumscription (McCarthy, 1980, 1986), default logic (Reiter, 1980), and nonmonotonic
modal logics (McDermott & Doyle, 1980; McDermott, 1982; Moore, 1985). Later on, from
cross fertilizations between the field of nonmonotonic logics and that of logic programming,
another nonmonotonic language, called Declarative Logic Programming (LP) has emerged,
incorporating a nonmonotonic negation operator denoted by not. Declarative Logic Pro-
gramming has gained popularity in the last years, and today it is a widely used formalism for
knowledge representation and reasoning, with applications in various scientific disciplines
and even in industry (Ricca, Alviano, Dimasi, Grasso, Ielpa, Iiritano, Manna, & Leone,
2010; Ricca, Grasso, Alviano, Manna, Lio, Iiritano, & Leone, 2011; Manna, Ricca, & Ter-
racina, 2011; Manna, Ruffolo, Oro, Alviano, & Leone, 2011). In LP problems are solved by
means of declarative specifications of requirements to be achieved. No ad-hoc algorithms
are required.

Several semantics for LP have been proposed in the literature, which have to take care
about the inherent non-monotonicity of the not operator in programs. The well-founded
semantics (Van Gelder, Ross, & Schlipf, 1991) is one of the most prominent among them. It
associates a three-valued model, the well-founded model, to every logic program. Originally,
the well-founded semantics has been defined for normal logic programs, that is, standard
logic programs with nonmonotonic negation. A distinguishing property of the well-founded
semantics is that existence and uniqueness of the well-founded model is guaranteed for all
logic programs. Moreover, the well-founded semantics is computable in polynomial time
with respect to the input program in the propositional case.

Even if LP is a declarative programming language, standard LP does not allow for
representing properties over sets of data in a natural way, a relevant aspect in many ap-
plication domains. For addressing this insufficiency, several extensions of LP have been
proposed, the most relevant of which is the introduction of aggregate functions (LPA;
Kemp & Stuckey, 1991; Denecker, Pelov, & Bruynooghe, 2001; Dix & Osorio, 1997; Gel-
fond, 2002; Simons, Niemelä, & Soininen, 2002; Dell’Armi, Faber, Ielpa, Leone, & Pfeifer,
2003; Pelov & Truszczyński, 2004; Pelov, Denecker, & Bruynooghe, 2004). Among them,
recursive definitions involving aggregate functions (i.e., aggregation in which aggregated
data depend on the evaluation of the aggregate itself) are particularly interesting, as the
definition of their semantics is not straightforward (Pelov, 2004; Faber, Leone, & Pfeifer,
2004; Son & Pontelli, 2007; Liu, Pontelli, Son, & Truszczynski, 2010). Note that a similar
construct, referred to as abstract constraint, has been introduced in the literature (Marek
& Truszczyński, 2004; Liu & Truszczyński, 2006; Son, Pontelli, & Tu, 2007; Truszczyński,
2010; Brewka, 1996). All of the results in this paper carry over also to LP with abstract
constraints, for which well-founded semantics to our knowledge has not been defined so far.

In this paper we focus on the fragment of LPA allowing for monotone and antimonotone
aggregate expressions (LPA

m,a; Calimeri, Faber, Leone, & Perri, 2005). LPA
m,a programs

have many interesting properties. Among them, we highlight similarities between monotone
aggregate expressions and positive standard literals, and between antimonotone aggregate

488

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

expressions and negative standard literals. In particular, we take advantage of this aspect
for defining unfounded sets and, based on this definition, a well-founded semantics for the
LPA

m,a fragment. The well-founded semantics for LPA
m,a programs obtained in this way

retains many desirable properties of the original well-founded semantics for LP, which it
extends: For each LPA

m,a program a unique well-founded model exists, which is polynomial-
time computable, approximates the programs answer sets, and coincides with the answer
set on stratified LPA

m,a programs.

Actually it turns out that the well-founded semantics thus obtained coincides (on LPA
m,a

programs) with a well-founded semantics proposed by Pelov, Denecker, and Bruynooghe
(2007). Pelov et al. define several semantics of logic programs with aggregates using vari-
ous approximating immediate consequence operators. The notion of logic program adopted
by Pelov et al. is more general than the one considered in the present work, allowing
for arbitrary first-order formulas in bodies, unrestricted aggregates, and non-Herbrand in-
terpretations. Because of the equivalence of the two semantics, some properties proved by
Pelov et al. carry over to this work as well. This applies to the results that the well-founded
model is total on stratified programs (Theorem 9), that the well-founded model is contained
in each answer set (Theorem 16), and that the well-founded model is computable in polyno-
mial time (Theorem 21). However, the framework introduced in this article is considerably
different from the one developed by Pelov et al., which allows for giving alternative proofs
to these result. Vice versa, this article contains many new results, which carry over to the
framework of Pelov et al. on LPA

m,a programs. In particular, it provides an alternative
definition of the well-founded semantics, a characterization of answer sets by means of un-
founded sets, and an implemented system computing the well-founded semantics, at the
time of writing the only one of its kind.

We would like to point out that for most extensions of LPA
m,a programs that come to

mind, the definition of unfounded sets would have to be considerably changed (see for in-
stance the definition provided in Faber, 2005), and moreover the main desired properties
of the well-founded semantics would no longer be guaranteed. For instance, the most obvi-
ous extension, including aggregate expressions that are neither monotone nor antimonotone
would most likely not be computable in polynomial time: In fact, while the evaluation of
aggregate expressions with respect to partial interpretations is tractable for monotone and
antimonotone aggregates, the same task is coNP-complete for general aggregate expres-
sions. Also, for instance allowing aggregates in rule heads would necessarily complicate the
definition of unfounded sets, would not guarantee the existence of a well-founded model for
every program, and would most likely not guarantee polynomial-time computability.

The concepts defined in this paper directly give rise to a computation method for the
well-founded semantics on LPA

m,a programs. We have implemented this method, which is—
to the best of our knowledge—the first of its kind. We have conducted experiments with
this system on LPA

m,a encodings of a particular problem domain, and compared it with
encodings not using aggregates. The latter encodings were tested with the system from
which our prototype was derived and with XSB, a state-of-the-art system for computing
the well-founded model. The experiments show a clear advantage of the LPA

m,a encodings
run on our prototype system.

Summarizing, the main contributions of the paper are as follows.

489

Alviano, Calimeri, Faber, Leone, & Perri

• We define a new notion of unfounded set for logic programs with monotone and
antimonotone aggregates (LPA

m,a programs). This notion is a sound generalization of
the concept of unfounded set previously given for standard logic programs. We show
that our definition coincides with the original definition of unfounded sets (Van Gelder
et al., 1991) on the class of normal (aggregate-free) programs, and that it shares its
distinguishing properties (such as the existence of the greatest unfounded set).

• We define a well-founded operator WP for logic programs with aggregates, which ex-
tends the classical well-founded operator (Van Gelder et al., 1991). The total fixpoints
of WP are exactly the answer sets of P, and its least fixpoint Wω

P(∅) is contained in
the intersection of all answer sets. We also show that the operator is equivalent to an
operator defined by Pelov et al. (2007).

• We provide a declarative characterization of answer sets in terms of unfounded sets.
In particular, we prove that the answer sets of an LPA

m,a program are precisely the
unfounded-free models.

• We show that reasoning with aggregates without restrictions may easily increase the
complexity of the computation. In particular, we prove that deciding the truth
or falsity of an aggregate expression with respect to a partial interpretation is a
coNP-complete problem. However, while the problem is intractable in general, it
is polynomial-time solvable for monotone and antimonotone aggregates.

• We analyze the complexity of the well-founded semantics, confirming and extending
results in the work of Pelov et al. (2007). Importantly, it turns out that Wω

P(∅)
is polynomial-time computable for propositional LPA

m,a programs. For non-ground
programs, the data-complexity remains polynomial, while the program complexity
rises from P to EXPTIME, as for aggregate-free programs.

• We present a prototype system supporting the well-founded semantics defined in this
article. The prototype, obtained by extending DLV, is the first system implementing
a well-founded semantics for (unrestricted) LPA

m,a programs.

• We report on experimental results on the implemented prototype. More specifically,
we define the Attacks problem, a problem inspired by the classic Win-Lose problem
often considered in the context of the well-founded semantics for standard logic pro-
grams. We compare the execution times of our prototype with an LPA

m,a encoding and
with equivalent LP encodings. In particular, one of the tested LP encodings is ob-
tained by means of a compilation of aggregates into standard LP, which is also briefly
presented in this paper. The obtained results evidence computational advantages for
the problem encoding using aggregate expressions over those without them.

The presentation is organized as follows. In Section 2 we present the basics of the
LPA language and, in particular, we introduce the LPA

m,a fragment. For this fragment,
we define unfounded sets and well-founded semantics in Section 3. Relationships between
well-founded semantics and answer set semantics are discussed in Section 4. A complexity
analysis of the well-founded semantics for LPA

m,a programs is reported in Section 5. In

490

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Section 6 we discuss the implemented prototype system and the experimentation. Finally,
related work is discussed in Section 7, and in Section 8 we draw our conclusions.

2. The LPA Language

Syntax, instantiation, interpretations and models of LPA programs are introduced in this
section. Moreover, we introduce the LPA

m,a fragment of the language, for which we define a
well-founded semantics in Section 3. For additional background on standard LP, we refer
to the literature (Gelfond & Lifschitz, 1991; Baral, 2003).

2.1 Syntax

We assume sets of variables, constants, and predicates to be given. Similar to Prolog, we
assume variables to be strings starting with uppercase letters and constants to be non-
negative integers or strings starting with lowercase letters. Predicates are strings starting
with lowercase letters. An arity (non-negative integer) is associated with each predicate.
Moreover, the language allows for using built-in predicates (i.e., predicates with a fixed
meaning) for the common arithmetic operations over positive integers (i.e., =, ≤, ≥, +, ×,
etc.; written in infix notation), which are interpreted in the standard mathematical way.

2.1.1 Standard Atom

A term is either a variable or a constant. A standard atom is an expression p(t1, . . . , tn),
where p is a predicate of arity n and t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if
t1, . . . , tn are constants.

2.1.2 Set Term

A set term is either a symbolic set or a ground set. A symbolic set is a pair {Terms :Conj},
where Terms is a list of terms (variables or constants) and Conj is a conjunction of standard
atoms, that is, Conj is of the form a1, . . . , ak and each ai (1 ≤ i ≤ k) is a standard
atom. Intuitively, a set term {X :a(X, c), p(X)} stands for the set of X-values making the
conjunction a(X, c), p(X) true, i.e., {X |a(X, c) and p(X) are true}. A ground set is a set of
pairs of the form 〈consts :conj 〉, where consts is a list of constants and conj is a conjunction
of ground standard atoms.

2.1.3 Aggregate Function

An aggregate function is of the form f(S), where S is a set term, and f is an aggregate
function symbol. Intuitively, an aggregate function can be thought of as a (possibly partial)
function mapping multisets of constants to a constant. Throughout the remainder of the
paper, we will adopt the notation of the DLV system (Leone, Pfeifer, Faber, Eiter, Gottlob,
Perri, & Scarcello, 2006) for representing aggregates.

Example 1 The most common aggregate functions are listed below:

• #min, minimal term, undefined for the empty set;

• #max, maximal term, undefined for the empty set;

491

Alviano, Calimeri, Faber, Leone, & Perri

• #count, number of terms;

• #sum, sum of integers;

• #times, product of integers;

• #avg, average of integers, undefined for the empty set.

2.1.4 Aggregate Atom

An aggregate atom is a structure of the form f(S) ≺ T , where f(S) is an aggregate function,
≺ ∈ {<, ≤, >,≥} is a comparison operator, and T is a term (variable or constant). An
aggregate atom f(S) ≺ T is ground if T is a constant and S is a ground set.

Example 2 The following are aggregate atoms in DLV notation:

#max{Z : r(Z), a(Z, V)} > Y

#max{〈2 : r(2), a(2,m)〉, 〈2 : r(2), a(2, n)〉} > 1

2.1.5 Literal

A literal is either (i) a standard atom, or (ii) a standard atom preceded by the negation as
failure symbol not, or (iii) an aggregate atom. Two standard literals are complementary if
they are of the form a and not a, for some standard atom a. For a standard literal ℓ, we
denote by ¬.ℓ the complement of ℓ. Abusing of notation, if L is a set of standard literals,
then ¬.L denotes the set {¬.ℓ | ℓ ∈ L}.

2.1.6 Program

A rule r is a construct of the form

a :− ℓ1, . . . , ℓm.

where a is a standard atom, ℓ1, . . . , ℓm are literals, and m ≥ 0. The atom a is referred
to as the head of r, and the conjunction ℓ1, . . . , ℓm as the body of r. If the body is empty
(m = 0), then the rule is called fact. We denote the head atom by H(r) = a, and the set of
body literals by B(r) = {ℓ1, . . . , ℓm}. Moreover, the set of positive standard body literals
is denoted by B+(r), the set of negative standard body literals by B−(r), and the set of
aggregate body literals by BA(r). A rule r is ground if H(r) and all the literals in B(r) are
ground. A program is a set of rules. A program is ground if all its rules are ground.

2.1.7 Safety

A local variable of a rule r is a variable appearing solely in sets terms of r; a variable of r
which is not local is global. A rule r is safe if both the following conditions hold: (i) for each
global variable X of r there is a positive standard literal ℓ ∈ B+(r) such that X appears in
ℓ; (ii) each local variable of r appearing in a symbolic set {Terms :Conj} also appears in
Conj . Note that condition (i) is the standard safety condition adopted in LP to guarantee
that the variables are range restricted (Ullman, 1989), while condition (ii) is specific for
aggregates. A program is safe if all its rules are safe.

492

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Example 3 Consider the following rules:

p(X) :− q(X,Y, V), #max{Z : r(Z), a(Z, V)} > Y.

p(X) :− q(X,Y, V), #sum{Z : r(X), a(X,S)} > Y.

p(X) :− q(X,Y, V), #min{Z : r(Z), a(Z, V)} > T.

