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ABSTRACT

Block Coordinate Descent for Regularized Multi-convex Optimization

by

Yangyang Xu

This thesis considers regularized block multi-convex optimization, where the fea-

sible set and objective function are generally non-convex but convex in each block

of variables. I review some of its interesting examples and propose a generalized

block coordinate descent (BCD) method. The generalized BCD uses three differ-

ent block-update schemes. Based on the property of one block subproblem, one can

freely choose one of the three schemes to update the corresponding block of variables.

Appropriate choices of block-update schemes can often speed up the algorithm and

greatly save computing time. Under certain conditions, I show that any limit point

satisfies the Nash equilibrium conditions. Furthermore, I establish its global conver-

gence and estimate its asymptotic convergence rate by assuming a property based

on the Kurdyka- Lojasiewicz inequality. As a consequence, this thesis gives a global

linear convergence result of cyclic block coordinate descent for strongly convex opti-

mization. The proposed algorithms are adapted for factorizing nonnegative matrices

and tensors, as well as completing them from their incomplete observations. The al-

gorithms were tested on synthetic data, hyperspectral data, as well as image sets from

the CBCL, ORL and Swimmer databases. Compared to the existing state-of-the-art

algorithms, the proposed algorithms demonstrate superior performance in both speed

and solution quality.
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Chapter 1

Introduction

One type of optimization problem that arises in many applications has the following

two properties: (i) its objective can be written as a sum of a smooth function and

a (non-smooth) separable function; (ii) its variables can be partitioned into a few

disjoint blocks, and the objective can be jointly non-convex but convex with respect

to each block of variables while all the others are fixed. One particular example is

dictionary learning with `1-regularizer [60]

min
D,Θ

1

2
‖DΘ−X‖2

F + λ‖Θ‖1, subject to D ∈ D, (1.1)

where D = {D : ‖dj‖ ≤ 1, j = 1, . . . , K} is used to control the scale of D, dj denotes

the jth column of D and ‖Θ‖1 =
∑

i,j |θij|. Using indicator function

δD(D) =


0 if D ∈ D

∞ otherwise

one can write (1.1) as

min
D,Θ

1

2
‖DΘ−X‖2

F + λ‖Θ‖1 + δD(D), (1.2)

whose objective is a sum of the smooth term 1
2
‖DΘ−X‖2

F and non-smooth separable

function λ‖Θ‖1 +δD(D). The variables of (1.2) can be automatically partitioned into
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two blocks: D and Θ. The objective is jointly non-convex since the product DΘ

couples D and Θ together. However, it is convex with respect to each one of the two

blocks while the other is fixed.

For some of these problems, computing the gradient of the objective over all

variables can be very expensive such as the tensor decomposition [44]

min
A1,··· ,AN

1

2
‖M−A1 ◦A2 ◦ · · · ◦AN‖2

F , (1.3)

or even impossible due to the existence of non-smooth terms such as in (1.1). There-

fore, direct gradient descent is not a suitable choice to solve these problems. Tra-

ditional second-order methods such as interior point method or Newton’s method

are not good choices either due to non-smoothness. One popular and often efficient

method for solving these problems is the alternating minimization method, which al-

ternatively updates each block of variables by minimizing the objective with respect

to one block at a time while all the others are fixed. For example, it is applied in [18]

to tensor decomposition (1.3) by cyclically updating the factor matrices A1, · · · ,AN

via

Ak
n = argmin

An

1

2
‖M−Ak

1 ◦ · · · ◦Ak
n−1 ◦An ◦Ak−1

n+1 ◦ · · · ◦Ak−1
N ‖

2
F ,∀n. (1.4)

Each subproblem in (1.4) can be written into a convex quadratic programming by

the property of tensor-matrix multiplication (see Section 3.1) and has a closed form

solution. Alternating minimization has also been applied in [72] to group Lasso

regularized problem (see (1.8) below), [88] to low-rank matrix recovery (see (1.12)

below), and [33] to nonnegative matrix factorization (see (1.11) below).
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Alternating minimization is favorable for these problems because it is usually

difficult to update all variables simultaneously but relatively easy to update one block

at a time. This method can be generalized to block coordinate descent (BCD) method,

which also updates the variables block by block. Unlike its name would indicate,

BCD does not have to decrease the objective during the update of each block. It

is really a method by block-coordinate update. There are flexible ways to carry out

the block update, by minimizing either the original objective or a relaxed version of

the objective with respect to one block at a time with all others fixed. For some

applications, minimizing a relaxed problem at each iteration can make overall better

performance than minimizing the original one. For example, it was observed in [62]

that alternating minimization (1.4) for tensor decomposition may cause a so-called

swamp effect, which means the convergence rate dramatically slows down within

exceedingly high number of iterations. However, the swamp effect can be reduced if

the objective plus a proximal term is minimized at each iteration, namely,

Ak
n = argmin

An

1

2
‖M−Ak

1 ◦ · · · ◦An ◦ · · · ◦Ak−1
N ‖

2
F +

µk
2
‖An −Ak−1

n ‖2
F ,∀n. (1.5)

Each subproblem in (1.5) can also be written as a convex quadratic programming

and has a closed form solution. In addition, for some applications, it may be difficult

to solve block subproblems. For example, if we consider nonnegative tensor decom-

position, namely, nonnegativity is enforced in (1.3), then both (1.4) and (1.5) with

additional constraints An ≥ 0 are not easy to solve. However, it will become easy if
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the first term in (1.5) is locally linearized, namely,

Ak
n = argmin

An≥0
〈Gk

n,An −Ak
n〉+

µk
2
‖An −Ak−1

n ‖2
F ,∀n, (1.6)

where Gk
n is the partial gradient about An of the first term in (1.5) at Ak

n. Each

subproblem in (1.6) has a closed form solution. This kind of block-update scheme is

new and can be more efficient than alternating minimization as shown later in this

thesis for nonnegative tensor decomposition.

BCD has been applied to both convex and non-convex problems. It is relatively

easy to establish global convergence for BCD applied to convex smooth optimization.

For non-convex smooth problems, only subsequence convergence results have been

established for special cases such as [58] considering quadratic functions and [30]

assuming strict quasiconvexity of each block subproblem. The global convergence

of BCD for non-convex optimization is still an open problem. Non-smoothness also

makes it difficult to establish the convergence of BCD even for convex problems (see

the review in Section 1.4). This thesis will give a global convergence result of BCD

for a special class of non-convex optimization problems which may have non-smooth

terms in the objective.

The rest of this chapter first gives a mathematical description of the considered

problem and then overviews some interesting examples which arise in applications.

These examples are the motivation of my work in this thesis. After that, BCD is for-

mally described, and the existing results of BCD are overviewed. Global convergence

analysis and practical performance of BCD will be given in subsequent chapters.
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1.1 Problem description

Before describing the problem, let me give a key related definition.

Definition 1.1 (Block multi-convexity)

A set X ⊂ Rn is called block multi-convex under the partition: x = (x1, · · · ,xs) ∈ X

if the projection of X to each block of components is convex, namely, for each i and

fixed (s− 1) blocks x1, · · · ,xi−1,xi+1, · · · ,xs, the set

Xi(x1, · · · ,xi−1,xi+1, · · · ,xs) , {xi ∈ Rni : (x1, · · · ,xi−1,xi,xi+1, · · · ,xs) ∈ X}

is convex. A function f(x) is called block multi-convex if for each i, f(x) is a convex

function of xi while all the other blocks are fixed.

In this thesis, I consider the regularized multiconvex optimization problem

min
x∈X

F (x1, · · · ,xs) ≡ f(x1, · · · ,xs) +
s∑
i=1

ri(xi), (1.7)

where variable x is decomposed into s disjoint blocks x1, · · · ,xs, the set X of feasible

points is assumed to be a closed and block multi-convex subset of Rn, f is assumed

to be a differentiable and block multi-convex function, and regularization terms ri,

i = 1, · · · , s, are extended-valued convex functions. The set X and function f can be

non-convex over x = (x1, · · · ,xs). However, when all but one blocks are fixed, (1.7)

over the free block is a convex problem.

Extended valued means ri(xi) is valued on R ∪ {∞}. In particular, ri (or a

part of it) can be an indicator function of convex sets, so ri can include individual

constraints on xi. I use x ∈ X to model joint constraints and r1, . . . , rs to include
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individual constraints of x1, · · · ,xs, respectively, when they are present. In addition,

ri can include non-smooth functions such as `1-norm ‖xi‖1 and `2-norm ‖xi‖, which

often give some structures on the solution.

1.2 Motivation by applications

A large number of practical problems can be formulated in the form of (1.7) includ-

ing both convex and non-convex problems. One convex example arising in signal

processing is the basis pursuit (denoising) [19] or more generally, sparse group Lasso

[80, 91]

min
x

1

2
‖Ax− b‖2 + λ1

s∑
i=1

‖xi‖+ λ2‖x‖1, (1.8)

where x has been partitioned into s disjoint blocks: x = (x1, . . . ,xs). Another

example arising in machine learning is the multi-class logistic regression [27, 12]

min
W
− 1

n

n∑
i=1

[
m∑
j=1

yij(w
>
j xi)− log

(
m∑
j=1

exp(w>j xi)

)]
+ λ‖W‖2

F ,

where yij = 1 if data point xi belongs to class j and yij = 0 otherwise, and wj is the

jth column of W.

There are also many non-convex examples such as sparse dictionary learning (1.1)

and the ones overviewed below. The work in this thesis is timely and mainly motivated

by these non-convex problems.
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1.2.1 Blind source separation

Let s1, . . . , sn ∈ R1×p be a set of source signals. Given m sensor signals xi =∑n
j=1 aijsj + ηi, i = 1, · · · ,m, where A = [aij]m×n ∈ Rm×n is an unknown mixing

matrix and ηi is noise, blind source separation (BSS) [36] aims to estimate both A

and S = [s>1 , . . . , s
>
n ]>. It has found applications in many areas such as artifact re-

moval [35] and image processing [37]. Two classical approaches for BSS are principle

component analysis (PCA) [78] and independent component analysis (ICA) [22]. If

m < n and no prior information on A and S is given, these methods will fail. As-

suming s1, · · · , sn are sparse under some dictionary B ∈ RT×p, namely, si = yiB and

yi ∈ R1×T is sparse for i = 1, . . . , n, [96, 15] use the sparse BSS model

min
A,Y

λ

2
‖AYB−X‖2

F + r(Y), subject to A ∈ D (1.9)

where Y = [y>1 , · · · ,y>n ]> ∈ Rn×T , r(Y) is a sparsity regularizer such as r(Y) =

‖Y‖1, D is a convex set to control the scale of A such as ‖A‖F ≤ 1, and λ is

a balancing parameter. Note that model (1.9) is block multi-convex in A and Y

each but jointly non-convex. The block constraint A ∈ D can be included into the

objective by adding the indicator function δD(A). A similar model appears in cosmic

microwave background analysis [13] which solves

min
A,Y

λ

2
trace

(
(AYB−X)>C−1(AYB−X)

)
+ r(Y), subject to A ∈ D (1.10)

for a certain covariance matrix C. Algorithms for (sparse) BSS include online learning

algorithm [1], feature extraction method [52], feature sign algorithm [49], and so on.
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1.2.2 Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) was first proposed by Paatero and his cowork-

ers in the area of environmental science [67]. The later popularity of NMF can be

partially attributed to the publication of [47] in Nature. It has been widely applied

in data mining such as text mining [69] and image mining [50], dimension reduction

and clustering [20, 89], hyperspectral endmember extraction, as well as spectral data

analysis [68]. A widely used model for (regularized) NMF is

min
X,Y

1

2
‖XY −M‖2

F + r1(X) + r2(Y), subject to X ∈ Rm×r
+ ,Y ∈ Rr×n

+ (1.11)

where M ∈ Rm×n
+ is the input nonnegative matrix, r1, r2 are some regularizers pro-

moting solution structures, and

Rm×n
+ , {A ∈ Rm×n : aij ≥ 0,∀i, j}.

The block constraints X ∈ Rm×r
+ and Y ∈ Rr×n

+ can be respectively incorporated into

the regularization terms r1 and r2 using r̂1 = r1 + δRm×r+
and r̂2 = r2 + δRr×n+

. The new

regularizers r̂1 and r̂2 both include block constraint and another (non-smooth) term.

Two early popular algorithms for NMF are the projected alternating least squares

method [67] and multiplicative updating method [48]. Due to the bi-convexity (multi-

convexity under two-block partition) of the objective in (1.11), a series of alternating

nonnegative least square (ANLS) methods (alternating minimization) have been pro-

posed such as in [51, 39, 41] to solve (1.11). Recently, the classic alternating direction

method (ADM) [29, 28] has been applied in [95] to (1.11).
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1.2.3 Low-rank matrix recovery

Similar models of (1.11) also arise in low-rank matrix recovery, such as the one con-

sidered in [73]

min
X,Y

1

2
‖A(XY)− b‖2 + α‖X‖2

F + β‖Y‖2
F , (1.12)

where A is a linear operator. A particularly interesting case is the matrix completion

problem, where A is the sampling operator PΩ defined by

(PΩ(Z))ij =


zij, if (i, j) ∈ Ω,

0, otherwise.

A special application of this problem is the famous Netflix problem, which aims to

complete users’ ratings to all movies from their highly incomplete ratings. Methods

for solving (1.12) include augmented Lagrangian method [73], stochastic gradient

method [74], and nonlinear succesive over-relaxation (SOR) method [88].

1.2.4 Nonnegative tensor factorization

Nonnegative tensor factorization (NTF) is a generalization of NMF to multi-way

arrays. It has been applied in a variety of areas including computer vision [79],

hyperspectral analysis [94] and feature selection [9]. One commonly used model for

NTF is based on CANDECOMP/PARAFAC tensor decomposition [87]

min
A1,··· ,AN≥0

1

2
‖M−A1 ◦A2 ◦ · · · ◦AN‖2

F +
N∑
n=1

rn(An); (1.13)
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and another one is based on Tucker decomposition [43]

min
G,A1,··· ,AN≥0

1

2
‖M− G ×1 A1 ×2 A2 · · · ×N AN‖2

F + r(G) +
N∑
n=1

rn(An), (1.14)

where M is a given nonnegative tensor, r, r1, · · · , rN are regularizers, and “◦” and

“×n” represent outer product and tensor-matrix multiplication, respectively. The

necessary background of tensor will be reviewed in Chapter 3. Using a similar ap-

proach as in Section 1.2.2, one can incorporate each block constraint Ai ≥ 0 into its

corresponding regularization term ri.

Most algorithms for solving NMF have been directly extended to NTF. For exam-

ple, the multiplicative update in [67] is extended to solving (1.13) in [79]. The ANLS

methods in [39, 41] are extended to solving (1.13) in [40, 42]. Algorithms for solving

(1.14) include the column-wise coordinate descent method [53] and the alternating

least square method [26]. More about NTF algorithms can be found in [93].

1.3 Method description

For convex optimization, we have a rich set of tools, which own both nice numerical

performance and theoretical results. However, very few works have established strong

theoretical guarantees for non-convex optimization. Though the methods mentioned

in last section are practically efficient for solving the overviewed non-convex examples,

to the best of my knowledge, none of them have been shown to globally converge.

