


ABSTRACT

Lightweight Silicon-based Security

Concept, Implementations, and Protocols

by

Mehrdad Majzoobi

Advancement in cryptography over the past few decades has enabled a spectrum

of security mechanisms and protocols for many applications. Despite the algorithmic

security of classic cryptography, there are limitations in application and implemen-

tation of standard security methods in ultra-low energy and resource constrained

systems. In addition, implementations of standard cryptographic methods can be

prone to physical attacks that involve hardware level invasive or non-invasive attacks.

Physical unclonable functions (PUFs) provide a complimentary security paradigm

for a number of application spaces where classic cryptography has shown to be inef-

ficient or inadequate for the above reasons. PUFs rely on intrinsic device-dependent

physical variation at the microscopic scale. Physical variation results from imperfec-

tions and random fluctuations during the manufacturing process which impact each

device’s characteristics in a unique way. PUFs at the circuit level amplify and capture

variation in electrical characteristics to derive and establish a unique device-dependent

challenge-response mapping.

Prior to this work, PUF implementations were unsuitable for low power applica-

tions and vulnerable to wide range of security attacks. This doctoral thesis presents a

coherent framework to derive formal requirements to design architectures and proto-



cols for PUFs. To the best of our knowledge, this is the first comprehensive work that

introduces and integrates these pieces together. The contributions include an intro-

duction of structural requirements and metrics to classify and evaluate PUFs, design

of novel architectures to fulfill these requirements, implementation and evaluation of

the proposed architectures, and integration into real-world security protocols.

First, I formally define and derive a new set of fundamental requirements and

properties for PUFs. This work is the first attempt to provide structural require-

ments and guideline for design of PUF architectures. Moreover, a suite of statistical

properties of PUF responses and metrics are introduced to evaluate PUFs.

Second, using the proposed requirements, new and efficient PUF architectures are

designed and implemented on both analog and digital platforms. In this work, the

most power efficient and smallest PUF known to date is designed and implemented

on ASICs that exploits analog variation in sub-threshold leakage currents of MOS

devices. On the digital platform, the first successful implementation of Arbiter-PUF

on FPGA was accomplished in this work after years of unsuccessful attempts by the

research community. I introduced a programmable delay tuning mechanism with

pico-second resolution which serves as a key component in implementation of the

Arbiter-PUF on FPGA. Full performance analysis and comparison is carried out

through comprehensive device simulations as well as measurements performed on a

population of FPGA devices.

Finally, I present the design of low-overhead and secure protocols using PUFs for

integration in lightweight identification and authentication applications. The new pro-

tocols are designed with elegant simplicity to avoid the use of heavy hash operations

or any error correction. The first protocol uses a time bound on the authentication

process while second uses a pattern-matching index-based method to thwart reverse-

engineering and machine learning attacks. Using machine learning methods during

the commissioning phase, a compact representation of PUF is derived and stored in

a database for authentication.
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1

Chapter 1

Introduction

While classic cryptography has tremendously advanced and matured over the past few

decades, there are still many application domains where the computational overhead

or the assumptions of the classic cryptography are limiting factors.

Classic cryptography often relies on algorithmically secure operations such as dis-

crete logarithm and factorization and a secret key to establish security. Once these

algorithms are implemented on actual physical hardware, a whole new array of vul-

nerabilities arise. Side channel attacks attempt to derive secret keys by non-invasively

and invasively monitoring the side channel information leaked from the target sys-

tem. Such attacks on the physical hardware may include monitoring and analyzing

side channel information in event timing, power consumption, electromagnetic ema-

nations, as well as fault injection attacks and direct probing. Moreover, permanent

storage of secret keys requires integration of non-volatile memory such as using ROM

or Flash technology. Invasive probing and scanning electron imaging can be per-

formed to read the internal memory values that store the secret key. In addition, the

computational complexity of classic cryptographic algorithms imposes a burden on

applications with ultra low power requirements and resource constrained systems.

Physical unclonable functions (PUFs) provide a complimentary security paradigm

for a number of application spaces where classic cryptography has shown to be in-

efficient or inadequate. PUFs exploit the information inherently embedded in the

physical variation of the silicon devices to enable a unique chip-dependent mapping
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from a set of digital inputs (challenges) to digital outputs (responses). PUFs can be

employed to provide security at multiple levels and to address a range of problems

from securing processors [4], to IP protection [5], and IC authentication [6].

Prior to this work, PUF implementations suffered from inefficient designs that

made them unsuitable for low power applications and vulnerable to broad range of

security attacks. In addition, the exiting authentication protocols because of the

use hash operation and/or error correction are not suited for low power applications.

This doctoral thesis presents novel formal requirements, properties, and protocols for

PUFs that are used to design new architectures and implementations. The thesis

starts from the foundation to formally define and derive a set of requirements and

properties for physically unclonable functions. These definitions give us a tool to

test, analyze and evaluate PUFs. After consolidating the definition and properties,

I move from abstract concepts to concrete architectural requirements and guidelines

to construct secure and efficient PUFs.

Once the requirements and desired properties are determined, robust and effi-

cient PUFs architectures are introduced and implemented across various platforms

including digital and analog ICs that conform to the introduced requirements. In par-

ticular, two PUF structures are implemented on FPGAs that leverage delay variation

of digital components. The first method uses an at-speed characterization mecha-

nism to measure component delays. The second is the long-sought implementation of

arbiter-based PUF. Many efforts made by the research community to implement the

arbiter-based PUF on FPGA have been previously unsuccessful, mainly because of

the difficulty to achieve a symmetric routing of the arbiter PUF. The difficulty arises

from the lack of freedom in routing on FPGA dictated by the rigid fabric of FPGA

interconnects. In this thesis, I show the first implementation of arbiter-based PUF
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on FPGA realized through a novel delay tuning mechanism of pico-second resolution.

On ASIC, an ultra-low power analog PUF implementation is presented that ex-

ploits variations in sub-threshold leakage currents of MOS devices. This is the most

power efficient and smallest PUF implementation known to date. The circuit was

taped out in IBM 90nm low power technology. The results show that the leakage-

based PUF circuit consumes 40 femto joules to generate one bit of response. Full

performance analysis and comparison are carried out on these implementations. Sta-

tistical properties and performance metrics such as response error rate in presence

of temperature and voltage supply variations as well as speed, area, and power con-

sumption are measured and reported.

Finally, I present the design of low overhead and secure protocols using PUFs. The

goal of these protocols is to protect the PUF against machine learning attacks and

prevent eavesdroppers or dishonest provers to pass the authentication without having

access to the physical medium (PUF). Also, the protocols prevent an attacker dis-

guised as a verifier to extract information from the PUF. The protocols are designed

with elegant simplicity to dramatically lower overhead by refraining from computa-

tionally expensive classic cryptographic operations and error correction techniques.

Two specific protocols, one exploiting a time bound on the authentication process

and the other one utilizing a pattern matching index-based authentication on PUF

responses are introduced to integrate the PUF in lightweight applications. The pat-

tern matching protocol use a true random number generator (TRNG) to generate a

nonce (number-used-once) and a random secret index. A TRNG based on flip flop

metastability and a closed loop feedback system is further developed and implemented

on FPGA [7].

To the best of our knowledge, this is the first comprehensive work that intro-



4

duces and integrates these pieces together. The contributions range from introduc-

tion of structural requirements and metrics to classify and evaluate PUFs, design of

novel architectures to fulfill these requirements, implementation and evaluation of the

proposed architectures on FPGAs and ASICs, and eventually integrating them into

real-world security protocols.

1.1 Focus

Research work for the thesis is divided into four sub-problems.

• First, A formal conceptual and structural definition as well as a set of expected

properties for PUFs are derived. Lack of consistent and structural approach

to PUF design as well as disparate attempts to define desired properties and

performance metrics of PUFs in the research community was the motivation

behind this phase of the research work. Part of this phase was accomplished

during my Master’s research work [8]. Statistical and performance metrics were

derived and tested on delay-based PUF in [2]. In [9], PUF implementation

challenges and obstacles on FPGAs were identified. Formal definitions on PUF

were developed later in [10], and [11].

• The second of part of the thesis involves implementation and evaluation of

the proposed concepts and architectures on FPGA. Two candidate structures

were implemented on FPGA. Prior to this research work, the only reported

PUF implementation was based on ring oscillators. Ring oscillators, in addition

to inefficiencies because of high power consumption and area overhead, do not

satisfy the Strong PUF requirements. The first proposed structure uses at-speed

test circuit and a clock sweep to measure the component delay and then maps
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the delays into digital responses [12, 13, 14]. The results obtained through

this research also motivated researchers in other fields to develop statistical

modeling and sparse sampling tools to enable fast delay characterization and

process variation modeling [15, 14].

