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a  b  s  t  r  a  c  t

Background:  Measles  vaccine  in  early  infancy  followed  by a  dose  at 9  months  of age  protects  against
measles  and enhances  child  survival  through  non-specific  effects.  Little  is known  of immune  responses
in  the  short  or long  term after  booster  doses.
Methods: Infants  were  randomized  to receive  measles  vaccine  at 9 months  of  age  (group  1)  or 4  and  9
months  of  age  (group  2). Both  groups  received  a boost  at 36  months  of age.  T-cell  effector  and  memory
responses  using  IFN-� ELIspot and  cytokine  assays  and  antibody  titres  using  a  haemagglutination-
inhibition  assay  were  compared  at various  times.
Results: Vaccination  at 4 months  of  age  elicited  antibody  and  CD4 T-cell  mediated  immune  responses  .Two
weeks  after  vaccination  at 9 months  of  age  group  2 had  much  higher  antibody  titres  than  group1  infants;
cell-mediated  effector  responses  were  similar.  At  36  months  of  age  group  2  antibody  titres  exceeded
protective  levels  but were  4-fold  lower  than  group  1; effector  and cytokine  responses  were  similar.
Re-vaccination  resulted  in  similar  rapid  and high  antibody  titres  in  both  groups  (median  512);  cellular
immunity  changed  little.  At  48  months  of  age  group  2 antibody  concentrations  remained  well  above
protective  levels  though  2-fold  lower  than  group  1;  T-cell  memory  was  readily  detectable  and  similar  in
both  groups.
Conclusions:  An  additional  early  measles  vaccine  given  to  children  at 4 months  of  age  induced  a  pre-
dominant  CD4  T-cell  response  at 9 months  and rapid  development  of  high  antibody  concentrations  after
booster  doses.  However,  antibody  decayed  faster  in  these  children  than  in the  group  given primary  vac-
cination  at  9 months  of  age.  Cellular  responses  after  9 months  were  generally  insignificantly  different.

© 2012 Elsevier Ltd. 

1. Introduction

In Africa the timing of the first dose of measles vaccine at 9
months of age is an uneasy compromise designed to minimize
interference from maternal antibody and to provide protection for
the maximum number of infants [1]. Unfortunately some children
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of mothers who  have been vaccinated rather than naturally infected
with measles lose maternal antibody long before this age. As vac-
cine coverage has increased more infants have become susceptible
to measles at a younger age [2].

Two strategies have been proposed to overcome this prob-
lem. Recently expensive mass vaccination campaigns have been
deployed to increase coverage and provide an opportunity for two
or more doses of measles vaccine. Thus herd immunity has been
enhanced co-incidentally protecting unimmunized infants [3].

Another strategy is to immunize children twice in infancy. Such
a regimen when used in Guinea–Bissau resulted in high coverage,
high antibody concentrations, excellent protection against measles
[4,5] and enhanced child survival through non-specific effects by

0264-410X/     © 2012 Elsevier Ltd 

. 
doi:10.1016/j.vaccine.2012.01.083

Open access under CC BY license.

Open access under CC BY license.

dx.doi.org/10.1016/j.vaccine.2012.01.083
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
mailto:hcwhittle@yahoo.co.uk
dx.doi.org/10.1016/j.vaccine.2012.01.083
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


2544 J.  Njie-Jobe et al. / Vaccine 30 (2012) 2543– 2550

30% [6]. These studies used the Edmonston-Zagreb (E-Z) strain of
measles vaccine which produces higher antibody concentrations
than other measles vaccines when maternal antibody is present [7]
or when used to boost antibody [8].

Research in the U.S.A. has shown that cell mediated responses to
measles vaccine given to children at 6 months of age were similar
to those in children vaccinated at 9 or 12 months of age but anti-
body responses were diminished by maternal antibody. However 6
months after a boost at 12 months of age protective levels of anti-
body were achieved in 86% of the youngest children while T-cell
proliferative responses changed little in any of the age groups [9].
Vaccine effectiveness of an early two dose schedule during a large
measles epidemic in Florida was 99% [10].

