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Abstract 

This present work describes the differences in the characteristics of glazes generated on the ordinary 

Portland cement (OPC) surface of concrete by means of CO2 and high power diode laser (HPDL) 

radiation. The value of such an investigation would be to facilitate the hitherto impossible task of 

generating a durable and long-lasting surface seal on the concrete, thereby extending the life and 

applications base of the concrete. The basic process phenomena are investigated and the laser effects 

in terms of glaze morphology, composition, phase and microstructure are presented. Also, the 

resultant heat affects are analysed and described. The glaze generated after HPDL interaction was 

found be fully amorphous in nature, whilst the glaze generated after CO2 laser interaction was seen to 

be of a semi-amorphous structure, with sizeable areas, randomly located within the glaze, displayed a 

somewhat regular columnar structure. This is proposed to be due to the differing solidification rates 

occasioned by each laser after treatment  as a result of differences in the beam absorption lengths. 

Keywords: CO2 laser; High power diode laser (HPDL); Concrete; Cement; Surface glazing; 

Microstructure; Solidification; Phase   
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1. Introduction 

Lasers have unique characteristics that afford them the ability to be employed for the non-contact 

processing of materials which are otherwise difficult to process. One such material is concrete, which 

is a composite material consisting of an array of fine and coarse aggregate pieces embedded within a 

hardened ordinary Portland cement (OPC) paste. Consequently the processing and surface treatment 

of concrete can be an arduous task.  

Much work has been carried out previously to investigate the laser processing of concrete. However, 

most of the research has concentrated on the laser cutting of concrete and reinforced concrete using 

high power CO2 lasers, with a view, primarily, to nuclear reactor decommissioning [1-3]. Also, as 

part of nuclear plant decommissioning, Li et al. [4-7] conducted research to determine the workability 

of several laser techniques: direct glazing of the concrete, single and multiple layer fusion cladding 

and combined chemical/fusion cladding, for the sealing/fixing of radioactive contamination onto 

concrete surfaces. Further work by Johnston et al. [8] reported on the successful removal of the 

contaminated surface layer of concrete (scabbling) by means of Nd:YAG and CO2 laser radiation. 

Work by Sugimoto et al. [9] focused upon modifying the surface appearance and surface properties of 

cement based materials using a high power CO2 laser. The laser treatment produced novel surfaces, 

with surface textures, properties and appearance unique to laser treatment. The resultant physical 

characteristics and mechanical behaviour of the post-process cement based materials were later fully 

characterised by Wignarajah et al. [10]. Borodina et al. [11] have carried out investigations into the 

structural changes within the composition of zirconia concrete caused by surface exposure to CO2 

laser radiation, detailing microstructural changes, phase changes and the absorptivity characteristics.  

In all of the previous studies conducted with CO2 and Nd:YAG lasers, spallation and excessive 

cracking and pore formation were found to be major problems undermining the performance of the 

laser treated surface layer. In contrast, however, work conducted by Li et al. [12] and further work 

carried out by Lawrence et al. [13-15] using a high power diode laser (HPDL), successfully 

demonstrated the generation of a long-lasting glaze with far fewer cracks and pores.  

To date, the comparative effects of CO2 laser and HPDL radiation have not been reported Similarly, 

practical comparisons between the traditional materials processing lasers (CO2, Nd:YAG and excimer 

lasers) and the more contemporary high power diode laser (HPDL) are limited. Previously, Schmidt 

et al. [16] compared the performance of CO2, excimer and HPDL in the removal of chlorinated rubber 
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coatings from concrete surfaces, noting the existence of wavelength dependant differences in process 

performance. Bradley et al. [17] compared the CO2 and HPDL for the treatment of Al2O3-based 

refractory materials in terms of microstructure. Work by Lawrence et al. concentrated on investigated 

the effects of CO2, Nd:YAG excimer and HPDL on the wettability characteristics of engineering 

ceramics [18] an Al2O3/SiO2-based ceramic [19] and a carbon steel [20]. In all the studies, the 

workers observed wavelength dependant microstructural characteristics unique to each laser. 

This paper aims to elucidate the reasons behind the marked differences in the characteristics and 

performance of the glaze generated on the OPC surface of concrete when treated with CO2 laser and 

HPDL radiation. Part I of the paper comparatively analyses the actual characteristics of the glazes, 

whilst in Part II the mechanical, physical and chemical properties of the glazes are compared.  

