
University of Huddersfield Repository

Vallati, Mauro, Chrpa, Lukáš and Kitchin, Diane

An Automatic Algorithm Selection Approach for Planning

Original Citation

Vallati, Mauro, Chrpa, Lukáš and Kitchin, Diane (2013) An Automatic Algorithm Selection

Approach for Planning. In: IEEE International Conference on Tools with Artificial Intelligence

(ICTAI) - 2013, November 4th - 6th 2013, Washington DC, USA. (Unpublished)

This version is available at http://eprints.hud.ac.uk/18172/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/16453891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Automatic Algorithm Selection Approach for Planning

Mauro Vallati, Lukáš Chrpa, Diane Kitchin

School of Computing and Engineering

University of Huddersfield

Email: {m.vallati, l.chrpa, d.kitchin}@hud.ac.uk

Abstract—Despite the advances made in the last decade in
automated planning, no planner outperforms all the others in
every known benchmark domain. This observation motivates
the idea of selecting different planning algorithms for different
domains. Moreover, the planners’ performances are affected
by the structure of the search space, which depends on the
encoding of the considered domain. In many domains, the
performance of a planner can be improved by exploiting
additional knowledge, extracted in the form of macro-operators
or entanglements.

In this paper we propose ASAP, an automatic Algorithm
Selection Approach for Planning that: (i) for a given domain
initially learns additional knowledge, in the form of macro-
operators and entanglements, which is used for creating differ-
ent encodings of the given planning domain and problems, and
(ii) explores the 2 dimensional space of available algorithms,
defined as encodings–planners couples, and then (iii) selects the
most promising algorithm for optimising either the runtimes
or the quality of the solution plans.

I. INTRODUCTION

Although in the last decade the performance of domain-

independent planners has significantly improved, there is

no planner that outperforms all others in every benchmark

domain. The performance of current planning systems is

typically affected by the structure of the search space,

which depends on the planning domain and its considered

encoding. In many domains, the planning performance can

be improved by deriving and exploiting knowledge about the

domain and problem structure that is not explicitly given in

the input formalization, and that can be used for optimizing

the planner behavior.

These observations motivate the idea of extracting ad-

ditional knowledge about the planning domains and auto-

matically selecting the most promising planning algorithm,

exploiting such knowledge, for a given domain.

In this paper we propose ASAP, an automatic algorithm

selection approach for planning that: (i) for a given domain

initially learns additional knowledge, in the form of macro-

operators and entanglements (inner and outer), which is

used for creating different encodings of the given plan-

ning domain and problems (i.e. planning domain/problem

reformulation), and (ii) explores the 2 dimensional space

encodings (e)–planners (p), and then (iii) selects the best

algorithm 〈e, p〉 for optimising the runtimes (ASAPs) or the

quality of the solution plans (ASAPq).

In the proposed approach, each algorithm has two dimen-

sions: one dimension is represented by different encodings of

a given domain, the other is represented by existing high-

performance domain-independent planners. We decided to

consider each couple 〈e, p〉 as a different algorithm because

the different knowledge carried in the generated encodings,

e, makes even the same planner p perform very differently.

We are not aware of other completely automated planning

systems exploiting a pure algorithm selection approach, in

the sense that they automatically select a single algorithm

for solving a specific class of planning problems. If we

include the portfolio-based approach for planning, which can

be considered as a superset of the algorithm selection one,

our approach is related to the work of Roberts and Howe

[13], [19], PbP2 [9], [10] and FastDownward Stone Soup

[21], with some significant differences.

The major difference between all the approaches above

and ASAP is that we made a domain-specific selection of

a single algorithm, which is defined by a couple encoding–

planner. Moreover, the Roberts and Howe approaches select

the planners to exploit online, while we select the algorithm

offline. Additionally the knowledge generated by the Roberts

and Howe systems is domain-independent, while the knowl-

edge generated and exploited by ASAP is domain-specific.

PbP2 learns a domain-specific portfolio. It incorporates

seven planners it can choose from. It lets them learn macro-

actions for the given domain, and runs up to three best-

performing ones in a round-robin fashion with learned time

slots. What differentiates our approach from PbP2, is that (i)

we generate new encodings of given domains by looking for

both macro-operators and entanglements, (ii) we explore the

two-dimensional algorithm space encodings–planners, and

(iii) we select only one algorithm to exploit on a domain.

FastDownward Stone Soup is a recent approach to select-

ing and combining a set of forward-state planning techniques

included in the well known domain-independent planner

FastDownward [11]. Their approach is domain-independent,

it does not extract any additional knowledge from the

planning domains (in the form of macro-operators or en-

tanglements). It exploits a statical combination of several

different planning techniques for solving a single problem.

In the rest of the paper, first we give the necessary back-

ground on classical planning and problem reformulations,

then we describe the ASAP approach, we present and discuss

the experimental results and finally we give conclusions.

II. CLASSICAL PLANNING

Classical planning deals with finding a (partially or to-

tally ordered) sequence of actions transforming the static,

deterministic and fully observable environment from some

initial state to a desired goal state. In the classical rep-

resentation atoms are predicates. States are defined as

sets of ground predicates. A planning operator o =
(name(o), pre(o), eff−(o), eff+(o)) is specified such that

name(o) = op name(x1, . . . , xk) (op name is an unique op-

erator name and x1, . . . xk are variable symbols (arguments)

appearing in the operator), pre(o) is a set of predicates repre-

senting operator’s precondition, eff−(o) and eff+(o) are sets

of predicates representing operator’s negative and positive

effects. Actions are ground instances of planning operators.