The first rule is safe, while the second is not because the local variable Z violates condition
(ii). Also the third rule is not safe, since the global variable T violates condition (i).

2.2 Program Instantiation, Interpretations and Models

In Section 3 we define a well-founded semantics for a relevant class of LPA programs.
The well-founded semantics is defined for ground programs, while programs with variables
are associated with equivalent ground programs. In this section we introduce preliminary
notions such as program instantiation, interpretations and models.

2.2.1 Universe and Base

Given an LPA program P, the universe of P, denoted by UP , is the set of constants
appearing in P. The base of P, denoted by BP , is the set of standard atoms constructible
from predicates of P with constants in UP .

2.2.2 Instantiation

A substitution is a mapping from a set of variables to UP . Given a substitution σ and
an LPA object obj (rule, set, etc.), we denote by obj σ the object obtained by replacing
each variable X in obj by σ(X). A substitution from the set of global variables of a rule
r (to UP) is a global substitution for r; a substitution from the set of local variables of a
set term S (to UP) is a local substitution for S. Given a set term without global variables
S = {Terms :Conj}, the instantiation of S is the following ground set:

inst(S) = {〈Terms σ :Conj σ〉 | σ is a local substitution for S}.

A ground instance of a rule r is obtained in two steps: First, a global substitution σ for r
is applied, and then every set term S in rσ is replaced by its instantiation inst(S). The
instantiation Ground(P) of a program P is the set of instances of all the rules in P.

Example 4 Consider the following program P1:

q(1) :− not p(2, 2). q(2) :− not p(2, 1). t(X) :− q(X), #sum{Y : p(X,Y)} > 1.
p(2, 2) :− not q(1). p(2, 1) :− not q(2).

The instantiation Ground(P1) of P1 is the following program:

q(1) :− not p(2, 2). q(2) :− not p(2, 1). t(1) :− q(1), #sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.
p(2, 2) :− not q(1). p(2, 1) :− not q(2). t(2) :− q(2), #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1.

2.2.3 Aggregate Function Domain

Given a set X, let 2
X

denote the set of all multisets over elements from X. The domain of
an aggregate function is the set of multisets on which the function is defined. Without loss
of generality, we assume that aggregate functions map to Z (the set of integers).

493

Alviano, Calimeri, Faber, Leone, & Perri

Example 5 Let us look at common domains for the aggregate functions of Example 1:

#count is defined over 2
UP, #sum and #times over 2

Z
, #min, #max and #avg over

2
Z
\ {∅}.

2.2.4 Interpretation

An interpretation I for an LPA program P is a consistent set of standard ground literals,
that is, I ⊆ BP ∪ ¬.BP and I ∩ ¬.I = ∅. We denote by I+ and I− the set of standard
positive and negative literals occurring in I, respectively. An interpretation I is total if
I+ ∪ ¬.I− = BP , otherwise I is partial. The set of all the interpretations of P is denoted
by IP . Given an interpretation I and a standard literal ℓ, the evaluation of ℓ with respect
to I is defined as follows: (i) if ℓ ∈ I, then ℓ is true with respect to I; (ii) if ¬.ℓ ∈ I, then
ℓ is false with respect to I; (iii) otherwise, if ℓ 6∈ I and ¬.ℓ 6∈ I, then ℓ is undefined with
respect to I. An interpretation also provides a meaning to set terms, aggregate functions
and aggregate literals, namely a multiset, a value, and a truth value, respectively. We
first consider a total interpretation I. The evaluation I(S) of a set term S with respect
to I is the multiset I(S) defined as follows: Let SI = {〈t1, ..., tn〉 | 〈t1, ..., tn : Conj 〉 ∈
S and all the atoms in Conj are true with respect to I}; I(S) is the multiset obtained as
the projection of the tuples of SI on their first constant, that is, I(S) = [t1 | 〈t1, ..., tn〉 ∈ SI].
The evaluation I(f(S)) of an aggregate function f(S) with respect to I is the result of the
application of f on I(S).1 If the multiset I(S) is not in the domain of f , then I(f(S)) = ⊥
(where ⊥ is a fixed symbol not occurring in P). A ground aggregate atom ℓ = f(S) ≺ k is
true with respect to I if both I(f(S)) 6= ⊥ and I(f(S)) ≺ k hold; otherwise, ℓ is false.

Example 6 Let I1 be a total interpretation having I+1 = {f(1), g(1, 2), g(1, 3), g(1, 4), g(2, 4),
h(2), h(3), h(4)}. Assuming that all variables are local, we can check that:

• #count{X : g(X,Y)} > 2 is false; indeed, if S1 is the corresponding ground set, then
SI1
1 = {〈1〉, 〈2〉}, I1(S1) = [1, 2] and #count([1, 2]) = 2.

• #count{X,Y : g(X,Y)} > 2 is true; indeed, if S2 is the corresponding ground set,
then SI1

2 = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 4〉}, I1(S2) = [1, 1, 1, 2] and #count([1, 1, 1, 2]) = 4.

• #times{Y : f(X), g(X,Y)} <= 24 is true; indeed, if S3 is the corresponding ground
set, then SI1

3 = {〈2〉, 〈3〉, 〈4〉}, I1(S3) = [2, 3, 4] and #times([2, 3, 4]) = 24.

• #sum{X : g(X,Y), h(Y)} <= 3 is true; indeed, if S4 is the corresponding ground set,
then SI1

4 = {〈1〉, 〈2〉}, I1(S4) = [1, 2] and #sum([1, 2]) = 3.

• #sum{X,Y : g(X,Y), h(Y)} <= 3 is false; indeed, if S5 is the corresponding ground
set, then SI1

5 = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 4〉}, I1(S5) = [1, 1, 1, 2] and #sum([1, 1, 1, 2]) =
5.;

• #min{X : f(X), h(X)} >= 2 is false; indeed, if S6 is the corresponding ground set,
then SI1

6 = ∅, I1(S6) = ∅, and I1(#min(∅)) = ⊥ (we recall that ∅ is not in the domain
of #min).

1. In this paper, we only consider aggregate functions value of which is polynomial-time computable with
respect to the input multiset.

494

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

We now consider a partial interpretation I and refer to an interpretation J such that
I ⊆ J as an extension of I. If a ground aggregate atom ℓ is true (resp. false) with respect
to each total interpretation J extending I, then ℓ is true (resp. false) with respect to I;
otherwise, ℓ is undefined.

Example 7 Let S7 be the ground set in the literal ℓ1 = #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} >

1, and consider a partial interpretation I2 = {p(2, 2)}. Since each total interpretation
extending I2 contains either p(2, 1) or not p(2, 1), we have either I2(S7) = [2] or I2(S7) =
[1, 2]. Thus, the application of #sum yields either 2 > 1 or 3 > 1, and thus ℓ1 is true with
respect to I2.

Remark 1 Observe that our definitions of interpretation and truth values preserve “knowl-
edge monotonicity”: If an interpretation J extends I (i.e., I ⊆ J), each literal which is true
with respect to I is true with respect to J , and each literal which is false with respect to I

is false with respect to J as well.

2.2.5 Model

Given an interpretation I, a rule r is satisfied with respect to I if at least one of the following
conditions is satisfied: (i) H(r) is true with respect to I; (ii) some literal in B(r) is false
with respect to I; (iii) H(r) and some literal in B(r) are undefined with respect to I. An
interpretation M is a model of an LPA program P if all the rules r in Ground(P) are
satisfied with respect to M .

Example 8 Consider again the program P1 of Example 4. Let I3 be a total interpretation
for P1 such that I+3 = {q(2), p(2, 2), t(2)}. Then I3 is a minimal model of P1.

2.3 The LPA
m,a Language

The definition of LPA
m,a programs, the fragment of LPA analyzed in this paper, is based on

the following notion of monotonicity of literals.

2.3.1 Monotonicity

Given two interpretations I and J , we say that I ≤ J if I+ ⊆ J+ and I− ⊇ J−. A
ground literal ℓ is monotone if, for all interpretations I, J such that I ≤ J , we have that:
(i) ℓ true with respect to I implies ℓ true with respect to J , and (ii) ℓ false with respect
to J implies ℓ false with respect to I. A ground literal ℓ is antimonotone if the opposite
happens, that is, for all interpretations I, J such that I ≤ J , we have that: (i) ℓ false with
respect to I implies ℓ false with respect to J , and (ii) ℓ true with respect to J implies
ℓ true with respect to I. A ground literal ℓ is nonmonotone if ℓ is neither monotone nor
antimonotone. Note that positive standard literals are monotone, whereas negative standard
literals are antimonotone. Aggregate literals, instead, may be monotone, antimonotone or
nonmonotone. Some examples are shown below and the complete picture for the most
common aggregate functions is summarized in Table 1.

Example 9 Let us assume a universe in which all numerical constants are non-negative
integers. All ground instances of the following aggregate literals are thus monotone:

495

Alviano, Calimeri, Faber, Leone, & Perri

Table 1: Character of the most common aggregate literals.
Function Domain Operator Character

#count any >,≥ monotone
<,≤ antimonotone

#sum N >,≥ monotone
<,≤ antimonotone

Z <,≤, >,≥ nonmonotone

#times N
+ >,≥ monotone

<,≤ antimonotone
N, Z <,≤, >,≥ nonmonotone

#min any >,≥ nonmonotone∗

<,≤ monotone

#max any >,≥ monotone
<,≤ nonmonotone∗

#avg N, Z <,≤, >,≥ nonmonotone

∗ Antimonotone if the context guarantees that the set term of the aggregate never becomes empty.

#count{Z : r(Z)} > 1; #sum{Z : r(Z)} ≥ 10.

Ground instances of the following literals are instead antimonotone:

#count{Z : r(Z)} < 1; #sum{Z : r(Z)} ≤ 10.

2.3.2 LPA
m,a Programs

Let LPA
m,a denote the fragment of LPA allowing monotone and antimonotone literals. For

an LPA
m,a rule r, the set of its monotone and antimonotone body literals are denoted by

Bm(r) and Ba(r), respectively. An LPA
m,a program P is stratified if there exists a function

|| · ||, called level mapping, from the set of predicates of P to ordinals, such that for each
pair a, b of predicates, occurring in the head and body of a rule r ∈ P, respectively: (i) if b
appears in an antimonotone literal, then ||b|| < ||a||, (ii) otherwise ||b|| ≤ ||a||. Intuitively,
stratification forbids recursion through antimonotone literals (for aggregate-free programs
this definition coincides with the common notion of stratification with respect to negation).

Example 10 Consider an LPA
m,a program consisting of the following rules:

q(X) :− p(X), #count{Y : a(Y,X), b(X)} ≤ 2.
p(X) :− q(X), b(X).

and assume that the predicates a and b are defined by facts, which we do not include
explicitly. The program is stratified, as the level mapping ||a|| = ||b|| = 1, ||p|| = ||q|| = 2
satisfies the required conditions. If we add the rule b(X) :− p(X), then no such level-
mapping exists, and the program becomes unstratified.

We would like to note that the definition of LPA
m,a could be enlarged, as in the form

given above classifies literals independently of the context (that is, the program) in which

496

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

they occur. Some aggregates that are nonmonotone by the definition given above, might
not manifest their nonmonotone effects in a given context: If one limits the interpretations
to be considered to those that do not violate the program in which the literal occurs,
some interpretation pairs that violate monotonicity and antimonotonicity may no longer
be present. In fact, one could refine the definition in this way (considering only pairs of
non-violating interpretations of a given context program). The modified definition would
enlarge the class of LPA

m,a programs, while retaining all of the results in this paper, but for
simplicity of exposition we refrain from doing it formally. As an example, any aggregate
atom involving #max with a < operator is formally not in LPA

m,a, but when one considers
occurrences in a program that has no non-violating interpretation I such that I(S) = ∅
(where S the set term of the aggregate), then the aggregate behaves in an antimonotone
way in that particular program. We have noted these cases by a footnote in Table 1.

3. Unfounded Sets and Well-Founded Semantics

In this section we introduce a new notion of unfounded set for LPA
m,a programs, which

extends the original definition for aggregate-free programs introduced by Van Gelder et al.
(1991). Unfounded sets are then used for extending the well-founded semantics, originally
defined for aggregate-free programs by Van Gelder et al., to LPA

m,a programs. We also
highlight a number of desirable properties of this semantics. In the following we deal with
ground programs, so we will usually denote by P a ground program. We will also use the
notation L ∪̇ ¬.L′ for the set (L \ L′) ∪ ¬.L′, where L and L′ are sets of standard ground
literals.

Definition 1 (Unfounded Set) A set X ⊆ BP of ground atoms is an unfounded set for
an LPA

m,a program P with respect to a (partial) interpretation I if and only if, for each rule
r ∈ P having H(r) ∈ X , at least one of the following conditions holds:

(1) some (antimonotone) literal in Ba(r) is false with respect to I, or

(2) some (monotone) literal in Bm(r) is false with respect to I ∪̇ ¬.X .

Intuitively, each rule with its head atom belonging to an unfounded set X is already
satisfied with respect to I (in case condition (1) holds), or it is satisfiable by taking as false
all the atoms in the unfounded set (in case condition (2) holds). Note that, according to
the definition above, the empty set is an unfounded set with respect to every program and
interpretation.

Example 11 Consider an interpretation I4 = {a(1), a(2), a(3)} for the following program
P2:

r1 : a(1) :− #count{〈1:a(1)〉, 〈2:a(2)〉, 〈3:a(3)〉} > 2.
r2 : a(2).
r3 : a(3) :− #count{〈1:a(1)〉, 〈2:a(2)〉, 〈3:a(3)〉} > 2.

Then X1 = {a(1)} is an unfounded set for P2 with respect to I4, since condition (2) of
Definition 1 holds for r1 (the only rule with head a(1)). Indeed, the (monotone) literal
appearing in Bm(r1) is false with respect to I4 ∪̇ ¬.X1 = {not a(1), a(2), a(3)}. Similarly,
{a(3)} and {a(1), a(3)} are unfounded sets for P2 with respect to I4. Clearly, also ∅ is an
unfounded set. All other sets of atoms are not unfounded for P2 with respect to I4.