This motivates me to make an efficient algorithm with global convergence for solving

problems in the form of (1.7).
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1.3.1 Block coordinate descent with different block updates

Generally, it is difficult to update all the blocks of variables in (1.7) simultaneously but

usually easy to do so block by block. My main interest is the block coordinate descent

(BCD) method of the Gauss-Seidel type, which minimizes F or its relaxation cyclically

over each of x1, · · · ,xs while fixing the remaining blocks at their last updated values.

Let xki denote the value of xi after its kth update, and

fki (xi) , f(xk1, · · · ,xki−1,xi,x
k−1
i+1 , · · · ,xk−1

s ), for all i and k. (1.15)

Within each cycle, for i = 1, . . . , s, xi is updated by one of the next three schemes

Block minimization: xki = argmin
xi∈Xki

fki (xi) + ri(xi), (1.16a)

Block proximal: xki = argmin
xi∈Xki

fki (xi) +
Lk−1
i

2
‖xi − xk−1

i ‖2 + ri(xi), (1.16b)

Block prox-linear: xki = argmin
xi∈Xki

〈ĝki ,xi − x̂k−1
i 〉+

Lk−1
i

2
‖xi − x̂k−1

i ‖2 + ri(xi),

(1.16c)

where Lk−1
i > 0 is some parameter, X k

i , Xi(xk1, · · · ,xki−1,x
k−1
i+1 , · · · ,xk−1

s ) and in the

last type of update (1.16c),

x̂k−1
i = xk−1

i + ωk−1
i (xk−1

i − xk−2
i ) (1.17)

denotes an extrapolated point, ωk−1
i ≥ 0 is the extrapolation weight, ĝki = ∇fki (x̂k−1

i )

is the block-partial gradient of f at x̂k−1
i . I consider extrapolation (1.17) for update

(1.16c) since it can significantly accelerate the convergence of BCD in the applica-

tions; see numerical results in Chapter 4. However, the extrapolation can make the
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whole objective increasing and cause numerical instability. Hence, the kth itera-

tion is repeated one time with ωk−1
i = 0 for all blocks updated by (1.16c) whenever

F (xk) ≥ F (xk−1). As long as xk 6= xk−1, the algorithm makes F (xk) < F (xk−1). The

framework of BCD is given in Algorithm 1.

Algorithm 1 Block coordinate descent method for solving (1.7)

Initialization: choose initial points (x−1
1 , · · · ,x−1

s ) = (x0
1, · · · ,x0

s)

for k = 1, 2, · · · do
for i = 1, 2, · · · , s do

xki ← (1.16a), (1.16b), or (1.16c).

end for

if stopping criterion is satisfied then

return (xk1, · · · ,xks).
end if

if F (xk) ≥ F (xk−1) then

Re-update xk with ωk−1
i = 0 for every block i updated by (1.16c).

end if

end for

Since X and f are block multi-convex, all three subproblems in (1.16) are convex.

In general, the three updates generate different sequences and can thus cause BCD to

converge to different solutions. I found in many tests, applying (1.16c) on all or some

blocks gives solutions of lower objective values, for a possible reason that its local

prox-linear approximation helps avoid the small regions around certain local minima.

In addition, it is generally more time consuming to compute (1.16a) and (1.16b) than

(1.16c) though each time the former two tend to make larger objective decreases than

applying (1.16c) without extrapolation.

There are examples of ri that make (1.16c) easier to compute than (1.16a) and
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(1.16b). For instance, if ri = δDi the indicator function of convex set Di (equivalent

to xi ∈ Di), (1.16c) reduces to

xki = PXki ∩Di
(
x̂k−1
i − ĝk−1

i /Lk−1
i

)
, (1.18)

where PXki ∩Di is the project to set X k
i ∩Di. If ri(xi) = λi‖xi‖1 and X k

i = Rni , (1.16c)

reduces to

xki = SLk−1
i /λi

(
x̂k−1
i − ĝk−1

i /Lk−1
i

)
, (1.19)

where Sν(·) is soft-thresholding defined component-wise as Sν(t) = sign(t) max(|t| −

ν, 0). More examples arise in joint/group `1 and nuclear norm minimization, total

variation, etc.

1.3.2 Why use different block updates

I consider all of the three updates since they fit different applications, and also differ-

ent blocks in the same application, yet their convergence can be analyzed in a unified

framework. For example, it may be better to apply BCD with (1.16a) to low-rank ma-

trix recovery (1.12), whereas BCD with (1.16c) can be more suitable for nonnegative

matrix factorization (1.11). For sparse dictionary learning (1.1), (1.16a) or (1.16b)

may be better for D-subproblem, while (1.16c) seems better for Θ-subproblem.

To ensure the convergence of Algorithm 1, for every block i to which (1.16a) is

applied, I will require fki (xi) to be strongly convex, and for every block i to which

(1.16c) is applied, I will require ∇fki (xi) to be Lipschitz continuous. The parameter

Lki in both (1.16b) and (1.16c) can be fixed for all k. For generality and faster
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convergence, it is allowed to change during the iterations. Use of (1.16b) only requires

Lki to be uniformly lower bounded from zero and uniformly upper bounded. In fact,

fki in (1.16b) can be nonconvex, and my proofs still go through. (1.16b) is a good

replacement of (1.16a) if fki is not strongly convex. Use of (1.16c) requires more

conditions on Lki ; see Lemmas 2.2 and 2.3. (1.16c) is relatively easy to solve and

often allows closed form solutions such as in the cases of (1.18) and (1.19). For block

i, (1.16c) is prefered over (1.16a) and (1.16b) when the latter two are expensive to

solve and fki has Lipschitz continuous gradient. Overall, the three choices cover a

large number of cases.

1.4 Overview of existing results

In the literature of BCD, the first two block-update schemes in (1.16) have been

widely used and extensively studied, and the third one (1.16c) is quite new and has

been used in some very recent works for solving convex problems.

1.4.1 Block minimization scheme

Block minimization (1.16a) is the most-used form in the literature of BCD and has

been extensively studied. BCD with block minimization is exactly the alternating

minimization method. It is closely related to the Gauss-Seidel or SOR methods in

[66] for solving equation systems. It has a long history dating back to 1950s [32],

which considers strongly concave quadratic programming. Convergence of alternat-
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ing minimization typically requires F to be convex (or pseudoconvex or hemivariate)

differentiable and have bounded level sets [86, 92, 4, 70]. With these nice properties,

alternating minimization was shown to make the objective converge to optimal value.

If F is further assumed to be strictly convex, the iterates themselves will converge

to the unique solution [57]. When F is non-convex, alternating minimization may

cycle and stagnate [71]. However, subsequence convergence can be obtained for spe-

cial cases such as quadratic function [58], strict quasi-convexity in each of the first

(s − 2) blocks [30], unique minimizer per block [56]. If F is non-differentiable, al-

ternating minimization can get stuck at a non-stationary point even if F is convex;

see p.94 of [4]. Hence, alternating minimization was generally regarded unsuitable

for non-smooth optimization. Nevertheless, if the non-differentiable part is separable

such as in the form of (1.7), subsequence convergence can still be obtained for some

special cases. The first work considering such a separable nonsmooth structure is

by Auslender in [4] which assumes strong convexity of F . In [31], a decomposition

method was proposed for minimizing a strictly convex quadratic function over the

intersection of convex sets, and it turns out to be alternating minimization for a dual

functional of a convex problem in the form of (1.7) as shown in [81]. The work [82]

established subsequence convergence result of BCD for non-convex non-smooth prob-

lem by assuming separable structure of the non-smooth part and pseudoconvexity

of the smooth part. However, global convergence is still unknown for non-convex

non-smooth optimization even if the non-smooth part is separable.
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1.4.2 Block proximal scheme

Block proximal update (1.16b) can be regarded as alternatively applying one step

of the proximal point method to block subproblems. The proximal point method

has been extensively studied, and it is usually related to the maximal monotone

operator; see [76, 25] and references therein. It has also been used with BCD, and

the first work appears to be [5] which applied BCD with block proximal update to

convex problems in the form of (1.7). For two-block convex programs, [11] proposed

a partial proximal method which iteratively updates both blocks simultaneously by

minimizing the objective plus a proximal term involving only one block. The work [30]

has extended the method to smooth non-convex optimization with block separable

constraints, and it shows that every limit point of the iterates is a critical point. Using

the proximal term
Lk−1
i

2
‖xi−xk−1

i ‖2 in (1.16b) can often stabilize the iterates as shown

in [62] which applied BCD with block proximal update to tensor decomposition and

demonstrated that it could reduce a so-called swamp effect. Recently, this method was

revisited in [3] for non-convex problems with two blocks and separable non-smooth

part, and it was shown that the iterates globally converge to a limit point via the

Kurdyka- Lojasiewicz (KL) inequality, whose definition will be given in Chapter 2.

However, the global convergence for over-two block non-convex optimization is still

unknown.
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1.4.3 Block prox-linear scheme

Block prox-linear update (1.16c) with extrapolation is new in the literature of BCD

but very similar to the update in the block-coordinate gradient descent (BGD) method

of [84], which identifies a block descent direction by gradient projection and then per-

forms an Armijo-type line search. [84] does not use extrapolation (1.17). It considers

more general f that is smooth but not necessarily multi-convex, but it does not

consider joint constraints. For convex smooth optimization, Nesterov [65] recently

proposed a randomized BCD, which randomly selects a block of variables and uses

prox-linear method to update the selected block at each step. Meanwhile, he obtained

a sublinear convergence of the randomized BCD for convex problems with Lipschitz

continuous gradient and linear convergence for strongly convex problems. His work

has been extended to convex non-smooth optimization in [75], which obtained sim-

ilar convergence rate results. However, the convergence rate of cyclic BCD is still

unknown, even for strongly convex optimization. In addition, none has applied BCD

with block prox-linear update to non-convex optimization. This thesis will also give

global convergence of this method and show its high efficiency on nonnegative tensor

factorization and completion.

1.5 Contributions

Motivated by many practical problems, I characterize and formulate them into reg-

ularized multiconvex optimization. To solve this kind of problem, I choose block
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coordinate descent (BCD) method due to its simplicity and efficiency. Also, I gen-

eralize BCD by incorporating three different block-update schemes. In addition, I

establish global convergence and asymptotic convergence rate in a unified way for

BCD with all the three block-update schemes. Then, the algorithm with prox-linear

update (1.16c) is applied to two classes of problems (i) nonnegative matrix/tensor

factorization and (ii) nonnegative matrix/tensor completion from incomplete obser-

vations, and is demonstrated superior than the state-of-the-art algorithms on both

synthetic and real data in both speed and solution quality.

1.6 Organization

The rest of the thesis is organized as follows. Chapter 2 first gives a subsequence

convergence result of Algorithm 1. Then it briefly overviews the Kurdyka- Lojasiewicz

inequality through which a global convergence result is given. In Chapter 3, tensor is

overviewed, and then Algorithm 1 is applied to both the nonnegative matrix/tensor

factorization problem and the completion problem. Numerical results are presented

in Chapter 4. Finally, Chapter 5 concludes the thesis.
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Chapter 2

Convergence analysis

This chapter will first give some key definitions and then analyze the convergence

of Algorithm 1. The convergence analysis takes two steps. Under certain assump-

tions, the first step establishes the square summable result
∑

k ‖xk − xk+1‖2 < ∞

and obtains subsequence convergence to Nash points (see Definition 2.6), as well as

global convergence to a single Nash point under a fairly strong condition: the se-

quence of iterates is bounded and the Nash points are isolated. The second step

presents a different approach for global convergence; specifically, it assumes the KL

inequality [16, 17] and improves the result to
∑

k ‖xk − xk+1‖ < ∞, which gives the

algorithm global convergence, as well as asymptotic rates of convergence. The classes

of functions that obey the KL inequality are reviewed.

2.1 Elements of analysis

Before starting the analysis, let me give some key definitions which can be found in

[77, 83]. Throughout the analysis, I use the vector product 〈a,b〉 = a>b =
∑n

i=1 aibi

for a,b ∈ Rn and Euclidean norm ‖a‖ =
√
〈a, a〉.

Definition 2.1 (Feasible direction)

Let X be a feasible region and x ∈ X . The vector d is a feasible direction at x if
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there is τ > 0 such that x + td ∈ X for any t ∈ [0, τ).

Definition 2.2 (Effective domain)

The effective domain of a function f on Rn is dom(f) = {x ∈ Rn : f(x) < +∞}.

Definition 2.3 (Limiting Fréchet subdifferential)

A vector g ∈ Rn is a Fréchet subgradient of continuous function f at x ∈ dom(f) if

lim inf
y→x,y 6=x

f(y)− f(x)− 〈g,y − x〉
‖y − x‖

≥ 0.

The set of Fréchet subgradient of f at x is called Fréchet subdifferential and denoted

as ∂̂f(x). If x 6∈ dom(f), then ∂f(x) = ∅.

The limiting Fréchet subdifferential is denoted by ∂f(x) and defined as

∂f(x) = {g ∈ Rn : there is xn → x and gn ∈ ∂̂f(xn) such that gn → g}.

When f is differentiable at x, ∂f(x) = ∂̂f(x) = {∇f(x)}. For convex function f ,

∂f(x) = ∂̂f(x) and is the set of all vectors gx satisfying

f(y) ≥ f(x) + 〈gx,y − x〉, ∀y ∈ dom(f).

For problem (1.7), it is shown in [3] that

∂F (x) = {∇x1f(x) + ∂r1(x1)} × · · · × {∇xsf(x) + ∂rs(xs)},

where D1 ×D2 denotes the Cartesian product of D1 and D2 defined by

D1 ×D2 = {(d1,d2) : d1 ∈ D1,d2 ∈ D2}.
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Definition 2.4 (Strong convexity)

A function f is said to be strongly convex with modulus µ > 0 if for any x,y ∈

dom(f),

f(y) ≥ f(x) + 〈gx,y − x〉+
µ

2
‖y − x‖2, for all gx ∈ ∂f(x). (2.1)

If µ = 0 in (2.1), then f is weakly convex or, commonly called, convex. In addition,

if µ = 0 and the inequality holds strictly, f is called strictly convex.

Definition 2.5 (Directional derivative)

For x ∈ dom(f), the (lower) directional derivative f ′(x; d) along the direction d is

f ′(x; d) = lim inf
t↓0

f(x + td)− f(x)

t
.

If f is differentiable at x, then f ′(x; d) = ∇f(x)>d.

Definition 2.6 (Nash point)

Given a feasible set X , a point x = (x1, . . . ,xs) ∈ dom(f) ∩X is called a Nash point

or block coordinate-wise minimizer if the Nash equilibrium conditions

f(x) ≤ f(x + (0, . . . ,0,di,0, . . . ,0)), i = 1, . . . , s (2.2)

hold for any feasible direction (0, . . . ,0,di,0, . . . ,0) at x.