The second implementation constructs and utilizes finely programmable delay

lines to implement the arbiter PUF on FPGA [16]. Prior to this work, there

have been many unsuccessful attempts to implement arbiter-based PUFs on

FPGA as also identified in early phases of the research [9]. Even researchers

had argued that implementation of arbiter-based PUF on FPGA is not viable

[17]. Experimental results in this work reported an average response error rate of

5% . Response error rate was significantly reduced by a challenge classification

method. The method only selects robust challenges that yield larger delay

differences with the knowledge of the component delays.

• Third, an analog implementation based on sensing variations in sub-threshold

leakage currents of MOS transistor arrays was presented in [10]. Since the main

application space for PUFs is ultra low power system, I proposed an analog

ASIC implementation of the PUF to further reduce the power consumption.

This work was the first attempt to build Strong PUFs on analog platforms

using sub-threshold leakage currents. The PUF generated digital responses by

sensing the differences between minuscule leakage currents from a an array of

MOS devices biased in the sub-threshold region. The leakage-based PUF is the

most power efficient and smallest known to date. The performance is evaluated

under various operating conditions (temperatures and voltage supplies) and

challenge configurations. The lowest response error rate of 3% was achieved
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when 8 currents were combined at the common gate voltage of 0.3V. The circuit

was taped out in IBM 90nm low power technology. The simulation results show

that the PUF circuit consumes 40 femto joules to generate one bit of response.

• Finally, two protocols are designed to enable integration of the PUF building

blocks into real world lightweight applications. The first protocol is particularly

designed for reconfigurable platforms such as FPGAs [12, 13]. The protocol en-

forces a time bound on the prover response time from the moment the device

is configured. It is assumed that the reconfigurable system component delays

are measured and stored through an initial registration phase. The time bound

makes it practically impossible to reverse engineering the FPGA bitstream to

discover the location and configuration of the PUF. Distance bounding protocols

introduced in early works [18, 19] protect systems such as smart card payments

and keyless entry against relaying attacks. These protocols are built upon the

same concept of timing the challenge/response process. The second protocol

is more generic and uses a pattern matching mechanism on the responses [20].

The pattern reveals almost no information about the original response sequence.

The concept of pattern matching for reliable key generation was proposed in

[21]. The index-based protocol avoids the use of computationally heavy stan-

dard cryptographic operations and error correcting codes, and thus creating an

elegantly simple yet powerful authentication protocol. The proposed protocol

in this thesis requires a TRNG module to generate a random index. I designed

and implemented a TRNG based on flip-flop metastability and a closed loop

feedback system in [7] to generate the required true random bits. The TRNG

uses the programmable delay lines introduced in [16] to force the flip-flops into

a metastable state. A closed-loop feedback system monitors the random output
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bits and automatically adjusts the delays to correct for any statistical deviations

from metastable operating point. This was the first innovative approach to use

metastability of digital circuits to generate true random numbers in hardware.

1.2 Thesis Organization

The next chapter provides a preliminary background of the physical unclonable func-

tion (PUF) concept and present implementations. In the background chapter, the

structural requirements of Strong PUF as well as the desired properties are further

discussed. Following Chapter 2, the related literature is reviewed in Chapter 3. In

particular, Chapter 3 discusses the shortcomings and merits of previous PUF imple-

mentations and protocols, as well as their vulnerabilities to attacks. Related work

on implementations of true random number generation in hardware is reviewed later

at the end of Chapter 3. Chapter 4 presents a delay characterization method on

FPGA and demonstrates the use of the developed mechanism to implement a delay-

measuring PUF. The second half of Chapter 4 harnesses the insight from observations

made earlier in the chapter to build a precise delay tuning mechanism with pico-second

resolution. The approach uses the programmable delay tuning system to implement

arbiter-based PUF on FPGA. Comprehensive measurements and evaluations are per-

formed on Virtex 5 FPGA on both approaches. Chapter 5 dives into the analog

implementation of Strong PUF on ASICs. In this chapter, an ultra-low power PUF is

introduced and implemented on 90 nano-meter IBM low power technology. Chapter

6 presents two new low power authentication protocols using PUFs. Appendix A

presents the first true random number generation in hardware that uses metastability

of flip-flops. Appendix B contains a set of plots which shows the measurement data

taken from the twelve FPGAs in detail. Chapter 7 concludes this work.
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Chapter 2

Background

Physical Unclonable Functions (PUFs) use the inherent and embedded nano- and

micro-scale randomness in silicon device physics to establish and define a secret which

is physically tied to the hardware. The randomness is introduced by the imperfections

and lack of precise control during the fabrication process that lead to variations in

device physical dimensions, doping, and material quality. The variation in device

physics transfers itself into variations in electrical properties, such as transistor drive

current, threshold voltages, capacitance and inductance parasitics. Such variations

are unique for each IC and device on each IC. Rather than generating a static ID,

PUFs typically accepts a set of input challenges and map them to a set of output

responses. The mapping is a function of the unique device-dependent characteristics.

Therefore, the responses two PUFs on two different chips produce to the same set of

inputs are different.

A common way to build a PUF in both ASICs and FPGAs is by measuring,

comparing, and quantifying the propagation delays across the logic elements and

interconnects. The variations in delays appears in forms of clock skews on clock

network, jitter noise on the clock, variations in setup and hold times of flipflops, and

the propagation path delays through the combinational logic. On analog platforms,

there is larger degree of freedom to measure variations on voltages and currents while

doing the same is not feasible on digital platforms where everything is in the binary

form of zeros and ones.
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PUFs can be classified based on their abstract architecture which explains how

challenges map to responses. In this thesis, an architectural paradigm is introduced

which delineates the mapping process. The implications of such architecture is further

discussed below. The architectural paradigm is used as a cornerstone to classify the

PUF as what is commonly referred in the literature as Strong PUF.

Figure shows the high-level architectural block diagram that defines the construc-

tion of Strong PUF. The diagram consists of three stages. The green blocks on

the lowest end generator process sensitive electric signals such as voltages, currents,

and/or delays. These blocks can be as simple as a single transistor device. The

yellow block above the generator block performs the selection function. The select

block based on the input challenge selects a subset of the generated signals. A critical

property of the select block for a Strong PUF is the ability to select an exponential

number of subsets ( 2n) from the set of generated signals of size n, where the maxi-

mum number of subsets is n!. The combine block above the select block, receives the

selected subsets and combines the values in the subsets. The combination function

can be a linear addition or some non-linear function. A critical observation that must

be made here is that the combination must be performed in analog domain to preserve

the information content of the generated signals. Since digital combination requires

quantization of the signals, the entropy and information content of the combined

values will be severely reduced if combination is performed in digital domain. For

instance, think of adding a large number of real values and then quantizing the result,

versus quantizing the real values first and perfoming the addition in digital domain.

It is clear that the quantization error dramatically decreases the information content

of the real number when second approach is taken. In reality, the entropy of the

former approach is limited by the analog noise during the analog addition operation.
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After combination is performed, the combined values are compared by the compare

block and the result is represented in binary format.

compare

combine

select

PSG PSG PSG...

...challenge

challenge

PSG: process-sensitive signal generator

tune

response

Figure 2.1 : The conceptual architecture of Strong PUF.

The work in [1] was the first to exploit the unique and unclonable delay variations

of silicon devices for PUF formation. The PUF, known as arbiter PUF or delay-

based PUF, is shown in Figure 2.2. The PUF uses the analog differences between

the delays of two parallel paths that are identical in design and prior to fabrication,

but the physical device imperfections make the delays different. The arbiter PUF

follows the architectural paradigm depicted in Figure . Beginning the operations,

a rising transition is exert at the PUF input producing a racing condition on the

parallel paths. An arbiter at the end of the paths generates binary responses based

on the signal arrival times. To enable multiple path combinations and generate an

exponential number of challenge/response pairs, the paths are divided into multiple

sub-paths interleaved by a set of path swapping switches. The challenges to the PUF
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D
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...