Despite the widespread use of repeated mass measles re-
vaccination in Sub Saharan Africa little is known of the resulting
immune responses, their short term kinetics or their duration in
African children. Thus we compared cell mediated and antibody
responses in Gambian infants at various time points after one or
two doses of measles vaccine and after a booster dose at 3 years of
age.

2. Methods

2.1. Subjects

This study took place in Sukuta, a peri-urban village in The Gam-
bia. The cohort of children, criteria for selection and site have been
described elsewhere [11].

Fig.  1 shows the design of the study, the number of children at
each time point and the various immunological tests undertaken.

The  studies were approved by the local MRC  Scientific Commit-
tee and by the Joint Gambian Government/MRC Ethics Committee.

2.2. Vaccines, vaccine schedules and follow-up

At 4 months of age infants were allocated using random num-
bers to receive either no measles vaccine (group 1) or a standard
dose of E-Z measles vaccine (group 2) consisting of 3700 plaque
forming units (Serum Institute of India, Pune) given intramuscu-
larly in the left upper arm. EPI vaccines including a 3rd dose of
Hepatitis B, DTP and Hib vaccines and a 4th dose of oral polio
vaccine were also given. At 9 months of age in addition to yel-
low fever vaccine given in the other arm group 1 received their
first dose of measles vaccine and group 2 their second dose. At
36 months of age of age both groups received another dose of
measles vaccine. In order to avoid frequent venous bleeds children
were also randomised either to be tested for memory responses
at 9 months of age or effector responses at 9.5 months of age
(details not shown). To assess safety home visits were conducted
thrice in the two  weeks following measles vaccination at 4 and 9
months.

2.3. Laboratory methods

Serology:  Measles haemagglutination-inhibiting (HAI) antibody
which correlates strongly with neutralizing antibody [12] and is
quicker and easier to assay than the plaque reduction neutraliza-
tion assay, was measured by use of Chlorocebus Aethiops red blood
cells (Barbados Primate Research Centre) as previously described
[13]. The sensitivity of the assay was 15.6 mIU/ml and the mini-
mum detection level 31.2 mIU/ml. Results were expressed as log2
units or as reciprocal titres. We  defined the protective level of HAI
measles antibody as a titre of log2 ≥ 3 which equates to 125 mIU
[12].

Ex vivo measles effector cell assays: After separation of blood on
Lymphoprep PBMC were used in the ex vivo interferon-gamma

(IFN-�) ELIspot assay as previously described [14]. The cells were
infected for 2 h with Edmonston (E-D) wild type measles virus or
E-Z measles vaccine virus which had been grown for 3 days on a
culture of Vero cells in RPMI/10% Foetal Calf Serum (R10F). The mul-
tiplicity of infection was  0.1 and 1.0 for the two strains respectively.
The infected cells were then washed and plated in duplicate at 105

cells/well in R10 with 10% AB serum (R10AB, Sigma). Control PBMC
were mock infected with R10F harvested after culture of uninfected
Vero cells for 3 days.

In  addition duplicate wells containing 105 PBMCs were also
stimulated with a pool of overlapping 20-mer measles fusion pep-
tides (NMI Peptides) dissolved in normal saline and 0.4% DMSO
and used at a final concentration of 2 �g/ml in R10AB. Control cells
were incubated in medium containing 0.02% DMSO which was the
same concentration as that in the test wells. Phytohemagglutinin
(5 �g/ml) was  used as a positive control.

Spots were counted using the AID ELIspot plate reader (Autoim-
mune Diagnostika). The mean number of spots in the duplicate
wells of the negative control was  subtracted from the mean spot
count in the positive wells; an assay with a control value of ≥50
spots per well was regarded as invalid.