497

Alviano, Calimeri, Faber, Leone, & Perri

As formalized below, Definition 1 generalizes the one given by Van Gelder et al. (1991)
for aggregate-free programs: A set of standard atoms X ⊆ BP is an unfounded set for a
program P with respect to an interpretation I if and only if, for each rule r ∈ P such that
H(r) ∈ X , either (i) B(r) ∩ ¬.I 6= ∅, or (ii) B+(r) ∩ X 6= ∅.

Theorem 1 For an aggregate-free program P, Definition 1 is equivalent to the one intro-
duced in the work of Van Gelder et al. (1991).

Proof. For an aggregate-free program P, conditions (1) and (2) of Definition 1 are equiv-
alent to (a) B−(r) ∩ ¬.I 6= ∅ and (b) B+(r) ∩ ¬.(I ∪̇ ¬.X) 6= ∅, respectively. Condition (b)
is equivalent to B+(r) ∩ (¬.(I \ X) ∪ ¬.¬.X) 6= ∅, which holds if and only if either (b.1)
B+(r) ∩ ¬.(I \ X) 6= ∅, or (b.2) B+(r) ∩ X 6= ∅. Condition (b.2) is exactly condition (ii)
in the work of Van Gelder et al. Concerning condition (b.1), since B+(r) contains only
positive literals, we can ignore the negative literals in ¬.(I \X), that is, the positive literals
in I \ X . By noting that the negative literals in I \ X are precisely the negative literals in
I, we can then conclude that (b.1) is equivalent to B+(r) ∩ ¬.I 6= ∅. Finally, by combining
the previous statement with condition (a) above, we obtain condition (i) in the work of Van
Gelder et al. ✷

Thus, Definition 1 is an alternative characterization of unfounded sets for aggregate-free
programs. In fact, while condition (1) of Definition 1 does not exactly cover the first one in
Van Gelder et al., condition (2) catches all cases of the second in the work of Van Gelder
et al. and those “missed” by condition (1).

Theorem 2 If X and X ′ are unfounded sets for an LPA
m,a program P with respect to an

interpretation I, then X ∪ X ′ is an unfounded set for P with respect to I.

Proof. Let r ∈ P be such that H(r) ∈ X ∪ X ′. We want to show that either (1) some
(antimonotone) literal in Ba(r) is false with respect to I, or (2) some (monotone) literal
in Bm(r) is false with respect to J = I ∪̇ ¬.(X ∪ X ′). By symmetry, we can assume that
H(r) belongs to X . Since X is an unfounded set with respect to I by hypothesis, either
(a) some (antimonotone) literal in Ba(r) is false with respect to I, or (b) some (monotone)
literal in Bm(r) is false with respect to K = I ∪̇ ¬.X . Case (a) is equals to (1). Thus, it
remains to prove that case (b) implies (2). Indeed, we have that J ≤ K because J+ ⊆ K+

and J− ⊇ K−. Therefore, by definition of monotonicity, each monotone literal ℓ which is
false with respect to K is false with respect to J as well, and so we are done. ✷

As a corollary of Theorem 2, the union of all the unfounded sets is an unfounded set as
well.

Corollary 3 The union of all the unfounded sets for an LPA
m,a program P with respect to

an interpretation I is an unfounded set for P with respect to I as well. We refer to this set
as the greatest unfounded set of P with respect to I, denoted by GUSP(I).

Below is an important monotonicity property of the greatest unfounded set.

Proposition 4 Let I and J be interpretations for an LPA
m,a program P. If I ⊆ J , then

GUSP(I) ⊆ GUSP(J).

498

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Proof. Since GUSP(J) is the union of all the unfounded sets for P with respect to J by
definition, it is enough to show that X = GUSP(I) is an unfounded set for P with respect
to J . Thus, we want to show that, for each rule r ∈ P such that H(r) ∈ X , either (1) some
(antimonotone) literal in Ba(r) is false with respect to J , or (2) some (monotone) literal in
Bm(r) is false with respect to J ∪̇ ¬.X . We already know that X is an unfounded set for P
with respect to I by Corollary 3. Therefore, either (a) some (antimonotone) literal in Ba(r)
is false with respect to I, or (b) some (monotone) literal in Bm(r) is false with respect to
I ∪̇ ¬.X . Since I ⊆ J , we have that J and J ∪̇ ¬.X are extensions of the interpretations I
and I ∪̇ ¬.X , respectively. Hence, by Remark 1, (a) implies (1) and (b) implies (2), and so
we are done. ✷

We are now ready for extending the well-founded operator defined by Van Gelder et al.
(1991) to the case of LPA

m,a programs.

Definition 2 Let P be an LPA
m,a program. The immediate logical consequence operator

TP : IP → 2BP and the well-founded operator WP : IP → 2BP∪¬.BP are defined as follows:

TP(I) = {ℓ ∈ BP | ∃r ∈ P such that H(r) = ℓ

and all the literals in B(r) are true with respect to I}
WP(I) = TP(I) ∪ ¬.GUSP(I).

Intuitively, given an interpretation I for a program P, WP derives as true a set of
atoms belonging to every model extending I (by means of the TP operator). Moreover,
WP derives as false all the atoms belonging to some unfounded set for P with respect to
I (by means of the GUSP operator). Note that TP(I) and GUSP(I) are set of atoms, so
WP(I)

+ = TP(I) and WP(I)
− = ¬.GUSP(I). The following proposition formalizes the

intuition that Definition 2 extends the WP operator defined by Van Gelder et al. (1991) for
standard programs to LPA

m,a programs.

Proposition 5 Let P be an aggregate-free program. The WP operator of Definition 2
coincides with the WP operator defined by Van Gelder et al. (1991).

Proof. Since WP is equal to the union of TP and ¬.GUSP in both cases, we have just to
show that our definitions of TP and GUSP coincide with those introduced by Van Gelder
et al. (1991) for aggregate-free programs.

• The two immediate logical consequence operators (TP) coincide for an aggregate-free
program P. Indeed, for each rule r ∈ P, B(r) has only standard literals.

• Our definition of GUSP(I) coincides with the one of Van Gelder et al. (1991) for an
aggregate-free program P and an interpretation I. Indeed, in both cases GUSP(I) is
defined as the union of all the unfounded sets for P with respect to I, and our notion
of unfounded set coincides with the one in the work of Van Gelder et al. for standard
programs by Theorem 1. ✷

We next show that a fixpoint of the well-founded operator WP is a (possibly partial)
model.

499

Alviano, Calimeri, Faber, Leone, & Perri

∅

{a} {b} {not a}{not b}

{not a, b} {not a, not b}{a, b} {a, not b}

Figure 1: A meet semilattice

Theorem 6 Let P be an LPA
m,a program and M a (partial) interpretation. If M is a

fixpoint of WP , then M is a (partial) model of P.

Proof. Let us assume that WP(M) = M holds. Thus, TP(M) ⊆ M and ¬.GUSP(M) ⊆ M

hold. Consider now a rule r ∈ P. If all the literals in B(r) are true with respect to M ,
then H(r) ∈ TP(M) ⊆ M . If H(r) is false with respect to M , then H(r) ∈ GUSP(M).
Since GUSP(M) is an unfounded set for P with respect to M by Corollary 3, either some
literal in Ba(r) is false with respect to M , or some literal in Bm(r) is false with respect to
M ∪̇ ¬.GUSP(M) = M . We can then conclude that r is satisfied by M . ✷

The theorem below states that WP is a monotone operator in the meet semilattice in-
duced on IP by the subset-containment relationship. We recall here that a meet semilattice
is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite
subset. An example of such a meet semilattice for a program with base {a, b} is reported
in Figure 1.

Theorem 7 Let P be an LPA
m,a program. The well-founded operator WP is a monotone

operator in the meet semilattice 〈IP ,⊆〉.

Proof. Since WP is equal to the union of TP and ¬.GUSP by Definition 2, we have just to
prove the monotonicity of the operators TP and GUSP .

• We first show that TP is a monotone operator, that is, for each pair of interpretations
I, J for P such that I ⊆ J , it holds that TP(I) ⊆ TP(J). Consider an atom ℓ ∈ TP(I).
By Definition 2, there is a rule r ∈ P such that H(r) = ℓ and all the literals in B(r)
are true with respect to I. Since I ⊆ J , we can conclude that all the literals in B(r)
are true with respect to J as well (see Remark 1), and so H(r) = ℓ belongs to TP(J)
by Definition 2.

• We already know that GUSP is a monotone operator from Proposition 4: For each
pair of interpretations I, J for P such that I ⊆ J , it holds that GUSP(I) ⊆ GUSP(J).

✷

We can now prove that the sequence W0 = ∅, Wn+1 = WP(Wn) is well-defined, that is,
each element of the sequence is an interpretation.

Theorem 8 Let P be an LPA
m,a program. The sequence W0 = ∅, Wn+1 = WP(Wn) is

well-defined.

500

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Proof. We use strong induction. The base case is trivial, since W0 = ∅. In order to prove
the consistency of Wn+1 = TP(Wn)∪¬.GUSP(Wn), we assume the consistency of every Wm

such that m ≤ n. Since WP is a monotone operator by Theorem 7, it is enough to show
that GUSP(Wn)∩Wn+1 = ∅. To this end, we next show that any set X of atoms such that
X ∩Wn+1 6= ∅ is not an unfounded set for P with respect to Wn (and so is not contained in
GUSP(Wn)). Let Wm+1 be the first element of the sequence such that X ∩Wm+1 6= ∅ (note
that m ≤ n). Consider any atom ℓ ∈ X ∩Wm+1. By definition of TP , there is a rule r ∈ P
having H(r) = ℓ and such that all the literals in B(r) are true with respect to Wm. Note
that no atom in Wm can belong to X (for the way in which Wm+1 has been chosen). Thus,
by Remark 1, all the literals in B(r) are true with respect to both Wn and Wn ∪̇ ¬.X (we
recall that Wn ⊇ Wm because WP is monotone). This ends the proof, as neither condition
(1) nor (2) of Definition 1 hold for ℓ. ✷

Theorem 8 and Theorem 7 imply that WP admits a least fixpoint (Tarski, 1955), which
is referred to as the well-founded model of P. The well-founded semantics of an LPA

m,a

program P is given by this model. We can now state a first important property of the
well-founded semantics of LPA

m,a programs.

Property 1 For every LPA
m,a program, the well-founded model always exists and is unique.

Another important property of well-founded semantics easily follows from Proposition 5.

Property 2 On aggregate-free programs, the well founded semantics as defined in this
paper coincides with the classical well-founded semantics of Van Gelder et al. (1991).

Although the well-founded model, in general, might leave some atoms as undefined,
there are cases where Wω

P(∅) is a total interpretation.

Example 12 Consider the following program P3:
a(1) :− #sum{〈1:a(1)〉, 〈2:a(2)〉} > 2.
a(2) :− b.

b :− not c.

The iterated application of WP yields the following sets:

1. WP(∅) = {not a(1), not c};
2. WP({not a(1), not c}) = {not a(1), not c, b};
3. WP({not a(1), not c, b}) = {not a(1), not c, b, a(2)} = Wω

P(∅).

In this case, the well-founded model is total. Indeed, each atom in BP is either true or false
with respect to Wω

P(∅).

The totality of the well-founded model of the program above is due to its stratification,
as formalized by the next theorem. Given Corollary 25, an equivalent result has been stated
already by Pelov et al. (2007) as Theorem 7.2 and its Corollary 7.1. However, its proof is
labelled as sketch by Pelov et al., which moreover relies on rather different formalisms than
our proof.

501

Alviano, Calimeri, Faber, Leone, & Perri

Theorem 9 On stratified LPA
m,a programs, the well-founded model is total.

Proof. Let P be a stratified LPA
m,a program. In order to prove that Wω

P(∅) is total, we
show that each (standard) atom in BP \Wω

P(∅) is false with respect to Wω
P(∅). By definition

of stratification, there is a level mapping || · || of the (standard) predicates of P such that,
for each pair a, b of standard predicates occurring in the head and body of a rule r ∈ P,
respectively, the following conditions are satisfied: (i) if b appears in an antimonotone literal,
then ||b|| < ||a|| holds; (ii) otherwise, if b appears in a monotone literal, then ||b|| ≤ ||a||
holds. We are then in order to define a non-decreasing sequence of subsets of BP as follows:

L0 = ∅
Li+1 = Li ∪ {ℓ ∈ BP | the predicate of ℓ is p and ||p|| = i}, ∀i ∈ N.

Our aim is then to show that, for each i ∈ N, the set Li+1\W
ω
P(∅) is contained in ¬.Wω

P(∅)
−.

We use induction on i. The base case is trivial because L0 = ∅ holds by definition. Now
suppose that all the atoms in Li \W

ω
P(∅) are false with respect to Wω

P(∅) in order to show
that all the atoms in Li+1 \ Wω

P(∅) are false with respect to Wω
P(∅) as well. To this end,

we prove that Li+1 \ Wω
P(∅) is an unfounded set for P with respect to Wω

P(∅). Consider
a rule r ∈ Ground(P) with H(r) ∈ Li+1 \ W

ω
P(∅). We want to show that either (1) some

(antimonotone) literal in Ba(r) is false with respect to Wω
P(∅), or (2) some (monotone)

literal in Bm(r) is false with respect to Wω
P(∅) ∪̇ ¬.(Li+1 \W

ω
P(∅)). Since H(r) ∈ Li+1, by

definition of stratification the following propositions hold:

(a) each literal in Ba(r) is either a negated standard atom belonging to Li, or an aggregate
literal depending only on atoms in Li;

(b) each literal in Bm(r) is either a standard atom belonging to Li+1, or an aggregate
literal depending only on atoms in Li+1.

