
Hysteresis-based Robust Trust Computing
Mechanism for Cloud Computing

Mohamed Firdhous∗†, Suhaidi Hassan∗, Osman Ghazali∗
∗InterNetWorks Research Laboratory, School of Computing, Universiti Utara Malaysia, Malaysia

Email: mfirdhous@internetworks.my, {suhaidi,osman}@uum.edu.my

†Faculty of Information Technology, University of Moratuwa, Sri Lanka
Email: firdhous@uom.lk

Abstract—Cloud computing has been the new paradigm in
distributed systems where users can access computing resources
and pay only for usage similar to other utilities like electricity,
water, gas and telephony. Service Level Agreements signed at
the beginning between the clients and service providers stipulate
conditions of the services including the QoS requirements. Trust
can be used to quantify the QoS levels of providers and rank
them according to their performances. Hence trust management
systems can play an important role in identifying the right service
provider who would maintain the QoS at the levels required by
the clients. Researchers have proposed several trust computing
mechanisms based on different techniques and trust metrics on
the literature. Almost all of these mechanisms increment or
decrement the trust scores monotonously based on the inputs.
This is a major vulnerability that can be exploited by adversaries
to force the trust scores towards extreme values. In this paper,
the authors propose a novel trust computing mechanism based on
hysteresis function which requires extra efforts to force the output
from one end to the other. Hysteresis functions are immune to
small changes and hence can be used to protect the system from
sporadic attacks. The proposed mechanism has been tested using
simulations. The test results show that the trust scores computed
using the proposed mechanism are more robust and stable in the
face of attacks than other mechanisms.

Keywords: trust computing, cloud computing, hysteresis,
quality of service

I. INTRODUCTION

Similar to electricity, water, gas and telephony, cloud com-
puting helps user to access and pay for computing resources
such as hardware, operating system, development platform,
software and other services as utilities over the Internet. Thus
it is now commonly known as the 5th utility in the line
of the above [1]. Due to the growing popularity of cloud
computing, the cloud service market has already seen a lot
of service providers selling their services at varying levels of
service qualities and prices [2]. Once a customer has selected
a suitable service provider, they enter into a Service Level
Agreement (SLA) that specifies the conditions to be met
by both parties and penalties imposed, in case of failures.
Among the many conditions specified, Quality of Service
(QoS) would take an important place in the SLA[3], [4].
The QoS guarantees are monitored and enforced through
QoS attributes. Similar to any other distributed system, QoS
plays an important role in cloud computing and due to the
dynamic nature of it, it is necessary to monitor these attributes

continuously [5]. Different QoS parameters measure and char-
acterize different aspects of service. These parameters include
performance, throughput, reliability, availability, trust etc., and
the selection of the right parameter depends on the type of
application and user requirements. According to Garg et al.,
transactional applications such as web based real time services
necessitate better response time and throughput guarantee,
while non-interactive services that are run as batch jobs place
more importance on job completion times, reliability and
accuracy [6]. In order for customers to enter into a contract
with a service provider confidently, they require to have a
good knowledge of the performance of the service provider.
Hence a system that could quantify the QoS would be helpful
for customers to identify the service providers who would
meet their requirements. A trust management system could be
employed to quantify and rank the service providers according
to their performance that can be accessed by clients prior to
signing the SLA [7], [8]. Several trust computing mechanisms
have been proposed in literature for quantifying various as-
pects of distributed systems. Almost all these mechanisms use
a function that is monotonously increasing or decreasing the
trust value based on the input. This paper proposes a novel
trust computing mechanism based on a hysteresis function.
Hysteresis has the special feature of maintaining more than
one internal state at a time, which requires to know the
history to predict the future states. By exploiting this feature,
the proposed mechanism successfully mitigates the effects
of malicious attackers on the trust ratings. The proposed
mechanism has been tested in a simulated environment and
the results show that the proposed mechanism is superior to
other systems in mitigating the effects of malicious attacks
while maintaining a truly representative trust rating.