Measles memory cell assays: As described previously 106 PBMC
were cultured for 10 days in R10AB with 105 UV  irradiated PBMC
infected with measles virus [15] or with pooled measles nucleo-
protein or fusion peptides as described above. Controls consisted
of PBMC mock infected with Vero cell medium and treated in the
same way  as above.

Intracellular cytokine staining (ICS): Following stimulation, cells
were permeabilised and stained for flow cytometry analysis as pre-
viously described [13]. The staining panel used at 9 and 9.5 months
was anti-CD8 FITC, anti-CD4 PE, anti-CD69 PerCP and anti-IFN-�
APC. At 18 months, the panel was  anti-IFN-� FITC, anti-CD4 PE,
anti-CD8 PerCP and anti-IL-2 APC. All antibodies were supplied by
BD Biosciences.

Cytokines in plasma or supernatants: Plasma was frozen at −40◦ C
until assayed using the Bio-Plex 200 Suspension Array system (Bio-
Rad) according to the manufacturer’s instructions.

FOXP3 mRNA expression: RNA was extracted from whole blood
collected in Paxgene tubes (PreAnalytix, QIAGEN) and frozen at
−40◦ C until RNA extracted. RNA was reverse transcribed into
cDNA using 1 �M oligo-dT (Sigma-Genosys) and 10 units of ribonu-
clease inhibitor (Invitrogen). Gene expression was measured by
real time PCR (RT-PCR) using the Corbet Research Rotor gene
6000 with the QuantiTech SYBR Green kit (QIAGEN). The FOXP3
sequences used were: forward primer 5′-ACCTGGAAGAACGCCAT
and reverse primer 5′-TGTTCGTCCATCCTCCTTTC both at a final
concentration of 0.4 �M.  FOXP3 copy numbers were expressed in
relation to human acidic ribosomal protein (HuPO), the house keep-
ing gene.

The standards were prepared as above using blood donated by
an adult and the RT-PCR product pooled and purified using the
QIAquick PCR Purification kit (QIAGEN). The DNA was  then quanti-
fied using the nanodrop and FOXP3 copy numbers calculated using
the Avogadro constant formula.

Statistical analyses: For paired comparisons between two time
points random effects models were used to allow for the cluster-
ing effect of subject. For the antibody responses where there were
7 time points a generalised estimating equation was used with an
exchangeable correlation structure. Responses were appropriately
transformed and in the absence of a suitable transformation the
data was  ranked. All regressions were adjusted for possible con-
founding affects of sex, but due to well balanced groups there was
very little evidence of confounding. Where appropriate, time and
dose group interactions were tested. Significance was measured at
the 5% level and all analyses were performed in Stata 11 (Statacorp)
and figures drawn using Matlab 7.9 (The MathWorks Inc.).



J. Njie-Jobe et al. / Vaccine 30 (2012) 2543– 2550 2545

Fig. 1. The design of the study, the number of children vaccinated and bled at each time point and the immunological tests undertaken are shown in this figure.

3. Results

3.1. Recruitment and participation

The  number of participants and their loss to the study at dif-
ferent time points are shown in Fig. 1. The overall refusal rate was
11.5%, loss to follow up due to the participant travelling was 17.4%
and 3.8% of the children received an unscheduled measles vaccine.

3.2. Safety

The two dose regimen was safe since side effects were mild
and infrequent. They did not differ in frequency or timing between
group 1 and group 2 either at 4 months of age or at 9 months of
age. The most frequent complaints were diarrhoea and fever with
a mean prevalence of 7.9 ± 2.4% and 6.6 ± 2.7% respectively.