C0=0/1

Path-swapping 
switch

Arbiter 
(D-flipflop)

C1=0/1 C2=0/1 Cn=0/1

Figure 2.2 : Arbiter-based PUF introduced in [1].

control the switches and, therefore, the varying paths are formed. Let us compare

the mechanics of challenge-to-response mapping of the arbiter PUF with the diagram

shown in Figure . In the arbiter PUF, the process sensitive signals are in form of

delays. The selection operation is enabled by the set of path swapping switches along

the signal propagation path. The combination is carried out inherently as the delays

along the path add up. Therefore, the combination is simply a linear addition of

the delays of the selected paths. Note that the challenges can select an exponential

number of propagation paths and delays. A flip-flop at the end of the PUF compares

the delay of the two paths and produces a binary result. As it can be observed, all of

the components of architectural paradigm depicted in Figure can be detected in the

PUF structure.

A successful implementation of this type of PUF was demonstrated on ASICs

platforms [22]. It is critical to note that the differences in delays should be solely

coming from manufacturing variation and not from design-induced biases. To obtain

exact symmetry on the signal paths and to equalize the nominal delays, careful and

precise custom layout with manual placement and routing is required for implemen-

tation on ASICs. The lack of a fine control over arbitrary placement and routing on
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FPGA has resulted in difficulty in balancing the nominal delays on the racing paths

within the arbiter-based PUF. Implementation on FPGA was troubled because of

the constraints in routing and placement imposed by the rigid fabric of the FPGA as

studied in [17, 9].

In this thesis, the problem is addressed by demonstrating a working implemen-

tation of the arbiter-based PUF on FPGA that utilizes a non-swapping symmetric

switch structure as well as a precise programmable delay line (PDL) component to

cancel out the systematic delay biases. The path-swapping switch previously used in

the arbiter-based PUF of Figure 2.2 can be implemented by two multiplexers (MUX)

and one inverter as depicted in Figure 4.14 (b). However, due to cross wiring from the

lower half to the upper half (diagonal routing), maintaining symmetry in path lengths

for this type of switches is extremely difficult. To avoid diagonal routing, a non-path

swapping switch with a similar structure is introduced in Chapter 4 which uses two

MUXes as shown in Figure 4.14 (a). As it can be seen on the figure, after applying

the method the resulting routing and path lengths are symmetric and identical across

the symmetry axis (drawn by the dashed line).

Another family of PUFs amenable to implementation on digital platforms and in

particular FPGAs, is based on ring oscillators (RO-PUF). A ring oscillator is com-

posed of an odd number of inverters forming a chain. Due to variations in delays

of comprising logic components and interconnects, each ring oscillates at a slightly

different frequency. The RO-PUF measures and compares the unique frequency of

oscillation within a set of ring oscillators. A typical structure of RO-PUF is shown

in Figure 2 (a). Most of the work around RO-PUFs is focused on post process-

ing techniques, selection, quantization and comparison mechanisms to extract digital

responses while achieving robustness of responses and high response entropy. It is
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Figure 2.3 : Two implementation of path selecting switches.

important to note that due to the absence of combine block in RO-PUFs and sub-

exponential challenge space, RO-PUF does not pass the requirements to be classified

as Strong PUF.

One of the early papers to consider and study ring oscillators for digital secret

generation is [6]. The work proposes a 1-out-of-k mask selection scheme to enhance

the reliability of generated response bits. For each k ring oscillator pairs, the pair

that has the maximum frequency distance is chosen. It is argued that if the frequency

difference between two ring oscillators is big enough, then it is less likely that their

difference changes sign in presence of fluctuations in operating temperature or supply

voltage.

In order to achieve higher stability and robustness of responses, extra information

can be collected by measuring the oscillation frequency under different operating

conditions. Methods presented in references [23, 24] use this information to efficiently

pair or group the ring oscillators to obtain maximum response entropy. Specifically,

frequency measurement is performed at two extreme (low and high) temperatures
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and a linear model is built to predict the frequency at middle temperature points.

Systematic process variation can adversely affect the ability of RO-PUF for gen-

eration of unique responses. A method to improve uniqueness of ring oscillator PUF

responses is discussed in [25]. A compensation method is used to mitigate the effect

of systematic variation by (i) placing the group of ROs as close as possible (ii) pick-

ing the physically adjacent pair of ROs while evaluating a response bit. Large scale

characterization of an array of ROs on 125 FPGAs (Spartan3E) is performed in [26]

The existing inherent race conditions in combinatorial logics with feedback loop

are also used in development of other types of PUFs. For instance, a loop made

of two inverter gates can have two possible states. At the power-up, the system

enters into a metastable state that settles onto one of two possible states. In fact,

the faster gate will dominate the slower gate and determine the output. The idea

of back-to-back inverter loops is used in SRAM memory cells. SRAM-based PUFs

based on the inherent race condition and variations in component delays produce

unique outputs at startup. Unfortunately, in SRAM-based FPGAs, an automatic

internal reset mechanism prevents using the unique startup value. A more practical

implementation that is based on the same concept but uses the logic components on

FPGA rather than the configuration SRAM cells, is referred to as a butterfly PUF.

The basic structure of a butterfly PUF is shown in Figure 2 (b). Butterfly PUF is

made of two D-flipflops with asynchronous preset and reset inputs. The flip-flops are

treated as combinational logics. The work in [17] presents a comparative analysis

of delay based PUF implementations on FPGA. The work particularly focuses on

the requirements of maintaining symmetry in routing inside the building blocks of

Arbiter-based PUF, Butterfly PUF, and RO-PUF.
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Chapter 3

Related Literature

The idea of using complex unclonable features of a physical system as an underly-

ing security mechanism was initially proposed by Pappu et al. [27]. The concept

was demonstrated by studying mesoscopic physics of coherent transport through a

disordered medium. Another group of researchers observed that the manufacturing

process variability in modern silicon technology can be utilized for building a PUF.

They proposed the arbiter-based PUF architecture based on the variations in CMOS

logic delays [1].

In the arbiter-based PUF, the analog delay difference between two structurally

identical parallel paths is compared. Due to manufacturing variations, the delay of

these two paths are slightly different. The architecture of the arbiter-based PUF with

two racing parallel paths is demonstrated in Figure 3.1. A step input simultaneously

triggers the two paths. At the end of the two parallel paths, an arbiter is used to

convert the analog delay difference between the paths to a digital value. The arbiter

can be implemented by a D-flip flip in practice. The two paths can be divided into

several smaller subpaths by inserting path swapping switches. Each set of inputs to

the switches act as a challenge set (denoted by Ci), defining a new pair of racing

paths whose delays can be compared by the arbiter to generate a one-bit response.

The arbiter-based PUF implementation on ASICs was demonstrated, and a num-

ber of attacks and countermeasures were discussed [1, 28, 22, 6, 29].

For implementing PUFs on FPGA, Ring oscillator (RO) PUFs were proposed [6].
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Figure 3.1 : Delay-based PUF.

Ring oscillator (RO) PUFs rely on the specific and unique delay of an oscillating path

on each device [6]. The presently known PUFs of this type contain a set of ROs and a

pairing mechanism to compare the their frequencies. The major drawback of the RO

PUFs is having only a quadratic number of challenges with respect to the number of

RO’s [30] thus does not satisfy the Strong PUF requirement. Furthermore, the ROs

(while in use) consume significant dynamic power due to frequent transitions during

oscillations.

Another class of candidate FPGA PUFs are SRAM-PUFs and butterfly PUFs

[5, 31, 29]. Each FPGA SRAM cell would naturally tend to one logic state (either

zero or one) upon startup. The impact of mismatch and manufacture variability on

the SRAM power-on states is utilized to extract secret digital bits. However, similar

to RO-PUFs, there are only a polynomial number of challenges with respect to the

number of SRAM cells. Due to the lack of analog combining mechanism and the

sub-exponential size of the challenge space, SRAM PUF do not also adhere to our

definition of Strong PUF. A similar work in [32] implements the same concept with

nonstandard custom SRAM cells.

A digital ID extraction system based on device mismatch using an auto-zeroing

comparator was introduced in [33]. The major difference between static ID generation

using physical device variations and PUFs is the lack of challenges in the former to
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select and combine the analog variations before quantization/digitization.

Besides the ongoing research on PUFs, several other relevant works on delay char-

acterization serve as the enabling thrust for realization of our novel PUF structures.

To perform delay characterization, Wong et al. in [34] proposed a built-in self-test

mechanism for fast chip level delay characterization. The system utilizes the on-chip

PLL and DCM modules for clock generation at discrete frequencies. The delay fin-

gerprint can be used to detect any malicious modification to the original design due

to insertion of hardware Trojan horses [35, 36].