2. Experimental procedures 

The concrete studied in the experiments was the ubiquitous OPC based concrete. For the purpose of 

experimental convenience the as-received concrete blocks were sectioned into squares (120 mm x 120 

mm x 20 mm) prior to laser treatment. The composition of the concrete by volume is as follows: 

20mm limestone aggregate (40%), 10 mm limestone aggregate (14%), zone M sand (28.5%), OPC 

(10.5%) and particulate fine aggregate (7%). 

The lasers used in this work were a CO2 laser (RS1000, Rofin-Sinar) emitting at 10.6 µm with a 

maximum output power of 1 kW and a HPDL (D-60, Diomed) emitting at 810±20 nm with a 

maximum output power of 60 W. The CO2 laser beam was delivered to the work surface by focusing 

the beam through a 125 mm focal length KC1 lens to give a stable diverging beam. The HPDL beam 

was delivered to the work area by means of a 4 m long, 600 µm core diameter optical fibre, the end of 

which was connected to a 2:1 focusing lens assembly. Both lasers were operated in the continuous 

wave (CW) mode and produced a multi-mode beam. The defocused laser beams were fired across the 

surface of the concrete samples by traversing the samples beneath the beams using the x- and y-axis 

of CNC gantry tables at speeds ranging from 60-600 mm min-1. In both instances the laser optics were 

protected by means of a coaxially blown O2 shield gas jet a rate of 5 l min-1. In order to study 

accurately the differing effects of the two lasers, the power density of each was set at 2.25 kW cm-2. 
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To determine the characteristics of the glazes the HPDL treated concrete samples were examined 

using optical microscopy, scanning electron microscopy (SEM), energy disperse X-ray analysis 

(EDX) and X-ray diffraction (XRD) techniques.  

3. General effects of laser interaction with concrete 

3.1 Depth of laser interaction and melting 

It was found for both lasers that, as the traverse speed increased, the depth of the laser interaction 

area generally decreased (the depth of the laser interaction being the limit of the laser affected area 

visible under microscopic examination). Likewise, as the traverse speed increased, the depth of the 

laser melt region also generally decreased for both lasers. However, as is evident from Fig. 1, the 

depth of the laser interaction and melting observed differed somewhat between the two lasers. 

Regardless of the traverse speed, the laser interaction depth and the melt depth obtained after CO2 

laser glazing was consistently greater that that of the HPDL. More precisely, the melt depth obtained 

after CO2 laser glazing was higher than that of the HPDL, whilst the laser interaction depth obtained 

after CO2 laser glazing was considerably higher than that of the HPDL. Moreover, it can be seen 

clearly from Fig. 1 that the ratio of the laser interaction regions and the laser melt regions obtained 

with the CO2 laser are much higher than those obtained with the HPDL. This indicates that the heat 

affected zone (HAZ) generated as a result of CO2 laser treatment is much greater than that resulting 

from HPDL treatment. 

3.2 Mass loss/regain during and after laser treatment 

Although material ejection was generally not a typical feature of the glazing OPC surface of the 

concrete with either laser, a loss in mass of the concrete was a possibility due to the resulting heat 

effects of the process. In order to determine any weight loss experienced by the concrete as a result of 

laser irradiation, a number of samples were stored in a controlled environment for two days prior to 

laser irradiation. The samples were weighed regularly to ensure a constant mass. The samples were 

treated at various power densities and traverse speeds and then immediately weighed. Fig. 2 shows 

the percentage loss of original mass experienced by the concrete in terms of power density and 

traverse speed for both lasers 
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As one can see from Fig. 2, the loss in mass experienced by the concrete increases almost 

proportionately in a linear manner with increasing power density for both lasers, up to approximately 

2.1 kW cm-2 for the HPDL and 1.8 kW cm-2 for the CO2 laser. After this point the loss in mass can be 

seen to decrease in terms of the power density. It is reasonable to assume that this indicates that a 

level of power density saturation has been attained, beyond which further increases in power density 

have a marginal effect on the loss in mass of the concrete. In contrast, as the traverse speed is 

increased, then the loss in mass experienced by the concrete decreases for both lasers, again in a 

linear manner. It is clear from Fig. 2 that loss in mass experienced by the concrete is consistently 

higher when glazing with the CO2 laser. This is perhaps not surprising when one considers that the 

HAZ generated as a result of CO2 laser glazing is much larger than that generated when using the 

HPDL.  