3.3.  Measles and other antibody

Before  vaccination at 4 months of age median HAI titres were
log2 2 (IQR 0–3) and log2 3 (IQR 1–4) in groups 1 and 2 respectively
(Fig. 2 and Supplementary Table). At 9 months before the second

measles  vaccination the median HAI titre in group 2 was  log2 3
(IQR 1–6) which is significantly higher than that of group 1 which
was zero; 77% of group 2 children had detectable antibody and 66%
had protective levels whereas antibody was  detected in only 6% of
group 1 children. Two weeks after the second dose of E-Z vaccine
antibody titres had risen sharply in group 2 with all but one child
reaching protective levels whereas only 25/65 (36.4%) of group1
children attained these levels after their first measles vaccination.

At  18 months of age antibody titres in group 2 (median 4, IQR
3–5) fell significantly lower than those in group 1 (median 6, IQR
5–7) but then stabilised between 18 and 36 months. Both groups
responded sharply to booster vaccination reaching equivalent and
high concentrations (median titre 9, IQR 8–10). At 48 months of
age antibody titres had dropped fourfold in group 1 (median 7,
IQR 6–8) and eightfold in group 2 (median 6, IQR  5–6) although
all subjects had protective levels of antibody. Responses did not
vary significantly by sex.

In  group 2 pre-vaccination antibody titres at 4 months were neg-
atively and significantly correlated with titres at 9 and 18 months.
Antibody titres at 18 and 36 months were positively and signif-
icantly correlated with those at 36 and 48 months respectively
(Table 1).
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Fig. 2. Measles haemaglutination-inhibiting antibody titres at various time points during the study. p-Values for differences between the groups are shown.

Hepatitis B and Tetanus antibody measured at 18 months of
age did not differ significantly between the two groups (data not
shown).

3.4. Effector cell IFN-� responses to measles or measles peptides

Table  2 shows the net number of IFN-� ELI spots at different
times of the study. At no time did the median numbers differ signifi-
cantly between the groups nor was there a significant rise following
a booster dose of the vaccine. However there was a significant fall
in both groups between 36 and 48 months of age (p < 0.0001 in both
cases).

Responses to pooled fusion peptides were low but rose signifi-
cantly following the booster dose of measles vaccine at 36 months
of age (p = 0.001 and p < 0.001 for group 1 and 2 respectively).

There was  no significant correlation between antibody titres and
effector responses to either virus or peptides at any time point (data
not shown). Effector responses did not vary significantly by sex.

3.5. Measles-specific memory-cell responses

Table 3 shows the net IFN-� ELIspot responses after 10 days
of stimulation of PBMC with measles virus or pooled measles pep-
tides. At 9 months of age responses of unvaccinated children (group
1) to pooled NP peptides were significantly lower than those in
group 2 who  had received E-Z vaccine at 4 months of age (p = 0.002).
Thereafter there were no significant differences in cultured mem-
ory responses to the virus or peptides at 18 or 48 months of age.
At no point did memory ELIspot responses correlate with measles
antibody titres (data not shown) nor did they vary by sex.

Table 1
Correlation of pre and post vaccination HAI titres in group 2.

Age (months) 9 9.5 18 36 36.5 48

4 r −0.48 −0.45 −0.40 −0.06 0.20 −0.18
p 0.0002 0.021 0.0023 0.65 0.18 0.25
n 56 26 56 52 47 42

9 r  0.48 0.29 0.24 0.19 0.40
p 0.01 0.04 0.09 0.22 0.0085
n 26 53 49 45 42

9.5  r 0.26 −0.01 0.28 −0.04
p 0.19 0.97 0.17 0.87
n 27 27 25 23

18  r 0.67 −0.18 0.56
p <0.0001 0.217 0.0001
n 54 49 45

36  r −0.0003 0.63
p 0.99 <0.0001
n 51 46

36.5  r 0.03
p 0.84
n 44

r, spearman correlation; p, p-value; n, number of subject pairs.
Highlighted  p-values are those significant after correction for multiplicity.
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Table 2
IFN-�  ELIspot effector responses (expressed as net SFU per 106 PBMC) in the two groups at various ages.