An action a = (pre(a), eff−(a), eff+(a)) is applicable in a

state s if and only if pre(a) ⊆ s. Application of a in s (if

possible) results in a state (s \ eff−(a)) ∪ eff+(a).
A planning domain is specified via sets of predicates

and planning operators. A planning problem is specified via

a planning domain, initial state and set of goal atoms. A

solution plan is a sequence of actions such that a consecutive

application of the actions in the plan (starting in the initial

state) results in a state that satisfies the goal.

III. PLANNING PROBLEM REFORMULATIONS

Analogously to the possibility that a planning system can

be implemented in many different ways, so planning do-

mains and problems can be also encoded in several different

ways. Typically, environment and action descriptions corre-

spond with real situations which produces useful outputs for

agents (or robots) that they can easily execute. On the other

hand, sometimes such an encoding is not very efficient and

therefore some additional planner independent knowledge

(e.g. macro-operators) is often included to increase the

efficiency of planning engines.

As a running example we use the well known

BlocksWorld domain. It consists of four operators:

pickup(?x) refers to a situation when a robotic hand picks-

up a block ?x from the table, putdown(?x) refers to a

situation when a robotic hand puts-down the block ?x it is

holding to the table, unstack(?x,?y) refers to a situation

when a robotic hand unstacks a block ?x from ?y, and

stack(?x,?y) refers to a situation when a robotic hand stacks

a block ?x to ?y.

A. Macro-operators

A macro-operator encapsulates a sequence of (primitive)

planning operators and can be represented as an ordinary

planning operator. In Blocksworld, it may be observed

that instances of the operator unstack(?x ?y) are followed

by instances of the operator putdown(?x). Hence, it is

reasonable to assemble these operators into a macro-operator

unstack-putdown(?x ?y). Creating macro-operators, which

can be understood as ‘short-cuts’ in the state space, is

therefore a well known and studied approach which in

some cases can speed up plan generation considerably [1],

[16]. Macro-operators can be added into planning domains

and reformulated domains can be passed to any planning

engine. To raise the efficiency of the planning process, an

approach [5] besides generating new macro-operators also

removes some primitive operators which are very likely use-

less. In our example, when the new macro-operator unstack-

putdown(?x ?y) is created, then it may be observed that the

primitive operator putdown(?x) is useless (unless an initial

state consists of a situation where the robotic hand holds

some block).

B. Entanglements

Entanglements [3] are relations between planning opera-

tors and atoms (predicates). Entanglements aim to capture

the causal relationships characteristic for a given class of

planning problems which in many cases enable a reduction

of the branching factor in the state space. There are two

kinds of entanglements, outer and inner entanglements.

Outer entanglements [4] are relations between planning

operators and initial or goal atoms (predicates) which refers

to situations where to solve a given planning problem we

need only such instances of operators where instances of a

certain predicate in an operator’s precondition or positive

(add) effects respectively are present in the initial state

or goal situation respectively. In BlocksWorld, it can be

observed that unstacking blocks only occurs from their initial

positions. In this case an ‘entanglement by init’ will capture

that if an atom on(a b) is to be achieved for a corresponding

instance of operator unstack(?x ?y) (unstack(a b)), then

the atom is an initial atom. Similarly, it may be observed that

stacking blocks only occurs to their goal positions. Then,

an ‘entanglement by goal’ will capture that atom on(b a)

achieved by a corresponding instance of operator stack(?x

?y) (stack(b a)) is a goal atom. Outer entanglements can

be easily encoded into planning domain models, i.e., the

original domain model is reformulated (for details, see [4]).

Inner entanglements [3] are relations between pairs of

planning operators and predicates which refer to situa-

tions where one operator is an exclusive ‘achiever’ or

‘consumer’ of a predicate to or from another operator.

In the Blocksworld it may be observed that operator

pickup(?x) achieves predicate holding(?x) exclusively for

operator stack(?x,?y) (and not for operator putdown(?x)),

i.e., pickup(?x) is ‘entangled by succeeding’ stack(?x,?y)

with holding(?x). Similarly, it may be observed that pred-

icate holding(?x) for operator putdown(?x) is exclusively

achieved by operator unstack(?x ?y) (and not by operator

pickup(?x)), i.e., putdown(?x) is ‘entangled by preceding’

unstack(?x ?y) with holding(?x). Inner entanglements can

Domain ASAPs ASAPq Total

Blocksworld 〈Both,FF〉 〈Both,FF〉 35
Depots 〈Outer,FF〉 〈Both, LPG〉 35
Gripper 〈Outer, SGPlan〉 〈Outer,Mp〉 14
Gold Miner 〈Macro,FF〉 〈Both, SatPlan〉 35
Matching-BW 〈Macro, LPG〉 〈Outer, LPG〉 35
Parking 〈Original,FF〉 〈Inner, Lama〉 21
Rovers 〈Macro, LPG〉 〈Macro, Lama〉 21
Satellite 〈Outer, LPG〉 〈Outer, LPG〉 21
TPP 〈Both, LPG〉 〈Outer, Lama〉 35

Table I
FOR EVERY DOMAIN, THE COUPLE SELECTED BY ASAPs AND ASAPq,

AND THE TOTAL NUMBER OF AVAILABLE ALGORITHMS.

be also encoded into planning domain models (for details,

see [3]).