This paper consists of five sections as follows: Section
I introduces the paper while sections II and III discuss
cloud computing and trust and trust management respectively.
Section IV introduces the new trust computing mechanism
proposed in this paper along with the experiments conducted
to verify it. Finally Section V concludes the paper along with
recommendations for future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/16453849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. CLOUD COMPUTING

In the line of electricity, water, gas and telephony, cloud
computing has been considered the 5th utility as it makes
the computing resources including hardware, development
platform and software available over the Internet on a pay
as you go model [1]. Cloud computing helps organizations
to fully outsource their computing requirements and pay for
them only what is used. The main difference between cloud
computing and traditional outsourcing is the total absence of
commitment with regard to the resource requirements and only
be billed for what is actually used [9]. Under the traditional
outsourcing model, organizations are supposed to forecast their
computing resource requirements and lease the full amount
from large data centres. The clients will be charged for the
full commitment from the beginning irrespective of usage. If
the clients require more resources than what is leased, the
additional requirement will not be available unless they up-
grade the contract. But in the cloud computing model, no such
initial commitment is required and the resource provisions
would closely follow consumption and the billing would be
done only for the actual consumption. With cloud computing,
organizations that start small and grow big will be able to tailor
make their computing requirements to closely follow their
growth pattern. Even seasonal variations in demand patterns
can be accommodated without any user interventions. Non
commitment and strict adaptation of resource provision and
payment along with usage help organizations to invest their
financial resources on their core business operations rather
than on non performing computing resources as with cloud
computing, expenditure on computing is an operational cost
rather than a capital cost [10]. Cloud computing resources
are hosted on virtualized platforms so that they can be made
available and removed on the fly based on customer demand
[11]. The ability to bring up resources on the fly provides
the service providers with the flexibility of selling the same
physical resources to multiple clients increasing the utility of
the resources. Increasing the utility helps them bring the cost
per user down as the number of users supported on a single
hardware devices increase. Thus hosting the applications on
cloud helps customers financially multiple ways including
eliminating the initial cost, reducing the operating cost and
maintenance cost etc.

Infrastructure as Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS) are the three categires
under which cloud computing services are currently marketed
[12]. Virtualizing and selling hardware resources including
processing power, hard drive space, memory, database storage
etc., are known as IaaS. An IaaS vendor installs a hardware
level virtualization software commonly known as hypervisor
or Virtual Machine Monitor (VMM) on a host computer in
order to create multiple virtual computers on top of a single
physical computer. The VMM manages the operation of the
virtual computers through multiplexing of the virtual machines
on the same hardware [13]. From the customers’ perspective,
the virtual computers made available to them can be treated as

real computers and install any guest operating system of their
choice on them [14]. Thus a single physical computer can be
configured to host many operating systems and applications on
them. The VMM installed on the host computer provides the
necessary isolation and security for these operating systems
and applications so that they do not interfere with each other
[15]. PaaS is the provisioning of complete software devel-
opment platforms comprising operating system, development
and testing tools and Application Programming Interface (API)
[2]. PaaS reduces the application development time and cost
and help developers to bring the product to the market in a
shorter time. This is mainly due to the fact that the developers
need not worry about purchasing, installing and maintaining of
hardware or software. Also, they will be charged only for the
usage of resources, which totally eliminates the payment for
idle resources. Web based applications are developed, hosted
and sold over the Internet is known as SaaS. SaaS is now
considered to be the new paradigm in software marketing
opposed to purchasing, installing and maintaining software in
house. Now software can be accessed, used and paid only for
what is accessed for how long [16]. Moreover, these applica-
tions can also be customized to suit the specific requirements
of customers similar to locally hosted applications [17]. Fig.
1 shows the cloud computing layered architecture which is
made up of physical hardware, virtualized hardware and cloud
computing service layers.

Fig. 1. Layers of Cloud Computing [18]

In addition to the cloud computing services described above,
new services have been introduced to the market under differ-
ent names such as Communication as a Service (CaaS), Data
as a Service (DaaS), Network as a Service (NaaS) and Identity
and Policy Management as a Service (IPaaS) [19]. Presently all
these services have been commonly known as XaaS (Anything
as a Service) [20].

III. TRUST AND TRUST MANAGEMENT

Trust has been defined as a psychological state that a person
has on another in terms of his capabilities for performing
certain tasks, if assigned [21]. Trust has been used in open
distributed systems to identify and select the right peer to
interact with [22]. Prior experience and knowledge plays
an important role in building trust on a person or system.
Several trust computing mechanisms have been developed
by researchers for the purpose of computing and quantifying



trust, which can help new users to select the suitable remote
system. These mechanisms base their computation on well
known functions or methods such as entropy, fuzzy reasoning,
iteration etc., [23], [24], [25]. In this paper, the authors
propose a trust computing mechanism based on a hysteresis
function. This is essentially an iterative mechanism as the
trust scores are continuously tuned based on the performance
of the system and the previous trust score. Researchers have
already exploited the non-linear and asymmetric properties
of hysteresis for developing systems with immense practical
value. Examples of these systems include computational trust
model for electronic commerce, pricing threshold queues and
handover management in WLANs[26], [27], [28].