Age (months) Stimulus Group 1 Group 2

Median
(1QR)
n

Median
(1QR)
n

9.5 E-D virus 85 (25–310)
24

35  (10-130)
30

36  E-Z virus 145 (90–255)
48

130  (73–275)
55

36.5  E-Z virus 150 (160–220)
46

120  (70–250)
46

48 E-Z  virus 20  (10–30)
43

20  (10–40)
44

36  Fusion peptides 0 (0–10)
51

0  (0–20)
53

36.5  Fusion peptides 10 (10–80)
47

10  (0–50)
46

48  Fusion peptides 10 (10–20)
43

10  (0–20)
45

3.6. Plasma cytokines

Levels  of IL-10, lL-2R�, IFN-� and MIP-1� in plasma were mea-
sured before and two weeks after the booster dose of E-Z vaccine at
36 months of age (Table 4). In the case of IL-2, IL-5, IL-13 and IL-12
p40 levels were generally undetectable and data were not analysed.
There were no significant differences between the groups at either
of the time points nor did they vary by sex. The booster vaccination
resulted in a significant fall in IL-10, IL-2R� and  MIP-1� levels  in
both groups (p < 0.001).

3.7. FOXP3 expression

There  were no significant differences in FOX P3 expression (nor-
malized against HUPO) between the groups or within the groups
before or two  weeks after the booster vaccination at 36 months of
age. Before the boost median levels were 19.0 (IQR 3.7–39.0) and
23.6 (IQR 6.5–48.9) copies per mL  for group 1 (n = 37) and group 2
(n = 39) subjects respectively. Two weeks afterwards median levels
were 9.3 (IQR 2.8–26.6) and 20.4 (IQR 6.2–38.7) copies per ml  for
groups 1 and 2 respectively.

3.8.  Flow cytometry for cytokine producing T-cells

Percentages of CD8 or CD4 T-cells expressing IFN-�, CD69 or
both markers in negative control cultures were subtracted from

those  in stimulated cultures. A net value of >0.1% was considered
positive (Table 5).

Memory  cell assay at 9 months: Only samples from group 2 infants
were tested. In the majority of samples IFN-� and CD69 responses
to the nucleoprotein peptide pool were detectable in CD4 but not
in CD8 T-cells.

Effector cell assay at 9.5 months of age: A similar but low propor-
tion of CD4 and CD8 T-cells from the two  groups showed a positive
IFN-� response after stimulation with E-D virus. There was  concur-
rence of CD4 and CD8 IFN-� responses in 6 of 7 samples. Expression
of CD69 was detected more often in CD8 than CD4 T-cells.

Memory cell assay at 18 months: After stimulation with EZ virus
IL-2 expression was detectable in less than half of the samples
and very few expressed IFN-�. There were no significant differ-
ences between cell types and little concurrence within the positive
samples.

4. Discussion

Measles antibody protects against infection but its role in lim-
iting viral multiplication and severity of disease is less clear [16].
Although an arbitrary protective level of measles antibody has been
ascribed, in an outbreak of measles in Senegal half of the anti-
body negative vaccinated children did not develop measles when
exposed [12]. In vaccinated macaques a rapid amnestic antibody
response follows measles infection which coupled with a boost in

Table 3
IFN-�  memory responses (expressed as net SFU per 106 PBMC) in the two groups at various times of the study.

Age (months) Stimulus Group 1 Group 2

Median (1QR)
n

Median  (1QR)
n

9 NP peptides 80 (10–600)
20

540
(150–1475)
29

18  E-Z virus 1260
(545–2145)
27

1395
(510–1915)
32

18  NP peptides 740
(175–1775)
32

260  (58–1115)
37

48  E-Z virus 500 (65–1437)
35

810
(365–1518)
33

48  Fusion peptide 870
(332–1402)
35

1045
(535–2150)
32
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Table  4
Cytokine levels (pg/mL) pre and post a booster dose of E-Z measles vaccine at 36 months of age.