IV. THE PROPOSED APPROACH

ASAP includes the following existing high performance

domain-independent planners: Lama-11 [17], LPG [8],

Metric-FF [12], Mp [18], Probe [15], SatPlan [14] and

SGPlan [2]. We selected them due to their good perfor-

mances in International Planning Competitions (IPC) and

the different techniques that they exploit.

The learning phase of ASAP is composed of four steps: (i)

extraction of macro-operators and removal of useless primi-

tive operators, (ii) detection of entanglements and encoding

them into new planning domains/problems, (iii) generation

of all the algorithms as couples 〈e, p〉, (iv) measurement

of the performances of the available algorithms, and (v)

selection of the most promising algorithm for solving the

testing instances.

Macro-operators and entanglements are extracted using

the approach described, respectively, in [5] and [3] on plans

generated by Metric-FF, exploiting the original domain

encodings, on training problems. Through these techniques

ASAP is able to generate at most four new encodings per

domain: Macros, which includes macro-operators and ex-

cludes some original operators; Inner, which includes inner

entanglements; Outer, which includes outer entanglements;

Both, which considers both inner and outer entanglements.

The maximum number of algorithms per domain is 35,

which arises from 7 included planners that can be used with

5 different encodings.

The current version of ASAP runs the available algo-

rithms on training problems. The performances are measured

in terms of CPU time required for solving each training

instance, number of actions of the solutions found, and

the number of solved problems. The performances of each

algorithm 〈e, p〉 are then compared in order to select the most

promising one to execute on testing problems. ASAP has

two different versions: ASAPs which selects the algorithms

for optimising runtimes, and ASAPq which optimises the

quality of the plans (in classical STRIPS planning the quality

is measured by plan length, i.e., shorter better).

For selecting the most promising algorithm in terms of

runtime, ASAPs uses the time IPC score. It is a value, firstly

introduced in IPC-6 [7], which considers runtimes and num-

ber of solved problems together. It is very useful because it

synthesizes different aspects of planners’ performance in a

single value, that can then be compared through different

planners. ASAPs selects the couple which achieved the best

IPC score on the learning problems; if more algorithms

achieved the same score some secondary criteria are used.

These criteria include the number of solved problems, the

number of problems in which the couple has been the fastest

and the mean CPU time on solved problems.

The method used by ASAPq is similar, but it is consid-

ering the quality of plans (in terms of number of actions)

instead of the CPU times. For the incremental planners1, i.e.

LPG and Lama, the best solution found within the CPU time

limit is considered.

The time and quality IPC score are determined as defined

for IPC-7 [6]. The time score of an algorithm A for a

planning problem P is defined as Score(A, P), which is 0

if P is unsolved, and 1/(1 + log10(TP (A)/T ∗
P)) otherwise,

where T ∗
P is the lowest measured CPU time to solve

problem P and TP (A) denotes the CPU time required by

A to solve problem P . Higher values of the speed score

indicate better performance. The quality score is defined as

Score(A, p), which is 0 if p is unsolved, and Q∗
p/Q(Ap)

otherwise (Q∗
p ≤ Q(A)p for any A). Quality is measured

in terms of number of actions. The IPC score on a set of

problems is given by the sum of the scores achieved on each

considered problem.

V. EXPERIMENTAL ANALYSIS

In this section, we present the results of a preliminary

experimental study examining the effectiveness of the knowl-

edge generated and exploited by ASAP under the form of

selected algorithms 〈e, p〉.

A. Experimental Setup

We considered problem instances from 9 well-known

benchmark domains used in the learning tracks of Interna-

tional Planning Competitions: Blocksworld (IPC-7), Depots

(IPC-7), Gripper (IPC-7), Gold-miner (IPC-6), Matching-

BW (IPC-6), Parking (IPC-6/7), Rovers (IPC-7), Satellite

(IPC-7) and TPP (IPC-7). These domains were selected

because they are suitable for reformulations. Some domains

used in learning tracks are not suitable for extracting addi-

tional knowledge in the form of macros or entanglements

since they have a very small number of operators (1 or 2).

In other domains, since Metric-FF was not able to solve any

training problem, ASAP was not able to derive any type of

knowledge. In such domains, the comparison would be only

between basic solvers, which is not the focus of this paper.

1An incremental planner produces a sequence of solutions with increas-
ing plan quality which are generated with increasing CPU times.

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

DepotsSeconds

Metric-FF
LPG

LAMA
Probe

Mp
SGPlan

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

DepotsSeconds

Outer (Selected)
Original
Macros

Inner
Both

Figure 1. CPU time (log. scale) of the selected couple w.r.t. the couples
exploiting the same encoding (upper plot) and couples exploiting the same
planner (lower plot) on benchmark problems of Depots domain.

For each domain, we used the existing 30 benchmark

problems as testing instances. As training problems we used

30 training problems from those provided by organizers,

whenever available; otherwise we generated circa 30 in-

stances (easier than the ones used for testing the approach)

through available random generators.

A runtime cutoff of 900 CPU seconds (15 minutes, as

in the learning tracks of IPC) was used for both learning

and testing runs. All the experiments were run on 3.0 Ghz

machine CPU with 2GB of RAM.