In addition, the use of reconfigurability to enhance system security and IP pro-

tection has previously been a subject of research. The work in [37] proposes a secure

reconfiguration controller (SeReCon) which provides secure runtime management of

designs downloaded to the DPR FPGA system and protects the design IP. The work

in [38] introduces methods for securing the integrity of FPGA configuration while

[39] leverages the capabilities of reconfigurable hardware to provide efficient and flex-

ible architectural support for security standards as well as defenses against hardware

attacks.

3.1 Vulnerability analysis and countermeasures

PUFs have been subject to modeling attacks that breach their security and break

any protocols built upon them. The basis for contemporary PUF modeling attacks

is collecting a set of CRPs by an adversary, and then building a numerical or an

algorithmic model from the collected data. For the attack to be successful, the models

should be able to correctly predict the PUF response to any new challenge with a

high probability.

In particular, it was observed that the linear arbiter-based PUF is vulnerable



19

to modeling attacks and the use of nonlinear feed-forward arbiters, and hashing to

proposed to safeguard against this attack [1]. Moreover, error correcting codes were

proposed in [40] to alleviate instability of PUF responses.

Further efforts were made to address the PUF vulnerability issues by adding in-

put/output networks, adding nonlinearities to hinder machine learning and enforcing

an upper bound on the PUF evaluation time [9, 30, 41].

Recent work on PUF modeling (reverse-engineering) used various machine learning

techniques to attack both implementation and simulations of a number of different

PUF families, including the realizations and simulations of linear arbiter PUFs and

feed-forward arbiter PUFs [40, 42, 43, 2, 44].

The use of XORs for mixing the responses from the arbiter PUFs to safeguard

them against attacks was pursued in [6]. More comprehensive analysis and description

of PUF security requirements to ensure their protection against modeling attacks were

presented in [45, 9]. The latest reported attacks on PUFs with k levels of XORs at

their output were able to model up to k = 5 (after a year of running their algorithms

on supercomputers) [44]. This was assuming that the full string of CRPs was known

to the attacker. At the time of this publication, to the best of our knowledge, no

stronger attacks on k-level XOR arbiter PUFs have been reported. We also note that,

the results for k = 5 in [44] are for “synthetic” PUFs, not for a silicon realization of

a PUF.

The use of PUF responses to create secret key for cryptographic algorithms has

been explored in previous work, including [1, 40, 46, 47, 48]. Since cryptographic keys

need to be stable, error correction is used for stabilizing inherently noisy PUF response

bits. The classic method for stabilizing noisy PUF bits (and noisy biometrics) is error

correction which is done by using helper bits or syndrome [49].
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Since error correction needs to be robust, secure, and efficient, it is important to

consider limiting the amount of secret bit leakage through the disclosed syndrome

bits. A generic secure key extraction framework based on biometric data and error

correction was devised in [49]. A newer information-theoretically secure Index-Based

Syndrome (IBS) error correction coding for PUFs was introduced and realized in

[48]. All the aforementioned methods incur a rather high overhead of error correction

logic, e.g., BCH, which prohibits their usage in lightweight systems. An alternative

efficient error correction method by pattern matching of responses was very recently

proposed [21]. We use this pattern matching idea in our work. In [21], a 4-XOR

arbiter has been used which for real PUFs has not yet been broken. Their archi-

tecture also works with a higher than 4 XOR mixing. However the error correction

performance would be reduced. Their proposed protocol and application area was

limited to secret key generation.

In the context of challenge-response based authentication for Strong PUFs, send-

ing the syndrome bits for correcting the errors before hashing was investigated [1];

the necessity for error correction was due to hashing the responses before sending

them to avoid reverse engineering. Naturally, the inputs to the hash have to be sta-

ble to have a predictable response. The proposed error correction methods in this

context are classic error correction and fuzzy extraction techniques. Aside from sen-

sitivity to PUF noise (because it satisfies the strict avalanche criterion) hashing has

the drawback of high overhead in terms of area, delay, and power.

3.2 Hardware True Random Number Generation

The work in [50] uses sampling of phase jitter in oscillator rings to generate a sequence

of random bits. The output of a group of identical ring oscillators are fed to a parity
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generator function (i.e., a multi-input XOR). The output is constantly sampled by

a D-flipflop driven using the system clock. In absence of noise and identical phases,

the XOR output would be constant (and deterministic). However, in presence of a

phase jitter, glitches with varying non-deterministic lengths appear at the output.

An implementation of this method on Xilinx Virtex II FPGAs was demonstrated in

[51].

...

...

...

... ... ... ...

D

Flipflop

Q

C

Clock

Figure 3.2 : TRNG based on sampling the ring oscillator phase jitter.

Another type of TRNG is introduced in [52] that exploits the arbiter-based Phys-

ical Unclonable Function (PUF) structure. PUF provides a mapping from a set of

input challenges to a set of output responses based on unique chip-dependent man-

ufacturing process variability. The arbiter-based PUF structure introduced in [1],

compares the analog delay difference between two parallel timing paths. The paths

are built identically, but the physical device imperfections make their timing differ-

ent. A working implementation of the arbiter-based PUF was demonstrated on both

ASICs [22] and FPGA [16, 6]. Unlike PUFs where reliable response generation is

desired, the PUF-based TRNG goal is to generate unstable responses by driving the

arbiter into the metastable state. This is essentially accomplished through violating

the arbiter setup/hold time requirements. The PUF-based TRNG in [52] searches for
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challenges that result in small delay differences at the arbiter input which then cause

unreliable response bits.

To improve the quality of the output TRNG bitsteam and increase its randomness,

various post-processing techniques are often performed. The work in [50] introduces

resilient functions to filter out deterministic bits. The resilient function is imple-

mented by a linear transformation through a generator matrix commonly used in

linear codes. The hardware implementation of resilient function is demonstrated in

[51] on Xilinx Virtex II FPGAs. The TRNG after post processing achieves a through-

put of 2Mbps using 110 ring oscillators with 3 inverters in each. A post-processing

may be as simple as von Neumann corrector [53] or may be more complicated such

as an extractor function [54] or even a one-way hash function such as SHA-1 [55].

Besides improving the statistical properties of the output bit sequence and remov-

ing biases in probabilities, post-processing techniques increase the TRNG resilience

against adversarial manipulation and variations in environmental conditions. An

active adversary may attempt to bias the output bit probabilities to reduce their

entropy. Post-processing techniques typically govern a trade-off between the quality

(randomness) of the generated bit versus the throughput. Other online monitoring

techniques may be used to assure a higher quality for the generated random bits. For

instance, in [52], the generated bit probabilities are constantly monitored; as soon as

a bias in the bit sequence is observed, the search for a new challenge vector producing

unreliable response bits is initiated. A comprehensive review of hardware TRNGs can

be found in [56]. The TRNG system proposed in this work simultaneously provides

randomness, robustness, low area overhead, and high throughput.
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Chapter 4

PUFs based on timing variations

4.1 Delay Signature Extraction

To measure the delays of components inside FPGA, we exploit the device reconfig-

urability to implement a delay signature extraction circuit. A high level view of the

delay extraction circuitry is shown in Figure 4.1. The target circuit/path delay to

be extracted is called the Circuit Under Test (CUT). Three flip-flops (FFs) are used

in this delay extraction circuit: launch FF, sample FF, and Capture FF. The clock

signal is routed to all three FFs as shown on the Figure. Assume for now that the

binary challenge input to the CUT is held constant and thus the CUT delay is fixed.

Assuming the FFs in Figure 4.1 are initialized to zero, a low-to-high signal is sent

through the CUT by the launch FF at the rising edge of the clock. The output is

sampled T seconds later on falling edge of the clock (T is half the clock period).

Notice that the sampling register is clocked at the falling edge of the clock. If the

signal arrives at the sample FF before sampling takes place, the correct signal value

would be sampled; otherwise, the sampled value would be different and will generate

an error. The actual signal value and the sampled value are compared by XOR logic

and the result is held for one clock cycle by the capture FF.

A more careful timing analysis of the circuit reveals the relationship between the

delay of the CUT (tCUT ), the clock pulse width (T ), the clock-to-Q delay at the launch

FF (tclk2Q), and the clock skew between the launch and sample FFs (tskew). The
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Figure 4.1 : The timing signature extraction circuit.

setup/hold of the sampling register and the setup/hold time of the capture register

are denoted by tsetS, tholdS, tsetC , and tholdC respectively. The propagation delay of the

XOR gate is denoted by tXOR. The time it takes for the signal to propagate through

CUT and reach the sample flip flop from the moment the launch flip flop is clocked

is represented by tP . Based on the circuit in Figure 4.1, tP = tCUT + tclk2Q − tskew.