Cytokine Time Group Median Lower quartile Upper quartile n

IFN� Pre 1 60.2 0 102.0 50
Post 1 26.1 0 63.1 50
Pre 2 31.8 0 172.6 55
Post 2 38.1 0 85.8 55

IL-10 Pre 1 0.9 0.2 2.0 50
Post 1 0 0 0.8 50
Pre 2 0.7 0 1.7 55
Post 2 0 0 0.5 55

IL-2R� Pre 1 207.5 94.8 331.3 50
Post 1 64.2 38.5 115.6 50
Pre 2 175.1 0 380.7 55
Post 2 55.2 21.8 85.5 55

MIP-1�  Pre 1 10.7 4.5 18.2 50
Post 1 3.7 0 11.3 50
Pre 2 10.8 0 21.6 55
Post 2 5.1 0 12.0 55

cell mediated immunity limits viral replication and aborts disease
[17]. With the assumption that a booster dose of vaccine mimics
infection or exposure, we examined both antibody and cell medi-
ated responses shortly after re-vaccination.

Our study is the first to provide detailed knowledge of the early
antibody response to a booster dose of measles vaccine following
either vaccine schedule. A standard dose of E-Z vaccine in 4 month
old infants raised protective levels of antibody in the majority of
the children by 9 months of age. After either one or two  booster
doses of vaccine antibody concentrations rose dramatically within
2 weeks and faded slowly with time. Maternal antibody, possibly by
neutralising the live vaccine and altering antigen processing [18],
depressed both primary and secondary antibody responses. The
impact faded by 36 months of age and did not influence responses
to further vaccination. The booster responses were independent of
antibody at the time of vaccination suggesting that even if antibody
concentrations are low a rapid response in conjunction with cellu-
lar immune responses will limit disease and lower transmission
on subsequent measles exposure [19]. However concentrations of
antibody following a boost decayed quicker in group 2 children.

They  may  be more susceptible to subclinical infections [20] though
this event is unlikely to result in the further spread of measles [21].

CD8 T-cells are necessary to control measles viraemia [16] and
the role and importance of cytotoxic T-cell responses, cellular
proliferative responses and cytokine responses during and after
measles or primary vaccination have been thoroughly described
[15,22,23]. However, very little is known of these responses shortly
after booster vaccination or natural exposure in immunized chil-
dren.

Early measles vaccination primed IFN-� memory T-cell
responses to nucleoprotein peptides which were significantly
greater at 9 months of age in immunized than unimmunized
infants. However some of the unimmunized infants in group 1
had responded to these peptides suggesting that common infec-
tions such as cytomegalovirus or Epstein-Barr virus prompt such
responses [24]. At 18 and 48 months of age IFN-� memory
responses were readily detectable and similar in the two groups of
children. Maternal antibody had no effect on these responses nor
were they influenced by the number of times the child had been
immunized.

Table 5
Numbers and percentages of individuals with responses to measles detectable by flow cytometry. Statistics based on comparison between expression of markers by CD4 and
CD8  T-cells, based on Fisher’s exact probability test.

Age
(months)

Assay Received 4
month  vaccine

Markers CD8 T-cells CD4 T-cells p

Undetectable Detectable % detectable Undetectable Detectable % detectable

9 Memory response 10
days  measles peptide

Yes IFN� 9 2 18 1 10 91 0.002
CD69  9 2 18 2 9 82 0.009
CD69  + IFN� 9 2 18 4 7 64 NS

9.5 Effector response 18 h
E-D measles virus
stimulation

Yes IFN� 14 4 22 14 4 22 NS
CD69  12 6 33 17 1 6 NS
CD69  + IFN� 16 2 11 17 1 6 NS

No IFN� 13 3 19 13 3 19 NS
CD69  13 3 19 14 2 13 NS
CD69  + IFN� 14 2 13 15 1 6 NS

Combined IFN� 27 7 21 27 7 21 NS
CD69  25 9 26 31 3 9 NS
CD69  + IFN� 30 4 12 32 2 6 NS