When f is block multi-convex, (2.2) is equivalent to

f ′(x; (0, . . . ,0,di,0, . . . ,0)) ≥ 0, i = 1, . . . , s. (2.3)

According to the definition, a point x̄ is a Nash point of (1.7) if for i = 1, · · · , s,

F (x̄1, · · · , x̄i−1, x̄i, x̄i+1, · · · , x̄s) ≤ F (x̄1, · · · , x̄i−1,xi, x̄i+1, · · · , x̄s), ∀xi ∈ X̄i, (2.4)
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or equivalently

〈∇xif(x̄) + p̄i,xi − x̄i〉 ≥ 0, for all xi ∈ X̄i and for some p̄i ∈ ∂ri(x̄i), (2.5)

where X̄i = Xi(x̄1, · · · , x̄i−1, x̄i+1, · · · , x̄s).

Definition 2.7 (Critical point)

Given a feasible set X , a point x ∈ dom(f)∩X is called a critical point or stationary

point if f ′(x; d) ≥ 0 for any feasible direction d ∈ Rn at x.

If x is an interior point of X , then x satisfies (2.3) if and only if x is a critical point,

and in this case, it holds 0 ∈ ∂f(x). A special case is X = Rn.

Definition 2.8 (Difference measure of two sets)

The difference of two sets X ,Y is measured by

diff(X ,Y) = max

(
sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖

)
.

If limn→∞ diff(Xn,X ) = 0, then there is xn ∈ Xn such that limn→∞ ‖xn − x‖ = 0.

Throughout the analysis, I make the following assumptions.

Assumption 2.1

In (1.7), F is continuous in dom(F ) and infx∈dom(F ) F (x) > −∞. Problem (1.7) has

a Nash point.

Assumption 2.2

Each block i is updated by the same scheme among (1.16a)–(1.16c) for all k. Let I1, I2

and I3 denote the set of blocks updated by (1.16a), (1.16b) and (1.16c), respectively.

In addition, there exist constants 0 < `i ≤ Li <∞, i = 1, · · · , s such that
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1. for i ∈ I1, fki defined in (1.15) is strongly convex of xi with modulus `i ≤

Lk−1
i ≤ Li;

2. for i ∈ I2, parameters Lk−1
i obey `i ≤ Lk−1

i ≤ Li;

3. for i ∈ I3, ∇fki is Lipschitz continuous and parameters Lk−1
i obey `i ≤ Lk−1

i ≤

Li and

fki (xki ) ≤ fki (x̂k−1
i ) + 〈ĝki ,xki − x̂k−1

i 〉+
Lk−1
i

2
‖xki − x̂k−1

i ‖2. (2.6)

Remark 2.1

The same notation Lk−1
i is used in all three schemes for the simplicity of unified

convergence analysis, but I want to emphasize that it has different meanings in the

three different schemes. For i ∈ I1, Lk−1
i is not a parameter subject to user selection

but a property constant that is determined by the objective and the current values

of all other blocks, while for i ∈ I2 ∪ I3, Lk−1
i is subject to user selection and must

meet certain conditions to guarantee convergence. For i ∈ I2, Lk−1
i can be simply

fixed to a positive constant or selected by a pre-determined rule to be uniformly lower

bounded from zero and upper bounded. For i ∈ I3, Lk−1
i is selected to satisfy (2.6).

Taking Lk−1
i as the Lipschitz constant of ∇fki can satisfy (2.6). However, it allows

smaller Lk−1
i , which can speed up the algorithm.

Remark 2.2

In addition, I want to emphasize that I make different assumptions on the three

different schemes. The use of (1.16a) requires block strong convexity with modulus

uniformly away from zero and upper bounded, and the use of (1.16c) requires block
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Lipschitz continuous gradient. The use of (1.16b) requires neither strong convexity

nor Lipschitz continuity. Even the block convexity is unnecessary for (1.16b), and the

proof still goes through. Each assumption on the corresponding scheme guarantees

sufficient decrease of the objective and makes square summable; see Lemma 2.2, which

plays the key role in the convergence analysis.

2.2 Subsequence convergence

The analysis in this subsection follows the following steps. First, I show sufficient

descent at each step (inequality (2.12) below), from which I establish the square

summable result (Lemma 2.2 below). Next, the square summable result is exploited

to show that any limit point is a Nash point in Theorem 2.1 below. Finally, with the

additional assumptions of isolated Nash points and bounded {xk}, global convergence

is obtained in Theorem 2.2 below. The first step is essential while the last two steps

use rather standard arguments. I begin with the following lemma similar to Lemma

2.3 of [8]. Since the proof in [8] does not consider constraints, I include a slightly

changed proof for completeness.

Lemma 2.1

Let ξ1(u) and ξ2(u) be two convex functions defined on the convex set U and ξ1(u)

be differentiable. Let ξ(u) = ξ1(u) + ξ2(u) and

u∗ = argmin
u∈U

〈∇ξ1(v),u− v〉+
L

2
‖u− v‖2 + ξ2(u). (2.7)
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If

ξ1(u∗) ≤ ξ1(v) + 〈∇ξ1(v),u∗ − v〉+
L

2
‖u∗ − v‖2, (2.8)

then

ξ(u)− ξ(u∗) ≥ L

2
‖u∗ − v‖2 + L〈v − u,u∗ − v〉 for any u ∈ U . (2.9)

Proof. The first-order optimality condition of (2.7) holds

〈∇ξ1(v) + L(u∗ − v) + g,u− u∗〉 ≥ 0, for any u ∈ U , (2.10)

for some g ∈ ∂ξ2(u∗). For any u ∈ U , we have

ξ(u)− ξ(u∗) ≥ξ(u)−
(
ξ1(v) + 〈∇ξ1(v),u∗ − v〉+

L

2
‖u∗ − v‖2

)
− ξ2(u∗)

=ξ1(u)− ξ1(v)− 〈∇ξ1(v),u− v〉+ 〈∇ξ1(v),u− u∗〉+ ξ2(u)

− ξ2(u∗)− L

2
‖u∗ − v‖2

≥ξ2(u)− ξ2(u∗)− 〈g,u− u∗〉 − L〈u∗ − v,u− u∗〉 − L

2
‖u∗ − v‖2

≥− L〈u∗ − v,u− u∗〉 − L

2
‖u∗ − v‖2

=
L

2
‖u∗ − v‖2 + L〈v − u,u∗ − v〉,

where the first inequality uses (2.8), the second inequality is obtained from the con-

vexity of ξ1 and (2.10), and the last inequality uses the convexity of ξ2 and the fact

g ∈ ∂ξ2(u∗). This completes the proof. �

Based on this lemma, I can show the key lemma below.

Lemma 2.2 (Square summable ‖xk − xk+1‖)

Under Assumptions 2.1 and 2.2, let {xk} be the sequence generated by Algorithm 1
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with 0 ≤ ωk−1
i ≤ δω

√
Lk−2
i

Lk−1
i

for 0 < δω < 1 uniformly over all i ∈ I3 and k. Then

∞∑
k=0

‖xk − xk+1‖2 <∞. (2.11)

Proof. For i ∈ I3, we have the inequality (2.6) by Item 3 of Assumption 2.2. Let

F k
i , fki + ri and take ξ1 = fki , ξ2 = ri,v = x̂k−1

i and u = xk−1
i in (2.9). All the

conditions required by Lemma 2.1 are satisfied. Hence, we have

F k
i (xk−1

i )− F k
i (xki ) ≥

Lk−1
i

2
‖x̂k−1

i − xki ‖2 + Lk−1
i 〈x̂k−1

i − xk−1
i ,xki − x̂k−1

i 〉

=
Lk−1
i

2
‖xk−1

i − xki ‖2 − Lk−1
i

2
(ωk−1

i )2‖xk−2
i − xk−1

i ‖2 (2.12)

≥ Lk−1
i

2
‖xk−1

i − xki ‖2 − Lk−2
i

2
δ2
ω‖xk−2

i − xk−1
i ‖2. (2.13)

For i ∈ I1∪I2, we have F k
i (xk−1

i )−F k
i (xki ) ≥

Lk−1
i

2
‖xk−1

i −xki ‖2, which can be obtained

by the strong convexity of F k
i (xi) for i ∈ I1 or the update (1.16b) for i ∈ I2, and

thus the inequality (2.13) still holds. Therefore,

F (xk−1)− F (xk) =
s∑
i=1

(
F k
i (xk−1

i )− F k
i (xki )

)
≥

s∑
i=1

(
Lk−1
i

2
‖xk−1

i − xki ‖2 − Lk−2
i δ2

ω

2
‖xk−2

i − xk−1
i ‖2

)
.

Summing the above inequality over k from 1 to K, we have

F (x0)− F (xK) ≥
K∑
k=1

s∑
i=1

(
Lk−1
i

2
‖xk−1

i − xki ‖2 − Lk−2
i

2
δ2
ω‖xk−2

i − xk−1
i ‖2

)

≥
K∑
k=1

s∑
i=1

(1− δ2
ω)Lk−1

i

2
‖xk−1

i − xki ‖2 ≥
K∑
k=1

(1− δ2
ω)`

2
‖xk−1 − xk‖2,

where ` = mini `i > 0. Since 0 < δω < 1 and F is lower bounded, taking K → ∞

completes the proof. �
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Remark 2.3

From the proof above, we can see that Algorithm 1 makes F (xk) > F (xk+1) as long

as xk 6= xk+1.

Now, I can establish the following subsequence convergence result.

Theorem 2.1 (Limit point is Nash point)

Under the assumptions of Lemma 2.2 and further assuming the set map Xi(·) contin-

uously changes in X , namely, xk
′
,x ∈ X and xk

′ → x imply

lim
k→∞

diff
(
Xi(xk

′

1 , . . . ,x
k′

i−1,x
k′

i+1, . . . ,x
k′

s ),Xi(x1, . . . ,xi−1,xi+1, . . . ,xs)
)

= 0, ∀i,

then any limit point x̄ of {xk} is a Nash point, namely, satisfying the Nash equilibrium

conditions (2.4) or (2.5).

Proof. Let x̄ be a limit point of {xk} and {xkj} be the subsequence converging

to x̄. The closedness of X implies x̄ ∈ X . Since {Lki } is bounded, passing another

subsequence if necessary, we have L
kj
i converges to some L̄i for i = 1, · · · , s as j →∞.

Inequality (2.11) implies that ‖xk+1 − xk‖ → 0, so {xkj+1} also converges to x̄.

For i ∈ I1, we have

F
kj+1
i (x

kj+1
i ) ≤ F

kj+1
i (xi), ∀xi ∈ X

kj+1
i . (2.14)

Letting j → ∞, we can show (2.4) by the continuity of F and the set map Xi(·).

Suppose otherwise for some block i0 ∈ I1, there is yi0 ∈ X̄i0 such that

F (x̄1, · · · , x̄i0−1, x̄i0 , x̄i0+1, · · · , x̄s) > F (x̄1, · · · , x̄i0−1,yi0 , x̄i0+1, · · · , x̄s). (2.15)
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Since limj diff
(
X kj+1
i0

, X̄i0
)

= 0, there is yji0 ∈ X
kj+1
i0

such that limj yji0 = yi0 . From

the continuity of F , we have

lim
j→∞

F (x
kj+1
1 , . . . ,x

kj+1
i0−1 ,y

j
i0
,x

kj
i0+1, . . . ,x

kj
s ) = F (x̄1, · · · , x̄i0−1,yi0 , x̄i0+1, · · · , x̄s).

(2.16)

Note that (2.14) implies

F (x
kj+1
1 , . . . ,x

kj+1
i0−1 ,x

kj+1
i0

,x
kj
i0+1, . . . ,x

kj
s ) ≤ F (x

kj+1
1 , . . . ,x

kj+1
i0−1 ,y

j
i0
,x

kj
i0+1, . . . ,x

kj
s ).

Letting j →∞ and using (2.16), we get

F (x̄1, · · · , x̄i0−1, x̄i0 , x̄i0+1, · · · , x̄s) ≤ F (x̄1, · · · , x̄i0−1,yi0 , x̄i0+1, · · · , x̄s),

which contradicts to (2.15). Hence, (2.4) holds.

Similarly, for i ∈ I2, we have for any xi ∈ X̄i

F (x̄1, · · · , x̄i−1, x̄i, x̄i+1, · · · , x̄s) ≤ F (x̄1, · · · , x̄i−1,xi, x̄i+1, · · · , x̄s) +
L̄i
2
‖xi − x̄i‖2,

namely,

x̄i = argmin
xi∈X̄i

F (x̄1, · · · , x̄i−1,xi, x̄i+1, · · · , x̄s) +
L̄i
2
‖xi − x̄i‖2. (2.17)

Thus, x̄i satisfies the first-order optimality condition of (2.17), which is precisely

(2.5).

For i ∈ I3, we have

x
kj+1
i = argmin

xi∈X
kj+1

i

〈∇fkj+1
i (x̂

kj
i ),xi − x̂

kj
i 〉+

L
kj
i

2
‖xi − x̂

kj
i ‖2 + ri(xi).
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The convex proximal minimization is continuous in the sense that the output x
kj+1
i

depends continuously on the input x̂
kj
i [76]. Letting j → ∞, from x

kj+1
i → x̄i and

x̂
kj
i → x̄i, we get

x̄i = argmin
xi∈X̄i

〈∇xif(x̄),xi − x̄i〉+
L̄i
2
‖xi − x̄i‖2 + ri(xi). (2.18)

Hence, x̄i satisfies the first-order optimality condition of (2.18), which is precisely

(2.5). This completes the proof. �

Remark 2.4

The continuity of Xi(·) holds if X is convex; see Theorem 4.32 in [77]. A special case

is X = Rn, in which case we can immediately have the following corollary.

Corollary 2.1

Let X = Rn in (1.7). Under the assumptions of Lemma 2.2, any limit point x̄ of {xk}

is a critical point of (1.7), namely, 0 ∈ ∂F (x̄).

Theorem 2.2 (Global convergence given isolated Nash points)

Let N be the set of Nash points of (1.7). Under the assumptions of Lemma 2.2, we

have dist(xk,N ) → 0, if {xk} is bounded. Further, if N contains uniformly isolated

points, namely, there is η > 0 such that ‖x−y‖ ≥ η for any distinct points x,y ∈ N ,

then xk converges to a point in N .

Moreover, if F is strictly convex and X = Rn, then xk converges to the unique

solution of (1.7).

Proof. Suppose dist(xk,N ) does not converge to 0. Then there exists ε > 0 and a

subsequence {xkj} such that dist(xkj ,N ) ≥ ε for all j. However, the boundedness of
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{xkj} implies that it must have a limit point x̄ ∈ N according to Theorem 2.1, which

is a contradiction.

From dist(xk,N ) → 0, it follows that there is an integer K1 > 0 such that

xk ∈ ∪y∈NB(y, η
3
) for all k ≥ K1, where B(y, η

3
) , {x ∈ X : ‖x − y‖ < η

3
}. In

addition, Lemma 2.2 implies that there exists another integer K2 > 0 such that

‖xk − xk+1‖ < η
3

for all k ≥ K2. Take K = max(K1, K2) and assume xK ∈ B(x̄, η
3
)

for some x̄ ∈ N . We claim that for any x̄ 6= y ∈ N , ‖xk − y‖ > η
3

holds for all

k ≥ K. This claim can be shown by induction on k ≥ K. If some xk ∈ B(x̄, η
3
), then

‖xk+1 − x̄‖ ≤ ‖xk+1 − xk‖+ ‖xk − x̄‖ < 2η

3
,

and

‖xk+1 − y‖ ≥ ‖x̄− y‖ − ‖xk+1 − x̄‖ > η

3
, for any x̄ 6= y ∈ N .