As T approaches tP , the sample flip flop enters a metastable operation (because

of the setup and hold time violations) and its output becomes non-deterministic.

The probability that the metastable state resolves to a 0 or 1 is a function of how

close T is to tP . For instance, if T and tCUT are equal, the signal and the clock

simultaneously arrive at the sample flip flop and the metastable state resolves to a

1 with a probability of 0.5. If there are no timing errors in the circuit, the following

relationships must hold:

tholdC < tP < T − tsetS (4.1)

The errors start to appear if tp enters the following interval:

T − tsetS < tP < T + tholdS (4.2)

The rate (probability) of observing timing error increases as tp gets closer to the upper
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limit of Inequality 4.2. If the following condition holds, then timing error happens

every clock cycle:

T + tholdS < tP < 2T − (tsetC + tXOR) (4.3)

Observability of timing errors follows a periodic behavior. In other words, if tp

goes beyond 2T − (tsetC + tXOR) in Inequality 4.3, the rate of timing errors begins

to decrease again. This time the decrease in the error rate is not due to the proper

operation but it is because the timing errors cannot be observed and captured by the

capture FF.

Inequality 4.4 corresponds to the transition from the case where timing error

happens every clock cycle (Inequality 4.3) to the case where no errors can be detected

(Inequality 4.5).

2T − (tsetC + tXOR) < tP < 2T + (tholdC − tXOR) (4.4)

2T + (tholdC − tXOR) < tP < 3T − tsetS (4.5)

Timing errors no longer stay undetected if tp is greater than 3T − tsetS . Timing errors

begin to appear and can be captured if tp falls into the following intervals:

3T − tsetupS < tp < 3T + tholdS (4.6)

If the following condition holds, then timing error gets detected every clock cycle.

3T + tholdS < tp < 4T − (tsetC + tXOR) (4.7)

This periodic behavior continues the same way for integer multiples of T , however it

is upper bounded by the maximum clock frequency of the FPGA device. In general,

if T is much larger than the XOR and flip flop delays, the intervals can be simplified

to n× T < tp < (n+ 1)× T and timing errors can only be detected for odd values of

n.
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Notice that in the circuit in Figure 4.1, high-to-low and low-to-high transitions

travel through the CUT every other clock cycle. The propagation delay of these

two transitions differ in practice. Suppose that the low-to-high transition propaga-

tion delay (tl→h
p ) is smaller than the high-to-low transition propagation delay (th→l

p ).

Then, for low-to-high transitions, tl→h
p satisfies Inequalities 4.1 and for high-to-low

transitions, th→l
p satisfies Inequality 4.3. Timing errors in this case happen only for

high-to-low transitions and as a result timing error can only be observed 50% of the

times. Thus, the final measurement represents the superposition of both effects.

The top plot in Figure 4.2 shows the observed/measured probability of timing error

as a function of clock pulse width (T ). The right most region (R1) corresponds to the

error free region of operation expressed by Inequality 4.1. Note that the difference

between th→l
p and tl→h

p causes the plateau at R2. The gray regions marked by R2

and R4 correspond to the condition expressed by Inequality 4.2. Region R5 can be

explained by Inequality 4.3. Metastable regions of R6 and R8 relate to inequality

4.4. Inequality 4.5 corresponds to the error free region of R9. Similar to R3, regions

R7 and R11 are due to the difference between high-to-low and low-to-high transition

delays. Metastable regions of R10 and R12 relate to inequality 4.6 and lastly region

R13 corresponds Inequality 4.7.

Notice that similar to tp, all of the delays defined above for the XOR, flip flops,

and clock skew have two distinct values for high-to-low (rising edge) and low-to-high

(falling edge) transitions. Nevertheless, all of the inequalities defined in this section

hold true for both cases.

We refer to the characterization circuit that includes the CUT as a characterization

cell or simply a cell. Each cell in our implementation is contained in one configurable

logic block (CLB). The circuit under test consists of four cascaded look-up tables
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Figure 4.2 : The probability of observing timing failure as a function of clock pulse
width, T .

(LUT) each implementing a variable delay inverter. We explain in Section 4.2 how

the delay of the inverters can be changed.

4.1.1 Signature extraction system

In this subsection, we describe the system that efficiently extracts the probability of

observing timing failure as a function of clock pulse width for a group of components

on FPGA. The circuit shown in Figure 4.1 only produces a single bit flag of whether
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errors happen or not. We require a mechanism to measure the rate or probability at

which errors appear at the output of the circuit in Figure 4.1 to extract the smooth

transitions as depicted in Figure 4.2.

To measure the probability of observing error at a given clock frequency, an error

histogram accumulator is implemented by using two counters. The first counter is

the error counter whose value increments by unity every time an error takes place.

The second counter counts the clock cycles and resets (clears) the error counter every

2N clock cycles, where N is the size of the binary counters. The value of the error

counter is stored in the memory exactly one clock cycle before it is cleared. Now, the

stored number of errors normalized to N would yield the error probability value.

Figure 4.3 : The architecture for chip level delay extraction of logic components.

The clock frequency to the system is swept linearly and continuously in Tsweep

seconds from fi =
1
2Ti

to ft =
1

2Tt
, where Tt < tp < Ti. A separate counter counts
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the number of clock pulses in each frequency sweep. This counter acts as an accurate

timer that bookmarks the frequency at which timing errors happen. The value of

this counter is retrieved every time the error counter content is written into memory.

This action happens every 2N clock cycles. For further details on clock synthesis see

[14].

The system shown in Figure 4.3 is used for extracting the delays of an array of

CUTs on the FPGA. Each square in the array represents the characterization circuit

(or cell) shown in Figure 4.1. Any logic configuration can be utilized within the

CUT in the characterization circuit. In particular, the logic inside the CUT can be

made a function of binary challenges, such that its delay varies by the given inputs.

The system in Figure 4.3 characterizes each cell by sweeping the clock frequency

once. Then, it increments the cell address and moves to the next cell. The cells are

characterized in serial. The row and column decoders activate the given cell while the

rest of the cells are deactivated. Therefore, the output of the deactivated cells remain

zero and the output of the OR function solely reflect the timing errors captured in

the activated cell. Each time the data is written to the memory, three values are

stored: the cell address, the accumulated error value, and the clock pulse number at

which the error has occurred. The clock counter is then for each new sweep. The

whole operation iterates over different binary challenges to the cells. Note that the

scanning can also be performed in parallel to reduce the characterization time [14].

4.1.2 Characterization accuracy

The timing resolution, i.e., the accuracy of the measured delays, is a function of

the following factors: (i) the clock jitter and noise, (ii) the number of frequency

sample points, and (iii) the number of pulse samples at each frequency. Recall that
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the output of the characterization circuit is a binary zero/one value. By resending

multiple clock pulses of the same width to the circuit and summing up the number

of ones at the output, a real-valued output can be obtained. The obtained value

represents the rate (or the probability when normalized) at which the timing errors

happen for the input clock pulse width. Equivalently, it represents a sample point on

the curve shown in Figure 3. The more we repeat the input clock pulse, the higher

sample resolution/accuracy can be achieved along Y axis. Now suppose that the clock

pulse of width T is sent to the PUF for M times. Due to clock jitter and phase noise,

the characterization circuit receives a clock pulse of width Teff = T + Tj , where Tj

is additive jitter noise. Let us assume Tj is a random variable with zero mean and

a symmetric distribution. Since the output probability is a smooth and continuous

function of Teff , estimating the probability by averaging will be an asymptotically

unbiased estimator as M → ∞. Finally, the minimum measurable delay is a function

of the maximum speed at which the FFs can be driven (maximum clock frequency).

When performing a linear frequency sweep, a longer sweep increases (ii) and (iii) and

thus the accuracy of the characterization. A complete discussion on characterization

time and accuracy for this method is presented in [14].

4.1.3 Parameter extraction

So far, we have described the system that measures the probability of observing

timing errors for different clock pulse widths. The error probability can be represented

compactly by a set of few parameters. These parameters are directly related to the

circuit component delays and flip flop setup and hold time. It can be shown that the

probability of timing error can be expressed as the sum of shifted Gaussian CDFs [9].