IV. COMPUTING TRUST

The computation of trust requires to go through three main
stages [29]. They are namely;

1) Trust Forming
2) Trust Evolution and
3) Trust Distribution

Out of the three stages, the first two namely, trust formation
and trust evolution can be combined as trust computing and
the third stage involves the distribution of the trust scores
computed in the previous stages among the collaborating trust
management systems. In the first stage that is the trust forming,
the initial trust score for a fresh system that has not had any
interaction with clients so far has been computed. The initial
value may simply be assumed to take a neutral value such
as the mid point between the best and the worst scores or
computed using the initial information available on the system
capabilities including hardware, software and network. The
second stage, the trust evolution continuously modifies the
trust scores based on the performance of the system and the
experience of the clients. The main objective of the third stage
is to create a larger cooperating system that covers a wider
region and can respond to client requests faster. This paper
concentrates on developing a trust computing mechanism that
is more representative of system capabilities as well as robust
in the face of attacks by malicious nodes.

A. Hysteresis-based Trust Computing Mechanism

The proposed trust management system includes both trust
forming and trust evolution units along with other subsidiary
units required. Fig. 2 shows the proposed system in a block
diagrammatic format. In this paper, the initial trust score for
any new system is assumed to be neutral. Hence the trust
forming unit does not have much significance here. The QoS
monitor continuously tracks the performance of the cloud
provider in order to obtain the latest QoS attributes. The trust
evolution unit receives two inputs, one directly from the client
which specifies the expected QoS value and the other one
from the QoS monitoring unit which provides the actual QoS
value. Fig. 3 shows the trust evolution unit in detail. The trust
evolution unit is made up of a temporary storage unit, that
stores the actual QoS values in a FIFO queue. When a new
QoS value is received, it is added to the end of the queue.

If the queue is already full, the oldest QoS value would be
removed from the queue to make space for the new value
received. The FIFO arrangement of the storage unit makes
sure that the system holds the information about the most
recent performance of the cloud system. The other units are
the summing point and the hysteresis function unit. The input
to the summing point are the expected QoS value received
from the client and the median value of the most recent
QoS values stored in the temporary storage unit. The median
value has been selected due to its stability with respect to
spurious responses that may occur due to extraneous reasons.
The summer would then compute the difference between the
median QoS value and the expected QoS value and then the
result is supplied to the hysteresis function unit. The hysteresis
function unit would then compute the trust value and update
the trust table. Fig. 4 shows the algorithm used for computing
trust.

Fig. 2. Trust Management System

Fig. 3. Trust Computing Unit

The trust computing algorithm presented in Fig. 4, calcu-
lates the trust score using the inputs on a hysteresis function.
Based on the previous trust score and the normalized QoS
value δ, the new trust score would be computed. The hysteresis
has several special features that distinguish it from other non-
linear functions. These special features have been exploited
in our work in order to make the trust computing mechanism
more rugged and representative of the actual system perfor-
mances. The special properties that can be useful for trust
computing are:



Fig. 4. Trust Computing Algorithm

• Shape of the curve (SS-shape)
• Limited linear operation in the middle region
• Large input range (from -∞ to +∞)
• Inherent memory of the system

B. Hysteresis Function

Fig. 5 shows the shape of a hysteresis function. From
this figure, it can be seen that the output of the function
not only depends on the input but also on the current state
or the history. Hence to drive the output from one extreme
to other more effort on the part of the input is required
than what was required to bring it to that state originally.
Hysteresis has been associated with several natural phenom-
ena. Magnetic/electrical hysteresis in ferromagnetic and fer-
roelectric materials, deformation of rubber or alloys under
applied force and natural rate of unemployment in a given
economy are few examples for hysteresis in natural systems.
In order to exploit the beneficial effects of hysteresis, scientists
have developed artificial systems with hysteresis behaviour
in order to avoid the ill effects of rapid oscillations due to
external environment. Hysteresis based systems have been
used in several engineering domains including electronics,
control systems, telecommunications, mechanical engineering,
software engineering etc [30]. In this paper, the authors exploit
the delayed response of hysteresis to create a stable trust
computing mechanism for cloud computing.

