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Abstract—In this paper, the dynamics of weights of 
perceptrons are investigated based on the perceptron training 
algorithm. In particular, the condition that the system map is 
not injective is derived. Based on the derived condition, an 
invariant set that results to a bijective invariant map is 
characterized. Also, it is shown that some weights outside the 
invariant set will be moved to the invariant set. Hence, the 
invariant set is attracting. Computer numerical simulation 
results on various perceptrons with exhibiting various 
behaviors, such as fixed point behaviors, limit cycle behaviors 
and chaotic behaviors, are illustrated. 

I. INTRODUCTION 
ERCEPTRONS are single neurons that produce either 
“1” or “-1” at the output via applying the single bit 
quantization operation on the inner product of the 

weights and the inputs of the perceptrons. Because the 
number of the possible values of the output of the 
perceptrons is finite and the implementation cost of the 
perceptrons is low, perceptrons are widely employed in 
many pattern recognition systems [1]. 

The weights of the perceptrons are usually obtained via 
the perceptron training algorithm [2]. As the update rule of 
the weights of the perceptrons is based on the functional 
values of the single bit quantization function of the inner 
product of the weights and the inputs of the perceptrons, in 
which the inputs of the perceptrons are periodically time 
varying with the period equal to the number of the training 
feature vectors, the dynamics of the weights of the 
perceptrons are actually governed by a nonlinear time 
varying map that maps from the set of a high dimensional 
real space to itself. By downsampling the weights of the 
perceptrons with the sampling rate equal to the number of 
the training feature vectors, the mapping from the set of the 
high dimensional real space to itself becomes a nonlinear 
time invariant map. An invariant set of the weights of the 
perceptrons is defined as a set of the downsampled weights 
that maps to itself. However, as the perceptrons are 
nonlinear time varying systems, the shape of an invariant set 
of the weights of the perceptrons could be very irregular. Up 
to now, very few results have been reported on the 
characterization of an invariant set of the weights of the 
perceptrons. In this paper, properties of an invariant set of 
the weights of the perceptrons are studied. 

It is worth noting that conventional perceptrons are 
usually operated with linear separable training feature 
vectors because the perceptron convergence theorem [2] 
guarantees that the weights of the perceptrons will converge 

to a fixed point in the phase space when the set of the 
training feature vectors is linearly separable. However, an 
invariant set of the weights of the perceptrons may also exist 
even though the perceptrons exhibit limit cycle and chaotic 
behaviors. Although some works have been done on the 
investigation of the limit cycle behaviors of the weights of 
the perceptrons [5], these results are not applied if the 
weights of the perceptrons exhibit chaotic behaviors. 

 
 

The outline of this paper is as follows. Notations used 
throughout this paper are introduced in Section II. In Section 
III, properties of an invariant set of the weights of the 
perceptrons are discussed. In Section IV, computer 
numerical simulation results on various perceptrons with 
exhibiting various behaviors, such as fixed point behaviors, 
limit cycle behaviors and chaotic behaviors, are illustrated. 
Finally, a conclusion is drawn in Section V. 

II. NOTATIONS 
Denote  as the number of the training feature vectors 

and  as the dimension of these training feature vectors. 
Denote the elements in the training feature vectors as 

N
d

( )kxi  
for di ,,2,1 L=  and for 1,,1,0 −= Nk L . Define 

( ) ( ) ( )[ ]Td kxkxk ,,,1 1 L≡x  for 1,,1,0 −= Nk L . In this 
paper, we assume that ( ) 0x ≠k  for 1,,1,0 −= Nk L . Define 

( ) ( )kkNn xx ≡+  { }0\Zn∈∀  and for 1,,1,0 −= Nk L . Denote 
the weights of the perceptron as  for ( )nwi di ,,2,1 L=  and 

Zn∈∀ . Denote the threshold of the perceptron as ( )nw0  
Zn∈∀  and the activation function of the perceptron as 
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( ) ( ) ( ) ( )[ ]Td nwnwnwn ,,, 10 L≡w Zn∈∀  and denote the 
output of the perceptron as  ( )ny Zn∈∀ , then 

( ) ( ) ( )( )nnQny T xw=  Zn∈∀ . Denote the desired output of the 
perceptron corresponding to  as  ( )nx ( )nt Zn∈∀ . Assume 
that the perceptron training algorithm [2] is employed for the 
training, so the forward dynamics of the weights of the 
perceptron is governed by the following equation: 
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1 −
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Define  such that 11:~ ++ ℜ→ℜℑ ddF
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Zk ∈∀  and  such that 11:~ ++ ℜ→ℜℑ ddB
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Denote  as another initial weight. Define ( )0w′

( ) ( ) ( )( )jjQjy T xw′≡′  and ( ) ( )( )jj F
j ww ′ℑ≡+′ ~1  Zj ∈∀ . 