After laser treatment the samples were stored in an uncontrolled environment (open laboratory) and 

weighed regularly every day for 12 days. The results of these tests are given in Fig. 3, and show 

clearly that the extent to which the concrete regains mass is not only a function of the density of the 

energy deposited on its surface, but also of the laser used. This is perhaps to be expected for two 

reasons: firstly, an increase in the energy density increases the likelihood of material ejection or pore 

formation; and secondly, as Fig. 2 showed, the mass loss experienced by the concrete was 

consistently higher when exposed to CO2 laser radiation, therefore reducing the amount of possible 

mass regain.  

The general mass regain experienced by the laser treated concrete at the various laser power densities 

is thought to be the result of the rehydration through contact with the air of the HAZ, which is 

comprised of unslaked lime (as discussed later). This appears to be a reasonable assumption when 

one considers that in terms of absolute mass regain, the greatest mass regain was observed to occur 

with the samples treated with the highest power density.  

4.  Morphological and microstructural analysis 

The typical surface morphology of the glazes generated on the OPC surface of the concrete when 

using (a) the CO2 and (b) the HPDL are shown in Fig. 4. As is evident from Fig. 4, crack and pore 

formation was a common feature of both laser glazes. However, cracking and more prominently, pore 

formation occurred less on the HPDL generated glaze. The fracture sections of the glazes generated 
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on the OPC surface of the concrete when using (a) the CO2 and (b) the HPDL are shown in Fig. 5, 

with the differences in the glaze microstructures being clearly visible.  

Although the majority of the CO2 laser induced glaze appeared to be of an amorphous structure, 

sizeable areas, randomly located within the glaze, displayed the somewhat regular columnar structure 

shown in Fig 5(a). In contrast, as one can see from Fig. 5(b), the microstructure of the HPDL 

generated glaze has no discernible structure and appears to be fully amorphous. Indeed, these findings 

were further confirmed by an XRD analysis of both the CO2 and the HPDL generated glazes (Fig. 6), 

which revealed the HPDL induced glaze to be fully amorphous, whilst the CO2 laser induced glaze 

was found to posses some crystallinity. From Fig. 6(b) it can be seen that traces of SiO2 were not 

detected, whilst the Al2O3 appeared to be depleted. Yet, an EDX analysis revealed that the Si and Al 

were still present in similar proportions on the OPC surface before and after laser treatment. This is 

perhaps an indication that the OPC surface incident with the CO2 laser has undergone partial 

vitrification due to the fact that these materials are glass forming elements, and consequently, 

vitrified when irradiated. Additionally, it is important to note that the peaks in Fig. 6(a) which are 

unmarked, for ease of analysis since they are not of direct interest, are likely to be tobermorite 

(Ca5(Si6O18H2)4H2O) which provides diffraction peaks in the range 40 to 550, and rosenhahnite 

(Ca3SiO3O9H2O) which provides diffraction peaks in the range 40 to 700. Further, the peaks in Fig. 

6(b) which have been left unmarked for the same reason, are likely to be mullite (Al6Si2O13) which 

provides diffraction peaks in the range 35 to 400, scawtute (Ca6Si6O182H2O) which provides 

diffraction peaks in the range 25 to 450, and quartz (low SiO2) which provides diffraction peaks in the 

range 25 to 600. Also, some formation of spinel (MgAl2O4) would perhaps be expected; this, however, 

was not detected.   

The columnar structure observed in the CO2 laser generated glaze is similar to those previously 

reported by other workers who have treated Al2O3-based ceramics with CO2 lasers. Lee and Gahr [21] 

and Bradley et al. [17] concluded that the columnar grains were comprised mainly of α- Al2O3. After 

CO2 laser treatment of an Al2O3-based plasma-sprayed coating, Shieh and Wu [22] observed a similar 

columnar structure to that shown in Fig. 5(b), but with a zone of equiaxed grains on top of a columnar 

structure. Such a finding implies that there are two solidification fronts: one from the melt/substrate 

interface and another from the melt/air interface. Thus, if the two fronts meet solidification is 

complete. When the melt depth is shallow, the conductive heat loss is so fast that surface 



 8 

solidification has insufficient time to develop. In contrast, when the melt depth is great, surface 

solidification occurs before the zone reaches the surface. 