Fig. 5. Example Hysteresis Curve

The proposed system further reduces the transient behaviour
of the systems by computing the median value of the last
recent outputs instead of using the last value for computation.
Hence the combination of both statistical behaviour of the
system through the median score of the QoS parameter along
with a hysteresis based approach would result in a better stable
mechanism than the existing ones. Also the median score of
performance reduces the number of responses needed to be
stored compared to other statistics like mean or mode for
consistent performance. The computed trust values are stored
in a trust buffer as the new value computed would either
increment or decrement the previously stored value based
on the recent performance of the system. Only the last trust
value computed needed to be stored in the buffer reducing the
storage requirements of the system. By maintaining multiple
output buffers, the trust system can be modified to support
differentiated services with varying performance requirements.

C. Experimental Setup

The proposed mechanism was tested under a simulated
environment and the results were compared against that of
entropy based trust computing mechanism proposed by Yang
el al., in [23]. The individual units were created using GNU
Octave software and combined to form the final system. The
hysteresis function shown in Eq. 1 was used by combining
two horizontally shifted sigmoid functions. Eq. 2 was used
to compute the final trust score. Eq. 2 spreads the trust
scores between (-1, +1) without modifying the shape of the
distribution of scores. In order to eliminate the bias inherent in
small samples, 30 most recent response times were collected
and stored in the Temporary Storage. The response time of
the system was considered as the QoS parameter of interest
during this study. But, the selection of the QoS parameter is
independent of the proposed mechanism and hence any QoS
parameter can be used to compute the trust score based on
that parameter.

Tt =


1

1 + e−(δs−d)
if δ > 0

1

1 + e−(δs+d)
if δ < 0

(1)

δs - cumulative response time
d - horizontal shift

T = 2 ∗ Tt − 1 (2)

For creating a consistent environment throughout the ex-
periments, the median response time was maintained fixed
while a random number generator was used to generate actual
response times. The horizontal shift was also fixed at d = 5
throughout the experiments. The randomly generated response
times were trimmed to contain within a specified range as
extreme values would not be practical in a real situation.
Fig. 6 shows trust scores generated using the proposed mech-
anism and entropy based trust computing mechanism. In
this experiment, the response times were controlled to make
sure that the normalized response time δ would cover the



entire range from negative to positive and back in order to
understand the complete behaviour of the mechanism. Using
the same response times, the entropy based mechanism was
also executed simultaneously. From this figure, it could be seen
that the trust scores computed using the proposed mechanism
resists drastic changes while the entropy based mechanism
reacts even to small changes in response times. Hence the
proposed mechanism is more stable in the face of fluctuations
compared to the entropy based mechanism. It is also possible
to see that the proposed mechanism has a steeper linear region
in the middle, where the new systems would be operating
compared to the entropy based mechanism. The steeper region
would help new systems to converge towards their appropriate
trust scores faster than the entropy based mechanism.

Fig. 6. Trust Scores for Random Request Times

Fig. 7 shows the number of attempts required to change the
trust score from a positive value to negative. This experiment
has been carried out by sending the same normalized response
time repeatedly with the intention of modifying the trust
scores. The main objective of this experiment was to test the
robustness the proposed mechanism in the face of malicious
attacks and also the compare its performance against the en-
tropy based mechanism under the same conditions. Malicious
peers may in collusion with others send false results repeatedly
to the trust management system in order to manipulate the
trust scores. Hence a trust management system, especially
the trust computing mechanism must be robust enough to
withstand such attacks. From Fig. 7, it can be seen that the
proposed hysteresis based mechanism is very robust in the
face of attacks compared to the entropy based mechanism. It is
necessary to send very large number of attacks continuously to
modify the trust scores in the proposed mechanism whereas the
entropy based mechanism gets affected immediately starting
from the very first attack. The main reason for the robustness
of the proposed mechanism is its non linearity along with the
hysteresis behaviour where it maintains different thresholds
based on in which direction trust scores have been modified.
The different thresholds on each direction, makes the proposed
mechanism resilient for momentary fluctuations and robust in
the face of attacks. Similarly, it would be possible to show
that it would take similar efforts to change the trust score
from −1 to +1 in the proposed mechanism. The entropy

based mechanism would also simply follow the same pattern
it followed from +1 to −1 as the trust scores move along the
same line for both positive and negative response times.