Since H(r) 6∈ Wω
P(∅) (that is, H(r) 6∈ TP(W

ω
P(∅))), there is a literal ℓ in B(r) such that ℓ

is not true with respect to Wω
P(∅) (by definition of TP). If ℓ is an antimonotone literal, we

apply (a) and the induction hypothesis and conclude that (1) holds (ℓ cannot be undefined
with respect to Wω

P(∅), so ℓ must be false). If ℓ is a monotone literal, we apply (b) and the
induction hypothesis and conclude that (2) holds (ℓ cannot be undefined with respect to
Wω

P(∅) ∪̇ ¬.(Li+1 \W
ω
P(∅)) and Wω

P(∅) ∪̇ ¬.(Li+1 \W
ω
P(∅)) ≤ Wω

P(∅) holds, so ℓ must be
false). ✷

4. Answer Set Characterization via Unfounded Sets

The well-founded semantics is a three-valued semantics, that is, each program is associ-
ated with a model in which atoms are either true, false or undefined. Other semantics in
the literature associate programs with two-valued models (i.e., models without undefined
atoms). A commonly accepted two-value semantics in LP is the answer set semantics. In
this section we present a number of results concerning unfounded sets and answer sets of
LPA

m,a programs. We first recall the definition of answer sets provided by Faber, Leone,
and Pfeifer (2011).

502

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Definition 3 (Minimal Model) A total model M for P is (subset-)minimal if no total
model N for P exists such that N+ ⊂ M+. Note that, under these definitions, the words
interpretation and model refer to possibly partial interpretations, while a minimal model is
always a total interpretation.

We next provide the transformation by which the reduct of a ground program with
respect to a total interpretation is formed. Note that this definition is a generalization (Faber
et al., 2004) of the Gelfond-Lifschitz transformation (1991) for standard logic programs.

Definition 4 (Program Reduct) Given an LPA program P and a total interpretation
I, let Ground(P)I denote the transformed program obtained from Ground(P) by deleting
rules in which a body literal is false with respect to I, i.e.:

Ground(P)I = {r ∈ Ground(P) | all the literals in B(r) are true with respect to I}.

We are now ready for introducing the notion of answer set for LPA programs.

Definition 5 (Answer Set for LPA Programs) Given an LPA program P, a total in-
terpretation M of P is an answer set of P if and only if M is a minimal model of
Ground(P)M .

Example 13 Consider two total interpretations I5 = {p(0)} and I6 = {not p(0)} for the
following two programs:

P4 = {p(0) :− #count{X :p(X)} > 0.}
P5 = {p(0) :− #count{X :p(X)} ≤ 0.}

We then obtain the following transformed programs:
Ground(P4)

I5 = Ground(P4) = {p(0) :− #count{〈0:p(0)〉} > 0.}
Ground(P4)

I6 = ∅
Ground(P5)

I5 = ∅
Ground(P5)

I6 = Ground(P5) = {p(0) :− #count{〈0:p(0)〉} ≤ 0.}

Hence, I6 is the only answer set of P4. Indeed, I5 is not a minimal model of Ground(P4)
I5 .

Moreover, P5 has no answer sets. Indeed, I5 is not a minimal model of Ground(P5)
I5 , and

I6 is not a model of Ground(P5)
I6 = Ground(P5).

Note that any answer set M of P is also a total model of P because Ground(P)M ⊆
Ground(P), and the rules in Ground(P) \ Ground(P)M are satisfied with respect to M

(by Definition 4, each of these rules must have at least one body literal which is false with
respect to M).

On the language LPA
m,a considered in this work, answer sets as defined in Definition 5

coincide with stable models as defined by Pelov, Denecker, and Bruynooghe (2003) and
hence also those defined by Pelov et al. (2007) and Son et al. (2007). This equivalence
follows from Propositions 3.7 and 3.8 of Ferraris (2011), which respectively state that stable
models of Pelov et al. (2003) on LPA

m,a coincide with a semantics defined by Ferraris (2011),
which in turn coincides with Definition 5 on a larger class of programs. This means that all
our results involving answer sets also hold for these other semantics on LPA

m,a. On the other
hand, this also implies that some of the results (for example Theorem 16) are consequences
of results in the work of Pelov et al. (2007) by virtue of Theorem 24 in Section 7.

In the remainder of this section we highlight relevant relationships between answer sets
and unfounded sets. Before introducing our results, let us provide an additional definition.

503

Alviano, Calimeri, Faber, Leone, & Perri

Definition 6 (Unfounded-free Interpretation) An interpretation I for an LPA
m,a pro-

gram P is unfounded-free if and only if I ∩ X = ∅ holds for each unfounded set X for P
with respect to I.

For total interpretations, an equivalent characterization of the unfounded-free property
is given below.

Lemma 10 A total interpretation I for an LPA
m,a program P is unfounded-free if and only

if the empty set is the only subset of I+ which is an unfounded set for P with respect to I.

Proof. (⇒) Straightforward: By Definition 6, I is disjoint from all the unfounded set for
P with respect to I.

(⇐) We prove the contrapositive: If I is not unfounded-free, then there exists a non-empty
subset of I+ which is an unfounded set for P with respect to I. From Definition 6, if I is
not unfounded-free, then there exists an unfounded set X for P with respect to I such that
I ∩ X 6= ∅. We next show that I ∩ X is an unfounded set for P with respect to I, i.e., for
each rule r ∈ P such that H(r) ∈ I ∩ X , either (1) some (antimonotone) literal in Ba(r)
is false with respect to I, or (2) some (monotone) literal in Bm(r) is false with respect to
I ∪̇ ¬.(I ∩ X). Since X is an unfounded set, by Definition 1, either (a) some (antimonotone)
literal in Ba(r) is false with respect to I, or (b) some (monotone) literal in Bm(r) is false with
respect to I ∪̇ ¬.X . Thus, we can end the proof by showing that I ∪̇ ¬.X = I ∪̇ ¬.(I ∩ X).
To this end, observe that (i) ¬.X = ¬.(X \ I) ∪ ¬.(I ∩ X). Moreover, since I is total,
¬.(BP \ I+) = I−, and thus (ii) ¬.(X \ I) = ¬.(X \ I+) ⊆ I− ⊆ I \ X . By using (i) in
I ∪̇ ¬.X = (I \X)∪¬.X and simplifying with (ii) we obtain I ∪̇ ¬.X = (I \X)∪¬.(I ∩X).
We conclude by observing that I \ X = I \ (I ∩ X), and thus I ∪̇ ¬.X = I ∪̇ ¬.(I ∩ X)
holds. ✷

Now we give another interesting characterization of total models for LPA
m,a programs.

Lemma 11 A total interpretation M is a (total) model for an LPA
m,a program P if and

only if ¬.M− is an unfounded set for P with respect to M .

Proof. We start by observing that each rule r ∈ P such that H(r) ∈ M+ is satisfied by
M . Thus, we have to show that, for each rule r ∈ P with H(r) ∈ ¬.M−, some literal in
B(r) is false with respect to M if and only if either (1) some (antimonotone) literal in Ba(r)
is false with respect to M , or (2) some (monotone) literal in Bm(r) is false with respect
to M ∪̇ ¬.(¬.M−). To this end, it is enough to prove that M ∪̇ ¬.(¬.M−) = M holds.
By definition, (∗) M ∪̇ ¬.(¬.M−) = (M \ ¬.M−) ∪ ¬.¬.M−. From the consistency of M
we have that M and ¬.M− are disjoint. Moreover, ¬.¬.M− = M− is a subset of M . By
simplifying (∗) with the last two sentences, we obtain M ∪̇ ¬.(¬.M−) = M . ✷

Now we give further characterizations of answer sets for LPA
m,a programs.

Theorem 12 A total model M is an answer set of an LPA
m,a program P if and only if M

is unfounded-free.

504

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Proof. (⇒) We prove the contrapositive: If a total model M of an LPA
m,a program P is

not unfounded-free, then M is not an answer set of P. By Lemma 10, since M is a total
interpretation and it is not unfounded-free, there exists an unfounded set X for P with
respect to M such that X ⊆ M+ and X 6= ∅. Therefore, to prove that M is not an answer
set of P, we next show that M ∪̇ ¬.X is a model of PM such that M ∪̇ ¬.X ⊂ M . To this
end, consider a rule r ∈ PM . By Definition 4 of reduct, all the literals in B(r) are true with
respect to M , and so H(r) ∈ M+ because M is a model of P and PM ⊆ P. We now have
to consider two cases:

1. H(r) 6∈ X . In this case, H(r) ∈ M ∪̇ ¬.X as well.

2. H(r) ∈ X . In this case, since X is an unfounded set for P with respect to M , either
(1) some literal in Ba(r) is false with respect to M , or (2) some literal in Bm(r) is false
with respect to M ∪̇ ¬.X . By previous considerations, since r ∈ PM , (1) cannot hold,
and so we can conclude that some literal in B(r) is false with respect to M ∪̇ ¬.X .

Hence, we have that r is satisfied by M ∪̇ ¬.X either by head (in case H(r) 6∈ X), or by
body (in case H(r) ∈ X), and so we are done.

(⇐) We prove the contrapositive: If a total model M of an LPA
m,a program P is not an

answer set of P, then M is not unfounded-free. Since M is a model of P ⊇ PM but not an
answer set of P, there exists a total model N of PM such that N+ ⊂ M+. We next show
that M+ \N+ is an unfounded set for P with respect to M , that is, for each rule r ∈ P such
that H(r) ∈ M+ \N+, either (1) some (antimonotone) literal in Ba(r) is false with respect
to M , or (2) some (monotone) literal in Bm(r) is false with respect to M ∪̇ ¬.(M+ \N+).

We start by showing thatM ∪̇ ¬.(M+ \N+) = N . By definition, (a)M ∪̇ ¬.(M+ \N+) =
(M \ (M+ \ N+)) ∪ ¬.(M+ \ N+). From N+ ⊂ M+ we have (b) M \ (M+ \ N+) =
N+ ∪M−. Moreover, since N and M are total interpretations and N+ ⊂ M+, we have (c)
N− ⊃ M− and (d) ¬.(M+ \N+) = N− \M−. Thus, by using (b) and (d) in (a) we obtain
M ∪̇ ¬.(M+ \N+) = N+∪M−∪(N−\M−), and by observing that M−∪(N−\M−) = N−

holds because of (c), we conclude (e) M ∪̇ ¬.(M+ \N+) = N+ ∪N− = N .
Consider now a rule r ∈ P such that H(r) ∈ M+ \N+. We have to deal with two cases:

1. r ∈ P \PM . In this case, by Definition 4, there must be a literal ℓ ∈ B(r) such that ℓ
is false with respect to M . If ℓ is an antimonotone literal, then (1) holds. Otherwise,
ℓ is a monotone literal and so ℓ is false with respect to N as well, since N ≤ M ; thus,
(2) holds because of (e).

2. r ∈ PM . In this case, since N is a model of PM and H(r) is false with respect to N

(because H(r) ∈ M+ \N+ by assumption), there must be a literal ℓ ∈ B(r) such that
ℓ is false with respect to N . If ℓ is an antimonotone literal, then ℓ is false with respect
to M as well, since N ≤ M , and so (1) holds. Otherwise, ℓ is a monotone literal and
(2) holds because of (e). ✷

We are then ready to state an important connection between answer sets and unfounded
sets.

Theorem 13 A total interpretation M for an LPA
m,a program P is an answer set of P if

and only if GUSP(M) = ¬.M−.

505

Alviano, Calimeri, Faber, Leone, & Perri

Proof. (⇒) Let M be an answer set of P. By Lemma 11, ¬.M− is an unfounded set for P
with respect to M , and hence GUSP(M) ⊇ ¬.M−. By Theorem 12, M is unfounded-free,
and hence GUSP(M) ⊆ ¬.M− because M is total. In sum, GUSP(M) = ¬.M−.

(⇐) LetM be a total interpretation such thatGUSP(M) = ¬.M−. ThenM andGUSP(M) =
¬.M− are disjoint, and soM is unfounded-free. Moreover, by Corollary 3, GUSP(M) = M−

is an unfounded set for P with respect to M and so, by applying Lemma 11, we conclude
that M is a model of P. We are then in order to apply Theorem 12 (M is an unfounded-free
model of P) and conclude that M is an answer set of P. ✷

The following theorem shows that answer sets of LPA
m,a programs are exactly the total

fixpoints of the well-founded operator defined in Section 3.

Theorem 14 Let M be a total interpretation for an LPA
m,a program P. Then M is an

answer set for P if and only if M is a fixpoint of the well-founded operator WP .

Proof. (⇒) LetM be an answer set of P. We want to show thatM is a fixpoint ofWP , that
is, WP(M) = M . Our aim is then to show that TP(M) = M+ and ¬.GUSP(M) = M−.
Since M is an answer set, by applying Theorem 13, we obtain GUSP(M) = ¬.M−, which
is equivalent to ¬.GUSP(M) = M−. Therefore, it remains to prove that TP(M) = M+:

(⊆) Consider an atom ℓ ∈ TP(M). By Definition 2, there is a rule r ∈ P such that
H(r) = ℓ and all the literals in B(r) are true with respect to M . Thus, ℓ ∈ M+ holds
because M is a model of P.

(⊇) Consider an atom ℓ ∈ M+. Since M is an answer set of P, we can apply Theorem 12
and conclude that M is unfounded-free. Hence, the (singleton) set {ℓ} ⊆ M+ is not
an unfounded set for P with respect to M . Thus, by Definition 1, there is a rule
r ∈ P such that H(r) = ℓ and neither (1) some (antimonotone) literal in Ba(r) is
false with respect to M , nor (2) some (monotone) literal in Bm(r) is false with respect
to M ∪̇ ¬.{ℓ}. Since M is a total interpretation, neither (1) nor (2) is equivalent to
both (i) all the (antimonotone) literals in Ba(r) are true with respect to M , and (ii)
all the (monotone) literals in Bm(r) are true with respect to M ∪̇ ¬.{ℓ}. By observing
that M ∪̇ ¬.{ℓ} ≤ M , we can state that (ii) implies that all the (monotone) literals in
Bm(r) are true with respect to M as well. By combining the latter statement with (i)
we obtain that all the literals in B(r) are true with respect to M , and so ℓ ∈ TP(M)
by Definition 2.