The Gaussian nature of the error probabilities can be explained by the central limit
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Figure 4.4 : Two random placement of PUF cells on FPGA.

theorem. Equation 4.8 shows the parameterized error probability function.

fD,Σ(t) = 1 + 0.5

|Σ|−1∑

i=1

−1#i/2$
[
Q(

t− di
σi

)

]
(4.8)

where Q(x)= 1√
2π

∫∞
x exp

(
−u2

2

)
and di+1 > di. To estimate the timing parameters, f

is fit to the set of measured data points (ti,ei), where ei is the error value recorded

when the pulse width equals ti.

4.2 Timing PUF

To enable authentication, a mechanism for applying challenge inputs to the device

and observing the evoked responses is required. In this section, we present a PUF

circuit based on the delay characterization circuit shown in Figure 4.1. The response

is a function of the clock pulse width T , the delay of circuit under test, tCUT , and flip

flop characteristics, σi. In the following, we discuss three different ways to challenge

the PUF.
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4.2.1 Pulse challenge

One way to challenge the PUF is to change the clock pulse width. The clock pulse

width can be considered as an analog input challenge to the circuit in Figure 4.1. The

response to a given clock pulse of width T is either 0 or 1 with the probability given

by Equation 4.8 or the plot in Figure 4.2.

However, the use of clock pulse width as challenge has a number of implications.

First, the response from the PUF will be predictable if T is either too high and too low

compared to the nominal circuit under test delay tCUT . Predictability of responses

makes it easy for the attacker to impersonate the PUF without knowledge of the

exact value of tCUT . As another example, suppose that the response to multiple clock

pulses of the same width, T1, are equal to ‘0’; then, the attacker can deduce that

T1 is in either region R1 or R9 in Figure 4.2 with high confidence. If the nominal

boundaries of these regions (R1,...,R13) are known, the attacker can determine which

region T1 belongs by just comparing it to the boundaries TRi < T1 < TRi+1 . Knowing

the correct region, it becomes much easier to predict the response to the given pulse

width, especially for odd regions R1, R3, ..., R13.

Within the thirteen regions shown in Figure 4.2, the six regions that include

transitions produce the least predictable responses. Setting the challenge clock pulse

width to the statistical median of the center points of transitions in Figure 4.2 would

maximize the entropy of the PUF output responses. In other words, there are only

six independent pulse widths that can be used for challenges and the results for

other pulse widths are highly predictable. As it can be seen, the space of possible

independent challenges for this type of challenge is relatively small.

Another limitation of pulse challenges is that depending on the available clocking

resources, generating many clock pulses with specific widths can be costly. Under
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such limitations, the verifier may prefer to stick to a fixed pulse width. In the next

sections, we look into other alternatives to challenge the PUF.

4.2.2 Binary challenge

An alternative method to challenge the PUF is to change the tCUT while the clock

pulse width is fixed. So far, we assumed that the delay of CUT is not changing. To

change tCUT , one must devise an input vector to the circuit-under-test that changes

its effective input/output delay by altering the signal propagation path inside the

CUT. In other words, the binary input challenge vector alters the CUT delay by

changing its internal signal propagation path length, hence affecting the response.

Figure 4.5 : The internal structure of LUTs. The signal propagation path inside the
LUTs change as the inputs change.

In this work, we introduce a low overhead method to alter the CUT delay by

tweaking the LUT internal signal proportion path. We implement the CUT by a
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set of LUTs each implementing an inverter function. Figure 4.5 shows the internal

circuit structure of an example 3-input LUT. In general, a Q-input LUT consists of

2Q-1 2-input MUXs which allow selection of 2Q values stored in SRAM cells. The

SRAM cell values are configured to implement a pre-specified functionality.

In this example, the SRAM cell values are configured to implement an inverter.

The LUT output is only the function of A1, i.e., O = f(A1), disregarding values

on A2 and A3. However, changing the inputs A2 and A3 can alter the delay of the

inverter due to the modifications in the signal propagation paths inside the LUT. For

instance, two internal propagation path for the values of A2A3 = 00 and A2A3 = 11

are highlighted in Figure 4.5. As it can be seen, the path length for the latter case is

longer than the former, yielding a larger effective delay. The LUTs in Xilinx Virtex 5

FPGAs consist of 6 inputs. Five inputs of the LUT can be used to control and alter

the inverter delay resulting in 25 = 32 distinct delays for each LUTs. Finally, note

that the delays for each binary input must be measured prior to authentication. The

response to the PUF is then predicted by the verifier based on the configured delay

and the input clock pulse width.

4.2.3 Placement challenge

Another important type of challenge which can be implemented solely on reconfig-

urable platforms is the placement challenge. This type of challenge is enabled by the

degree of freedom in placing the PUF cells on FPGA in each configuration. During

characterization, a complete database of all CUT delays across the FPGA is gath-

ered. At the time of authentication, only a subset of these possible locations within

the FPGA array are selected to implement and hold the PUF cells. The placement

challenge is equivalent to choosing and querying a subset of PUF cells, where the
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selection input is embedded in the configuration bitstream.

Figure 4.4 shows two random placements of 20 PUF cells across the FPGA array.

Each black square in the figure contains a PUF cell which receives a pulse and binary

challenge. The high degree of freedom in placement of PUF cells across the FPGA

results in a huge challenge/response space. In our implementation, each PUF cell

can be fit into a CLB on FPGA. With N CLBs on FPGA, there will be
(
N
k

)
different

ways to place k PUF cells on FPGA. The smallest Xilinx Virtex 5 FPGA (LX30) has

2400 CLBs which enables
(
2400
512

)
number of possibilities to place 512 PUF cells on the

FPGA.

4.3 Response robustness

Although PUF responses are functions of chip-dependent process variations and input

challenges, they can also be affected by variations in operational conditions such

as temperature and supply voltage. In this section, we discuss two techniques to

provide calibration and compensation to make responses resilient against variations

in operational conditions.

The first method takes advantage of on-chip sensors to perform linear calibration

of the input clock pulse width challenge, while the second method uses a differential

structure to cancel out the fluctuations in operational conditions and extract signa-

tures that are less sensitive to variations in operational conditions. We will discuss

the advantages and disadvantages of each method. The existing body of research

typically addresses this issue mainly through the use of error correction techniques

[40] and fuzzy extractors [46]. The error correction techniques used for this purpose

rely on a syndrome which is a public piece of information being sent to the PUF

system along with the challenge. The response from the PUF and the syndrome are
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input to the ECC to produce the correct output response. The methods discussed in

this section help reduce the amount of errors in responses and they can be used along

with many other error correction techniques.

4.3.1 Linear Calibration

The extracted delay signatures at characterization phase are subject to changes due to

aging of silicon devices, variations in the operating temperature, and supply voltage

of the FPGA. Such variations can undermine the reliability of the authentication

process. The proposed method performs calibration on clock pulse width according

to the current operating conditions. Fortunately, many modern FPGAs are equipped

with built-in temperature and core voltage sensors. Before authentication begins, the

prover is required to send to the verifier the readings from the temperature and core

voltage sensors. The prover, then based on the current operating conditions, adjusts

and calibrates the clock frequency. The presented calibration method linearly adjusts

the pulse width using the Equations 4.9 and 4.10.

Tcalib = αtmp × (tmpcur − tmpref) + Tref (4.9)

Tcalib = αvdd × (vddcur − vddref) + Tref (4.10)

tmpref and vddref are the reference temperature and FPGA core voltage measured

during the characterization phase. tmpcur and vddcur represent the current operating

conditions. The responses from the PUF to the clock pulse width Tcalib are then

treated as if Tref were sent to the PUF at reference operating condition. The calibra-

tion coefficients αtmp and αvdd are device specific. These coefficients can be determined

by testing and characterizing each single FPGA at different temperatures and supply

voltages. For example, if dtmp1
i and dtmp2

i are i-th extracted delay parameter under
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operating temperatures tmp1 and tmp2, then

αtmp,i =
dtmp1
i − dtmp2

i

tmp1 − tmp2
,αvdd,i =

dvdd1i − dvdd2i

vdd1 − vdd2
(4.11)

Note that for each delay parameter on each chip, two calibration coefficients can be

defined (one for temperature and one for voltage supply effect) and the clock pulse

width can be calibrated accordingly. Ideally, with the help of a more sophisticated

prediction model (potentially a nonlinear model) trained on a larger number of tem-

perature and voltage supply points (instead of two points as in Equation 4.11), highly

accurate calibration can be performed on the clock frequency. In reality, due to lim-

itations on test time and resources, it is impractical to perform such tests for each

FPGA device. Instead, calibration coefficients can be derived from a group of sample

devices and a universal coefficient can be defined for all devices by averaging the

coefficients. In Section A.2, we demonstrate reliability of authentication for universal

calibration coefficients. Note that in Equations 4.9 and 4.10, we assume that only one

type of operational condition variation is happening at a time and both temperature

and voltage supply do not fluctuate simultaneously. However, if we consider these

effects independently, we can superimpose the effects by applying Equation 4.9 to

the output of Equation 4.10. A more general approach would be to consider a 2D

nonlinear transformation given by:

Tcalib = f (vddcur, tmpcur, Tref) (4.12)

The main disadvantage of calibration methods is the time and effort required to

characterize the delay at various operational conditions. Hence, more effort spent

on building and training the regression model, the more accurate calibration and a

higher robustness in responses can be achieved.
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4.3.2 Differential Structure

In this section, we introduce a differential PUF structure, that compensates for the

common mode variation induced by the impact of fluctuations in operational condi-

tions on the delays. The goal of the method is to extract a signature that is invariant

to fluctuations in operational conditions.