Fig. 7. Malicious Attempts to Change Trust Score

Fig. 8 shows the effect of the magnitude of the response
time on the computation of trust scores on both proposed
mechanism as well as the entropy based mechanism. It can
be seen that when the normalized response time is large, trust
scores converge faster in both systems. This effect can be
considered as both positive and negative. Larger the deviation
of response time from the requested response time, faster the
trust score must converge towards that end. But at the same
time, if the malicious nodes use larger values rather than the
number of attempts to attack the system, both mechanisms
would be affected in a similar fashion. But, from Fig. 8, it
can be seen that entropy based mechanism gets affects faster
than the proposed mechanism. Hence, it can be concluded that
the proposed mechanism is more robust and resilient compared
to the entropy based mechanism in the face of attacks. Since
continuous streams of similar request times or larger request
times may indicate an attack on the system. Hence when such
an attack pattern is detected, it is possible to employ other
security measures to protect the system against such attacks.
But, the development or discussion of such a mechanism is
the beyond the scope of this paper and hence not discussed
further.

Fig. 8. Effect of Response Time on Trust Scores

From the results above, it can be seen that the proposed
mechanism helps systems to reach their appropriate trust



scores faster than the entropy based mechanism. Also, the
proposed mechanism is better and stable in the face of repeated
requests as it requires much larger and stronger attack than that
is required to break the entropy based mechanism.

V. CONCLUSIONS

In this paper, the authors have presented a hysteresis based
robust trust computing mechanism that computes the trust
scores for a cloud computing system based on any QoS
parameter. The proposed mechanism computes the trust scores
using a non linear hysteresis function that can be in more
than one state at any given time. The hysteresis function
makes the trust computing mechanism more stable due to its
special properties, such as the shape, the large input range
and inherent memory. The proposed system has been tested
using simulations and the results were compared against that
of entropy based mechanism proposed by Yang et al., in [23].
The results obtained from the proposed mechanism were found
to be converging faster towards their ultimate scores and more
stable in the face of attacks by malicious peers.

As future work, it is proposed to investigate further into
impact of the shape of the hysteresis curve on the stability of
the mechanism. This can be done by using different functions
to create the hysteresis loop. It is also proposed to investigate
further into the security of the system with special reference
to identifying malicious requests and isolating them.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Journal of Future Generation
Computer Systems, vol. 25, no. 6, pp. 599–616, June 2009.

[2] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Fifth International Joint Conference on INC,
IMS and IDC, Seoul, Korea, 2009, pp. 44–51.

[3] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour, Eds., Service
Level Agreements for Cloud Computing. Springer, 2011.

[4] L. Wu and R. Buyya, Performance and Dependability in Service
Computing: Concepts, Techniques and Research Directions. IGI
Global, 2012, ch. Service Level Agreement (SLA) in Utility Computing
Systems, pp. 1–25.

[5] P. Patel, A. Ranabahu, and A. Sheth, “Service level agreement in cloud
computing,” in ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Orlando,
FL, USA, 2009, pp. 1–10.

[6] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya, “SLA-based resource
provisioning for heterogeneous workloads in a virtualized cloud datacen-
ter,” in 11th International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP 2011), Melbourne, Australia, ser.
LNCS 7016, vol. I. Springer, 2011, pp. 371–384.

[7] L. H. Vu, M. Hauswirth, and K. Aberer, “Qos-based service selection
and ranking with trust and reputation management,” in Cooperative
Information System Conference (CoopIS05), Agia Napa, Cyprus, 2005,
pp. 466–483.

[8] M. Firdhous, O. Ghazali, S. Hassan, N. Z. Harun, and A. Abas, “Honey
bee based trust management system for cloud computing,” in 3rd
International Conference on Computing and Informatics (ICOCI 2011),
Bandung, Indonesia, 2011, pp. 327–332.

[9] B. An, V. Lesser, D. Irwin, and M. Zink, “Automated negotiation with
decommitment for dynamic resource allocation in cloud computing,”
in 9th International Conference on Autonomous Agents and Multiagent
System (AAMAS ’10), Toronto, Canada, vol. 1, no. 1, 2010, pp. 981–988.

[10] V. Fusenig and A. Sharma, “Security architecture for cloud networking,”
in International Conference on Computing, Networking and Communi-
cations (ICNC), Maui, HI, USA, 2012, pp. 45–49.