Therefore, xk ∈ B(x̄, η
3
) for all k ≥ K since xk ∈ ∪y∈NB(y, η

3
), and thus {xk} has

the unique limit point x̄, which means xk → x̄.

When F is strictly convex and X = Rn, there is only one critical point, which is

the unique solution. Hence, xk converges to the unique solution. �

Remark 2.5

The boundedness of {xk} is guaranteed if the level set {x ∈ X : F (x) ≤ F (x0)} is

bounded. However, the isolation assumption does not hold, or holds but is difficult

to verify, for many functions. This motivates another approach below for global

convergence.
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2.3 Kurdyka- Lojasiewicz inequality

Before proceeding with the analysis, let me briefly review the Kurdyka- Lojasiewicz

inequality, which is central to the global convergence analysis in the next subsection.

Definition 2.9 (Kurdyka- Lojasiewicz property)

A function ψ(x) satisfies the Kurdyka- Lojasiewicz (KL) property at point x̄ ∈ dom(∂ψ)

if there exists θ ∈ [0, 1) such that

|ψ(x)− ψ(x̄)|θ

dist(0, ∂ψ(x))
(2.19)

is bounded around x̄ under the notational conventions: 00 = 1,∞/∞ = 0/0 = 0. In

other words, in a certain neighborhood U of x̄, there exists φ(s) = cs1−θ for some

c > 0 and θ ∈ [0, 1) such that the KL inequality holds

φ′(|ψ(x)− ψ(x̄)|)dist(0, ∂ψ(x)) ≥ 1,∀x ∈ U ∩ dom(∂ψ) and ψ(x) 6= ψ(x̄), (2.20)

where dom(∂ψ) , {x : ∂ψ(x) 6= ∅} and dist(0, ∂ψ(x)) , min{‖y‖ : y ∈ ∂ψ(x)}.

This property was introduced by  Lojasiewicz [55] on real analytic functions, for

which the term with θ ∈ [1
2
, 1) in (2.19) is bounded around any critical point x̄. Kur-

dyka extended this property to functions on the o-minimal structure in [45]. Recently,

the KL inequality was extended to nonsmooth sub-analytic functions [16]. Since it is

not trivial to check the conditions in the definition, I give some examples below that

satisfy the KL inequality.



32

Real analytic functions

A smooth function ϕ(t) on R is analytic if
(
ϕ(k)(t)
k!

) 1
k

is bounded for all k and on

any compact set D ⊂ R. One can verify whether a real function ψ(x) on Rn is

analytic by checking the analyticity of ϕ(t) , ψ(x + ty) for any x,y ∈ Rn. For

example, any polynomial function is real analytic such as ‖Ax − b‖2 and the first

terms in the objectives of (1.13) and (1.14). In addition, it is not difficult to verify

that the non-convex function
∑n

i=1(x2
i + ε2)q/2 + 1

2λ
‖Ax − b‖2 with 0 < q < 1 and

ε > 0 considered in [46] for sparse vector recovery is a real analytic function (the first

term is the ε-smoothed `q semi-norm). The logistic loss function log(1 + e−t) is also

analytic. Therefore, all the above functions satisfy the KL property with θ ∈ [1
2
, 1)

in (2.19).

Locally strongly convex functions

A function ψ(x) is strongly convex in a neighborhood D with modulus µ > 0 if

ψ(y) ≥ ψ(x)+ 〈γ(x),y−x〉+ µ

2
‖x−y‖2, for all γ(x) ∈ ∂ψ(x) and for any x,y ∈ D.

According to the definition and using the Cauchy-Schwarz inequality, we have

ψ(y)− ψ(x) ≥ 〈γ(x),y − x〉+
µ

2
‖x− y‖2 ≥ − 1

µ
‖γ(x)‖2, for all γ(x) ∈ ∂ψ(x).

Hence, µ(ψ(x)− ψ(y)) ≤ dist(0, ∂ψ(x))2, and ψ satisfies the KL inequality (2.20) at

any point y ∈ D with φ(s) = 2
µ

√
s and U = D ∩ {x : ψ(x) ≥ ψ(y)}. For example,

the logistic loss function log(1 + e−t) is strongly convex in any bounded set D, so it
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has the KL property with θ = 1
2
.

Semi-algebraic functions

A set D ⊂ Rn is called semi-algebraic [14] if it can be represented as

D =
s⋃
i=1

t⋂
j=1

{x ∈ Rn : pij(x) = 0, qij(x) > 0},

where pij, qij are real polynomial functions for 1 ≤ i ≤ s, 1 ≤ j ≤ t. A function

ψ is called semi-algebraic if its graph Gr(ψ) , {(x, ψ(x)) : x ∈ dom(ψ)} is a semi-

algebraic set.

Semi-algebraic functions are sub-analytic, so they satisfy the KL inequality accord-

ing to [16, 17]. I list some elementary properties of semi-algebraic sets and functions

below as they help identify semi-algebraic functions.

1. If a set D is semi-algebraic, so is its closure cl(D).

2. If D1 and D2 are both semi-algebraic, so are D1 ∪ D2, D1 ∩ D2 and Rn\D1.

3. Indicator functions of semi-algebraic sets are semi-algebraic.

4. Finite sums and products of semi-algebraic functions are semi-algebraic.

5. The composition of semi-algebraic functions is semi-algebraic.

From items 1 and 2, any polyhedral set is semi-algebraic such as the nonnegative

orthant Rn
+ = {x ∈ Rn : xi ≥ 0,∀i}. Hence, the indicator function δRn+ is a semi-

algebraic function. The absolute value function ϕ(t) = |t| is also semi-algebraic since
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its graph is cl(D), where

D = {(t, s) : t+ s = 0,−t > 0} ∪ {(t, s) : t− s = 0, t > 0}.

Hence, the `1-norm ‖x‖1 is semi-algebraic since it is the finite sum of absolute func-

tions. In addition, the sup-norm ‖x‖∞ is semi-algebraic, which can be shown by

observing

Graph(‖x‖∞) = {(x, t) : t = max
j
|xj|} =

⋃
i

{(x, t) : |xi| = t, |xj| ≤ t,∀j 6= i}.

Further, the Euclidean norm ‖x‖ is shown to be semi-algebraic in [14]. According to

item 5, ‖Ax− b‖1, ‖Ax− b‖∞ and ‖Ax− b‖ are all semi-algebraic functions.

Sum of real analytic and semi-algebraic functions

Both real analytic and semi-algebraic functions are sub-analytic. According to [14],

if ψ1 and ψ2 are both sub-analytic and ψ1 maps bounded sets to bounded sets, then

ψ1+ψ2 is also sub-analytic. Since real analytic functions map bounded set to bounded

set, the sum of a real analytic function and a semi-algebraic function is sub-analytic,

so the sum satisfies the KL property. For example, the sparse logistic regression

function

ψ(x, b) =
1

n

n∑
i=1

log
(
1 + exp

(
−ci(a>i x + b)

))
+ λ‖x‖1

is sub-analytic and satisfies the KL inequality.
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2.4 Global convergence and rate

If {xk} is bounded, then Theorem 2.1 guarantees that there exists one subsequence

converging to a Nash point of (1.7). In this subsection, I assume X = Rn and

strengthen this result for problems with F obeying the KL inequality. Recall that

any Nash point is a critical point when X = Rn. The analysis here was motivated by

[3], which applies the inequality to establish the global convergence of the alternating

proximal point method — the special case of BCD with two blocks and using update

(1.16b).

In the sequel, I use the notation Fk = F (xk) and F̄ = F (x̄). First, let me establish

the following pre-convergence result, the proof of which is given in the Appendix.

Lemma 2.3 (Pre-convergence)

Under Assumptions 2.1 and 2.2, let {xk} be the sequence generated by Algorithm 1.

Assume

1. Lki ≥ `k−1 = mini∈I3 L
k−1
i and ωki ≤ δω

√
`k−1

Lki
, δω < 1, for all i ∈ I3 and k;

2. ∇f is Lipschitz continuous on any bounded set;

3. F satisfies the KL inequality at x̄, namely, there exists φ(s) = cs1−θ for some

c > 0 and θ ∈ [0, 1) such that within some neighborhood U of x̄, it holds

φ′(|F (x)−F (x̄)|)dist(0, ∂F (x)) ≥ 1, ∀x ∈ U∩dom(∂F ) and F (x) 6= F (x̄); (2.21)

4. x0 is sufficiently close to x̄ and Fk > F̄ for k ≥ 0.
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Then there exists some B ⊂ U ∩ dom(∂F ) such that {xk} ⊂ B and xk converges to a

point in B.

Remark 2.6

In the lemma, the required closeness of x0 to x̄ depends on U , φ and F ; see the

inequality in (A.1). The extrapolation weight ωki must be smaller than it is in Lemma

2.2 in order to guarantee sufficient decrease at each iteration.

The following corollary is a straightforward application of Lemma 2.3.

Corollary 2.2 (Local convergence to global minimizer)

Under the assumptions of Lemma 2.3, {xk} converges to a global minimizer of (1.7)

if the initial point x0 is sufficiently close to any global minimizer x̄.

Proof. Suppose F (xk0) = F (x̄) at some k0. Then xk = xk0 for all k ≥ k0, according

to Remark 2.3. Now consider F (xk) > F (x̄) for all k ≥ 0, and thus Lemma 2.3

implies that xk converges to some critical point x∗ if x0 is sufficiently close to x̄,

where x0,x∗, x̄ ∈ B. If F (x∗) > F (x̄), then the KL inequality (2.21) indicates

φ′ (F (x∗)− F (x̄)) dist (0, ∂F (x∗)) ≥ 1, which is impossible since 0 ∈ ∂F (x∗). �

Next, I give the global convergence result of Algorithm 1.

Theorem 2.3 (Global convergence)

Under the assumptions of Lemma 2.3 and that {xk} has a finite limit point x̄ where

F satisfies the KL inequality (2.21), the sequence {xk} converges to x̄, which is a

critical point of (1.7).

Proof. Note that F (xk) is monotonically nonincreasing and converges to F (x̄). If
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F (xk0) = F (x̄) at some k0, then xk = xk0 = x̄ for all k ≥ k0 from Remark 2.3.

It remains to consider F (xk) > F (x̄) for all k ≥ 0. Since x̄ is a limit point and

F (xk)→ F (x̄), there must exist an integer k0 such that xk0 is sufficiently close to x̄

as required in Lemma 2.3 (see the inequality in (A.1)). The conclusion now directly

follows from Lemma 2.3. �

I can also estimate the asymptotic rate of convergence, and the proof is given in

the Appendix.

Theorem 2.4 (Convergence rate)

Assume the assumptions of Lemma 2.3, and suppose that xk converges to a critical

point x̄, at which F satisfies the KL inequality (2.21) with φ(s) = cs1−θ for c > 0

and θ ∈ [0, 1). Then

1. If θ = 0, xk converges to x̄ in finite iterations;

2. If θ ∈ (0, 1
2
], ‖xk − x̄‖ ≤ Cτ k, ∀k ≥ k0, for certain k0 > 0, C > 0, τ ∈ [0, 1);

3. If θ ∈ (1
2
, 1), ‖xk − x̄‖ ≤ Ck−(1−θ)/(2θ−1), ∀k ≥ k0, for certain k0 > 0, C > 0.

When F is strongly convex, global linear convergence can be obtained. The result

is summarized in the next theorem.

Theorem 2.5 (Global linear convergence for strongly convex optimization)

Under Assumptions 2.1 and 2.2, let {xk} be the sequence generated by Algorithm 1.

Let `k = mini∈I3 L
k
i , and choose Lki ≥ `k−1 and ωki ≤ δω

√
`k−1

Lki
, δω < 1, for all i ∈ I3

and k. If F is strongly convex, then xk globally linearly converges to the unique

solution x∗ of (1.7).
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Proof. When F is strongly convex, it has the KL property (2.19) with θ = 1
2

at x∗.

Hence, item 2 in Theorem 2.4 holds. In addition, note that the neighborhood U in

(2.20) is the whole space as F is strongly convex, so k0 = 0 in item 2. This completes

the proof. �



39

Chapter 3

Nonnegative tensor factorization and completion

In this section, I apply Algorithm 1 to the factorization and completion of nonnegative

matrices and tensors. Since a matrix is a two-way tensor, I present the algorithm

for tensors. I will first overview tensor and its two popular factorizations and then

describe in details how to apply Algorithm 1 to nonnegative tensor factorization and

its completion. Global convergence results are obtained directly from the analysis in

Chapter 2.

3.1 Overview of tensor

A tensor is a multi-dimensional array. For example, a vector is a first-order tensor,

and a matrix is a second-order tensor. The order of a tensor is the number of

dimensions, also called way or mode. For an N -way tensor X ∈ RI1×I2×···×IN , denote

its (i1, i2, · · · , iN)th element by xi1i2···iN . Below I list some concepts related to tensor.

For more details about tensor, the reader is referred to the review paper [44].

1. fiber: a fiber of a tensor X is a vector obtained by fixing all indices of X except

one. For example, a row of a matrix is a mode-2 fiber (the 1st index is fixed),

and a column is a mode-1 fiber (the 2nd index is fixed). I use xi1···in−1:in+1···iN
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to denote a mode-n fiber of an Nth-order tensor X .

2. slice: a slice of a tensor X is a matrix obtained by fixing all indices of X

except two. Take a third-order tensor X for example. Xi::,X:j:, and X::k denote

horizontal, lateral, and frontal slices of X , respectively.

3. matricization: the mode-n matricization of a tensor X is a matrix whose

columns are the mode-n fibers of X in the lexicographical order. Let X(n)

denote the mode-n matricization of X .

4. tensor-matrix product: the mode-n product of a tensor X ∈ RI1×I2×···×IN

with a matrix A ∈ RJ×In is a tensor of size I1 × · · · In−1 × J × In+1 × · · · × IN

defined as

(X ×n A)i1···in−1jin+1···iN =
In∑
in=1

xi1i2···iNajin . (3.1)

In addition, let me briefly review the matrix Kronecker, Khatri-Rao and Hadamard

products below, which are used to derive tensor-related computations.

The Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q is an mp×nq matrix

defined by

A⊗B =



a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


.
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The Khatri-Rao product of matrices A ∈ Rm×q and B ∈ Rp×q is an mp× q matrix:

A�B = [a1 ⊗ b1, a2 ⊗ b2, · · · , aq ⊗ bq] ,

where ai,bi are the ith columns of A and B, respectively. The Hadamard product of

matrices A,B ∈ Rm×n is the componentwise product defined by

A ∗B =



a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn


.