(⇐) Let M be a total fixpoint of WP , i.e., WP(M) = M . Thus, M− = ¬.GUSP(M) by
Definition 2, and so M is an answer set for P because of Theorem 13. ✷

Observe that Theorem 14 is a generalization of Theorem 5.4 of Van Gelder et al. (1991)
to the class of LPA

m,a programs. It is also worth noting that WP(I) extends I preserving its
“correctness”: If I is contained in an answer set M , then WP(I) may add to I some literals
of M , but never introduces any literal which would be inconsistent with M .

Proposition 15 Let I be an interpretation for an LPA
m,a program P, and let M be an

answer set for P. If I ⊆ M , then WP(I) ⊆ M .

506

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Proof. This is a trivial consequence of the monotonicity of the operator WP (Theorems 7)
and Theorem 14. Indeed, by Theorems 7, WP is I ⊆ M implies WP(I) ⊆ WP(M), and
WP(M) = M by Theorem 14. ✷

We next show that the well-founded model of an LPA
m,a program is contained in all the

answer sets (if any) of P. We would like to point out that due to Theorem 24 in Section 7
(showing the equivalence of the well-founded operators defined in this work and the one
defined in Pelov et al., 2007) and Propositions 3.77 and 3.8 of Ferraris (2011; showing the
equivalence of answer sets in Faber et al., 2011 and stable models in Pelov et al., 2007),
the following results also hold by virtue of the definitions of the well-founded and stable
semantics in the work of Pelov et al., in particular due to Proposition 7.3 of that paper. We
nevertheless also provide a proof using the concepts defined earlier.

Theorem 16 Let P be an LPA
m,a program. For each answer set M of P, Wω

P(∅) ⊆ M .

Proof. Let M be an answer set of P. Note that Wω
P(∅) is the limit of the sequence W0 = ∅,

Wn = WP(Wn−1). We show that Wn ⊆ M by induction on n. The base case is trivially
true since W0 = ∅ by definition. Now assume Wn ⊆ M in order to show that Wn+1 ⊆ M .
Since Wn+1 = WP(Wn) by definition and Wn ⊆ M by induction hypothesis, we apply
Proposition 15 and conclude that Wn+1 ⊆ M . ✷

The theorem above suggests another property of well-founded semantics for LPA
m,a pro-

grams.

Property 3 The well-founded semantics for LPA
m,a programs approximates the answer set

semantics: The well-founded model is contained in the intersection of all answer sets (if
any).

By combining Theorem 14 and Theorem 16, we obtain the following claim.

Corollary 17 Let P be an LPA
m,a program. If Wω

P(∅) is a total interpretation, then it is
the unique answer set of P.

Therefore, by combining Theorem 9 and the corollary above, we obtain another property
of well-founded semantics for LPA

m,a programs.

Property 4 On stratified LPA
m,a programs, the well-founded model coincides with the

unique answer set.

5. The Complexity of the Well-Founded Semantics

For the complexity analysis carried out in this section, we consider ground programs and
polynomial-time computable aggregate functions (note that all example aggregate functions
appearing in this paper fall into this class). However, we eventually provide a discussion on
how results change when considering non-ground programs. We start with an important
property of monotone and antimonotone aggregate literals.

507

Alviano, Calimeri, Faber, Leone, & Perri

Lemma 18 Let I be a partial interpretation for a ground LPA
m,a program P. We define

two total interpretations for P as follows: Imin = I ∪¬.(BP \ I) and Imax = I ∪ (BP \¬.I).
For each (ground) aggregate literal A occurring in P, the following statements hold:

1. If A is a monotone literal, then A is true (resp. false) with respect to I if and only if
A is true with respect to Imin (resp. false with respect to Imax).

2. If A is an antimonotone literal, then A is true (resp. false) with respect to I if and
only if A is true with respect to Imax (resp. false with respect to Imin).

Proof. We start by noting that Imin (resp. Imax) is a total interpretation extending I

and such that all the standard atoms which are undefined with respect to I are false with
respect to Imin (resp. true with respect to Imax). Thus, we have (∗) Imin ≤ I ≤ Imax. If A
is monotone and true with respect to Imin (resp. false with respect to Imax), then A is true
(resp. false) with respect to I because of (∗). If A is antimonotone and true with respect
to Imax (resp. false with respect to Imin), then A is true (resp. false) with respect to I

because of (∗). We end the proof by observing that if A is true (resp. false) with respect
to I, then A is true with respect to Imin and Imax by definition. ✷

We are now ready to analyze the computational complexity of the well-founded semantics
for LPA

m,a programs. Our analysis will lead to prove the following fundamental property.

Property 5 The well-founded model for a ground LPA
m,a program is efficiently (polynomial-

time) computable.

Given Corollary 25, this property also follows from Theorem 7.4 in the work of Pelov
et al. (2007). In the following, we will provide an alternative proof based on the concepts
defined earlier in this paper, which also leads to several interesting intermediate results.

Property 5 is not trivial because aggregates may easily increase the complexity of the
evaluation. Indeed, even deciding the truth of an aggregate with respect to a partial inter-
pretation is intractable in general; a similar observation has already been made by Pelov
(2004). However, this task is polynomial-time computable for the aggregate literals occur-
ring in LPA

m,a programs.

Proposition 19 Deciding whether a ground aggregate literal A is true (resp. false) with
respect to a partial interpretation I is:

(a) co-NP-complete in general;

(b) polynomial-time computable if A is either a monotone or an antimonotone literal.

Proof. (a) As for the membership, we consider the complementary problem, that is,
deciding whether a ground aggregate literal A is not true (resp. not false) with respect
to a partial interpretation I, and prove that it belongs to NP. In order to show that A

is not true (resp. not false) with respect to I it is enough to find a total interpretation J

extending I (that is, J ⊇ I) such that A is false (resp. true) with respect to J . Thus, we
can guess such a J and check the falsity (resp. truth) of A with respect to J in polynomial

508

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

time (if the aggregate function can be computed in polynomial time with respect to the size
of the input multiset, as we are assuming).

As for the hardness, we first consider the problem of checking the truth of an aggre-
gate and provide a polynomial-time reduction from TAUTOLOGY. The TAUTOLOGY
problem is co-NP-complete and can be stated as follow: Given a proposition formula Φ
on variables X1, . . . , Xn, does each truth assignment v for the variables X1, . . . , Xn satisfy
the formula Φ? Without loss of generality, we assume that Φ is a 3-DNF formula of the form

Φ = D1 ∨ · · · ∨Dm,

where each disjunct Di is a conjunction ℓ1i ∧ ℓ2i ∧ ℓ3i , and each ℓ
j
i is a positive or negative

literal (note that, in the context of TAUTOLOGY, the term “literal” denotes a variable
Xk or a variable preceded by the negation symbol ¬). For a given Φ, we then consider a
partial interpretation I = {⊤} and construct an aggregate literal A = #sum{S} ≥ 1, where
S contains two groups of elements. The elements in the first group represent disjuncts of Φ
and are

〈1 : γ(ℓ1i), γ(ℓ
2
i), γ(ℓ

3
i)〉, i = 1, . . . ,m ,

where, for each i = 1, . . . ,m and j = 1, . . . , 3, the propositional atom γ(ℓji) is defined as
follows:

γ(ℓji) =

xtk if ℓji is a positive literal Xk, for some k ∈ {1, . . . , n}.

x
f
k if ℓji is a negative literal ¬Xk, for some k ∈ {1, . . . , n}.

The elements in the second group represent variables of Φ and are as follows:

〈 1, xk : ⊤〉
〈−1, xk : x

t
k〉

〈−1, xk : x
f
k〉

〈 1, x̂k : x
t
k, x

f
k〉

, k = 1, . . . , n ,

where xk and x̂k are constants associated with the variable Xk. Note that, for each variable
Xk of Φ, there are two atoms in A, xtk and x

f
k . Thus, for each interpretation J , four cases

are possible:

(1) {not xtk, not x
f
k} ⊆ J : In this case, only 〈1, xk : ⊤〉 contribute to the evaluation of

A, and its contribution is 1;

(2) {xtk, x
f
k} ⊆ J : In this case, all the four elements contribute to the evaluation of A,

and thus their contribution is 1− 1+ 1 = 1 (note that 〈−1, xk : x
t
k〉 and 〈−1, xk : x

f
k〉

give a total contribution of −1 because of our pure set approach);

(3) {xtk, not x
f
k} ⊆ J : In this case, only 〈1, xk : ⊤〉 and 〈−1, xk : x

t
k〉 contribute, giving

1− 1 = 0;

(4) {not xtk, x
f
k} ⊆ J : In this case, only 〈1, xk : ⊤〉 and 〈−1, xk : x

f
k〉 contribute, giving

1− 1 = 0.

509

Alviano, Calimeri, Faber, Leone, & Perri

Thus, for each k ∈ {1, . . . , n}, the total contribution of the four elements of S associated with
the variable Xk is either 0 or 1. Note that also the total contribution of the other elements
of S (i.e., those in the first group) is either 0 or 1. Therefore, if there is k ∈ {1, . . . , n} such
that either case (1) or (2) occurs, the interpretation J trivially satisfies A. Otherwise, J
is such that, for each variable k ∈ {1, . . . , n}, either (3) or (4) occurs. In this case, we say
that J is a good interpretation.

We next define a one-to-one mapping between the set of assignments for Φ and the set of
good interpretations. Let v be an assignment for Φ. The good interpretation Iv associated
with v is such that ⊤ ∈ Iv and

{xtk, not x
f
k} ⊆ Iv if v(Xk) = 1

{not xtk, x
f
k} ⊆ Iv if v(Xk) = 0

, k = 1, . . . , n .

We want to show that v satisfies Φ if and only if A is true with respect to Iv. Since Iv is
a good interpretation, the elements of S in the second group give a total contribution of 0,
and so we have just to consider the elements of S in the first group. These elements give a
contribution of 1 if and only if {γ(ℓ1i), γ(ℓ

2
i), γ(ℓ

3
i)} ⊆ I holds for at least one i ∈ {1, . . . , n},

and this holds if and only v(Di) = 1 holds for the disjunct Di. We can then conclude that
A is true with respect to Iv if and only v(Φ) = 1.

Concerning the check of falsity of an aggregate, we can start from a 3-DNF formula Φ
and construct an aggregate literal A′ = #sum{S} < 1, where S is obtained as described
above. Then Φ is a tautology if and only if A′ is false with respect to I = {⊤}.

(b) Let I be a partial interpretation for an LPA
m,a program P and A an aggregate literal

occurring in P. We want to show that deciding whether A is true (resp. false) with respect
to I can be done in polynomial-time in the size of BP . By Lemma 18, it is enough to evaluate
the aggregate with respect to either Imin = I ∪ ¬.(BP \ I) or Imax = I ∪ (BP \ ¬.I). We
then end the proof by observing that the interpretations Imin and Imax can be constructed
in polynomial time, and that the value of the aggregate function in A can be computed in
polynomial time with respect to the size of the input multiset by assumption. ✷

In order to prove the tractability of the well-founded semantics we need an efficient
method for computing the greatest unfounded set, which is part of the well-founded operator
WP . Hence, we next give a polynomial-time construction of the set BP \GUSP(I) by means
of a monotone operator.

Definition 7 Let I be an interpretation for an LPA
m,a program P. The operator φI :

2BP → 2BP is defined as follows:

φI(Y) = {ℓ ∈ BP | ∃ r ∈ P with H(r) = ℓ such that
no (antimonotone) literal in Ba(r) is false with respect to I, and
all the (monotone) literals in Bm(r) are true with respect to Y \ ¬.I−}

The least fixpoint of φI coincides with the greatest unfounded set of P with respect to
I.

Theorem 20 Let P be an LPA
m,a program and I an interpretation for P. Then:

510

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

1. The φI operator has a least fixpoint φω
I (∅);

2. GUSP(I) = BP \ φω
I (∅).

Proof. The φI operator is a monotonically increasing operator in the meet semilattice
〈BP ,⊆〉, and it therefore admits a least fixpoint φω

I (∅) (Tarski, 1955). We next prove that
GUSP(I) = BP \ φω

I (∅) in two steps:

(⊆) We first observe that φω
I (∅) can be computed iteratively, starting from the empty set,

as the limit of the sequence F0 = ∅, Fi+1 = φI(Fi). Thus, we prove by induction on i

that GUSP(I) ⊆ BP \Fi holds. The base case is trivial, since F0 = ∅ by definition and
GUSP(I) is a subset of BP by Definition 1. We then assume GUSP(I) ⊆ BP \ Fi in
order to prove that GUSP(I) ⊆ BP \Fi+1. Since GUSP(I) is an unfounded set for P
with respect to I by Theorem 2, by Definition 1 we have that, for each ℓ ∈ GUSP(I)
and for each rule r ∈ P with H(r) = ℓ, either (1) some (antimonotone) literal in
Ba(r) is false with respect to I, or (2) some (monotone) literal in Bm(r) is false with
respect to I ∪̇ ¬.GUSP(I). We want to show that such a ℓ does not belong to Fi+1,
that is, each rule r as above is such that either (i) some (antimonotone) literal in
Ba(r) is false with respect to I, or (ii) some (monotone) literal in Bm(r) is not true
with respect to Fi \ ¬.I

− (recall that Fi+1 = φI(Fi) by definition). Since (1) and (i)
are equals, we have to show that (2) implies (ii). To this end, assume that there is
a (monotone) literal ℓ′ ∈ Bm(r) which is false with respect to I ∪̇ ¬.GUSP(I). Our
aim is to show that ℓ′ is false with respect to J = (Fi \ ¬.I

−) ∪ ¬.(BP \ (Fi \ ¬.I
−)),

since in this case ℓ′ would be not true with respect to Fi \ ¬.I− (see Lemma 18).
We start by proving that (I ∪̇ ¬.GUSP(I))

− = I− ∪ ¬.GUSP(I) is a subset of J−.
Observe that J− = ¬.(BP \ (Fi \ ¬.I−)) = I− ∪ ¬.(BP \ Fi) because ¬.I− is a
subset of BP . Thus, since GUSP(I) ⊆ BP \ Fi by induction hypothesis, we obtain
(I ∪̇ ¬.GUSP(I))

− = I− ∪ ¬.GUSP(I) ⊆ I− ∪ ¬.(BP \ Fi) = J−. Since J is total,
(I ∪̇ ¬.GUSP(I))

− ⊆ J− implies that there is an extension K of I ∪̇ ¬.GUSP(I)
such that K− ⊆ J− and K+ ⊇ J− (for example, the one containing as true all the
standard positive literals which are undefined with respect to I ∪̇ ¬.GUSP(I)). Since
ℓ′ is false with respect to I ∪̇ ¬.GUSP(I) by assumption and K is an extension of
I ∪̇ ¬.GUSP(I), ℓ

′ is false with respect to K by Remark 1. Thus, since J ≤ K and
ℓ′ is monotone, the latter implies that ℓ′ is false with respect to J as well.