B. Results on Selected Domains

Table I shows, for every domain, the algorithm selected

by ASAPs and ASAPq, and the total number of available

algorithms. It is interesting to note that the selected domains

encodings changes frequently through benchmark domains.

On the other hand, the planners most frequently included

in the couples selected by ASAPs are Metric-FF and LPG,

only in Gripper SGPlan is included. On the contrary, for

optimising the quality, almost all the different planners have

been selected. The total number of available algorithms can

be smaller than 35 in the case that macro-operators or some

type of entanglements were not found.

Domain BestS Time IPC % Solved
ASAPs BestS ASAPs BestS

Bw Probe 30.0 5.8 100.0 66.7

Depots Probe 30.0 8.7 100.0 100.0

Gripper LPG 30.0 5.0 100.0 33.3

Gold-m Mp 30.0 16.5 100.0 100.0

M-BW Lama 30.0 8.7 100.0 80.0

Parking FF 5.0 5.0 16.7 16.7

Rovers LPG 28.0 22.0 93.3 93.3

Satellite LPG 29.0 27.8 96.7 100.0

TPP Lama 20.0 3.4 66.7 33.3

All above 232.0 102.9 85.9 69.3

Domain BestQ Quality IPC % Solved
ASAPq BestQ ASAPq BestQ

Bw Probe 29.5 18.1 100.0 66.7

Depots Probe 30.0 26.2 100.0 100.0

Gripper LPG 30.0 8.3 100.0 33.3

Gold-m LPG 30.0 29.9 100.0 100.0

M-BW SatPlan 26.4 20.4 90.0 73.3

Parking FF 3.8 4.6 13.3 16.7

Rovers LPG 29.3 26.1 100.0 90.0

Satellite LPG 28.8 29.7 96.7 100.0

TPP Lama 30.0 9.1 100.0 33.3

All above 237.8 172.4 88.9 68.1

Table II
TIME/QUALITY IPC SCORE (MAX SCORE 30 PER DOMAIN) AND

PERCENTAGES OF PROBLEMS SOLVED BY ASAP AND THE BEST BASIC

PLANNER FOR THE SELECTED DOMAINS. BW, GOLD-M AND M-BW
STAND RESPECTIVELY FOR BLOCKSWORLD, GOLD-MINER AND

MATCHING-BW.

Figure 1 shows results for a two-dimensional comparison,

in terms of runtimes, done on the testing problems of Depots.

In the top chart we are comparing the CPU times of all the

algorithms sharing the same encoding (e) of the selected

one, but exploiting different planners. SatPlan is not showed

since it does not solve any testing problem. In the bottom

chart we are comparing the algorithms sharing the same

planner (p) but with different encodings. The impact of

both the dimensions considered by the proposed approach

is significant in terms of CPU time, and we experimentally

observed that it is significant also in terms of quality of the

solutions found.

For understanding the usefulness of the knowledge ex-

tracted under the form of domain encodings, for verifying

the hypothesis that no single planner outperforms all the oth-

ers in every considered benchmark domain, and for verifying

that ASAP effectively selects the most promising algorithm

for each selected domain, we have compared ASAP with the

best performing basic planner for each considered domain.

The best basic planner is exploiting the original domain

formulation, and has been selected according to the IPC

score achieved on the testing problems. The results of this

experiment are shown in Table II. The first interesting result

is that both ASAPs and ASAPq have significantly better

performance in terms of IPC score and number of solved

problems, while considering all the selected domains to-

gether. While analysing the results for every single domain,

ASAPs is never worse than the best basic planner, rather it is

always better except in Parking, where it selected exactly FF

and the original domain as the algorithm to exploit. On the

other hand, ASAPq is worse in two of the selected domains;

in Parking and in Satellite, mainly due to the smaller number

of problems solved by the selected algorithms. Another

interesting result that we can derive from Table II is that

every considered planner achieves the best Time/Quality IPC

score on at least one considered domain, and that the single

best planner of a domain is usually different than the one

included in the couple selected by ASAP. This means that

entanglements and macro-operators have a very significant

impact on the planners’ performance, and that the impact

varies notably from planner to planner.

In order to understand the accuracy of the algorithm

selection, we compared the performance of the three best

algorithms. In Tables III we present the results of this

comparison, in terms of time/quality IPC score, that has been

done on the benchmark problems of the selected domains.

The performances are shown in terms of IPC score, average

CPU time (quality) and solved problems. The * indicates the

algorithm selected by ASAP. The mean CPU time/quality

are calculated on instances solved by all the three best

algorithms of the given domain. We would remark that

ASAP selects the most promising algorithm on the basis

of the results achieved on the learning problems, while in

Tables III the comparison is made by ordering the algorithms

on the results that they achieved on the testing instances.

Concerning the planners included in ASAP, all of them

appear at least once. We can then derive that all the planners

are able to efficiently exploit, at least on one domain, the

knowledge extracted under the form of different encodings.