18 Memory response 10
days  E-Z measles virus
stimulation

Yes IFN� 6 1 14 6 1 14 NS
IL-2  5 2 29 6 1 14 NS
IFN�  + IL-2 7 0 0 7 0 0 NS

No IFN� 8 0 0 7 1 13 NS
IL-2  5 3 38 5 3 38 NS
IFN� +  IL-2 8 0 0 8 0 0 NS

Combined IFN� 14 1 7 13 2 13 NS
IL-2  10 5 33 11 4 27 NS
IFN� +  IL-2 15 0 0 15 0 0 NS
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Surprisingly ex vivo measles IFN-� effector responses two weeks
after vaccination did not differ between those receiving primary
vaccination (group 1) or secondary vaccination (group 2). After a
further boost at 36 months of age effector responses to E-Z virus
were similar in both groups and in neither group was  there a rise
after the boost. However there was a small but significant rise to
fusion peptides which did not differ between the groups.

Prime  boost studies using recombinant Modified Vaccinia
Ankara/TB vaccines in man  [25] and DNA/measles vaccines in mon-
keys [17] indicate that maximum IFN-� ELIspot responses occur
1–2 weeks after the booster immunization. Thus we  are confi-
dent that the lack of a response after the booster doses was  real
and not due to late sampling. However macaques primed with
DNA/measles protein vaccines raise cytotoxic T-cell, IFN-� and
antibody responses within 14 days of challenge with live virus
[17,26]. Perhaps in our study the attenuated vaccine virus did not
multiply sufficiently in the presence of antibody to raise a cell medi-
ated immune response.

There  were no significant differences in plasma cytokine lev-
els between the groups before or after the 36 month booster dose
which resulted in a significant fall in IL-10, IL-2R� and MIP-1� con-
centrations in both groups after the boost. This was  not mirrored
by changes in FOXP3 mRNA expression which were expected to
increase [27].

We  found no relationship between maternal or vaccine derived
measles antibody concentrations and IFN-� ELIspot numbers or
cytokine levels after primary or secondary immunization. Similar
findings have been noted following primary measles immunization
in infants [23] or after secondary immunization in children [28] or
after measles in children [29].

Intracellular cytokine staining showed that CD4 and CD8 T-cells
were equally prominent producers of IFN-� during the effector
response and that both cell types a produced IL-2 in memory
responses. The memory response at 9 months of age following early
vaccination consisted predominantly of CD4 T-cells. The finding fits
with the idea that a Th-1 type response is predominant following
vaccination [28] but contrasts with previous studies of cytotoxic
T-cell activity during measles or after vaccination which reveal this
response to be mainly due to CD8 T-cells [30]. Stimulation with 20-
mer  rather than shorter peptides may  have favoured a CD4 T-cell
response particularly in very young children.

Early two  dose schedules of measles vaccine given at 6 and 9
months of age were recommended by WHO  to control outbreaks
and for use in countries with high attack rates of measles in infancy.
Now WHO  recommends such schedules in areas with a high inci-
dence of HIV and measles [31]. However once measles is controlled
in endemic areas the proportion of vaccinated mothers who have
low levels of measles antibody will increase along with the pro-
portion of unprotected infants. At present such children can only
be protected by raising herd protection by supplemental measles
vaccinations. Others have argued that if measles is to be eliminated
and ultimately eradicated it would be better to strengthen routine
services to achieve high coverage before deploying mass immu-
nization [32,33]. An early two dose schedule would fit well into
this scheme: it protects the very young [5] and the HIV infected
[34], increases coverage [4] and enhances child survival [6]. Addi-
tional doses could be given if outbreaks occur or if measles is to be
eliminated or eradicated.
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