[11] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of
virtual machine instances in clouds,” in IEEE Second International
Conference on Cloud Computing Technology and Science, Indianapolis,
IN, USA, 2010, pp. 127–134.

[12] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in 10th International
Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN),
Kaohsiung, Taiwan, 2009, pp. 4–16.

[13] K. Hwang, J. Dongarra, and G. Fox, Distributed and Cloud Computing:
From Parallel Processing to the Internet of Things, 1st ed. Morgan
Kaufmann, 2011, ch. Virtual Machines and Virtualization of Clusters
and Data Centers, pp. 130–187.

[14] M. Firdhous, O. Ghazali, and S. Hassan, “A trust computing mechanism
for cloud computing with multilevel thresholding,” in 6th International
Conference on Industrial and Information Systems, Kandy, Sri Lanka,
2011, pp. 457–461.

[15] F. Zhao, Y. Jiang, G. Xiang, H. Jin, and W. Jiang, “VRFPS: a novel
virtual machine-based real-time file protection system,” in 7th ACIS In-
ternational Conference on Software Engineering Research, Management
and Applications, Haikou, China, 2009, pp. 217–224.

[16] R. Prodan and S. Ostermann, “A survey and taxonomy of Infrastructure
as a Service and web hosting cloud providers,” in 10th IEEE/ACM
International Conference on Grid Computing, Banff, Alberta, Canada,
2009, pp. 17–25.

[17] J. Kong, “Protecting the confidentiality of virtual machines against
untrusted host,” in International Symposium on Intelligence Information
Processing and Trusted Computing (IPTC), Huanggang, China, 2010,
pp. 364–368.

[18] M. Firdhous, O. Ghazali, and S. Hassan, “A trust computing mechanism
for cloud computing,” in Fourth ITU Kaleidoscope Academic Confer-
ence, 2011, pp. 199–205.

[19] M. Zhou, R. Zhang, D. Zeng, and W. Qian, “Services in the cloud com-
puting era: A survey,” in Fourth International Universal Communication
Symposium, Beijing, China, 2010, pp. 40–46.

[20] R. Mikkilineni and V. Sarathy, “Cloud computing and the lessons
from the past,” in 18th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises, Groningen,
Netherlands, 2009, pp. 57–62.

[21] T. Bosse, C. M. Jonker, J. Treur, and D. Tykhonov, “Formal analysis
of trust dynamics in human and software agent experiments,” in 11th
International Workshop Cooperative Information Agents, Delft, The
Netherlands, 2007, pp. 343–359.

[22] H. Li and M. Singhal, “Trust management in distributed systems,” IEEE
Computer, vol. 40, no. 2, pp. 45–53, 2007.

[23] L. Yang, Z. G. Qin, C. Wang, Y. Liu, and C. S. Feng, “A P2P reputation
model based on ant colony algorithm,” in International Conference on
Communications, Circuits and Systems, Chengdu, China, 2010, pp. 236–
240.

[24] H. Chen and Z. Yeo, “Research of P2P trust based on fuzzy decision-
making,” in 12th International Conference on Computer Supported
Cooperative Work in Design, Xi’an, China, 2008, pp. 793–796.

[25] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in P2P networks,” in 12th Inter-
national Conference on the World Wide Web, Budapest, Hungary, 2003,
pp. 640–651.

[26] J. Urbano, A. P. Rocha, and E. Oliveira, “Trust evaluation for reliable
electronic transactions between business partners,” in Agent-Based Tech-
nologies and Applications for Enterprise Interoperability, ser. Lecture
Notes in Business Information Processing, K. Fischer, J. Mller, and
R. Levy, Eds. Springer Berlin Heidelberg, 2012, vol. 98, pp. 219–
237.

[27] L. M. L. Ny and B. Tuffin, “Pricing a threshold-queue with hysteresis,”
in 18th IASTED International Conference on Modelling and Simulation
(MS 2007), Montreal, Canada, 2007.

[28] M. Zaki, “Handover in a wireless local area network (WLAN),” US
Patent 7 164 915, January 16, 2007.

[29] M. Carbone, M. Nielsen, and V. Sassone, “A formal model for trust
in dynamic networks,” in 1st International Conference on Software
Engineering and Formal Methods, Brisbane, Australia, 2003, pp. 54–61.

[30] F. Ikhouane and J. Rodellar, Systems with Hysteresis: Analysis, Identi-
fication and Control Using the Bouc-Wen Model. John Wiley & Sons,
2007.