Considering the runtime optimization, the planner that

appears most frequently in Table III is LPG, followed

by Metric-FF and Probe. We can derive that LPG and

Metric-FF are the planners that better exploit macro-

operators and entanglements for improving runtime. This

is quite surprising if we consider that LPG and Metric-FF

are the oldest planners included in ASAP, and that they

appeared more rarely in Table II. One could argue that, since

the plans found by Metric-FF were used for reformulating

the domains, the fact that Metric-FF performs well while

exploiting entanglements or macro-operators, is not surpris-

ing. From this perspective, it is worth noting that LPG is

the planner which is able to better exploit this additional

knowledge, and that the plans found by Metric-FF were used

due to their good quality and to the relatively low CPU time

required for finding them. If we focus on the best algorithms

for optimising quality of the solutions, the planner which

appears most frequently in Table III is again LPG, but in

this case it is followed by Lama-11. While LPG is often the

best basic solver, as shown in Table II, Lama is the best

one only in TPP. It seems then reasonable to deduce that

Optimising runtimes

Domain Algorithm IPC Mean CPU % Solved

Blocksworld

〈Both, FF〉* 30.0 1.3 100.0

〈Outer,Probe〉 20.6 3.8 100.0

〈Outer, LPG〉 19.8 8.1 100.0

Depots

〈Outer, FF〉* 28.2 0.5 100.0

〈Outer, LPG〉 21.4 0.9 100.0

〈Both, LPG〉 21.2 1.1 100.0

Gripper

〈Outer,Mp〉 30.0 8.0 100.0

〈Outer, SGPlan〉* 26.7 11.0 100.0

〈Outer, LPG〉 23.9 15.3 100.0

Gold-miner

〈Macro, FF〉* 29.9 0.02 100.0

〈Outer, FF〉 21.8 0.08 100.0

〈Inner, FF〉 18.8 0.1 100.0

Matching-BW

〈Macro, LPG〉* 24.6 1.9 100.0

〈Both, LPG〉 21.6 5.4 96.7

〈Macro, FF〉 17.0 42.6 76.7

Parking

〈Original, FF〉* 4.6 376.9 16.7

〈Inner, Lama〉 2.6 659.8 13.3

〈Original,Probe〉 2.5 308.7 10.0

Rovers

〈Macro, LPG〉* 28.0 45.6 93.3

〈Original, LPG〉 22.0 92.9 93.3

〈Outer, LPG〉 15.1 261.6 86.7

Satellite

〈Outer, LPG〉* 23.8 75.9 96.7

〈Original, LPG〉 22.1 92.4 100.0

〈Macro, LPG〉 17.8 85.1 66.7

TPP

〈Outer, LPG〉 23.2 34.2 100.0

〈Both, LPG〉* 20.0 14.7 66.7

〈Outer,Probe〉 19.9 61.3 100.0

Optimising Quality

Domain Algorithm IPC Mean Qual % Solved

Blocksworld

〈Both, FF〉* 29.5 231.5 100.0

〈Outer, LPG〉 28.3 243.0 100.0

〈Outer,Probe〉 27.5 248.7 100.0

Depots

〈Outer, LPG〉 29.4 120.3 100.0

〈Both, LPG〉* 29.2 120.9 100.0

〈Both,Probe〉 27.7 127.1 100.0

Gripper

〈Outer,Mp〉* 30.0 566.8 100.0

〈Outer, LPG〉 28.6 593.8 100.0

〈Outer, SGPlan〉 25.8 659.9 100.0

Gold-miner

〈Both, SatPlan〉* 30.0 23.4 100.0

〈Macro, Lama〉 30.0 23.4 100.0

〈Macro, LPG〉 30.0 23.4 100.0

Matching-BW

〈Outer, SatPlan〉 26.4 57.2 93.3

〈Both, SatPlan〉 26.4 57.2 93.3

〈Outer, LPG〉* 25.8 61.1 90.0

Parking

〈Original, FF〉 4.6 78.0 16.7

〈Inner, Lama〉* 3.8 82.0 13.3

〈Inner, FF〉 2.9 74.5 10.0

Rovers

〈Macro, Lama〉* 27.5 674.3 100.0

〈Macro, LPG〉 23.7 669.0 93.3

〈Outer, Lama〉 21.5 657.1 83.3

Satellite

〈Original, LPG〉 29.7 675.5 100.0

〈Outer, LPG〉* 28.8 673.1 96.7

〈Original, SGPlan〉 13.7 742.5 50.0

TPP

〈Outer, Lama〉* 27.1 422.1 100.0

〈Both, Lama〉 21.0 387.1 73.3

〈Outer,Probe〉 19.7 570.4 100.0

Table III
TIME/QUALITY IPC SCORE (MAX SCORE 30 PER DOMAIN), AVERAGE

CPU TIME/PLAN QUALITY AND PERCENTAGES OF PROBLEMS SOLVED

BY THE FIRST 3 COUPLES W.R.T. THE IPC SCORE, FOR THE SELECTED

DOMAINS. THE * INDICATES THE ALGORITHM SELECTED BY

ASAPs/ASAPq.

the impact of macro-operators and entanglements is strong

on the performance of Lama.

From the point of view of the encodings of the domains,

there are no significant differences between runtime and

quality, the Outer entanglements appear most frequently in

Table III. The less useful encodings are the Inner entangle-

ments, that rarely allowed algorithms considering them to

achieve good results.

In terms of runtimes, ASAPs almost always selects the

best algorithm, which usually performs significantly better

than the second and the third ones. In two domains, TPP

and Gripper, ASAPs selected the second one. It is worth

noting that in Gripper domain the performance of the best

performing algorithm is similar to the ones of the second. On

training problems, their performance were still very close,

but the second one had slightly better results. In TPP, the

selected algorithm is solving 20 testing problems out of

30. In all of them it is the fastest planner (quality score is

exactly 20.0). Interestingly, on the remaining 10 problems,

LPG crashed due to memory errors. We believe that this

is a bug in the planner and that, without this bug, the

algorithm selected by ASAPs would be the best one also

in that domain.