Two important tensor decompositions are the CANDECOMP/PARAFAC (CP)

[38] and Tucker [85] decompositions. The former one decomposes a tensor X ∈

RI1×I2×···×IN in the form of X = A1 ◦A2 ◦ · · · ◦AN , where An ∈ RIn×r, n = 1, · · · , N

are factor matrices, r is the tensor rank of X , and the outer product “◦” is defined

as

xi1i2···iN =
r∑
j=1

a
(1)
i1j
a

(2)
i2j
· · · a(N)

iN j
, for in ∈ [In], n = 1, · · · , N,

where a
(n)
ij is the (i, j)th element of An and [I] , {1, 2, · · · , I}. The latter Tucker

decomposition decomposes a tensor X in the form of X = G×1 A1×2 A2 · · ·×N AN ,

where G ∈ RJ1×J2×···×JN is called the core tensor and An ∈ RIn×Jn , n = 1, · · · , N are

factor matrices.
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3.2 An algorithm for nonnegative tensor factorization

One can obtain a nonnegative CP decomposition of a nonnegative tensor M ∈

RI1×···×IN by solving

min
1

2
‖M−A1 ◦A2 ◦ · · · ◦AN‖2

F , subject to An ∈ RIn×r
+ , n = 1, · · · , N (3.2)

where r is a specified order and the Frobenius norm of a tensor X ∈ RI1×···×IN is

defined as

‖X‖F =

√ ∑
i1,i2,··· ,iN

x2
i1i2···iN .

Similar models based on the CP decomposition can be found in [40, 23, 42]. One can

obtain a nonnegative Tucker decomposition of M by solving

min
1

2
‖M−G×1 A1×2 A2 · · ·×N AN‖2

F , subject to G ∈ RJ1×···×JN
+ ,An ∈ RIn×Jn

+ ,∀n,

(3.3)

as in [43, 61, 53]. Usually, it is computationally expensive to update G. Since applying

Algorithm 1 to problem (3.3) involves lots of computing details, I focus on applying

it with block-update (1.16c) to problem (3.2).

Let A = (A1, · · · ,AN) and

F (A) = F (A1,A2, · · · ,AN) =
1

2
‖M−A1 ◦A2 ◦ · · · ◦AN‖2

F

be the objective of (3.2). Consider updating An at iteration k. Using the fact that if

X = A1 ◦A2 ◦ · · · ◦AN , then X(n) = An (AN � · · ·An+1 �An−1 · · ·A1)>, we have

F (A) =
1

2

∥∥∥M(n) −An (AN � · · ·An+1 �An−1 · · ·A1)>
∥∥∥2

F
,
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and

∇AnF =
(
An (AN � · · ·An+1 �An−1 · · ·A1)> −M(n)

)
(AN � · · ·An+1 �An−1 · · ·A1) .

Let

Bk−1
n = Ak−1

N � · · ·Ak−1
n+1 �Ak

n−1 · · ·Ak
1. (3.4)

Take Lk−1
n = max(`k−2, ‖(Bk−1

n )>Bk−1
n ‖), where `k−2 = minn L

k−2
n and ‖A‖ is the

spectral norm of A. Let

ωk−1
n = min

(
ω̂k−1, δω

√
`k−2

Lk−1
n

)
(3.5)

where δω < 1 is pre-selected and ω̂k−1 = tk−1−1

tk
with t0 = 1 and tk = 1

2

(
1 +

√
1 + 4t2k−1

)
.

In addition, let

Âk−1
n = Ak−1

n + ωk−1
n (Ak−1

n −Ak−2
n )

and

Ĝk−1
n =

(
Âk−1
n (Bk−1

n )> −M(n)

)
Bk−1
n (3.6)

be the gradient. Then we derive the update (1.16c):

Ak
n = argmin

An≥0

〈
Ĝk−1
n ,An − Âk−1

n

〉
+
Lk−1
n

2

∥∥∥An − Âk−1
n

∥∥∥2

F
,

which can be written in the closed form

Ak
n = max

(
0, Âk−1

n − Ĝk−1
n /Lk−1

n

)
. (3.7)

At the end of iteration k, check whether F
(
Ak
)
≥ F

(
Ak−1

)
. If so, re-update Ak

n by

(3.7) with Âk−1
n = Ak−1

n , for n = 1, · · · , N .
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Remark 3.1

In (3.7), Ĝk−1
n is most expensive to compute. To efficiently compute it, write

Ĝk−1
n = Âk−1

n (Bk−1
n )>Bk−1

n −M(n)B
k−1
n

Using the fact

(A�B)>(A�B) = (A>A) ∗ (B>B)

we can compute (Bk−1
n )>Bk−1

n by

(Bk−1
n )>Bk−1

n =
(
(Ak

1)>Ak
1

)
∗· · ·∗

(
(Ak

n−1)>Ak
n−1

)
∗
(
(Ak−1

n+1)>Ak−1
n+1

)
∗· · ·∗

(
(Ak−1

N )>Ak−1
N

)
.

Then, M(n)B
k−1
n can be obtained by the so-called matricized-tensor-times-Khatri-

Rao-product [7].

Algorithm 2 summarizes how to apply Algorithm 1 with block-update (1.16c) to

problem (3.2).

3.3 Convergence results

Since problem (3.2) is a special case of problem (1.7), the convergence results in

Chapter 2 apply to Algorithm 2. Let Dn = RIn×r
+ and δDn(·) be the indicator function

on Dn for n = 1, · · · , N . Then (3.2) is equivalent to

min
A1,··· ,AN

Q(A) ≡ F (A) +
N∑
n=1

δDn(An). (3.8)

According to the discussion in Section 2.3, Q is a semi-algebraic function and satisfies

the KL property (2.19) at any feasible point. Further, we get θ 6= 0 in (2.19) for Q
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Algorithm 2 Alternating proximal gradient method for solving (3.2)
1: Input: nonnegative N -way tensor M and rank r.

2: Output: nonnegative factors A1, · · · ,AN .

3: Initialization: choose positive number δω < 1 and A−1
n = A0

n, n = 1, · · · , N , as

nonnegative matrices of appropriate sizes.

4: for k = 1, 2, · · · do
5: for n = 1, 2, · · · , N do

6: Compute Lk−1
n and set ωk−1

n according to (3.5);

7: Let Âk−1
n = Ak−1

n + ωk−1
n (Ak−1

n −Ak−2
n );

8: Update Ak
n according to (3.7).

9: end for

10: if F
(
Ak
)
≥ F

(
Ak−1

)
then

11: Re-update Ak
n according to (3.7) with Âk−1

n = Ak−1
n , n = 1, · · · , N

12: end if

13: if stopping criterion is satisfied then

14: Return Ak
1, · · · ,Ak

N .

15: end if

16: end for

at any critical point. This claim can be shown by the argument: writing the first-

order optimality conditions of (3.8), one can find that if Ā =
(
Ā1, · · · , ĀN

)
is a

critical point, then so is Āt

(
tĀ1,

1
t
Ā2, Ā3, · · · , ĀN

)
for any t > 0. Hence within any

neighborhood of Ā, there is other critical point and (2.19) cannot be bounded with

θ = 0. Therefore, from Theorems 2.3 and 2.4 and the above discussions, we have

Theorem 3.1

Let {Ak} be the sequence generated by Algorithm 2. Assume {Ak} is bounded and

there is a positive constant ` such that ` ≤ `k for all k. Then {Ak} converges to a

critical point Ā, and the asymptotic convergence rates in parts 2 and 3 of Theorem

2.4 apply.
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Remark 3.2

The boundedness of {Ak} guarantees that Lkn is upper bounded. A simple way to

make {Ak} bounded is to scale (A1, · · · ,AN) so that ‖A1‖F = · · · = ‖AN‖F after

each iteration. The existence of a positive ` can be satisfied if one changes Lkn to

max(Lkn, Lmin) for a positive constant Lmin.

3.4 An algorithm for nonnegative tensor completion

Algorithm 2 can be easily modified for solving the nonnegative tensor completion

problem

min
A1,··· ,AN≥0

1

2
‖PΩ(M−A1 ◦A2 ◦ · · · ◦AN)‖2

F , (3.9)

where Ω ⊂ [I1] × [I2] × · · · [IN ] is the index set of the observed entries of M and

PΩ(X ) keeps the entries of X in Ω and sets the remaining ones to zero. Nonnegative

matrix completion (corresponding to N = 2) has been proposed in [90], where it is

demonstrated that a low-rank and nonnegative matrix can be recovered from a small

set of its entries by taking advantages of both low-rankness and nonnegative factors.

To solve (3.9), I transform it into the equivalent problem

min
X ,An≥0,n=1,··· ,N

G(A,X ) ≡ 1

2
‖X −A1◦A2◦· · ·◦AN‖2

F , subject to PΩ(X ) = PΩ(M).

(3.10)

My algorithm shall cycle through the decision variables A1, · · · ,AN and X . It is sum-

marized in Algorithm 3, which is simply modified from Algorithm 2. At each iteration

of Algorithm 2, set its M to X k−1 and, after its updates (1.16c) on A1, · · · ,AN , per-
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form update (1.16a) on X as

X k = PΩ(M) + PΩc(A
k
1 ◦ · · · ◦Ak

N), (3.11)

where Ωc is the complement of Ω.

Note that for a fixed A, G(A,X ) is a strongly convex function of X with modulus

1 and

G(Ak,X k−1)−G(Ak,X k) =
1

2
‖X k−1 −X k‖2

F .

Hence, the convergence result for Algorithm 2 still holds for this algorithm with extra

update (3.11).

Algorithm 3 Alternating proximal gradient method for solving (3.9)

1: Input: partially observed nonnegative N -way tensor PΩ(M), set Ω and rank r.

2: Output: recovered nonnegative tensor Mr.

3: Initialization: choose positive number δω < 1 and A−1
n = A0

n, n = 1, · · · , N , as

nonnegative matrices of appropriate sizes.

4: for k = 1, 2, · · · do
5: for n = 1, 2, · · · , N do

6: Compute Lk−1
n and set ωk−1

n according to (3.5);

7: Let Âk−1
n = Ak−1

n + ωk−1
n (Ak−1

n −Ak−2
n );

8: Update Ak
n according to (3.7) with Ĝ

k−1
n computed from (3.6) where M = X k−1

is used.

9: end for

10: Update X k according to (3.11);

11: if G
(
Ak,X k

)
≥ G

(
Ak−1,X k−1

)
then

12: Repeat this iteration with Âk−1
n = Ak−1

n while updating Ak
n for n = 1, · · · , N .

13: end if

14: if stopping criterion is satisfied then

15: Return Ak
1, · · · ,Ak

N .

16: end if

17: end for
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Chapter 4

Numerical results

In this section, I test Algorithm 2 for nonnegative matrix factorization taking N = 2

in (3.2) and three-way tensor factorization taking N = 3 in (3.2), as well as Algorithm

3 for their completion. In the implementations, I simply choose δω = 1. The algorithm

is terminated whenever

Fk
‖M‖F

≤ tol, or
Fk − Fk+1

1 + Fk
≤ tol holds for three consecutive iterations

where Fk is the objective value after iteration k and tol is specified below. I test

• APG-MF: nonnegative matrix factorization (NMF) by Algorithm 2;

• APG-TF: nonnegative tensor factorization (NTF) by Algorithm 2;

• APG-MC: nonnegative matrix completion (NMC) by Algorithm 3;

• APG-TC: nonnegative tensor completion (NTC) by Algorithm 3.

All the tests were performed on a laptop with an i7-620m CPU and 3GB RAM and

running 32-bit Windows 7 and Matlab 2010b with Tensor Toolbox of version 2.5 [6].
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4.1 Nonnegative matrix factorization

This section tests Algorithm 2 on nonnegative matrix factorization

min
A1,A2

1

2
‖A1A2 −M‖2

F , subject to A1 ∈ RI1×r
+ ,A2 ∈ Rr×I2

+ . (4.1)

Before comparing with other methods, let us see how the extrapolation technique in

(1.16c) affects the algorithm. In Figure 4.1, I test Algorithm 2 on nonnegative matrix

factorization (NMF). The accelerated version corresponds to extrapolation weight ωki

specified by (3.5), and no-acceleration corresponds to ωki ≡ 0. The tested matrix has

the form of

M = LR + σ
‖LR‖F
‖N‖F

N

where σ is noise level and L ∈ R500×30,R ∈ R30×500,N ∈ R500×500 are Gaussian ran-

domly generated matrices. We can see that the extrapolation technique significantly

speeds up the algorithm in both noisy and noiseless cases.

4.1.1 Overview of some algorithms

Next, I choose to compare the most popular and recent algorithms. The first two

compared ones are the alternating least square method (Als-MF) [67, 10] and multi-

plicative updating method (Mult-MF) [48], which are available as MATLAB’s func-

tion nnmf with specifiers als and mult, respectively. Als-MF alternatively updates
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Figure 4.1 : How extrapolation improves the algorithm

0 200 400 600 800 1000 1200 1400 1600
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

R
el

at
iv

e 
E

rr
or

accelerated V.S. no−acceleration

 

 

accelerated, no noise
no acceleration, no noise
accelerated, 5% noise
no acceleration, 5% noise

A1 and A2 by

Ak
1 = max

(
0,M(Ak−1

2 )>
(
Ak−1

2 (Ak−1
2 )>

)†)
,

Ak
2 = max

(
0,
(
(Ak

1)>Ak
1

)†
(Ak

1)>M
)
,

where † denotes the Moore-Penrose pseudo-inverse. Mult-MF has cheaper multiplica-

tive updates

(Ak
1)ij =

(Ak−1
1 )ij(M(Ak−1

2 )>)ij

(Ak−1
1 Ak−1

2 (Ak−1
2 )> + ε)ij

,

(Ak
2)ij =

(Ak−1
2 )ij((A

k
1)>M)ij

((Ak
1)>(Ak

1)Ak−1
2 + ε)ij

, ∀i, j

where ε > 0 is used to avoid division by zero.

One recent ANLS method Blockpivot-MF is compared since it outperforms all

other compared ANLS methods in both speed and solution quality [41]. ANLS meth-
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ods belong to the framework of Algorithm 1 and use block-update (1.16a):

Ak
1 = argmin

A1≥0

1

2
‖A1A

k−1
2 −M‖2

F , (4.2a)

Ak
2 = argmin

A2≥0

1

2
‖Ak

1A2 −M‖2
F . (4.2b)

Blockpivot uses an active-set like method to solve subproblems in (4.2).

Another compared algorithm is the recent ADM-based method ADM-MF [95].

With auxiliary variables U and V, ADM-MF solves the equivalent problem

min
A1,A2,U,V

1

2
‖A1A2 −M‖2

F , subject to A1 = U,A2 = V,U ≥ 0,V ≥ 0. (4.3)

It is derived by alternatively minimizing the augmented Lagrangian function

L(A1,A2,U,V,Λ,Π) =
1

2
‖A1A2 −M‖2

F + 〈Λ,A1 −U〉+
α

2
‖A1 −U‖2

F

+ 〈Π,A2 −V〉+
β

2
‖A2 −V‖2

F

with respect to A1,A2,U,V, one at a time by fixing others, and updating the mul-

tipliers Λ,Π

Λk = Λk−1 + γα(Ak
1 −Uk), Πk = Πk−1 + γβ(Ak

2 −Vk),

where step length γ ∈ (0, 1.618) and α, β are penalty parameters.