5. Heat affected zone analysis  

Petzold et al. [23] have determined from differential thermal analysis (DTA) results that up to 

approximately 4200C, concrete remains relatively stable. Notwithstanding this, some dehydration 

does occur and water is also lost from the pores of the cement. This is, however, far outweighed by 

the dehydration of Ca(OH)2 which follows shortly after 4200C is exceeded in accordance with 

   Ca(OH)2 → CaO+H2O (1) 

Furthermore, the dehydration of the Ca(OH)2 promotes the development of microcracks which begin 

initially around the Ca(OH)2 [24]. Moreover, this dehydration results in unslaked lime (CaO), which 

is effectively the generated HAZ; since the temperature of the surface of the concrete during 

interaction with both lasers during glazing was measured to be well in excess of 4200C. This 

generated CaO HAZ was observed located either below the glazed surface layer or around the edges 

of the glazes. Indeed, by using a phenolphthalein indicator followed by water misting, it was possible 

to clearly discern the HAZ around the laser treated zone on the OPC surface of the concrete, since 

phenolphthalein is an indicator which is colourless in CaO, turning violet-red in the presence of 

Ca(OH)2 due to the change in pH. 

6. Discussion 

6.1 Glaze formation mechanisms  

The chemistry of the OPC surface of concrete and the hydration of its various constituents is 

extremely complex, and as such is not yet fully resolved [25]. Nevertheless, it is known that the 

constituents of OPC are minerals which exist as multi-component solid solution chemical 

compounds. One of the major constituents of OPC is Ca, however, of particular importance with 

regards this study, OPC contains in relatively large proportions: SiO2 (21wt%), Al2O3 (5wt%) and 

Fe2O3 (3wt%), which are basic glass network formers and modifiers. Consequently the intense local 

heating brought about by the incident CO2 and HPDL beams results in the melting of these 
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compounds at around 12830C, thereby causing the materials to lose the retained water and form an 

amorphous glassy material consisting of various calcium-silicate-alumina compounds [4]. Indeed, the 

semi- and fully amorphous nature of the CO2 and HPDL generated glazes respectively was verified 

by an XRD analysis.  

As was mentioned earlier, both CO2 and HPDL interaction with the OPC surface occasioned a 

dramatic colour change; changing from grey to green. Such a change can be ascribed to the resultant 

phase transitions, and also the presence in small concentrations of metal transition ions in various 

oxidation states within the OPC composition, in particular, ferric ions in the Fe3+ and Fe2+ oxidation 

state. Fe3+ and Fe2+ ions are known to give rise to green and blue colours respectively when subjected 

to intense heating [25, 26]. However, if both phases are present within the composition, then the 

colour is determined by the Fe3+/Fe2+ ion ratio, resulting in dark blue or black colours [25, 26]. Since 

the surface produced after CO2 and HPDL treatment was green, then it is reasonable to assume that 

both phases were not present within the OPC. 

6.2 Cracking and pore formation 

As Fig. 4 shows, cracking of the CO2 and HPDL induced glazes occurred to various degrees 

depending upon the laser used. The formation of cracks can be attributed mainly to thermal stresses 

generated during laser irradiation. This is due to the fact that OPC has low thermal conductivity, and, 

as such, during laser heating a large thermal gradient between the melt zone and the substrate exists 

which results in the generation of thermal stresses. Additionally, despite the fact that the laser surface 

treatment process is effectively localised in nature, the fact remains that a certain amount of the heat 

generated will be conducted to sections of the OPC where the surface is already glazed. This, 

combined with existence of a relatively cold OPC substrate means that thermal stresses will be 

generated. During the heating phase the stresses will be compressive and relieved by plastic 

deformation, thus precluding crack formation. At high temperatures (T≥Tm) the stresses can also be 

relieved [27-29]. However, during cooling when the temperature falls below Tm, then stresses will 

accumulate. If the fracture strength of the material is exceeded, then cracking within the melted layer 

will occur. The thermal stress σ, induced by a thermal gradient can be calculated using the Kingery 

equation:  

  σ
α

υ
=

−

E T∆

1
  (2) 
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where E is Young’s modulus, ∆T is the temperature change, α is the coefficient of thermal expansion 

and ν is Poisson’s ratio. More succinctly, ∆T is the difference between the critical temperature 

(below which stresses can no longer be relieved) and ambient temperature. For OPC this is the 

difference between the melting point, 12830C and ambient temperature 200C. So, if it is assumed that 

the glass formed on the surface of the OPC is similar to soda-lime-silica glass because the 

compositions of the two materials are similar, then by using the following values for a typical soda-

lime-silica glass: E=6.42 x 104 MN m-2, α=33 x 10-7 K-1, ∆T=12630C and ν=0.176, when the OPC 

surface of the concrete was irradiated by the HPDL beam the thermal stress produced in the resulting 

glass according to Equation (2) was around 305 MN m-2. Since this is well in excess of the fracture 

strength of the glass, 120 MN m-2 [30], cracking will occur, and can only be avoided by severe 

distortion or through the reduction of ∆T by pre-heating.  