In terms of quality, ASAPq selects the best algorithm in

five domains; in Depots, Parking and Satellite the selected

couple is the second one, in Matching-BW the third one.

On the other hand, the three best couples usually achieve

similar quality score results, this behavior is quite different

between quality and runtimes.

The results shown in Table III indicate that the approach

used for selecting the most promising algorithm, even if

not very sophisticated, scales well with increasing problem

instance size. The couples selected on training instances,

easier than testing ones, are achieving very good results also

on significantly harder testing instances.

C. ASAP versus PbP2

To evaluate the effectiveness of our approach against

the state-of-the-art of learning-based planners, we compared

ASAP with PbP2. It is the winner of the learning track of

the last IPC, the IPC-7, which was held in 2011. For this

comparison we used exactly the same benchmark domains

and problems that were used for the IPC-7. PbP2 exploited

the same knowledge that it used for the competition, while

ASAP was trained on 30 problems, easier than the testing

ones, that were generated by using the problem generators

provided by the organizers.

Table IV shows performance in terms of time/quality

IPC score, mean CPU time (quality) and percentage of

solved problems on benchmark problems of the selected

domains. The mean CPU time/quality are calculated on

instances solved by both the approaches. The mean on all the

domains is not indicated because, given the great variability

of both CPU time and plan quality across the domains, it

is not informative. The results indicate that ASAP performs

better than PbP2 in terms of quality of the solution plans,

but it achieves slightly worse results in terms of runtimes.

ASAPs is significantly faster than PbP2s in four of the

selected domains. In particular, ASAPs is significantly faster

(more than 2 orders of magnitude) in Depots, where the

Domain Time IPC Mean CPU % Solved
ASAPs PbP2s ASAPs PbP2s ASAPs PbP2s

Barman 12.0 30.0 72.9 2.0 100.0 100.0

Bw 30.0 16.4 1.3 9.9 100.0 100.0

Depots 30.0 8.8 0.5 76.7 100.0 86.7

Gripper 30.0 24.7 11.0 18.3 100.0 100.0

Parking 3.6 8.0 455.3 172.8 16.7 26.7

Rovers 19.8 26.2 58.4 18.5 93.3 90.0

Satellite 22.9 30.0 71.1 28.3 96.7 100.0

Spanner 15.1 30.0 208.1 15.9 100.0 100.0

TPP 20.0 16.5 14.7 113.8 66.7 83.3

All 183.4 190.6 – – 85.9 87.0

Domain Quality IPC Mean Quality % Solved
ASAPq PbP2q ASAPq PbP2q ASAPq PbP2q

Barman 29.8 29.9 452.8 449.3 100.0 100.0

Bw 29.9 25.7 231.5 269.9 100.0 100.0

Depots 30.0 19.2 118.1 163.8 100.0 86.7

Gripper 30.0 28.9 566.8 588.7 100.0 100.0

Parking 3.7 5.0 82.0 68.0 13.3 20.0

Rovers 27.4 27.3 693.9 708.4 100.0 100.0

Satellite 26.8 28.2 790.8 784.3 96.7 100.0

Spanner 30.0 30.0 326.0 326.0 100.0 100.0

TPP 29.5 13.4 343.3 370.1 100.0 50.0

All 237.1 207.6 – – 90.0 84.0

Table IV
TIME/QUALITY IPC SCORE (MAX SCORE 30 PER DOMAIN), AVERAGE

CPU TIME/PLAN QUALITY AND PERCENTAGES OF PROBLEMS SOLVED

BY ASAP AND PbP2 FOR THE SELECTED DOMAINS. BW STANDS FOR

BLOCKSWORLD.

entanglements give a great speedup. We noticed that ASAPs

is significantly slower than PbP2s in Barman and Spanner.

In these domains, our approach was not able to extract any

additional knowledge since Metric-FF was not able to solve

any training problem, except trivial ones.

Given the fact that some planners (LPG, Metric-FF, Lama

and SGPlan) that are included in the ASAP system are also

included in PbP2, it is interesting to analyse the domains

in which PbP2 selected as a member of the portfolio the

planner selected in the algorithm of ASAP. In Barman,

both ASAPs and PbP2s are exploiting SGPlan, but PbP2s

was able to extract some macro-operators that improve the

performance of the planner in that domain. PbP2s config-

ured a portfolio composed of only LPG (without macros) in

Rovers, Satellite and Spanner domains. In the same domains,

ASAPs also selected an algorithm which included LPG. In

all of them PbP2s is faster than ASAPs. It should be noted

that in those domains PbP2s exploits a domain-specific

configuration of the parameters of LPG, obtained by [22],

while ASAPs runs the default configuration of LPG. Since

the use of reformulated problems is useful for LPG in such

domains (this can be derived by comparing Tables II and III),

and considering that PbP2s did not include macros in the

corresponding portfolios, we believe that the results achieved

in such domains are due to the speedup allowed by the tuned

configuration of LPG. On the other hand, in Blocksworld,

Depots and TPP ASAPs selected algorithms which include

Metric-FF and LPG, that are available in PbP2s but are

not selected; in these domains the performance improvement

given by the entanglements is very significant.