(⊇) We prove that BP \ φω
I (∅) is an unfounded set for P with respect to I, that is, for

each r ∈ P with H(r) ∈ BP \φω
I (∅), either (1) some (antimonotone) literal in Ba(r) is

false with respect to I, or (2) some (monotone) literal in Bm(r) is false with respect
to I ∪̇ ¬.(BP \ φω

I (∅)). By Definition 7, H(r) 6∈ φω
I (∅) implies either that (i) some

(antimonotone) literal in Ba(r) is false with respect to I, or that (ii) some (monotone)
literal in Bm(r) is not true with respect to φω

I (∅) \ ¬.I
−. Since (i) and (1) are equals,

we have to show that (ii) implies (2). To this end, assume that there is a (monotone)
literal ℓ ∈ Bm(r) which is not true with respect to φω

I (∅) \ ¬.I−. Thus, there is an
extension of φω

I (∅) \ ¬.I
− for which ℓ is false, and in particular ℓ must be false with

respect to J = (φω
I (∅) \ ¬.I

−) ∪ ¬.(BP \ (φω
I (∅) \ ¬.I

−)) because of Lemma 18. Now
observe that (I ∪̇ ¬.(BP \ φω

I (∅)))
− = I−∪¬.(BP \φω

I (∅)) = ¬.(BP \(φω
I (∅)\¬.I

−)) =

511

Alviano, Calimeri, Faber, Leone, & Perri

J− holds (because ¬.I− ⊆ BP), and so (I ∪̇ ¬.(BP \ φω
I (∅)))

+ ⊆ J+ because J is total.
By combining the last two sentences we obtain I ∪̇ ¬.(BP \ φω

I (∅)) ≤ J . Therefore,
since ℓ is a monotone literal which is false with respect to J , the latter implies that ℓ
is false with respect to I ∪̇ ¬.(BP \ φω

I (∅)) as well, and so (2) holds. ✷

Eventually, Property 5 is a consequence of the following theorem. As mentioned earlier,
this theorem also follows from Theorem 7.4 in the work of Pelov et al. (2007) because of
Corollary 25, but the proof provided here differs considerably from the one of Theorem 7.4
in the work of Pelov et al.

Theorem 21 Given an LPA
m,a program P:

1. The greatest unfounded set GUSP(I) of P with respect to a given interpretation I is
polynomial-time computable;

2. Wω
P(∅) is polynomial-time computable.

Proof. (1.) From Theorem 20, GUSP(I) = BP \ φω
I (∅). We next show that φω

I (∅) is
efficiently computable. The fixpoint φω

I (∅) is the limit φλ of the sequence φ0 = ∅, φk =
φI(φk−1). This limit is reached in a polynomial number of applications of φI because each
new element of the sequence φk must add at least a new atom (otherwise the limit has been
already reached), that is, λ ≤ |BP |. If we show that each application of φI is feasible in
polynomial time, we can conclude that φλ is computable in polynomial time. Each step
processes at most all the rules once, and for each rule checks the truth-value of at most
all body literals once. The check of the truth valuation is clearly tractable for all standard
(i.e., non-aggregates) literals; the tractability of the check for aggregate literals stems from
Proposition 19, as we deal with monotone and antimonotone aggregate atoms only. In
conclusion, φλ is computable in polynomial time, and GUSP(I) is tractable as well since it
is obtainable as BP \ φω

I (∅).

(2.) By the argumentation carried out for φω
I (∅), we can show that Wω

P(∅) is computed
in a number of steps which is polynomial (actually linear) in |BP |. Indeed, each step is
polynomial-time computable: We have just proved the tractability of GUSP(I), and TP is
polynomial-time computable as well. ✷

This result has a positive impact also for the computation of the answer set semantics
of logic programs with aggregates. Indeed, as stated in Theorem 16, Wω

P(∅) approximates
the intersection of all answer sets (if any) from the bottom, and can be therefore used to
efficiently prune the search space. It is worthwhile noting that the computation of the
well-founded semantics is also hard for polynomial-time. In particular, deciding whether
a (ground) atom is true with respect to the well-founded semantics is P-complete, as this
task is P-hard even for the standard well-founded semantics of aggregate-free programs (and,
from Proposition 5, our semantics coincides with the standard well-founded on aggregate-
free programs).

We end this section by briefly addressing the complexity of non-ground programs. When
considering data-complexity (i.e., an LPA

m,a program P is fixed and the input only consists
of facts), the results are as for propositional programs: Deciding whether a (ground) atom
is true with respect to the well-founded semantics of a non-ground program is P-complete,

512

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

under data-complexity (Van Gelder et al., 1991). However, if program complexity (i.e., an
LPA

m,a program P is given as input) is considered, complexity of reasoning rises exponen-
tially. Indeed, a non-ground program P can be reduced, by naive instantiation, to a ground
instance of the problem, and in general the size of Ground(P) is single exponential in the
size of P. The complexity of reasoning increases accordingly by one exponential, from P
to EXPTIME, and the result can be derived using complexity upgrading techniques (Eiter,
Gottlob, & Mannila, 1997; Gottlob, Leone, & Veith, 1999).

6. Compilation into Standard LP, Implementation and Experimental

Results

The well-founded semantics for LPA
m,a programs has been implemented by extending the

DLV system (Leone et al., 2006). In this section we briefly describe the implemented
prototype and report on the results of our experiments aimed at assessing its efficiency.
Note that, even if LPA

m,a programs can be replaced by equivalent LP programs (for a
rewriting strategy see Section 6.1 below), our experimental results highlight a significant
performance advantage of LPA

m,a encodings.

6.1 Compilation into Standard Logic Programming

In this section we briefly present a strategy for representing #count, #sum and #times

with standard constructs.2 The compilation is in the spirit of the one introduced for #min

and #max by Alviano, Faber, and Leone (2008) and defines a subprogram computing the
value of a (possibly recursive) aggregate. The compilation takes into account specific prop-
erties of monotone and antimonotone aggregate functions, and is therefore referred to as
monotone/antimonotone encoding (mae).

The monotone/antimonotone encoding of an LPA
m,a program P is obtained by replacing

each aggregate literal A = f(S) ≺ T by a new predicate symbol f≺. Predicate f≺ is defined
by means of a subprogram (i.e., a set of rules) that can be thought of as a compilation of A
into standard LP. The compilation uses a total order < of the elements of UP ∪{⊥}, where
⊥ is a symbol not occurring in P and such that ⊥ < u for each u ∈ UP . We further assume
the presence of a “built-in” relation Y < Y ′, where Y = Y1, . . . , Yn and Y ′ = Y ′

1 , . . . , Y
′
n

are lists of terms. This built-in relation has y < y′ if and only if y precedes y′ in the
lexicographical order induced by <. Moreover, we will use a built-in relation Y ≤ Y ′, where
y ≤ y′ is true if and only if either y < y′ or y = y′. For simplicity, let us assume that A is
of the form f({Y : p(Y , Z)}) ≺ k, where Y and Z are lists of local variables and k is an
integer constant. For such an aggregate, we introduce a new predicate symbol faux of arity
|Y |+ 1 and rules for modeling that an atom faux(y, s) must be true whenever the value of
f({Y : p(Y , Z), Y ≤ y}) is at least s. Thus, we use a fact for representing the value of
the aggregate function for the empty set, and a rule for increasing this value for larger sets.
The lexicographical order induced by < is used to guarantee that all elements in the set are

2. Since we are considering only monotone and antimonotone aggregate literals, the domains of #sum and
#times are assumed to be N and N

+, respectively.

513

Alviano, Calimeri, Faber, Leone, & Perri

User Interface

Diagnosis

Frontend

Inheritance

Frontend

SQL3

Frontend

Planning

Frontend

Intelligent

Grounding

Model

Generator

Model

Checker

Ground

Program

File

System

Relational

Database

Filtering

Output

User Interface

Diagnosis

Frontend

Inheritance

Frontend

SQL3

Frontend

Planning

Frontend

Intelligent

Grounding

Model

Generator

Model

Checker

Ground

Program

File

System

Relational

Database

Filtering

Output

DLV core

Figure 2: Prototype system architecture.

considered at most once. In particular, the following rules are introduced:

faux(⊥, α).

faux(Y ′, X) :− faux(Y , S), p(Y ′, Z),

Y < Y ′, X = β.

where

α = 0, β = S + 1 if f = #count;
α = 0, β = S + Y ′

1 if f = #sum;
α = 1, β = S × Y ′

1 if f = #times.

If ≺∈ {≥, >}, truth of an aggregate f({Y : p(Y , Z)}) ≺ k must be inferred if and only
if some atom faux(y, s) such that s ≺ k is true. This aspect is modeled by means of the
following rules:

f≥k :− faux(Y , S), S ≥ k. f>k :− faux(Y , S), S > k.

If ≺ is ≤, instead, truth of an aggregate f({Y : p(Y , Z)}) ≤ k must be inferred if and only
if all atoms faux(y, s) such that s > k are false (and similar if ≺ is <). These aspects are
modeled by means of the following rules:

f≤k :− not f>k. f<k :− not f≥k.

Extending the technique to aggregate literals with global variables is quite simple:
Global variables are added to the arguments of all the atoms used in the compilation,
and a new predicate fgroup−by is used for collecting their possible substitutions.

6.2 System Architecture and Usage

We have extended DLV by implementing the well-founded operator and the well-founded
semantics for LPA

m,a programs described in this paper. The architecture of the prototype is

514

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

reported in Figure 2. In detail, we modified two modules of DLV, the Intelligent Grounding
module and the Model Generator module. In our prototype, the well-founded semantics
is adopted if one of -wf or --well-founded is specified on the command-line. Otherwise,
the stable model semantics is adopted as usual. The well-founded operator WP introduced
in Section 3 is used for both semantics. In particular, for the stable model semantics, the
well-founded model is profitably used for pruning the search space. For the well-founded
semantics, the well-founded model is printed after the computation of the least fixpoint of
the well-founded operator. In this case the output of the system consists of two sets, for
representing true and undefined standard atoms in the well-founded model. A binary of the
prototype is available at http://www.dlvsystem.com/dlvRecAggr/.

6.3 Experimental Results

To our knowledge, the implemented prototype is currently the only system supporting a
well-founded semantics for logic programs with recursive aggregates. For certain special
cases, such as when the well-founded model is total, the well-founded model coincides with
other semantics such as answer sets (see Corollary 17) and in theses cases systems supporting
those semantics such as IDP (Wittocx, Mariën, & Denecker, 2008), Smodels (Simons et al.,
2002), or clasp (Gebser, Kaufmann, Neumann, & Schaub, 2007), can be used to compute
the well-founded model.

We are however interested in systems that are able to compute the well-founded model
for all input programs. One of the major systems supporting the well-founded semantics,
XSB (Swift & Warren, 2010), has some support for aggregates, but (apart from #min and
#max) XSB does not support recursive aggregates (i.e., aggregates occurring in recursive
definitions). Therefore, our experiments have been designed for investigating the com-
putational behavior of aggregate constructs with respect to equivalent encodings without
aggregates.

More specifically, we introduce the Attacks problem, which is inspired by the classic
Win-Lose problem often used in the context of the well-founded semantics for standard
logic programs, and study performance on it.

Definition 8 (Attacks Problem) In the Attacks problem, a set of p players and a pos-
itive integer m are given. Each player attacks n other players. A player wins if no more
than m winners attack it. This kind of problem is frequently present in turn-based strategy
games.

Note that the definition of winner is recursive and, in particular, a recursive aggregate
is the natural way of encoding this problem.

Example 14 An instance of the Attacks problem in which p = 6, n = 2 and m = 1 could
be the following:

• player a attacks players b and c;

• player b attacks players a and c;

• player c attacks players a and b;

• player d attacks players b and f ;

• player e attacks players c and f ;

• player f attacks players d and e.

515

Alviano, Calimeri, Faber, Leone, & Perri

fa

b

c

d

e

Figure 3: An instance of the Attacks problem with 6 players, each one attacking 2 other
players.

A graphical representation of this instance is shown in Figure 3. Since d is only attacked by
f , we can conclude that d is a winner. Similarly for e. Therefore, f is not a winner because
f is attacked by d and e, which are winners. For the other players, namely a, b and c, we
cannot determine who is a winner or not.

In our experiments, instances of Attacks are encoded by means of the predicates max,
player and attacks for representing the parameter m, the set of players and the attacks of
the players, respectively. We consider three equivalent encodings for the Attacks problem.

6.3.1 Aggregate-Based Encoding

This encoding is a natural representation of the Attacks problem in LPA
m,a. The complete

encoding consists of a single rule, reported below:

win(X) :− max(M), player(X), #count{Y : attacks(Y,X), win(Y)} ≤ M.