Although both Blockpivot-MF and ADM-MF have superior performance than Als-

MF and Mult-MF, I include them in the first two tests below due to their popularity.

4.1.2 Parameter setting

I set tol = 10−4 for all the compared algorithms except ADM-MF, for which I set

tol = 10−5 since it is a dual algorithm and 10−4 is too loose. The maximum number of
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iterations is set to 2000 for all the compared algorithms. The same random starting

points are used for all the algorithms except for Mult-MF. Since Mult-MF is very

sensitive to initial points, I set the initial point by running Mult-MF 10 iterations for

5 independent times and choose the best one. In the implementation of ADM-MF, it

scales M to have ‖M‖F = 5×106, and step length γ = 1.618 and penalty parameters

α = β = 1.25max(I1,I2)
r

×104 are used. All the other parameters for Als-MF, Mult-MF,

Blockpivot-MF and ADM-MF are set to their default values.

4.1.3 Synthetic data

Each matrix in this test is exactly low-rank and can be written in the form of M =

LR, where L and R are generated by MATLAB commands max(0,randn(m,q)) and

rand(q,n), respectively. It is worth mentioning that generating R by rand(q,n)

makes the problems more difficult than max(0,randn(q,n)) or abs(randn(q,n)).

The algorithms are compared with fixed n = 1000 andm chosen from {200, 500, 1000},

q from {10, 20, 30}. The parameter r is set to q in (4.1). I use relative error relerr =

‖A1A2 −M‖F/‖M‖F and CPU time (in seconds) to measure the performance of

each algorithm. Table 4.1 lists the average results of 20 independent trials. From the

table, we can see that APG-MF outperforms all the other algorithms in both CPU

time and solution quality. Figure 4.2 plots one trial for which m = 500, q = 30 and

each algorithm runs to sufficiently long time. It shows that APG-MF, ADM-MF and

Blockpivot-MF can all reach a high accuracy while Als-MF and Mult-MF are stuck
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Table 4.1 : Average relative errors and running time (sec) of each algorithm on
nonnegative random m × n matrices for n = 1000; bold are large error or slow
time.

APG-MF† (prop’d) ADM-MF Blockpivot-MF Als-MF Mult-MF

m r relerr time relerr time relerr time relerr time relerr time

200 10 9.98e-5 7.16e-1 2.24e-3 1.04e+0 5.36e-4 1.30e+0 7.39e-3 1.04e+0 3.61e-2 2.67e+0

200 20 9.97e-5 2.09e+0 3.02e-3 2.80e+0 1.02e-3 4.71e+0 1.01e-2 2.33e+0 4.64e-2 3.61e+0

200 30 9.97e-5 4.72e+0 4.55e-3 5.70e+0 1.75e-3 1.06e+1 1.04e-2 4.54e+0 4.09e-2 5.53e+0

500 10 9.98e-5 1.61e+0 2.26e-3 2.39e+0 5.11e-4 2.38e+0 1.15e-2 2.99e+0 3.58e-2 7.76e+0

500 20 9.98e-5 3.66e+0 2.82e-3 4.38e+0 5.53e-4 6.86e+0 1.08e-2 6.31e+0 4.96e-2 7.99e+0

500 30 9.98e-5 7.75e+0 3.51e-3 8.34e+0 5.75e-4 1.37e+1 1.29e-2 9.95e+0 4.42e-2 1.20e+1

1000 10 9.98e-5 2.86e+0 2.11e-3 3.44e+0 4.99e-4 3.18e+0 1.54e-3 8.04e+0 3.25e-2 1.55e+1

1000 20 9.98e-5 7.44e+0 2.82e-3 7.19e+0 5.46e-4 1.05e+1 1.74e-2 1.75e+1 4.96e-2 1.61e+1

1000 30 9.98e-5 1.27e+1 3.01e-3 1.28e+1 5.76e-4 2.00e+1 1.99e-2 2.61e+1 4.57e-2 2.21e+1

†: the relerr values of APG-MF are nearly the same due to the use of the same stopping tolerence.

at local minima.

4.1.4 Image data

In this subsection, I compare APG-MF (proposed), ADM-MF, Blockpivot-MF, Als-

MF and Mult-MF on the CBCL and ORL image databases used in [34, 51]. There

are 6977 face images in the training set of CBCL, each having 19×19 pixels. Multiple

images of each face are taken with varying illuminations and facial expressions. The

first 2000 images are used for test. I vectorize every image and obtain a matrix M

of size 361 × 2000. Figure 4.3 (a) shows the first 36 faces corresponding to the first

36 columns of matrix M. Dimension parameter r in (4.1) is chosen from {30, 60, 90}.

The average relative errors and running time (sec) of 10 independent trials are given

in Table 4.2. We can see that APG-MF outperforms ADM-MF in both speed and

solution quality. APG-MF is as accurate as Blockpivot-MF but runs much faster.
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Figure 4.2 : One trial on nonnegative matrix factorization with m = 500, q = 30
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Als-MF and Mult-MF produce very bad results in this test, and Als-MF stagnates at

solutions of low quality at the very beginning. Figure 4.3 (b)-(f) plot 36 base images

corresponding to the first 36 columns of A1 obtained by each method for r = 90.

Each A1 is scaled to have the unit maximum element. APG-MF, ADM-MF and

Blockpivot-MF all get relatively sparse A1’s, as demonstrated in [47] that NMF can

be used to learn local features of images. Due to the poor performance of Als-MF

and Mult-MF, only APG-MF, ADM-MF and Blockpivot-MF are compared in the

remaining tests.

The ORL database has 400 images divided into 40 groups. Each image has 112×92

pixels, and each group has 10 images of one face taken from 10 different directions and

with different expressions. All the images are used for test. I vectorize each image and

obtain a matrix M of size 10304×400. Figure 4.4 (a) depicts 50 images corresponding
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Table 4.2 : Average relative errors and running time (sec) of each algorithm on 2000
selected images from the CBCL face database; bold are large error or slow time.

APG-MF (proposed) ADM-MF Blockpivot-MF Als-MF Mult-MF

r relerr time relerr time relerr time relerr time relerr time

30 1.91e-1 3.68 1.92e-1 7.33 1.90e-1 21.5 3.53e-1 3.15 2.13e-1 6.51

60 1.42e-1 12.5 1.43e-1 19.5 1.40e-1 63.2 4.59e-1 1.80 1.74e-1 12.1

90 1.13e-1 26.7 1.15e-1 34.2 1.12e-1 111 6.00e-1 2.15 1.52e-1 18.4

Figure 4.3 : CBCL database and base images: (a) 36 images selected from the 2000
tested images; (b)-(f) 36 base images corresponding to the first 36 columns of A1

obtained by APG-MF (prop’d), ADM-MF, Blockpivot-MF, Als-MF and Mult-MF at
r = 90.

(a) CBCL data (b) APG-MF (prop’d) (c) ADM-MF

(d) Blockpivot-MF (e) Als-MF (f) Mult-MF
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Table 4.3 : Comparison on the images from the ORL face database; bold are slow
time.

APG-MF (proposed) ADM-MF Blockpivot-MF

r relerr time relerr time relerr time

30 1.67e-1 15.8 1.71e-1 46.5 1.66e-1 74.3

60 1.41e-1 42.7 1.45e-1 88.0 1.40e-1 178

90 1.26e-1 76.4 1.30e-1 127 1.25e-1 253

to the first 50 columns of M. As in last test, I choose r from {30, 60, 90}. The average

results of 10 independent trials are listed in Table 4.3. From the results, we can see

again that APG-MF is better than ADM-MF in both speed and solution quality, and

in far less time APG-MF achieves comparable accuracy as Blockpivot-MF. Figure 4.4

(b)-(d) depict 50 base images corresponding to the first 50 columns of A1 obtained

by each algorithm for r = 90. All the three algorithms get the frames of faces instead

of local features. None of them get a sparse A1. The sparsest one obtained by

Blockpivot-MF has about 60.6% non-zeros.

4.1.5 Hyperspectral data

It has been shown in [68] that NMF can be applied to spectral data analysis. In

[68], a regularized NMF model is also considered with penalty terms α‖A1‖2
F and

β‖A2‖2
F added in the objective of (3.2). The parameters α and β can be tuned for

specific purposes in practice. Here, I focus on the original NMF model to show the

effectiveness of the algorithm. However, my method can also solve the regularized

NMF model. In this test, I use a 150 × 150 × 163 hyperspectral cube to test the
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Figure 4.4 : ORL database and base images: (a) 50 images selected from 400 tested
images; (b)-(d) 50 base images corresponding to the first 50 columns of A1 obtained
from APG-MF, ADM-MF and Blockpivot-MF at r = 90.

(a) ORL data (b) APG-MF (c) ADM-MF (d) Blockpivot-MF
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Figure 4.5 : Hyperspectral data of 150× 150× 163: four selected slices are shown

Table 4.4 : Average relative errors and running time (sec) of each algorithm on
hyperspectral data of size 150× 150× 163; bold are large error or slow time.

APG-MF (proposed) ADM-MF Blockpivot-MF

r relerr time relerr time relerr time

20 1.18e-2 34.2 2.34e-2 87.5 1.38e-2 62.5

30 9.07e-3 63.2 2.02e-2 116 1.10e-2 143

40 7.56e-3 86.2 1.78e-2 140 9.59e-3 194

50 6.45e-3 120 1.58e-2 182 8.00e-3 277

compared algorithms. Each slice of the cube is reshaped as a column vector, and a

22500 × 163 matrix M is obtained. In addition, the cube is scaled to have a unit

maximum element. Four selected slices before scaling are shown in Figure 4.5 corre-

sponding to the 1st, 50th, 100th and 150th columns of M. The dimension r is chosen

from {20, 30, 40, 50}, and Table 4.4 lists the average results of 10 independent trials.

We can see from the table that APG-MF is superior to ADM-MF and Blockpivot-MF

in both speed and solution quality.

4.2 Nonnegative matrix completion

In this section, I test Algorithm 3 on nonnegative matrix completion

min
A1,A2

1

2
‖PΩ(A1A2)− PΩ(M)‖2

F , subject to A1 ∈ RI1×r
+ ,A2 ∈ Rr×I2

+ , (4.4)
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and compare APG-MC to the ADM-based algorithm (ADM-MC) proposed in [90] on

the hyperspectral data used in last test. ADM-MC is derived in essentially the same

way as ADM-MF. Specifically, it applies the classic alternating direction method to

min
A1,A2,U,V,Z

1

2
‖A1A2 − Z‖2

F ,

subject to A1 = U,A2 = V,PΩ(Z) = PΩ(M),U ≥ 0,V ≥ 0.

It is demonstrated in [90] that ADM-MC outperforms other matrix completion solvers

such as FPCA [59] and LMaFit [88] on recovering nonnegative matrices because ADM-

MC takes advantages of data nonnegativity while the latter two do not. I fix the

dimension r = 40 in (4.4) and choose sample ratio SR , |Ω|
mn

from {0.20, 0.30, 0.40},

where the samples in Ω are chosen at random. The parameter δω for APG-MC is set

to 1, and all the parameters for ADM-MC are set to their default values. To make

the comparison consistent, I let both of the algorithms run to a maximum time (in

second) T = 50, 100, and I employ relative error: relerr = ‖A1A2 −M‖F/‖M‖F to

measure the performance of the two algorithms. Table 4.5 lists the average results

of 10 independent trials. From the table, we can see that APG-MC is significantly

better than ADM-MC in all cases.

4.3 Nonnegative three-way tensor factorization

This section tests Algorithm 2 on nonnegative three-way tensor factorization

min
A1,A2,A3

1

2
‖M−A1 ◦A2 ◦A3‖2

F , subject to An ∈ RIn×r
+ , n = 1, 2, 3. (4.5)
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Table 4.5 : Average relative errors and running time (sec) of each algorithm on a
hyperspectral data at stopping time T = 50, 100 (sec); bold are large error.

T = 50 APG-MC (proposed) ADM-MC T = 100 APG-MC (proposed) ADM-MC

Smpl. Rate relerr relerr Smpl. Rate relerr relerr

0.20 1.08e-1 1.64e-1 0.20 1.05e-1 1.62e-1

0.30 4.11e-2 9.42e-2 0.30 3.84e-2 9.30e-2

0.40 2.31e-2 5.22e-2 0.40 2.25e-2 5.12e-2

To the best of my knowledge, all the existing algorithms for nonnegative tensor fac-

torizations are extensions of those for nonnegative matrix factorization including mul-

tiplicative updating method [87], hierachical alternating least square algorithm [23],

alternaing Poisson regression algorithm [21] and alternating nonnegative least square

(ANLS) methods [40, 42]. I compare APG-TF with two ANLS methods AS-TF [40]

and Blockpivot-TF [42], which are also proposed based on the CP decomposition and

superior over many other algorithms. Both of the two ANLS methods apply block-

update (1.16a), but they solve the subproblem in different ways. AS-TF solves every

subproblem by using active-set method to each column of the factor matrices while

Blockpivot-TF uses active-set method to a block of columns. I set tol = 10−4 and

maxit = 2000 for all the compared algorithms, and the same initial points are used

for all three algorithms. All the other parameters for Blockpivot-TF and AS-TF are

set to their default values.
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Table 4.6 : Average relative errors and running time (sec) of each algorithm on
synthetic three-way tensors; bold are large error or slow time.

Problem Setting APG-TF (proposed) AS-TF Blockpivot-TF

N1 N2 N3 q relerr time relerr time relerr time

80 80 80 10 8.76e-005 4.39e-001 7.89e-005 8.64e-001 8.62e-005 8.19e-001

80 80 80 20 9.47e-005 1.26e+000 1.97e-004 1.45e+000 1.77e-004 1.21e+000

80 80 80 30 9.65e-005 2.83e+000 2.05e-004 2.13e+000 2.07e-004 1.95e+000

50 50 500 10 9.15e-005 1.27e+000 1.07e-004 1.91e+000 9.54e-005 1.87e+000

50 50 500 20 9.44e-005 3.42e+000 1.86e-004 3.17e+000 1.77e-004 3.47e+000

50 50 500 30 9.74e-005 7.11e+000 1.89e-004 5.04e+000 1.88e-004 4.54e+000

4.3.1 Synthetic data

I compare APG-TF, Blockpivot-TF and AS-TF on randomly generated three-way

tensors. Each tensor has the form of M = L ◦C ◦R, where L,C are generated by

MATLAB commands max(0,randn(N1,q)) and max(0,randn(N2,q)), respectively,

and R by rand(N3,q). The algorithms are compared with two sets of (N1, N2, N3)

and q = 10, 20, 30. The dimension parameter in (4.5) is set to r = q. The relative error

relerr = ‖M−A1 ◦A2 ◦A3‖F/‖M‖F and CPU time (sec) measure the performance

of the algorithms. The average results of 10 independent runs are shown in Table 4.6,

from which we can see that all the algorithms give similar results.