From Fig. 4 it can be seen that pores were a common feature of the CO2 and HPDL induced glazes, 

varying in size from microscopic pits to large craters depending upon both the laser operating 

parameters and the actual laser employed. For all instances of pore formation the mechanism behind 

their development is the consequence of gas escaping from within the melt and disrupting the surface 

[31]. With regard to the OPC glaze, the gas is likely to be CO2 [10]. If the laser energy density 

incident on the OPC is too low, then the generated CO2 can not escape from the molten OPC surface 

easily because of the high viscosity of the melt. As such, when the CO2 gas eventually does penetrate 

the melt surface, the resultant pore is not filled by the flow of the melt; since the insufficient energy 

density is unable to maintain a high enough temperature for an adequate length of time and thus 

decrease the overall viscosity of the melt [32]. In this case the pores formed are typically small and 

shallow, being regular in both periodicity and intensity . On the other hand, if the laser energy density 

incident on the OPC surface of the concrete is too high, then boiling of the surface may happen. At 

the same time an increase in CO2 gas formation may occur within the melt. These individual pockets 

of CO2 gas formation may combine and rise to surface of the melt. Once the energy density decreases 

(as the laser traverses away), then the additional CO2 gas will attempt to escape from the molten 

surface. However, the solidifying melt will prevent this, causing bubbles to form. The excessive CO2 

gas pressure will firstly cause the bubbles to expand and ultimately rupture the walls of the bubbles 

creating a sharp ‘knife edge’ pore [3, 10]. These types of pore are usually large, deep and randomly 

spaced. 
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6.3 Differences in morphological and microstructural characteristics 

As one can see from Fig. 4, the morphological characteristics of both the CO2 and HPDL generated 

glazes were somewhat similar in appearance, albeit that the CO2 laser generated glaze displayed more 

microcracks and pores. On the other hand, however, the microstructural characteristics of the glazes 

were quite different in nature.  

Although the CO2 laser generated glaze was for the most part amorphous, sizeable crystalline areas, 

randomly located, displaying a regular columnar structure were nevertheless observed. In contrast, 

the HPDL glaze was found to be fully amorphous in nature. It is well established that microstructural 

characteristics are determined by solidification rate [33-35]. Since the laser operating parameters 

used were identical, the marked microstructural differences observed between the CO2 and the HPDL 

induced OPC glazes can therefore be attributed to the differing rates of solidification occasioned by 

the two lasers. Clearly, such differences in the solidification rates induced by each laser must be the 

result of differences in the actual beam characteristics of each laser and the effects thereof on the 

beam interaction characteristics with the OPC surface. Work carried out by Lawrence and Li [36], to 

investigate the absorption length of CO2 and HPDL beams in the OPC surface of concrete, revealed 

that CO2 laser radiation was absorbed to a significantly greater depth by the OPC than HPDL 

radiation. Thus, the melting of the OPC to greater depth is consequently effected after CO2 laser 

interaction. This in turn produces differing solidification conditions within the CO2 and HPDL 

generated melt pools. It is proposed that, under the selected laser operating parameters, the 

solidification rate resulting from CO2 laser interaction was not sufficiently high to produce a fully 

amorphous glaze, yielding instead a partially crystalline structure. On the other hand, it is believed 

that the solidification rate resulting from HPDL interaction was sufficiently high to cause the 

complete vitrification of the OPC surface. Evidence of the validity of such postulations was in some 

way confirmed in experiments where the CO2 laser energy density incident on the OPC surface was 

increased (2.25 kW cm-2 power density and 240 mm min-1 traverse speed). Whereas previously only 

semi-amorphous glazes were possible, the energy density levels were such that it was possible to 

generate fully amorphous glazes. However, the energy densities required were so high, that the glazes 

generated were extremely poor, with many microcracks and pores which thus rendered the glazes 

impractical. Furthermore, this increase in the dimensions of the melt pool resulting from CO2 laser 

interaction could arguably be ascribed as the cause of the observed increase in the HAZ generated 

after CO2 laser glazing; since the larger melt pool will inherently generate more heat. 
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6.4 Stability to devitrification  