6.3.2 Join-Based Encoding

An equivalent encoding can be obtained by computing a number of joins proportional to
m. The tested encoding is reported below:

win(X) :− player(X), not lose(X).
lose(X) :− max(1), attacks(Y1, X), win(Y1),

attacks(Y2, X), win(Y2), Y1 < Y2.

lose(X) :− max(2), attacks(Y1, X), win(Y1),
attacks(Y2, X), win(Y2), Y1 < Y2,

attacks(Y3, X), win(Y3), Y1 < Y3, Y2 < Y3.

lose(X) :− max(3), . . .

Note that in the encoding above there is a rule for each possible value of parameter m.
However, only one of these rules is considered by our solver during program instantiation.
In fact, only the rule is instantiated, which contains the instance of atom max(m) for which
a fact is present. All the other rules are satisfied because of a false body literal.

516

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 5

 10

 15

 20

 25

 30

DLV-join
DLVA

x

y

(a) 100 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 50

 100

 150

 200

 250

 300

x

y

(b) 200 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 100

 200

 300

 400

 500

 600

x

y

(c) 400 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 100

 200

 300

 400

 500

 600

x

y

(d) 800 players

Figure 4: Attacks: Average execution time of DLV running the aggregate-based encoding
and DLV running the join-based encoding.

6.3.3 Mae-Based Encoding

This encoding has been obtained by applying the compilation presented in Section 6.1 with
some minor simplifications. The full encoding is reported below:

win(X) :− player(X), not lose(X).
lose(X) :− count(X,Y, S), max(M), S > M.

count(X,Y, 1) :− aux(X,Y).
count(X,Y ′, S′) :− count(X,Y, S), aux(X,Y ′), Y < Y ′, S′ = S + 1.
aux(X,Y) :− attacks(Y,X), win(Y).

Intuitively, an atom count(x, y, s) stands for “there are at least s constants y′ such that
y′ ≤ y and attacks(y′, x), win(y′) is true”. Note that the rules defining predicate count use
the natural order of integers to guarantee that each y′ is counted at most once.

Example 15 The instance shown in Figure 3 is represented by means of the following facts:

player(a). player(b). player(c). player(d). player(e). player(f).
attacks(a, b). attacks(b, a). attacks(c, a). attacks(d, b). attacks(e, c). attacks(f, d).
attacks(a, c). attacks(b, c). attacks(c, b). attacks(d, f). attacks(e, f). attacks(f, e).
max(1).

517

Alviano, Calimeri, Faber, Leone, & Perri

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

XSB-join
DLVA

x

y

(e) 100 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

x

y

(f) 200 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

x

y

(g) 400 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 2

 4

 6

 8

 10

 12

x

y

(h) 800 players

Figure 5: Attacks: Average execution time of DLV running the aggregate-based encoding
and XSB running the join-based encoding.

For all the encodings, the well-founded model restricted to the win predicate is {win(d),
win(e), not win(f)}. Note that win(a), win(b) and win(c) are neither true nor false, and so
they are undefined.

6.3.4 Discussion

We performed an intensive experimentation for this benchmark by varying the parameters
p, m and n. For each combination of these parameters, we measured the average execution
time of DLV and XSB (version 3.2) on 3 randomly generated instances. The experiments
have been performed on a 3GHz Intel R© Xeon R© processor system with 4GB RAM under the
Debian 4.0 operating system with GNU/Linux 2.6.23 kernel. The DLV prototype used has
been compiled with GCC 4.4.1. For every instance, we have allowed a maximum running
time of 600 seconds (10 minutes) and a maximum memory usage of 3GB.

The results of our experimentation are reported in Figures 4–7. In the graphs, DLVA

is the implemented prototype with the aggregate-based encoding, DLV-join and DLV-mae
the implemented prototype with the aggregate-free encodings, XSB-join and XSB-mae the
XSB system with the aggregate-free encodings (as mentioned earlier, XSB does not support

518

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 1

 2

 3

 4

 5

 6

DLV-mae
DLVA

x

y

(i) 1600 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 2

 4

 6

 8

 10

 12

x

y

(j) 3200 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 5

 10

 15

 20

 25

x

y

(k) 6400 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 10

 20

 30

 40

 50

 60

x

y

(l) 12800 players

Figure 6: Attacks: Average execution time of DLV running the aggregate-based encoding
and DLV running the mae-based encoding.

recursive aggregates). For the XSB system, we explicitly set indices and tabled predicates
for optimizing its computation.

For each graph, the number of players is fixed, while parameters m (x-axis) and n

(y-axis) vary. Therefore, the size of the instances grows moving from left to right along
the y-axis, while it is invariant with respect to the x-axis. However, the number of joins
required by the join-based encoding depends on the parameter m. As a matter of fact, we
can observe in the graphs in Figures 4–5 that the average execution time of the join-based
encoding increases along both the x- and y-axis (for both DLV and XSB). Instead, for
the encoding using aggregates, and for the mae-based encoding, the average execution time
only depends on instance sizes, as shown in the graphs in Figures 6–7.

For the join-based encoding, XSB is generally faster than DLV, but consumes much
more memory. Indeed, in Figure 5, we can observe that XSB terminates its computation in
a few seconds for the smallest instances, but rapidly runs out of memory on slightly larger
instances. Considering the mae-based encoding, we can observe significant performance
gains for both DLV and XSB (see Figures 6–7). Indeed, both systems complete their com-
putation in the allowed time and memory on larger instances. Computational advantages
of the mae-based encoding with respect to the join-based encoding are particularly evident

519

Alviano, Calimeri, Faber, Leone, & Perri

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

XSB-mae
DLVA

x

y

(m) 6400 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

x

y

(n) 12800 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 10

 20

 30

 40

 50

 60

x

y

(o) 25600 players

 1 2 3 4 5 6 7 8 9 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 50

 100

 150

 200

 250

 300

 350

 400

x

y

(p) 51200 players

Figure 7: Attacks: Average execution time of DLV running the aggregate-based encoding
and XSB running the mae-based encoding.

for XSB, which solved all tested instances with this encoding. However, also XSB with the
mae-based encoding is outperformed by DLV with native support for aggregate constructs
(see Figure 7).

In sum, the experimental results highlight that the presence of aggregate constructs can
significantly speed-up the computation. Indeed, the encoding using recursive aggregates
outperforms the aggregate-free encodings in all tested instances.

7. Related Work

Defining a well-founded semantics for logic programs with aggregates has been a challenge
of major interest in the last years. The first attempts, not relying on a notion of unfounded
set, have been defined on a restricted language. Some of these are discussed by Kemp and
Stuckey (1991). Another semantics falling in this class is the one introduced by Van Gelder
(1992), subsequently generalized by Osorio and Jayaraman (1999). The main problem of
these semantics is that they often leave too many undefined literals, as shown by Ross and
Sagiv (1997).

520

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

A first attempt to define a well-founded semantics for unrestricted LPA has been done by
Kemp and Stuckey (1991). This semantics is based on a notion of unfounded sets. According
to Kemp and Stuckey, a set X of standard atoms is an unfounded set for a (ground) program
P with respect to an interpretation I if, for each rule r ∈ P with H(r) ∈ X , either (a) some
literal in B(r) is false with respect to I, or (b) B(r) ∩ X 6= ∅. Note that only standard
literals are considered by condition (b), and aggregates are not covered by it. We point
out that this definition of unfounded set makes the semantics inadequate for programs with
recursive aggregates, even if only monotone aggregates are considered. For example, for the
program {a(1):−#count{X : a(X)} > 0.}, the well-founded model in the work of Kemp and
Stuckey is ∅, while a reasonable well-founded semantics should identify a(1) as false.

Pelov et al. (2007) defined a well-founded semantics based on approximating operators,
namely D̃-well-founded semantics, which extends the standard well-founded semantics; in-
deed, they coincide for aggregate-free programs. More in detail, in that work aggregates
are evaluated in one of three possible ways. Therefore, a family of semantics is defined by
Pelov et al., which can be ordered by precision: More precise three-valued aggregates lead
to more precise semantics. In general, higher precision comes at the price of a higher com-
putational complexity. The authors discuss the following three-valued aggregate relations
for the evaluation of aggregate literals: trivial, bound and ultimate approximating aggre-
gates, where the first is the less precise, and the last is the most precise. Semantics relying
on trivial approximating aggregates is very imprecise, but it is still suitable for the class
of stratified aggregate programs. Both trivial and bound approximations have polynomial
complexity, while ultimate has been shown to be intractable for nonmonotone aggregate
functions (Pelov, 2004). A detailed comparison with our results is presented in Section 7.1.

Ferraris (2005) showed that the semantics of Smodels programs with positive weight
constraints is equal to answer sets as defined by Faber et al. (2004) on the respective
fragment. Since by Theorem 16 Wω

P(∅) approximates answer sets as defined by Faber et al.,
Wω

P(∅) can be used also as an approximating operator for the respective Smodels programs.
Indeed, it can be shown that the AtMost pruning operator of Smodels (Simons et al., 2002)
is a special case of the φI operator (defined in the proof of Theorem 21).

Other works attempted to define stronger notions of well-founded semantics (also for
programs with aggregates), like the Ultimate Well-Founded Semantics (Denecker et al.,
2001), or WFS1 and WFS2 (Dix & Osorio, 1997). Whether a characterization of these
semantics in terms of unfounded sets can exist for these semantics is unclear and left for
future research.

Concerning compilations of LPA programs into standard LP, a transformation was pro-
vided by Van Gelder (1992). The compilation that we presented in Section 6.1 differs from
the one introduced by Van Gelder in several respects. Our approach uses a total order
of the universe of the input program and takes advantage of the character of monotonic-
ity/antimonotonicity of the aggregate literals in the input program, while the transformation
defined by Van Gelder uses uninterpreted function symbols for representing ground sets,
and recursive negation for checking truth of aggregate literals. We briefly discuss these as-
pects in the following. Roughly, for an aggregate f(S) ≺ k, uninterpreted function symbols
are used by the transformation in the work of Van Gelder for determining all pairs S′, k′

such that S′ is a ground set associated with S and k′ = f(S′). After that, the transforma-
tion defined by Van Gelder checks whether there exists a pair S′, k′ satisfying the following

521

Alviano, Calimeri, Faber, Leone, & Perri

conditions: (i) for every element 〈consts : conj〉 in S′, conj is true; (ii) k′ ≺ k holds. We
point out that Condition (i) requires recursive negation in order to be checked. Indeed,
it is equivalent to “there is no element 〈consts : conj〉 in S′ such that conj is not true.”
This aspect of the transformation has an undesirable side effect: Stratified LPA

m,a programs
may have partial well-founded models, that is, Theorem 9 does not hold for programs com-
piled with the transformation introduced by Van Gelder. An example of this side effect is
given by Van Gelder, where it is shown that this transformation possibly leads to partial
well-founded models for instances of Company Controls, a well-known problem that can be
modeled by using monotone recursive aggregates.

7.1 Comparison with the work of Pelov et al. (2007)

In this section we report a detailed comparison of the well-founded semantics as defined
in this paper with the one of Pelov et al. (2007). We recall that Pelov et al. defines well-
founded and stable semantics as the least and total fixpoints of the three-valued stable
model operator extended to aggregate programs.

We start by observing that the evaluation of ultimate approximating aggregates coincides
with the evaluation of aggregates defined in this article; also the evaluation of bound approx-
imating aggregates coincides for monotone and antimonotone aggregates (as a consequence
of Lemma 18 in this paper and Proposition 7.16 in the work of Pelov et al., 2007).

Let us now introduce a translation of an aggregate literal into a formula of standard
literals. For a (partial) interpretation I, let conj(I) denote the conjunction of all the literals
in I. The translation trm(A) of a ground aggregate literal A is defined as follows:

trm(A) =
∨

{conj(I) | I is a subset-minimal interpretation
such that A is true with respect to I}

Note that, for each (partial) interpretation J , the evaluation of A with respect to J coincides
with the evaluation of trm(A) with respect to J (Proposition 2 and Proposition 3 in the
work of Pelov et al., 2003). Moreover, for a monotone (resp. antimonotone) aggregate literal
A, only positive (resp. negative) literals appear in trm(A).

For a rule r in a ground LPA
m,a program P and an aggregate literal A ∈ B(r), the

translation trm(P, r, A) of A in r is the program obtained from P by removing r and
by adding a rule r′ such that H(r′) = H(r) and B(r′) = B(r) \ {A} ∪ conj, for each
conj ∈ trm(A). Therefore, the full translation trm(P) of P is defined as the recursive
application of trm(P, r, A) (note that the order in which rules and aggregates are processed
is not relevant). We next show that P and trm(P) have the same unfounded sets.

Lemma 22 A set of atoms X is an unfounded set for a program P with respect to an
interpretation I if and only if X is an unfounded set for trm(P) with respect to I.

Proof. We use induction on the number of aggregate literals in P. If P has no aggregate
literals, then P = trm(P). Now consider a program P and a rule r ∈ P with an aggregate
literal A in B(r). We want to show that a set X of atoms is an unfounded set for P with
respect to I if and only if X is an unfounded set for trm(P, r, A) with respect to I, since
in this case we might apply the induction hypothesis and prove the claim. Thus, we can
end the proof by means of the following observations: (i) A is false with respect to an

522

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

interpretation J if and only if trm(A) is false with respect to J , that is, if and only if for
each conjunction conj ∈ trm(A) there is a literal ℓ ∈ conj such that ℓ is false with respect
to J ; (ii) such an ℓ is a positive (resp. negative) standard literal if and only if A is monotone
(resp. antimonotone). ✷

We can then prove that the well-founded operators of P and trm(P) coincide.

Lemma 23 Let P be an LPA
m,a program and I an interpretation for P. Then WP(I) =

Wtrm(P)(I).