4.3.2 Image test

NMF does not utilize the spatial redundancy of high-dimensional data. Its factors

tend to form the invariant parts of all images as ghosts while NTF factors can correctly

resolve all the parts demonstrated in [79]. Figure 4.7 and 4.8 show the factors obtained
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Figure 4.6 : 16 selected images in Swimmer dataset

Figure 4.7 : Factor images obtained by doing NMF on Swimmer database; r = 16 is
set in (4.1)

by doing NMF and NTF on the Swimmer database [24]. Some selected images in the

Swimmer database are shown in Figure 4.6. We can see that each factor of NMF has

the “torso” part as a ghost while NTF clearly factors all the parts.

This subsection compares APG-TF, Blockpivot-TF and AS-TF on two nonnega-

tive three-way tensors used in [79]. Each slice of the tensors corresponds to an image.

The first tensor is 19× 19× 2000 and is formed from 2000 images in the CBCL

Figure 4.8 : Factor images obtained by doing NTF on Swimmer database; r = 60
is set in (4.5). The “limb” parts are obtained by superimposing the corresponding
rank-1 factors of NTF.
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Table 4.7 : Average relative errors and running time (sec) of each algorithm on CBCL
database; bold are slow time.

APG-TF (proposed) AS-TF Blockpivot-TF

r relerr time relerr time relerr time

40 1.85e-001 9.95e+000 1.86e-001 2.99e+001 1.85e-001 2.04e+001

50 1.68e-001 1.65e+001 1.68e-001 4.55e+001 1.69e-001 2.47e+001

60 1.53e-001 2.13e+001 1.56e-001 4.16e+001 1.56e-001 2.85e+001

database, used in Section 4.1.4. The average performance of 10 independent runs

with r = 40, 50, 60 are shown in Table 4.7. Another one has the size of 32× 32× 256

and is formed with the 256 images in the Swimmer dataset mentioned at the beginning

of this subsection. The results of 10 independent runs with r = 40, 50, 60 are listed in

Table 4.8. Both tests show that APG-TF is consistently faster than Blockpivot-TF

and AS-TF. In particular, APG-TF is much faster than Blockpivot-TF and AS-TF

with better solution quality in the second test.

In the second test, one interesting phenomenon is that APG-TF can always achieve

a high accuracy if it runs sufficiently long when r = 60. However, Blockpivot-TF and

AS-TF sometimes only achieve a low accuracy. Figure 4.9 plots the results of 8

independent runs. It implies that APG-TF is more often to avoid local minima.

4.3.3 Hyperspectral data

NTF is employed in [94] for hyperspectral unmixing. It is demonstrated that the

cubic data can be highly compressed and NTF is efficient to identify the material
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Figure 4.9 : Relative error versus running time (in seconds) for 8 independent trials
on Swimmer dataset

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF

0 10 20 30 40 50 60 70 80
10

−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF

0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF

0 5 10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time

R
el

at
iv

e 
E

rr
or

 

 

APG−TF (proposed)
AS−TF
Blockpivot−TF



65

Table 4.8 : Average relative errors and running time (sec) of each algorithm on
Swimmer database; bold are large error or slow time.

APG-TF (proposed) AS-TF Blockpivot-TF

r relerr time relerr time relerr time

40 2.43e-001 2.01e+000 2.71e-001 2.09e+001 2.53e-001 2.50e+001

50 1.45e-001 3.21e+000 2.00e-001 5.54e+001 1.87e-001 3.23e+001

60 3.16e-002 6.91e+000 1.10e-001 3.55e+001 7.63e-002 3.74e+001

Table 4.9 : Relative errors on hyperspectral data.

APG-TF (proposed) AS-TF Blockpivot-TF

r \ T 10 25 50 100 10 25 50 100 10 25 50 100

30 2.56e-1 2.53e-1 2.53e-1 2.53e-1 2.60e-1 2.56e-1 2.54e-1 2.53e-1 2.60e-1 2.56e-1 2.54e-1 2.53e-1

40 2.32e-1 2.27e-1 2.26e-1 2.26e-1 2.37e-1 2.30e-1 2.28e-1 2.26e-1 2.36e-1 2.29e-1 2.28e-1 2.27e-1

50 2.14e-1 2.07e-1 2.04e-1 2.04e-1 2.20e-1 2.11e-1 2.07e-1 2.06e-1 2.17e-1 2.10e-1 2.07e-1 2.05e-1

60 2.00e-1 1.91e-1 1.87e-1 1.86e-1 2.04e-1 1.95e-1 1.91e-1 1.88e-1 2.01e-1 1.94e-1 1.90e-1 1.88e-1

signatures. I compare APG-TF with Blockpivot-TF and AS-TF on the 150×150×163

hyperspectral cube, which is used in Section 4.1.5. For consistency, I let them run

to a maximum time T (in seconds) and compare the relative errors. The dimension

parameter r is chosen from {30, 40, 50, 60}. The relative errors corresponding to

T = 10, 25, 50, 100 are shown in Table 4.9, as the average of 10 independent trials.

We can see from the table that APG-TF achieves the same accuracy much earlier

than Blockpivot-TF and AS-TF.



66

4.4 Nonnegative tensor completion

This section tests Algorithm 3 on nonnegative three-way tensor completion

min
A1,A2,A3

1

2
‖ PΩ(M)−PΩ(A1 ◦A2 ◦A3)‖2

F , subject to An ∈ RIn×r
+ , n = 1, 2, 3. (4.6)

Recently, [54] proposed tensor completion based on minimizing tensor n-rank, the

matrix rank of mode-n matricization of a tensor. Using the matrix nuclear norm

instead of matrix rank, they solve the convex program

min
X

N∑
n=1

αn‖X(n)‖∗, subject to PΩ(X ) = PΩ(M), (4.7)

where αn’s are pre-specified weights satisfying
∑

n αn = 1 and ‖A‖∗ is the nuclear

norm of A defined as the sum of its singular values. Meanwhile, to solve (4.7) and

its relaxed versions, they proposed simple low-rank tensor completion (SiLRTC), fast

low-rank tensor completion (FaLRTC) and high accuracy low-rank tensor completion

(HaLRTC).

SiLRTC solves the penalized problem

min
X ,Y1,...,YN

N∑
n=1

αn‖Yn‖∗ + βn‖X(n) −Yn‖2
F , subject to PΩ(X ) = PΩ(M)

by BCD using block minimization scheme (1.16a). FaLRTC first uses the technique

in [63] to smooth each nuclear norm ‖X(n)‖∗ by

gµn(X(n)) = max
‖Yn‖≤1

〈X(n),Yn〉 −
µn
2
‖Yn‖2

F .

It is shown in [63] that gµn(X(n)) is differentiable. Then FaLRTC is derived by
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applying an accelerated proximal gradient method [64, 8] to

min
X

N∑
n=1

max
‖Yn‖≤1

αn〈X(n),Yn〉 −
µn
2
‖Yn‖2

F , subject to PΩ(X ) = PΩ(M), (4.8)

where ‖Y‖ denotes spectral norm of Y and equals its maximum singular value. HaL-

RTC applies the alternating direction method to an equivalent problem of (4.6)

min
X ,Y1,...,YN

N∑
n=1

αn‖Yn‖∗, subject to PΩ(X ) = PΩ(M),X(n) = Yn, ∀n.

It is derived by alternatively minimizing the augmented Lagrangian function

Lρ =
N∑
n=1

αn‖Yn‖∗ + 〈X(n) −Yn,Λn〉+
ρ

2
‖X(n) −Yn‖2

F (4.9)

with respect to X over the constraints PΩ(X ) = PΩ(M) and (Y1, . . . ,YN), followed

by updates of multipliers Λn’s.

I compare APG-TC with FaLRTC and HaLRTC on synthetic three-way tensors

since FaLRTC is more stable and HaLRTC gives more accurate solutions. Each tensor

is generated similarly as in Section 4.3.1. Rank q is chosen from {5, 10, 20, 30} and

sampling ratio SR = |Ω|/(N1N2N3) from {0.10, 0.30, 0.50}. Two sets of (N1, N2, N3)

are tested: (N1, N2, N3) = (80, 80, 80) and (N1, N2, N3) = (50, 50, 500). For APG-

TC, I use exact rank estimate r = q and over-estimate r = b1.25qc in (4.6). I set

tol = 10−4 and maxit = 2000 for all the three algorithms. The weights αn’s in (4.7)

are set to αn = 1
3
, n = 1, 2, 3. The smoothing parameters in (4.8) for FaLRTC are

set to µn = 5αn
In
, n = 1, 2, 3. HaLRTC gradually increases its penalty parameter ρ

in (4.9) by ρk+1 = 1.05ρk, and the initial penalty parameter for HaLRTC is set to
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ρ0 = 10−2. Its default initial value is ρ = 10−6. However, this default setting gives

very bad results for this test. All other parameters of FaLRTC and HaLRTC are set

to their default values. The average relative error and running time (in seconds) of

10 independent trials are shown in Table 4.10. For APG-TC, the relative error is

computed by relerr = ‖M−A1 ◦A2 ◦A3‖F/‖M‖F , and for FaLRTC and HaLRTC

it is computed by relerr = ‖M−X‖F/‖M‖F .

From the results, we can see that APG-TC with exact rank estimate almost always

produces most accurate solutions within least time. The only exception happens when

q = 30, SR = 0.1 and (N1, N2, N3) = (80, 80, 80), for which I observe it gives solutions

of high accuracy in all trials except one. APG-TC with over-estimated rank also gives

very accurate solution while it needs a little more time. In most cases, FaLRTC and

HaLRTC are slower and sometimes much slower than APG-TC. FaLRTC never gives

highly accurate solutions, which may be because it uses a smoothing parameter and

changes the original objective. HaLRTC can produce highly accurate solutions when

there are sufficiently many samples. However, it performs very bad with low sample

ratio such as when SR = 0.1. In addition, the size of the second set of problems is

about 3 times larger than the first one, but FaLRTC and HaLRTC become at least

20 times slower while APG-TC is more scalable.
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Table 4.10 : Comparison results on synthetic nonnegative tensor completion; bold
are bad or slow.

Prob. Set APG-TC r = q APG-TC r = b1.25qc FaLRTC HaLRTC

q SR relerr time relerr time relerr time relerr time

N1 = 80, N2 = 80, N3 = 80

5 0.10 2.94e-4 2.42e+0 6.79e-4 3.18e+0 5.90e-2 2.10e+1 1.73e-1 1.93e+1

5 0.30 9.38e-5 1.36e+0 5.54e-4 2.42e+0 1.48e-2 1.41e+1 1.61e-4 5.64e+0

5 0.50 8.75e-5 1.06e+0 3.03e-4 2.86e+0 8.96e-3 1.13e+1 1.15e-4 3.61e+0

10 0.10 1.94e-4 4.10e+0 5.80e-4 6.99e+0 3.87e-1 2.74e+1 4.20e-1 1.43e+1

10 0.30 9.73e-5 2.25e+0 3.31e-4 5.75e+0 1.66e-2 1.75e+1 2.11e-4 6.71e+0

10 0.50 9.42e-5 2.10e+0 2.57e-4 6.02e+0 1.04e-2 1.43e+1 1.13e-4 3.99e+0

20 0.10 1.38e-4 9.05e+0 4.56e-4 1.56e+1 4.17e-1 1.90e+1 4.27e-1 1.26e+1

20 0.30 1.04e-4 5.82e+0 2.86e-4 1.33e+1 4.34e-2 1.74e+1 9.48e-2 1.61e+1

20 0.50 9.72e-5 5.15e+0 2.15e-4 1.27e+1 1.29e-2 1.74e+1 1.91e-4 5.27e+0

30 0.10 8.71e-3 1.51e+1 3.98e-4 2.62e+1 3.81e-1 1.77e+1 3.88e-1 1.28e+1

30 0.30 1.03e-4 1.21e+1 1.85e-4 2.31e+1 1.75e-1 8.42e+0 1.91e-1 1.26e+1

30 0.50 9.98e-5 9.21e+0 1.37e-4 1.97e+1 1.72e-2 2.08e+1 1.70e-2 1.38e+1

N1 = 50, N2 = 50, N3 = 500

5 0.10 4.54e-4 7.48e+0 5.67e-4 1.01e+1 3.77e-2 1.60e+2 1.03e-1 3.37e+2

5 0.30 9.99e-5 3.26e+0 2.98e-4 8.77e+0 1.21e-2 8.16e+1 2.21e-4 1.43e+2

5 0.50 9.29e-5 2.92e+0 1.96e-4 6.44e+0 7.59e-3 6.55e+1 1.47e-4 8.94e+1

10 0.10 2.93e-4 1.14e+1 5.06e-4 1.92e+1 1.08e-1 1.63e+2 2.80e-1 3.00e+2

10 0.30 9.93e-5 6.43e+0 2.72e-4 1.68e+1 1.37e-2 1.11e+2 2.49e-4 1.63e+2

10 0.50 9.32e-5 5.50e+0 1.66e-4 1.76e+1 9.07e-3 8.41e+1 1.50e-4 9.66e+1

20 0.10 1.65e-4 2.25e+1 3.87e-4 4.62e+1 3.13e-1 1.40e+2 3.56e-1 2.55e+2

20 0.30 1.06e-4 1.38e+1 1.69e-4 3.65e+1 1.73e-2 1.53e+2 1.42e-3 2.24e+2

20 0.50 1.01e-4 1.33e+1 1.14e-4 3.46e+1 1.14e-2 1.07e+2 1.95e-4 1.17e+2

30 0.10 1.44e-4 4.33e+1 3.23e-4 7.13e+1 3.18e-1 1.33e+2 3.45e-1 2.51e+2

30 0.30 1.11e-4 2.84e+1 1.31e-4 6.34e+1 3.75e-2 1.81e+2 8.63e-2 2.72e+2

30 0.50 1.00e-4 2.32e+1 1.06e-4 5.51e+1 1.40e-2 1.31e+2 2.49e-4 1.42e+2
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4.5 Summary

Although the test results are obtained with a given set of parameters, it is clear from

the results that, compared to the existing algorithms, the proposed ones can return

solutions of similar or better quality in less time. Tuning the parameters of the

compared algorithms can hardly obtain much improvement in both solution quality

and time. I believe that the superior performance of the proposed algorithms is due

to the use of prox-linear steps, which are not only easy to compute but also, as a local

approximate, help avoid the small regions around certain local minima.
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Chapter 5

Conclusions

I have proposed a block coordinate descent method with three choices of block-

update schemes for regularized multi-convex optimization. Under the assumptions

of block strong convexity and/or Lipschitz continuity, I obtain a square summable

result about the difference of iterates, from which a subsequence convergence is es-

tablished. Further assuming isolation of Nash points, I establish a global convergence

result. Due to the difficulty of verifying the isolation condition, another property

called Kurdyka- Lojasiewicz property is reviewed and employed to show the global

convergence and asymptotic convergence rate. The algorithm has been applied to

nonnegative matrix/tensor factorization and completion problems, which have the

Kurdyka- Lojasiewicz property and thus have global convergence. Numerical results

on both synthetic and real image data illustrate the high efficiency of the proposed

algorithm. Compared to some state-of-the-art algorithms, the proposed ones are not

only faster but also can achieve higher accuracy.
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Appendix A

Some proofs

A.1 Proof of Lemma 2.3

Without loss of generality, we assume F̄ = 0. Otherwise, we can consider F − F̄ . Let

B(x̄, ρ) , {x : ‖x− x̄‖ ≤ ρ} ⊂ U for some ρ > 0 where U is the neighborhood of x̄ in

(2.21), and let LG be the global Lipschitz constant for ∇xif(x), i = 1, · · · , s within

B(x̄,
√

10ρ), namely,

‖∇xif(x)−∇xif(y)‖ ≤ LG‖x− y‖, i = 1, · · · , s

for any x,y ∈ B(x̄,
√

10ρ).