Suppose that  such that . Zk ∈∃ ( ) ( )kk ww =′
A set  is called an invariant set under a system map T  if 

. Denote the absolute value of a real number as 
S

( ) SST = ⋅  

and the 2-norm of a vector as ∑
=

≡
d

i
iv

0

2v , where 

. [ ]Tdvv ,,0 L≡v

III. PROPERTIES OF AN INVARIANT SET OF THE WEIGHTS OF 
THE PERCEPTRON 

In this section, an invariant set of the weights of the 
perceptron is defined and its properties are studied. 
However, before we study properties of an invariant set of 
the weights of the perceptron, further discussions on 
exploring the relationship between 11:~ ++ ℜ→ℜℑ ddF

k
 and 

 , finding the values of 11:~ ++ ℜ→ℜℑ ddB
k Zk ∈∀ ( )jy′  for 

, and characterizing the injective property of 
 for  are presented in Lemma 1, 

Lemma 2 and Lemma 3, respectively. These lemmas are 
useful for deriving properties of an invariant set of the 
weights of the perceptron. 
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Zk ∈∀ . This completes the proof. 
It is trivial to see that 11:~ ++ ℜ→ℜℑ ddF

k
 Zk ∈∀  governs 

the forward dynamics of the weights of the perceptron. On 
the other hand, Lemma 1 reveals that one of the possible 
backward dynamics of the weights of the perceptron could 
be governed by   even though the 
time index of the weights in the activation function in 

  is not equal to . Although 
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inverse of   may not exist. The 

details will be explained in Lemma 3. 
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for 1,,2,1 −= kj L . 
Proof: 

Since ( ) ( ) ( )( )jjQjy T xw′≡′  and ( ) ( )( )jj F
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This further implies that 
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for 1,,2,1 −= kj L . As ( ) ( )( ( ))jjQjy T xw′≡′ Zj ∈∀ , the 
result follows directly. 

To evaluate ( )1−′ ky , as 

( ) ( ) ( )

( )

( )
( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−′
−

+−=−′

11

10

11

00

11
2

0

2
1101

kk

k

kkQ

Q

kkQ
kt

t

kQky
T

T

T

T

T

T

T

xx

xx

xw

xw

xw

xw MM
M

, 

it can be seen easily that the above equation is satisfied if 
( ) ( )11 −=−′ kyky . However, the above equation may also be 

satisfied when ( ) ( 11 − )−=−′ kyky . Once all the possible 
values of ( )1−′ ky  are determined, then ) can also be 
determined as follows. As 
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all possible values of ( )1−′ ky  have already been determined 
and ( ) { }1,12 −∈−′ ky , all possible values of ( )2−′ ky  could be 
determined accordingly. Similarly, all possible values of 

( )jy′  for 1,,1,0 −= kj L  could be determined accordingly. 
Lemma 3 
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Obviously,  because  and ( ) ( )kk ww ≠′′ ( ) 0≠ky ( ) 0x ≠k . 
Hence,  is not injective. This proves the necessity. F
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( ) ℘=℘ℑF  and ℘ is an invariant set under the system map 
. Fℑ

Assume that ( ) (nNjN ww ≠ )  such that 
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This further implies that 
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However, there is a contradiction. Consequently,  is 
injective. As a result,  is bijective and this completes the 
proof. 