Proof. We have to show that (1) TP(I) = Ttrm(P)(I) and (2) GUSP(I) = GUStrm(P)(I).
We note that (2) immediately follows from Lemma 22. In order to prove (1), we consider
an aggregate literal A occurring in P. By previous considerations, we have that A is true
with respect to I if and only if there is a conjunct in trm(A) which is true with respect to
I. Thus, (1) holds. ✷

We are now ready to relate our well-founded operator with the one provided by Pelov
et al. (2007).

Theorem 24 For the class of LPA
m,a programs, the well-founded operator herein defined

coincides with the one of Pelov et al. (2007; for both the ultimate and bound approximating
aggregate semantics).3

Proof. By Lemma 23, we already know that WP(I) = Wtrm(P)(I). We also have that
Wtrm(P)(I) coincides with the one in the work of Van Gelder et al. (1991) by Theorem 1
(since trm(P) is a standard logic program). On the other hand, for both the ultimate and
bound approximating aggregate semantics, the well-founded operators (as defined in Pelov
et al., 2007) of P and trm(P) coincide: This is a consequence of Theorem 1 in the work of
Pelov et al. (2003), because the three-valued immediate consequence operators in the work
of Pelov et al. (2003) and Pelov et al. (2007) coincide (see Definition 7 in Pelov et al., 2003
and Definition 7.5 in Pelov et al., 2007). Moreover, the well-founded operator of Pelov et al.
(2007) coincides with the one in the work of Van Gelder et al. for standard logic programs,
thereby obtaining the equality of the operators. ✷

The correspondence of the two well-founded semantics immediately follows from the
theorem above. Indeed, the two well-founded models are defined as the fixpoints of the
respective well-founded operators.

Corollary 25 The well-founded model herein defined and the one of Pelov et al. (2007;
for both the ultimate and bound approximating aggregate semantics) coincide for LPA

m,a

programs.

As mentioned also earlier, by virtue of the above theorem and corollary, some of the
results presented in this paper also follow from earlier results in the literature. In particular,
Theorem 9, Theorem 16 and some of our complexity results follow from definitions and
results of Pelov (2004) and Pelov et al. (2007).

3. Note that this operator is referred to as stable revision operator by Pelov et al. (2007).

523

Alviano, Calimeri, Faber, Leone, & Perri

8. Conclusion

In this paper we introduced a new notion of unfounded set for LPA
m,a programs and analyzed

a well-founded semantics for this language based on this notion. This semantics generalizes
the traditional well-founded semantics for aggregate-free programs and also coincides with
well-founded semantics for aggregate programs as defined by Pelov et al. (2007; the latter
not being defined by means of a notion of unfounded set). We could also show that this
semantics and its main operator WP have close ties with answer sets as defined by Faber
et al. (2004, 2011), and can hence serve as approximations.

We proved that computing this semantics is a tractable problem. Indeed, the semantics
is given by the least fixpoint of the well-founded operatorWP . The fixpoint is reached after a
polynomial number of applications of the operator WP (with respect to the size of the input
program), each of them requiring polynomial time. For showing that an application of WP

is polynomial-time feasible, we have proved that evaluating monotone and antimonotone
aggregate literals remains polynomial-time computable also for partial interpretations, since
in this case only one of the possibly exponential extensions must be checked. For a monotone
aggregate literal, this extension is obtained by falsifying each undefined literal, while for an
antimonotone aggregate literal, each undefined literal is taken as true in the extension.

Motivated by these positive theoretical results, we have implemented the first system
supporting a well-founded semantics for unrestricted LPA

m,a. Allowing for using monotone
and antimonotone aggregate literals, the implemented prototype is ready for experimenting
with the LPA

m,a framework. The experiments conducted on the Attacks benchmark highlight
the computational gains of a native implementation of aggregate constructs with respect to
equivalent encodings in standard LP.

Acknowledgments

Partly supported by Regione Calabria and EU under POR Calabria FESR 2007-2013 within
the PIA project of DLVSYSTEM s.r.l., and by MIUR under the PRIN project LoDeN
and under the PON project FRAME proposed by Atos Italia S.p.a.; we also thank the
anonymous reviewers for their valuable comments.

References

Alviano, M., Faber, W., & Leone, N. (2008). Compiling minimum and maximum aggregates
into standard ASP. In Formisano, A. (Ed.), Proceedings of the 23rd Italian Conference
on Computational Logic (CILC 2008).

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Brewka, G. (1996). Well-Founded Semantics for Extended Logic Programs with Dynamic
Preferences. Journal of Artificial Intelligence Research, 4, 19–36.

Calimeri, F., Faber, W., Leone, N., & Perri, S. (2005). Declarative and Computational
Properties of Logic Programs with Aggregates. In Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI-05), pp. 406–411.

524

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., & Pfeifer, G. (2003). Aggregate Functions
in DLV. In de Vos, M., & Provetti, A. (Eds.), Proceedings ASP03 - Answer Set
Programming: Advances in Theory and Implementation, pp. 274–288, Messina, Italy.
Online at http://CEUR-WS.org/Vol-78/.

Denecker, M., Pelov, N., & Bruynooghe, M. (2001). Ultimate Well-Founded and Stable
Model Semantics for Logic Programs with Aggregates. In Codognet, P. (Ed.), Pro-
ceedings of the 17th International Conference on Logic Programming, pp. 212–226.
Springer Verlag.

Dix, J., & Osorio, M. (1997). On Well-Behaved Semantics Suitable for Aggregation. In
Proceedings of the International Logic Programming Symposium (ILPS ’97), Port Jef-
ferson, N.Y.

Eiter, T., Gottlob, G., & Mannila, H. (1997). Disjunctive Datalog. ACM Transactions on
Database Systems, 22 (3), 364–418.

Faber, W. (2005). Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggre-
gates. In Baral, C., Greco, G., Leone, N., & Terracina, G. (Eds.), Logic Program-
ming and Nonmonotonic Reasoning — 8th International Conference, LPNMR’05,
Diamante, Italy, September 2005, Proceedings, Vol. 3662 of Lecture Notes in Com-
puter Science, pp. 40–52. Springer Verlag.

Faber, W., Leone, N., & Pfeifer, G. (2004). Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Alferes, J. J., & Leite, J. (Eds.), Proceedings
of the 9th European Conference on Artificial Intelligence (JELIA 2004), Vol. 3229 of
Lecture Notes in AI (LNAI), pp. 200–212. Springer Verlag.

Faber, W., Leone, N., & Pfeifer, G. (2011). Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence, 175 (1), 278–298. Special Issue:
John McCarthy’s Legacy.

Ferraris, P. (2005). Answer Sets for Propositional Theories. In Baral, C., Greco, G., Leone,
N., & Terracina, G. (Eds.), Logic Programming and Nonmonotonic Reasoning — 8th
International Conference, LPNMR’05, Diamante, Italy, September 2005, Proceedings,
Vol. 3662 of Lecture Notes in Computer Science, pp. 119–131. Springer Verlag.

Ferraris, P. (2011). Logic programs with propositional connectives and aggregates. ACM
Transactions on Computational Logic, 12 (4). In press.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007). Conflict-driven answer
set solving. In Twentieth International Joint Conference on Artificial Intelligence
(IJCAI-07), pp. 386–392. Morgan Kaufmann Publishers.

Gelfond, M. (2002). Representing Knowledge in A-Prolog. In Kakas, A. C., & Sadri, F.
(Eds.), Computational Logic. Logic Programming and Beyond, Vol. 2408 of LNCS, pp.
413–451. Springer.

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9, 365–385.

Gottlob, G., Leone, N., & Veith, H. (1999). Succinctness as a Source of Expression Com-
plexity. Annals of Pure and Applied Logic, 97 (1–3), 231–260.

Kemp, D. B., & Stuckey, P. J. (1991). Semantics of Logic Programs with Aggregates. In
Saraswat, V. A., & Ueda, K. (Eds.), Proceedings of the International Symposium on
Logic Programming (ISLP’91), pp. 387–401. MIT Press.

525

Alviano, Calimeri, Faber, Leone, & Perri

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006).
The DLV System for Knowledge Representation and Reasoning. ACM Transactions
on Computational Logic, 7 (3), 499–562.

Liu, L., Pontelli, E., Son, T. C., & Truszczynski, M. (2010). Logic programs with abstract
constraint atoms: The role of computations. Artificial Intelligence, 174 (3–4), 295–315.

Liu, L., & Truszczyński, M. (2006). Properties and applications of programs with monotone
and convex constraints. Journal of Artificial Intelligence Research, 27, 299–334.

Manna, M., Ruffolo, M., Oro, E., Alviano, M., & Leone, N. (2011). The HiLeX System for
Semantic Information Extraction. Transactions on Large-Scale Data and Knowledge-
Centered Systems. Springer Berlin/Heidelberg, To appear.

Manna, M., Ricca, F., & Terracina, G. (2011). Consistent Query Answering via ASP from
Different Perspectives: Theory and Practice. Theory and Practice of Logic Program-
ming, To appear.

Marek, V. W., & Truszczyński, M. (2004). Logic programs with abstract constraint atoms.
In Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI
2004), pp. 86–91. AAAI Press / The MIT Press.

McCarthy, J. (1959). Programs with Common Sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, pp. 75–91. Her Majesty’s
Stationery Office.

McCarthy, J. (1980). Circumscription — a Form of Non-Monotonic Reasoning. Artificial
Intelligence, 13 (1–2), 27–39.

McCarthy, J. (1986). Applications of Circumscription to Formalizing Common-Sense
Knowledge. Artificial Intelligence, 28 (1), 89–116.

McCarthy, J. (1990). Formalization of Common Sense, papers by John McCarthy edited by
V. Lifschitz. Ablex.

McCarthy, J., & Hayes, P. J. (1969). Some Philosophical Problems from the Standpoint
of Artificial Intelligence. In Meltzer, B., & Michie, D. (Eds.), Machine Intelligence 4,
pp. 463–502. Edinburgh University Press. reprinted in (McCarthy, 1990).

McDermott, D. V. (1982). Non-Monotonic Logic II: Nonmonotonic Modal Theories. Journal
of the ACM, 29 (1), 33–57.

McDermott, D. V., & Doyle, J. (1980). Non-Monotonic Logic I. Artificial Intelligence,
13 (1–2), 41–72.

Minsky, M. (1975). A Framework for Representing Knowledge. In Winston, P. H. (Ed.),
The Psychology of Computer Vision, pp. 211–277. McGraw-Hill.

Moore, R. C. (1985). Semantical Considerations on Nonmonotonic Logic. Artificial Intelli-
gence, 25 (1), 75–94.

Osorio, M., & Jayaraman, B. (1999). Aggregation and Negation-As-Failure. New Generation
Computing, 17 (3), 255–284.

Pelov, N. (2004). Semantics of Logic Programs with Aggregates. Ph.D. thesis, Katholieke
Universiteit Leuven, Leuven, Belgium.

Pelov, N., Denecker, M., & Bruynooghe, M. (2003). Translation of Aggregate Programs to
Normal Logic Programs. In de Vos, M., & Provetti, A. (Eds.), Proceedings ASP03
- Answer Set Programming: Advances in Theory and Implementation, pp. 29–42,
Messina, Italy. Online at http://CEUR-WS.org/Vol-78/.

526

Unfounded Sets and Well-Founded Semantics of ASP Programs with Aggregates

Pelov, N., Denecker, M., & Bruynooghe, M. (2004). Partial stable models for logic pro-
grams with aggregates. In Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7), Vol. 2923 of Lecture Notes
in AI (LNAI), pp. 207–219. Springer.

Pelov, N., Denecker, M., & Bruynooghe, M. (2007). Well-founded and Stable Semantics of
Logic Programs with Aggregates. Theory and Practice of Logic Programming, 7 (3),
301–353.

Pelov, N., & Truszczyński, M. (2004). Semantics of disjunctive programs with monotone
aggregates - an operator-based approach. In Proceedings of the 10th International
Workshop on Non-monotonic Reasoning (NMR 2004), Whistler, BC, Canada, pp.
327–334.

Reiter, R. (1980). A Logic for Default Reasoning. Artificial Intelligence, 13 (1–2), 81–132.

Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S. M., Iiritano, S., Manna, M., &
Leone, N. (2010). A Logic-Based System for e-Tourism. Fundamenta Informaticae.
IOS Press, 105 (1–2), 35–55.

Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., & Leone, N. (2011).
Team-building with Answer Set Programming in the Gioia-Tauro Seaport. Theory
and Practice of Logic Programming. Cambridge University Press, To appear.

Ross, K. A., & Sagiv, Y. (1997). Monotonic Aggregation in Deductive Databases. Journal
of Computer and System Sciences, 54 (1), 79–97.

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and Implementing the Stable
Model Semantics. Artificial Intelligence, 138, 181–234.

Son, T. C., & Pontelli, E. (2007). A Constructive semantic characterization of aggregates
in answer set programming. Theory and Practice of Logic Programming, 7, 355–375.

Son, T. C., Pontelli, E., & Tu, P. H. (2007). Answer Sets for Logic Programs with Arbitrary
Abstract Constraint Atoms. Journal of Artificial Intelligence Research, 29, 353–389.

Swift, T., & Warren, D. S. (2010). XSB: Extending prolog with tabled logic programming.
Computing Research Repository (CoRR), abs/1012.5123.

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math, 5, 285–309.

Truszczyński, M. (2010). Reducts of propositional theories, satisfiability relations, and
generalizations of semantics of logic programs. Artificial Intelligence, 174, 1285–1306.

Ullman, J. D. (1989). Principles of Database and Knowledge Base Systems. Computer
Science Press.

Van Gelder, A. (1992). The Well-Founded Semantics of Aggregation. In Proceedings of
the Eleventh Symposium on Principles of Database Systems (PODS’92), pp. 127–138.
ACM Press.

Van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38 (3), 620–650.

Wittocx, J., Mariën, M., & Denecker, M. (2008). The IDP system: A model expansion
system for an extension of classical logic. In Denecker, M. (Ed.), Proceedings of
the 2nd Workshop on Logic and Search, Computation of Structures from Declarative
Descriptions (LaSh’08), pp. 153–165.

527