Despite the fact that interaction of the HPDL with the OPC surface of the concrete generated an 

amorphous glaze, it is a distinct possibility that the OPC glaze could become crystalline through the 

destruction of the glassy state by means of a process known as devitrification. This can occur as 

either the breakdown of the glass surface by corrosion or weathering, or as a result of the overall 

composition remaining unchanged while the crystals separate in the glassy medium, therefore 

destroying the glassy state. This process being entirely dependant upon the temperature and 

composition of the glass.  

A high magnification SEM examination of the OPC glaze generated by the HPDL interaction 

revealed no evidence of devitrification within the OPC glaze. This indicates that exposure of the OPC 

glaze to the extremely harsh reagents detailed in Part II of this paper did not cause the glazes to 

devitrify. Nor did the glass devitrify as a result of favourable high temperatures and glass 

composition. This is of great significance since devitrification in this manner is the result of the 

movement of atoms to allow orientation and the presence of crystallisation centres. Such centres 

occur usually at the glass/air boundary, around a pore [37]. Clearly, as Fig. 1 and Fig. 2 show, pores 

were in general a common feature of the OPC glaze, particularly the CO2 laser generated glaze. 

Furthermore, it is highly likely that the composition of the OPC glaze also played an important part in 

the stability to devitrification of the glaze. In particular it is known that compounds such as Al2O3 and 

MgO (which an EDX analysis showed were readily present in the OPC glazes) are known to be very 

useful in assuaging devitrification problems [37]. This is because the inclusion of such compounds 

within the OPC glaze composition creates an glaze without a high liquidus temperature and therefore 

a reduced tendency towards devitrification [37].  

7.  Conclusions   

Using a 1 kW CO2 laser and a 60 W-cw high power diode laser (HPDL), glazing of the ordinary 

Portland cement (OPC) surface of concrete was successfully demonstrated. Under the selected laser 

operating parameters (which gave the optimum quality glazes for both lasers), similarities and clearly 

discernible differences in the characteristics of the glazes generated by each laser were observed.  

In both cases the dehydration of Ca(OH)2 in the hardened cement paste was ascertained as forming 

the heat affected zone (HAZ). Cracks and pores were common features of the laser glazes. Cracking 
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was identified as being due to the generation of thermal stresses in excess of the fracture strength of 

the glazes. Pores are believed to be the result of CO2 formation which ruptures the molten surface as 

it forms bubbles in an attempt to escape into the atmosphere.  

The depth of melting resulting from CO2 laser glazing, along with the depth of the HAZ, were found 

to be greater than those obtained with the HPDL. It is asserted that these differences in depths, in 

particular the HAZ depths, were responsible for the greater loss in mass after CO2 laser glazing, and 

the greater mass regain after HPDL glazing, experience by the OPC. This is believed to be caused by 

the differences that exist between the CO2 and HPDL beam absorption characteristics of the OPC. 

Moreover, the glaze generated after HPDL interaction was found be fully amorphous in nature, whilst 

the glaze generated after CO2 laser interaction was seen to be of a semi-amorphous structure, with 

sizeable areas, randomly located within the glaze, displayed a somewhat regular columnar structure. 

Again, it is proposed that these microstructural difference are the result of the differing absorption 

characteristics effecting different solidification rates within the laser generated melt pools. 

The mechanical testing and an analysis of the corrosion properties of the OPC glazes, as well as their 

life characteristics, are presented in Part II of this paper. 
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Fig. 1 
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Fig. 2 

 

 

 

0

60

120

180

240

300

360

420

480

540

600

660

720

0 0.5 1.0 1.5
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

Mass Loss With Traverse Speed - CO
2

Mass Loss With Power Density - CO
2

Mass Loss With Traverse Speed - HPDL
Mass Loss With Power Density - HPDL

% Mass Loss

T
ra

v
er

se
 S

p
ee

d
 (
m

m
 m

in
-1
)

P
o
w

er
 D

en
si

ty
 (
k
W

 c
m

-2
)

 



 20 

Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6                 
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(c) 