The proof will follow two steps. The first step will show

Claim A.1

Let ` = mini `i, L = maxi Li and

C1 =
9(L+ sLG)

2`(1− δω)2
, C2 = 2

√
2

`
+

3

1− δω

√
2 + 2δ2

ω

`
,

where `i, Li’s are the constants in Assumption 2.2. If Fk > F̄ and

C1φ(F0 − F̄ ) + C2

√
F0 − F̄ + ‖x0 − x̄‖ < ρ, (A.1)

then

xk ∈ B(x̄, ρ), ∀k. (A.2)

Note that (A.1) quantifies how close to x̄ the initial point x0 is required. The second

step will establish

Claim A.2

∞∑
k=N

‖xk+1−xk‖ ≤ C1φ(FN−F̄ )+‖xN−1−xN−2‖+2 + δω
1− δω

‖xN−xN−1‖, ∀N ≥ 2, (A.3)

where C1 is specified in Claim A.1.
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Note (A.3) implies {xk} is a Cauchy sequence, and thus xk converges. Hence, if (A.2)

and (A.3) both hold, then letting B = B(x̄, ρ) will prove the results of Lemma 2.3.

Proof of Claim A.1

We will prove xk ∈ B(x̄, ρ) by induction on k.

Obviously, x0 ∈ B(x̄, ρ) from (A.1). Hence, (A.2) holds for k = 0.

For k = 1, we have from (2.12) that

F0 ≥ F0 − F1 ≥
s∑
i=1

L0
i

2
‖x0

i − x1
i ‖2 ≥ `

2
‖x0 − x1‖2.

Hence, ‖x0 − x1‖ ≤
√

2
`
F0, and

‖x1 − x̄‖ ≤ ‖x0 − x1‖+ ‖x0 − x̄‖ ≤
√

2

`
F0 + ‖x0 − x̄‖,

which indicates x1 ∈ B(x̄, ρ).

For k = 2, we have from (2.12) that (regard ωki ≡ 0 for i ∈ I1 ∪ I2)

F0 ≥ F1 − F2 ≥
s∑
i=1

L1
i

2
‖x1

i − x2
i ‖2 −

s∑
i=1

L1
i

2
(ω1

i )
2‖x0

i − x1
i ‖2.

Note L1
i (ω

1
i )

2 ≤ δ2
ω`

0 for i = 1, · · · , s. Thus, it follows from the above inequality that

`1

2
‖x1 − x2‖2 ≤

s∑
i=1

L1
i

2
‖x1

i − x2
i ‖2 ≤ F0 +

`0

2
δ2
ω‖x0 − x1‖2 ≤ (1 +

`0

`
δ2
ω)F0,

which implies ‖x1 − x2‖ ≤
√

2+2δ2ω
`
F0. Therefore,

‖x2 − x̄‖ ≤ ‖x1 − x2‖+ ‖x1 − x̄‖ ≤

(√
2

`
+

√
2 + 2δ2

ω

`

)√
F0 + ‖x0 − x̄‖,

and thus x2 ∈ B(x̄, ρ).

Suppose xk ∈ B(x̄, ρ) for 0 ≤ k ≤ K. We go to show xK+1 ∈ B(x̄, ρ). For k ≤ K,

note

−∇fki (xki ) +∇xif(xk) ∈ ∂ri(xki ) +∇xif(xk), i ∈ I1,

−Lk−1
i (xki − xk−1

i )−∇fki (xki ) +∇xif(xk) ∈ ∂ri(xki ) +∇xif(xk), i ∈ I2,

−Lk−1
i (xki − x̂k−1

i )−∇fki (x̂k−1
i ) +∇xif(xk) ∈ ∂ri(xki ) +∇xif(xk), i ∈ I3,
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and

∂F (xk) =
{
∂r1(xk1) +∇x1f(xk)

}
× · · · ×

{
∂rs(x

k
s) +∇xsf(xk)

}
,

so (for i ∈ I1 ∪ I2, regard x̂k−1
i = xk−1

i in xki − x̂k−1
i and x̂k−1

i = xki in ∇fki (x̂k−1
i ) −

∇xif(xk), respectively)

dist
(
0, ∂F (xk)

)
≤

∥∥(Lk−1
1 (xk1 − x̂k−1

1 ), · · · , Lk−1
s (xks − x̂k−1

s )
)∥∥

+
∑s

i=1

∥∥∇fki (x̂k−1
i )−∇xif(xk)

∥∥ .
(A.4)

For the first term in (A.4), plugging in x̂k−1
i and recalling Lk−1

i ≤ L, ωk−1
i ≤ 1 for

i = 1, · · · , s, we can easily get∥∥(Lk−1
1 (xk1 − x̂k−1

1 ), · · · , Lk−1
s (xks − x̂k−1

s )
)∥∥

≤ L
(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
.

(A.5)

For the second term in (A.4), it is not difficult to verify(
xk1, · · · ,xki−1, x̂

k−1
i , · · · ,xk−1

s

)
∈ B(x̄,

√
10ρ).

In addition, note

∇fki (x̂k−1
i ) = ∇xif

(
xk1, · · · ,xki−1, x̂

k−1
i , · · · ,xk−1

s

)
.

Hence,

s∑
i=1

∥∥∇xif
k
i (x̂k−1

i )−∇xif(xk)
∥∥

≤
s∑
i=1

LG
∥∥(xk1, · · · ,xki−1, x̂

k−1
i , · · · ,xk−1

s

)
− xk

∥∥
≤ sLG

(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
. (A.6)

Combining (A.4), (A.5) and (A.6) gives

dist(0, ∂F (xk)) ≤ (L+ sLG)
(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
,

which together with the KL inequality (2.21) implies

φ′(Fk) ≥ (L+ sLG)−1
(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)−1
. (A.7)
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Note that φ is concave and φ′(Fk) > 0. Thus it follows from (2.12) and (A.7) that

φ(Fk)− φ(Fk+1) ≥φ′(Fk)(Fk − Fk+1)

≥
∑s

i=1

(
Lki ‖xki − xk+1

i ‖2 − `k−1δ2
ω‖xk−1

i − xki ‖2
)

2(L+ sLG) (‖xk − xk−1‖+ ‖xk−1 − xk−2‖)
,

or equivalently

s∑
i=1

Lki ‖xki − xk+1
i ‖2 ≤2(L+ sLG)

(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
(φ(Fk)− φ(Fk+1))

+
s∑
i=1

`k−1δ2
ω‖xk−1

i − xki ‖2.

Recalling ` ≤ `k−1 ≤ `k ≤ Lki ≤ L for all i, k, we have from the above inequality that

‖xk − xk+1‖2

≤ 2(L+sLG)
`

(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
(φ(Fk)− φ(Fk+1))

+δ2
ω‖xk−1 − xk‖2.

(A.8)

Using inequalities a2 + b2 ≤ (a + b)2 and ab ≤ ta2 + b2

4t
for t > 0, we get from (A.8)

that

‖xk − xk+1‖

≤
(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

) 1
2

(
2(L+ sLG)

`
(φ(Fk)− φ(Fk+1))

) 1
2

+ δω‖xk−1 − xk‖

≤1− δω
3

(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
+

3(L+ sLG)

2`(1− δω)
(φ(Fk)− φ(Fk+1))

+ δω‖xk−1 − xk‖,

or equivalently

3‖xk − xk+1‖

≤ (1 + 2δω)‖xk − xk−1‖+ (1− δω)‖xk−1 − xk−2‖

+9(L+sLG)
2`(1−δω)

(φ(Fk)− φ(Fk+1)).

(A.9)
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Summing up (A.9) over k from 2 to K and doing some eliminations give

K∑
k=2

(1− δω)‖xk − xk+1‖+ (2 + δω)‖xK − xK+1‖+ (1− δω)‖xK−1 − xK‖

≤(1− δω)‖x0 − x1‖+ (2 + δω)‖x1 − x2‖+
9(L+ sLG)

2`(1− δω)
(φ(F2)− φ(FK+1)).

Recalling ‖x0 − x1‖ ≤
√

2
`
F0 and ‖x1 − x2‖ ≤

√
2+2δ2ω
`
F0, we have from the above

inequality that

‖xK+1 − x̄‖ ≤
K∑
k=2

‖xk − xk+1‖+ ‖x2 − x̄‖

≤
√

2

`
F0 +

2 + δω
1− δω

√
2 + 2δ2

ω

`
F0 +

9(L+ sLG)

2`(1− δω)2
(φ(F2)− φ(FK+1))

+ ‖x2 − x̄‖

≤9(L+ sLG)

2`(1− δω)2
φ(F0) +

(
2

√
2

`
+

3

1− δω

√
2 + 2δ2

ω

`

)√
F0 + ‖x0 − x̄‖.

Hence, xK+1 ∈ B(x̄, ρ), and this completes the proof of Claim A.1.

Proof of Claim A.2

We will prove (A.3) from (A.9). Indeed, (A.9) holds for all k ≥ 0. Summing it over

k from N to T and doing some eliminations yield

T∑
k=N

(1− δω)‖xk − xk+1‖+ (2 + δω)‖xT − xT+1‖+ (1− δω)‖xT−1 − xT‖

≤(1− δω)‖xN−2 − xN−1‖+ (2 + δω)‖xN−1 − xN‖+
9(L+ sLG)

2`(1− δω)
(φ(FN)− φ(FT+1)),

which implies

∞∑
k=N

‖xk − xk+1‖ ≤ ‖xN−2 − xN−1‖+
2 + δω
1− δω

‖xN−1 − xN‖+
9(L+ sLG)

2`(1− δω)2
φ(FN)

by letting T →∞. This completes the proof of Claim A.2.
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A.2 Proof of Theorem 2.4

If θ = 0, we must have F (xk0) = F (x̄) for some k0. Otherwise, F (xk) > F (x̄) for all

sufficiently large k. The Kurdyka- Lojasiewicz inequality gives c · dist(0, ∂F (xk)) ≥ 1

for all k ≥ 0, which is impossible since xk → x̄ and 0 ∈ ∂F (x̄). The finite convergence

now follows from the fact that F (xk0) = F (x̄) implies xk = xk0 = x̄ for all k ≥ k0.

For θ ∈ (0, 1), we assume F (xk) > F (x̄) = 0 and use the same notation as in the

proof of Lemma 3. Define

Sk =
∞∑
i=k

‖xi − xi+1‖.

Then (A.3) can be written as

Sk ≤ C1φ(Fk) +
2 + δω
1− δω

(Sk−1 − Sk) + Sk−2 − Sk−1, for k ≥ 2,

which implies

Sk ≤ C1φ(Fk) +
2 + δω
1− δω

(Sk−2 − Sk), for k ≥ 2, (A.10)

since Sk−2 − Sk−1 ≥ 0. Using φ(s) = cs1−θ, we have from (A.7) for sufficiently large

k that

c(1− θ)(Fk)−θ ≥ (L+ sLG)−1
(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)−1
,

or equivalently (Fk)
θ ≤ c(1− θ)(L+ sLG)(Sk−2 − Sk). Then,

φ(Fk) = c(Fk)
1−θ ≤ c

(
c(1− θ)(L+ sLG)(Sk−2 − Sk)

) 1−θ
θ . (A.11)

Letting C3 = C1c
(
c(1 − θ)(L + sLG)

) 1−θ
θ and C4 = 2+δω

1−δω , we have from (A.10) and

(A.11) that

Sk ≤ C3 (Sk−2 − Sk)
1−θ
θ + C4 (Sk−2 − Sk) . (A.12)

When θ ∈ (0, 1
2
], i.e., 1−θ

θ
≥ 1, (A.12) implies that Sk ≤ (C3 + C4)(Sk−2 − Sk) for

sufficiently large k since Sk−2 − Sk → 0, and thus

Sk ≤
C3 + C4

1 + C3 + C4

Sk−2.

Note that ‖xk − x̄‖ ≤ Sk. Therefore, item 2 holds with τ =
√

C3+C4

1+C3+C4
< 1 and

sufficiently large C.

When θ ∈ (1
2
, 1), i.e., 1−θ

θ
< 1, we can show

SνN + SνN−1 − SνK+1 − SνK ≥ µ(N −K), (A.13)
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for ν = 1−2θ
1−θ < 0, some constant µ > 0 and any N > K with sufficiently large K by

the same argument as in the proof of Theorem 2 of [2]. Note SN ≤ SN−1 and ν < 0.

Hence, (A.13) implies

SN ≤
(

1

2

(
SνK+1 + SνK + µ(N −K)

)) 1
ν

≤ CN−
1−θ
2θ−1 ,

for sufficiently large C and N . This completes the proof.

For completeness, I give the proof of (A.13) below by repeating the arguments in

Theorem 2 of [2].

Proof of (A.13)

Note that Sk → 0 and 1−θ
θ
< 1. We have from (A.12) that

S
θ

1−θ
k ≤ C5(Sk−2 − Sk), (A.14)

for C5 = max(C3, C4)+1 and all k ≥ K with sufficiently large K such that SK−2 < 1.

Define

h(s) = s−
θ

1−θ

and let c ∈ (1,+∞). Take k ≥ K and go to show

Sνk − Sνk−2 ≥ µ > 0, (A.15)

for some µ and all k ≥ K.

Case 1: h(Sk) ≤ ch(Sk−2). Writing (A.14) to

1 ≤ C5(Sk−2 − Sk)S
− θ

1−θ
k ,

we have

1 ≤ C5(Sk−2 − Sk)h(Sk)

≤ cC5(Sk−2 − Sk)h(Sk−2)

≤ cC5

∫ Sk−2

Sk

h(s)ds

= cC5
1− θ
1− 2θ

[
Sνk−2 − Sνk

]
.

Letting µ̂ = ν
cC5

, we get

0 < µ̂ ≤ Sνk−2 − Sνk .
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Case 2: h(Sk) > ch(Sk−2). Set q = c
θ

1−θ ∈ (0, 1). Then Sk ≤ qSk−2 and Sνk ≥
qνSνk−2 or equivalently

Sνk − Sνk−2 ≥ (qν − 1)Sνk−2

by noting ν < 0. Since Sk−2 < 1,∀k > K and qν > 1, there exists µ̄ > 0 such that

(qν − 1)Sνk−2 > µ̄ for all k > K. Hence,

Sνk−2 − Sνk > µ̄.

Taking µ = min(µ̂, µ̄), we get (A.15). Summing (A.15) from K to some integer

N > K gives (A.13).
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