In terms of quality of the solution plans, ASAPq achieved

better results in five of the selected domains. In two domains,

namely TPP and Depots, ASAPq has significantly better

results than PbP2q. We also noticed that, counterintuitively,

in Rovers, the macros are helpful for improving the quality

of the solution plans.

The portfolios configured by PbP2q on the IPC-7 domains

are usually composed of either 2 or 3 different planners. It

could happen that all the included planners are useful, or

that just a subset of them is actually exploited for finding

solution plans on testing problems; it is unclear what the

real contribution of each planner is to the portfolio. For

this reason a comparison between the planners selected by

PbP2q and ASAPq is not possible. Only in the Spanner

domain PbP2q exploits a portfolio that is composed of a

single planner, LPG, without macros. ASAPq selects an

algorithm which is composed of LPG and the original

domain encoding, which leads the systems to achieve exactly

the same results. In the Barman, Depots, Parking, Rovers,

Satellite and TPP, the planner included in the algorithm

selected by ASAPq is present in the portfolio configured

by PbP2q. Finally, in Blocksworld ASAPq is selecting

Metric-FF, which is considered in PbP2q but not included

in the portfolio, and in Gripper our approach is selecting a

planner, Mp, which is not considered by PbP2q.

VI. DISCUSSION

As the results shown in the previous section indicated,

an accurate selection of a single algorithm allows ASAP

to achieve better results than the portfolio-based planning

system PbP2 in terms of plan quality, and to be very close

to PbP2 in terms of CPU time. We believe that a domain-

specific portfolio can be completely exploited when the

different planners can run in pure parallel, so when several

cores are available. In case a single core is available, using

different planners together can slow down the performance

of the best one on the given domain.

The algorithms selected by ASAP have shown very good

performance on testing problems. As indicated by the results

shown in Table III, there is no or very little space for

further improvements in terms of CPU time. However, in

Matching-BW and Satellite domains the selected algorithms

still achieved the best results in total in comparison to the

others, but for some problems the results of the selected

couple were significantly worse. For instance we observed

that in Satellite domain about 40% of testing problems

could be solved significantly faster by a different algorithm

〈Macros, LPG〉 then the selected one 〈Outer, LPG〉. It indi-

cates that we need to somehow classify problems even within

the same domain. An initial idea assumes that each class of

the problem has a different algorithm assigned to it which

provides the best results. In the learning stage we can easily

identify which couple works best on a particular problem and

hence determine classes of problems (the number of classes

is equal to the number of algorithms which were best on

at least one problem). However, it might happen that some

classes will be small (containing only a few problems) which

may prevent identification of their characteristic properties.

Therefore, it seems to be appropriate to move problems

from ‘small’ classes to larger ones where the corresponding

couple is closest to the best. However, an efficient classifier

for planning problems has not been developed yet.

Interestingly, the need for classification seems to be

restricted to runtime optimization. By analyzing the per-

formance of algorithms, we observed that in terms of plan

quality, usually the couple that achieves the best result is

finding the best solution for all, or almost all, the testing

problems. In the Matching-BW domain the best algorithm

is outperformed by a different one only on three problems

out of the 30 considered.

Regarding the exploitation of the knowledge extracted in

the form of macro-operators and entanglements, we noticed

that Metric-FF and LPG are the ones that, in terms of run-

times, exploited it more efficiently. Considering the results

shown in Table II, in Blocksworld, Depots, Gold-miner and

Matching-BW, Metric-FF and LPG are not the best single

planner; but while exploiting the additional knowledge, they

outperforms the others, as shown in Table III. Also in terms

of quality, the impact of the additional knowledge extracted

in the form of new encodings is significant. This is surpris-

ing if we consider that macro-operators and entanglements

are designed especially for improving the performance of

planners in terms of time needed for finding a satisficing

solution. A very interesting example of this behaviour is

given by Lama in the domain TPP, in which the exploitation

of entanglements, either Both or Outer, lets the planner

improve its performance by more than the 60%; all the plans

found by Lama and the original domain encoding have lower

quality.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented ASAP, an automatic

algorithm selection approach for planning. ASAP is based on

the idea of extracting additional knowledge from a domain,

in the form of macro-operators and entanglements, com-

bining such knowledge with existing planning systems for

generating new algorithms, and selecting the most promising

algorithm for solving problems from the given domain.

ASAP has two different versions: ASAPs which selects

the most promising algorithm for optimising runtimes, and

ASAPq which optimises the quality of the solution plans.

An experimental analysis conducted on a total of 11 well-

known benchmark domains and that involved 660 planning

problems, has shown that (i) the impact of the consid-

ered dimensions on the performances of the algorithms is

significant, (ii) the technique used for selecting the most

promising algorithm to exploit on testing problems is very

accurate, (iii) ASAPs is competitive with the state-of-the-

art of learning-based planning systems, PbP2s, in terms

of runtime, (iv) ASAPq outperformed PbP2q in terms of

quality of solution plans.

Future work includes further experimental analysis, in

particular for understanding if learning-based approaches

exploiting domain-specific portfolios would always be out-

performed by accurate and efficient automatic algorithm

selection based planners, while sharing the same planners

and the same additional knowledge, on single core ma-

chines. A specific experimental analysis is also needed for

having a better understanding of the impact of problems

reformulation on the different planning systems; a system

for predicting this impact would lead to a great reduction

of the learning time needed for selecting the algorithm to

use for a specific domain. Moreover, we are interested in

combining the approach used for reformulating planning

problems with existing techniques for generating macro-

operators (e.g., Wizard [16], Macro-FF [1]).