Fℑ
Fℑ

The importance of Theorem 1 is to reveal that the weights 



 
 

 

of the perceptron will be trapped inside ℘  if the initial 
weight is inside ℘ . 
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Proof: 
Since  such that . This implies that 
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Suppose that . Then ( ) ℘∈′ jNw { }0, U+∈∃ Zqp  and 
 such that , 

 and 
{ 1,,1,0 −∈∃ Nm L } ( )( ) ℘∈+′ Npjw

( )( ) ℘∈+ Nqnw ( )( ) ( )( ) ( )kmNqnmNpj www =++=++′ . 
This implies that . 
However, it contradicts to Theorem 1. Hence, 

( )( ) ( )( ) ℘∈++=++′ NqnNpj 11 ww
( ) ℘∉′ jNw  

and this completes the proof. 
Define  such that 11:~ ++ ℜ→ℜℑ ddF

( )( ) ( )( )qNqN FF
N

F ww ′′ℑℑ≡′′ℑ − 01
~~~

Lo ( ) 1+ℜ∈′′ dqNw ∀ . 
Theorem 2 

Fℑ
~  is not injective. 

Proof: 
As , then , ( ) ( )kk ww =′ { }1,,1,0 −∈∃ Nm L ( ) ℘∉′∃ jNw  

and  such that ( ) ℘∈∃ nNw ( ) ( ) ( )kmnNmjN www =+=+′ . 
Obviously,  and ( ) (nNjN ww ≠′ )

( )( ) ( )( ) ( )( ) ( )( )nNNnNjjN FF wwww ℑ=+=+′=′ℑ ~11~ . 
Hence,  is not injective and this completes the proof. Fℑ

~

The importance of Lemma 4 and Theorem 2 is to reveal 
that there exist some initial weights that are not in ℘ , but 
the weights will be eventually moved to ℘ . That implies 
that ℘  is attracting. 
Lemma 5 
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0 2
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2

−∈
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the result follows directly and this completes the proof. 
The implication of Lemma 5 is that  occurs only in 

certain discrete hyperplanes, which depends on 
( )nw

( )00w . 
Theorem 3 

Fℑ
~  is surjective. 

Proof: 
1+ℜ∈∀ dw , define . Obviously, 

. By Lemma 1, we have 
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1 oLo

1+ℜ∈ dv
( ) ( wwv =ℑℑℑℑ=ℑ −

B
N

BFF
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F ~~~~~
101 oLoooLo ) . Hence,  is 

surjective and this completes the proof. 
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IV. COMPUTER NUMERICAL SIMULATION RESULTS 
Consider the following set of the training feature vectors 

 as shown in Figure 1a. Assume that 

the corresponding desirable outputs are 
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respectively. Also, assume that w . The set 
of the weights only contains a single point, that is 

( ) [ T0,2,00 = ]

( ) [ ]Tk 0,2,0=w  Zk ∈∀  as shown in Figure 2. Hence, the 
dynamics of the weights exhibits a fixed point behavior. 
This result agrees with the perceptron convergence theorem 
because the set of the training feature vectors is linearly 
separable. Consequently, [ ]{ }T0,2,0=℘ . It can be 
checked easily that the map 

[ ]{ } [ ]{ }TTF 0,2,00,2,0: →ℑ  is bijective and the map 
 is not injective because 33:~ ℜ→ℜℑF ( ) ( ) ( )kkk T xwx >2  

Zk ∈∀ . Since some points in the three dimensional real 
space would converge to this fixed point, ℘ is attracting. 
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Consider the following set of the training feature vectors 

 as shown in Figure 1b. Assume that 

the corresponding desirable outputs are 
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. Hence, the dynamics of the weights exhibits a limit 
cycle behavior with period 4 as shown in Figure 3. 
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. Since some points in the three dimensional real 
space would converge to this set of fixed points, 

Zk ∈∀
℘ is 

attracting. 

Consider the following set of the training feature vectors 

 as shown in 

Figure 1c. Assume that the corresponding desirable outputs 
are 
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( ) [ ]T2133.0,7923.0,10 −−=w . The weights consist of three 

hyperplanes and exhibit chaotic behaviors within these three 
hyperplanes as shown in Figure 4. Hence, the set of the 
weights and an invariant set of the weights consist of three 
hyperplanes. It can be checked easily that the map from ℘ 
to itself is bijective and the map  is not 
injective because 

33:~
ℜ→ℜℑF

Zk ∈∃  such that ( ) ( ) ( )kkk T xwx >2 . 

Since some points in the three dimensional real space would 
converge to these three hyperplanes, ℘ is attracting. 
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Fig. 4.  Phase diagram of the weights of the perceptron when 
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V. CONCLUSIONS 
In this paper, an invariant set that results to a bijective 

invariant map is characterized. Also, it is found that some 
weights outside the invariant set will be moved to the 
invariant set. Hence, the invariant set is attracting. 
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