Figure 4.6 : The differential signature extraction system.

The PUF introduced previously receives a clock pulse and a binary challenge to

produce a binary response. Here, instead of looking at the output responses from a

single PUF cell, we consider the difference of the responses from two adjacent PUF

cells. More specifically, the outputs of the capture flip flops from the two cells drive

an XOR logic. Assuming i1 and i2 are the inputs and O is the output of the XOR

logic, then the probability of output being equal to ‘1’ , ρO, as a function of the

probability of inputs being equal to ‘1’, ρ1 and ρ2, can be written as:

ρO = ρ1 + ρ1 − 2× ρ1 × ρ2 (4.13)
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ρ1 and ρ2 are functions of the clock pulse width (T) and the binary challenge as

explained in Section 4.1. The resulting output probability is shown in Figure 4.7 (see

the red dashed line) for two sample PUF cells under (a) normal operating condition

and (b) low operating temperature of -10oC. As it can be seen, since both PUF

cell delay parameters are shifted together under the same operational conditions, the

resulting XOR output probability retains the shape, with only a scalar shift along the

x axis. To extract robust signatures, one needs to look into shift invariant features

that are less sensitive to environmental variables. Features such as the high/low

region widths of the resulting XOR probability plot, or the total area under the XOR

output probability plot can be used for this purpose.

Figure 4.7 : The timing error probability for two sample PUF cells and the resulting
XOR output probability under (a) normal operating condition and (b) low operating
temperature of -10oC.

In this work, we use the area under the XOR output probability curve. The area

is shaded in Figure 4.7 for the two operating conditions. The area under the curve

can be calculated by integrating the probability curve from the lowest to highest



40

clock pulse width. We use the Riemann sum method to approximate the total area

underneath the XOR probability curve in hardware. The result of the integration is

a resilient real valued signature extracted from the PUF cell pairs.

In order to find a quick approximation to this integral in hardware, we sweep

the input clock frequency linearly from frequency fl = 1/2Tu to fu = 1/2Tl where

Tl % Dmin, Tu & Dmax, Dmin and Dmax represent lowest and highest bounds on

delay parameters under all operational conditions. In other words, the sweep window

must always completely contain all parts of the curve. The output of the XOR is

connected to a counter as shown in Figure 4.6. The aggregate counter value after

a complete sweep is a function of the area under the curve. Please note that this

value is not exactly equal to the area under the curve and is only proportional to the

integral. Also, a longer sweep time results in a larger number of clock pulses and thus

more accurate approximation of the signature. This is analogous to using a larger

number of narrower subintervals when approximating the area under curve with the

Riemann sum to achieve a smaller approximation error.

Although the generated responses are less sensitive to variations in operational

conditions, it should be noted that the responses are a function of the difference in

the timing characteristics of the two PUF cells. The area under the curve loses a

lot of information about the shape of the curve and also some information is lost

on each individual probability curve through the difference operation. Therefore,

the responses have a lower entropy compared to the linear calibration method. To

obtain the same amount of information, more PUF cell pairs must be challenged and

scanned. Another limitation of this structure is the length of the input challenge. To

estimate the area under the curve with a high accuracy, the whole interval from the

lowest to the highest frequency must be swept in fine steps and thus, it would require
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more clock pulses compared to the other method. Using few clock pulses leads to

a larger area estimation error, lower probability of detection, and higher probability

of false alarm. Finally, the pairing of the PUF cells introduces another degree of

freedom to the system where a set of challenges can specify pairing of the PUF cells.

4.4 Experimental evaluations

In this section, the implementation details of the signature extraction system are

presented. We demonstrate results obtained by measurements performed on Xilinx

FPGAs and further use the platform to carry out authentication on the available

population of FPGAs. For delay signature extraction, the system shown in Figure

4.3 is implemented on Xilinx Virtex 5 FPGAs. The system contains a 32× 32 array

of characterization circuits as demonstrated in Figure 4.1. The CUT inside the char-

acterization circuit consists of 4 inverters each being implemented using one 6-input

LUT. The first LUT input (A1) is used as the input of the inverter and the rest of the

LUT inputs (A2,...,A6) serve as the binary challenges which alter the effective delay

of the inverter. The characterization circuit is pushed into 2 slices (one CLB) on the

FPGA. In fact, this is the lower bound on the characterization circuit hardware area.

The reason is that the interconnects inside the FPGA force all the flip flops within

the same slice to operate either on rising edge or falling edge of the clock. Since the

launch and sample flip-flops must operate on different clock edges, they cannot be

placed inside the same slice. In total, 8 LUTs and 4 flip flops are used (within two

slices) to implement the characterization circuit. The error counter size (N) is set

to 8. To save storage space, the accumulated error values are stored only if they are

between 7 and 248.

We use an ordinary desktop function generator to sweep the clock frequency from
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8MHz to 20MHz and afterwards shift the frequency up 34 times using the PLLs

inside the FPGA. The sweeping time is set to 1 milli seconds (due to the limitations

of the function generator, a lower sweeping time could not be reached). The measured

accumulated error values are stored on an external memory and the data is transferred

to a PC for further processing. Notice that the storage operation can easily be

performed without the logic analyzer by using any off-chip memory.

The system is implemented on twelve Xilinx Virtex 5 XC5VLX110 chips and the

measurements are taken under different input challenges and operating conditions.

The characterization system in total uses 2048 slices for the characterization circuit

array and 100 slices for the control circuit out of 17,280 slices.

The measured samples for each cell are processed and the twelve parameters as

defined in Section 4.1.3 are extracted. Figure 4.8 shows the measured probability of

timing error versus the clock pulse width for a single cell and a fixed challenge. The

(red) circles represent original measured sample points and the (green) dots show

the reconstructed samples. As explained earlier, to reduce the stored data size, error

samples with values of 0 and 1 (after normalization) are not written to the memory

and later are reconstructed from the rest of the sample points. The solid line shows

the Gaussian fit on the data as expressed in Equation 4.8.

Parameter extraction procedure is repeated for all cells and challenges. Figure 4.9

shows the extracted parameters d1 and σ1 for all cells on chips #9 and #10 while the

binary challenge is fixed. The pixels in the images correspond to the cells within the

32×32 array on FPGA. Some levels of spatial correlation among d1 parameters can

be observed on the FPGA fabric.

The boxplots in Figure 5.10(a) show the distribution of the delay parameters di

for i=1,2,...,6 over all 12 chips and 1024 cells and 2 challenges. The central mark on
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Figure 4.8 : The probability of detecting timing errors versus the input clock pulse
width T . The solid line shows the Gaussian fit to the measurement data.

the boxplot denotes the median, the edges of the boxes correspond to the 25th and

75th percentiles, the whiskers extent to the most extreme data points and the plus

signs show the outlier points.

Using the measured data from the twelve chips, we investigate different authen-

tication scenarios. The authentication parameters substantially increase the degree

of freedom in challenging the PUF. These parameters include the number of clock

pulses to send to the PUF (Np), the number of binary challenges to apply to the PUF

(Nc), the challenge clock pulse width (T ), and the number of PUF cells (Ncell) to be

queried. In other words, in each round of authentication, Nc challenges are applied to

Ncell PUF cells on the chip and then Np pulses of width T are sent to to these PUF

cells. The response to each challenge consists of Np bits. For ease of demonstration,

the response can be regarded as the percentage of ones in the Np response bits, i.e.,

an integer between 0 and Np.