We noticed that the major limitation of ASAP is that, in its

current version, it is heavily dependent on Metric-FF. The

solutions found by this planner on a small set of training

problems are analyzed for extracting additional knowledge.

It could happens, and it happened in Barman and Spanner

domains, that Metric-FF is not able to solve any non-

trivial training problem. To avoid this situation, we are

planning to extend the techniques used for extracting macro-

operators [5] and entanglements [3] in order to exploit plans

produced by different planners. This could also lead to

the derivation of more specific additional knowledge that,

potentially, could further increase planner performance.

Finally, we are considering including different algorithm

selection techniques in ASAP. The current one is mainly

based on IPC score, which considers performance and num-

ber of solved problems together. The exploitation of more

sophisticated score systems could improve the selection ac-

curacy. Alternative selection techniques could be based, for

instance, on the well-known PAR10 score, or on statistical

analysis.

REFERENCES

[1] A. Botea, M. Enzenberger, M. Müller and J. Schaeffer, “Macro-
FF: Improving AI planning with automatically learned macro-
operators”, Journal of Artificial Intelligence Research (JAIR)
24:581–621, 2005.

[2] Y. Chen, B. W. Wah and C. W. Hsu, “Temporal planning
using subgoal partitioning and resolution in SGPlan”, Journal
of Artificial Intelligence Research (JAIR) 26:323–369, 2006.

[3] L. Chrpa and T. L. McCluskey, “On exploiting structures of
classical planning problems: Generalizing entanglements”, In
Proc. of the 20th European Conference on Artificial Intelligence
(ECAI), 240–245, 2006.

[4] L. Chrpa and R. Barták, ‘Reformulating planning problems by
eliminating unpromising actions’, in Proceedings of SARA 2009,
50–57, 2009.

[5] L. Chrpa, “Generation of macro-operators via investigation of
action dependencies in plans”, Knowledge Engineering Review
25(3):281–297, 2010.

[6] A. Coles, A. Coles, A. G. Olaya, S. Jiménez, C. L. Linares,
S. Sanner and S. Yoon, “A survey of the seventh international
planning competition”, AI Magazine 33:83–88, 2012.

[7] A. Fern, R. Khardon and P. Tadepalli, “The first learning track
of the international planning competition”, Machine Learning
84:81–107, 2011.

[8] A. Gerevini, A. Saetti and I. Serina, “Planning through stochas-
tic local search and temporal action graphs”, Journal of Artificial
Intelligence Research (JAIR) 20:239–290, 2003.

[9] A. Gerevini, A. Saetti and M. Vallati, “An automatically
configurable portfolio-based planner with macro-actions: PbP”,
In Proc. of the 19th International Conference on Automated
Planning and Scheduling (ICAPS), 19–23, 2009.

[10] A. Gerevini, A. Saetti and M. Vallati, “PbP2: Automatic
configuration of a portfolio-based multiplanner”, In Booklet of
the 7th International Planning Competition. 2011.

[11] M. Helmert, “The Fast Downward planning system”, Journal
of Artificial Intelligence Research (JAIR) 26:191–246, 2006.

[12] J. Hoffmann, “The Metric-FF planning system: Translating
“ignoring delete lists” to numeric state variables”, Journal of
Artificial Intelligence Research (JAIR) 20:291–341, 2003.

[13] A. Howe, E. Dahlman, C. Hansen, A. vonMayrhauser and
M. Scheetz, “Exploiting competitive planner performance”, In
Proc. of the 5th European Conference on Planning (ECP), 62–
72, 1999.

[14] H. Kautz, B. Selman and J. Hoffmann, “SatPlan: Planning
as satisfiability”, In Abstract Booklet of the 5th International
Planning Competition, 2006.

[15] N. Lipovetzky and H. Geffner, “Searching for plans with
carefully designed probes”, In Proc. of the 21st International
Conference on Automated Planning and Scheduling (ICAPS),
2011.

[16] M. A. H. Newton, J. Levine, M. Fox and D. Long, “Learning
macro-actions for arbitrary planners and domains”, In Proc. of
the 17th International Conference on Automated Planning and
Scheduling (ICAPS), 256–263, 2007.

[17] S. Richter, M. Westphal and M. Helmert, “Lama 2008 and
2011”, In Booklet of the 7th International Planning Competi-
tion, 2011.

[18] J. Rintanen, “Engineering efficient planners with SAT”, In
Proc. of the 20th European Conference on Artificial Intelligence
(ECAI), 684–689, 2012.

[19] M. Roberts and A. Howe, “Learned models of performance
for many planners”, In Proc. of the ICAPS-07 Workshop of AI
Planning and Learning (PAL), 2007.

[20] M. Roberts and A. Howe, “Learning from planner perfor-
mance”, Artificial Intelligence 173(56):536–561, 2009.

[21] J. Seipp, M. Braun, J. Garimort and M. Helmert, “Learning
portfolios of automatically tuned planners”, In Proc. of the
22nd International Conference on Automated Planning and
Scheduling (ICAPS), 2012.

[22] M. Vallati, C. Fawcett, A. Gerevini, H. Hoos and A. Saetti,
“Automatic Generation of Efficient Domain-Specific Planners
from Generic Parametrized Planners”, In Proc. of the Sixth
Annual Symposium on Combinatorial Search (SoCS), 2013.