To quantify the authentication performance, we study the effect of Ncell and T

on the probability of detection (pd) and false alarm (pf). Detection error occurs in
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Figure 4.9 : The extracted delay parameters d1 (a,b) and σ1 (c,d) for chips 9 and 10.

cases where the test and target chips are the same, but due to instability and noise

in responses, they fail to be authenticated as the same. On the other hand, false

alarm corresponds to the cases where the test and target chips are different, but

they are identified as the same chips. During this experiment, the binary challenges

to PUF cells are fixed and the number clock pulses is set to Np = 8. The clock

width (T ) is set to each of the medians of the values shown in Figure 5.10 (a).

Setting the clock pulse width to the median values results in least predictability of

responses. All Ncell=1024 PUF cells are queried. The same experiment is repeated

for 10 times to obtain 10 response vectors (each vector is Np = 8 bits) for each chip.
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Therefore, each clock pulse generates 8×1024 bits of responses from every chip. After

that, the distance between the responses from the same chips (intra-chip distance)

over repeated evaluations is measured using the normalized L1 distance metric. The

distance between responses from different chips (inter-chip distance) is also measured.

If the distance between the test chip and the target chip responses is smaller than a

pre-specified detection threshold, then the chip is successfully authenticated. In the

experiments, the detection threshold is set at 0.15.

Table 4.1 shows the probability of detection and false alarm for different clock pulse

widths and number of queried PUF cells. To calculate the probabilities, the distance

between the response of every distinct pair of FPGAs are calculated. The number

of pairs with a response distance of less than 0.15, normalized to the total number

of pairs yield the probability of false alarm. To find the probability of detection,

the distance between the responses from the same chip acquired at different times are

compared to 0.15. The percentage stay within the threshold determine the probability

of detection. As it can be observed, the information extracted from even the smallest

set of cells is sufficient to reliably authenticate the FPGA chip if the pulse width is

correctly set.

(a)

Ncell

Challenge Pulse Width

1.23 1.15 1.06 1.03 0.9 0.87

64 0.96 0 0 0 0 1.52

128 2.04 0 0 0 0 1.52

256 4.55 0 0 0 0 1.52

(b)

Ncell

Challenge Pulse Width

1.23 1.15 1.06 1.03 0.9 0.87

64 93.3 96.2 100 100 100 100

128 94.2 98.8 100 100 100 100

256 99.85 100 100 100 100 100

Table 4.1 : (a) probability of false alarm (b) probability of detection.
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In the next experiment, we study the effect of fluctuations in the operating con-

ditions (temperature and core supply voltage) on the probabilities of detection and

false alarm. Moreover, we demonstrate how linear calibration of the challenge clock

pulse width can improve the reliability of detection. To calculate the calibration co-

efficient defined by Equation 4.11, we repeat the delay extraction process and find

the delay parameters for all twelve chips at temperature -10oC and core voltage 0.9

Volts. The chip operates at the temperature 37oC and core voltage of 1 volts in the

normal (reference) condition. We use the built-in sensors and the Xilinx Chip Scope

Pro package to monitor the operating temperature and core voltage. To cool down

the FPGAs, liquid compressed air is consistently sprayed over the FPGA surface.

Figure 5.10 (b) depicts the changes in the distribution of the first delay parameter

(d1) at the three different operating conditions.

The probabilities of detection and false alarm are derived before and after per-

forming calibration on the challenge pulse width for different clock pulse widths and

number of binary challenges to the cells. In this experiment, all 1024 PUF cells

on the FPGA are queried for the response. Np =8 as before. As it can be seen

in Table 4.2, the detection probabilities are significantly improved after performing

linear calibration based on the coefficients extracted for each chip. The variables

vlow and tlow correspond to -10oC temperature and 0.9 supply voltages respectively.

The reported probabilities of Table 4.2 are all in percentage. Also note that for the

challenge pulse width of T = 0.87 ns, the probability of detection reaches 100% and

probability of alarm falls to zero after calibration. The same holds true for Nc = 2

and T = 0.87, 0.9, 0.95. Thus, increased level of reliability can be achieved during

authentication with proper choice of pulse width and number of challenges.

Figure 4.11 shows how performing calibration decreases the intra-chip response
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Figure 4.10 : (a) Distribution of delay parameters di. (b) The distribution of d1 for
normal, low operating temperature, and low core voltage.

distances in presence of temperature changes. The histogram corresponds to T =

0.95ns and Nc = 2 in Table 4.2 before and after calibration.

Next, we examine the differential signature extraction system presented in Section

4.3.2. To extract the signature, the base frequency is swept from 8 to 20 MHz in a

linear fashion in 1 mili second and shifted up 34 times using the FPGA internal

PLLs. The sweep is repeated for the 512 pairs of PUF cells producing a real-valued

signature vector of size 512. A large number of pulses (∼ 107) are generated in a

complete sweep. The signature as explained in Section 4.3.2 is the accumulation

of the timing errors over a complete sweep. To achieve an accurate approximation
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Figure 4.11 : The inter-chip and intra-chip response distances for T = 0.95 ns and
Nc = 2 before (top) and after (bottom) calibration against changes in temperature.

of the area under the curve, a large number of clock pulses must be tried. This is

the main disadvantage of this method compared to the singled ended method. To

extract the shift invariant parameters such the region width and/or area under the

probability curve probing the PUF circuit at single frequency points will not yield

sufficient information. Therefore, a complete sweep covering the regions with high

information content is needed. The L1 distance of the signatures from the same

chip under different operational conditions (intra-chip distance) and the distance of

the signatures from different chips (inter-chip distance) are calculated. Figure 4.12

shows the distribution of intra and inter-chip distance of signatures under variations

in temperature and supply voltage for the twelve Virtex 5 chips. As it is shown in

the figure, the distance among signatures obtained at room temperature and −10oC

temperature from the same chip is always smaller than those from different chips,

resulting in 100% probability of detection and 0% false alarm probability. However,
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No Calibration Calibrated

NC=1 NC=2 NC=1 NC=2

vlow tlow vlow tlow vlow tlow vlow tlow

pd pf pd pf pd pf pd pf pd pf pd pf pd pf pd pf

T

1.23 18.4 0 33.3 16.7 18.4 0 33.3 22.29 100 0 75 0 100 0 75 0

1.06 18.4 0 18.4 0 18.4 0 18.4 0 50 0 50 0 57.3 0 50 0

1.01 18.4 0 16.7 0 18.4 0 16.7 0 66.6 0 75 0 68.2 0 75 0

0.95 18.4 0 16.7 0 18.4 0 16.7 0 66.7 0 100 0 84.9 0 100 0

0.9 16.7 0 25 0 16.7 0 25 0 83.3 0 91.7 0 83.4 0 100 0

0.87 25 0 25 0 25 1.5 25 0 100 0 100 0 100 0 100 0

Table 4.2 : The probability of detection and false alarm before and after performing
calibration on the challenge pulse width in presence of variations in temperature and
core voltage.

with 10% variations in voltage supply, the intra- and inter-chip distributions overlap

slightly.

4.5 Arbiter PUF on FPGA

One of the major problems in implementation of PUFs on FPGAs, particulary the

arbiter-based PUFs, is in signal routing. Unlike ASICs where hand-drawn custom lay-

out is possible, routing on FPGA is constrained by its rigid fabric and interconnect

structure. As a result, performing completely symmetric routing is physically infea-

sible in most cases. The PUF designer may do his/her best to constrain and guide

the placement and routing software to achieve the highest degree of symmetry in the

PUF layout. However, due to physical constraints of the FPGA fabric, the designer

may still not be able to achieve complete symmetry on some routes. Asymmetries

in routing when implementing PUFs can lead to bias in delay differences leading to

predictable responses, lack of randomness, and decreased response entropy [17, 9].

The PUF routing can be divided into four different sections; the routing (1) before
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Figure 4.13 : Arbiter-based PUF with path swapping switches.

the first switch, (2) inside the switches, (3) between switches, and (4) after the last

switch or before the arbiter (see Figure 4.13). As we will show later, by placing

the logic components on symmetric sites and locations on the FPGA, the routing

between switches will automatically follow a symmetric route. However, maintaining

a complete symmetry between the top and bottom path routes before the first switch

and after the last switch is structurally infeasible. To alleviate this problem, we

introduce and exploit accurate PDLs to tune and remove the bias delay differences

caused by asymmetries in net routing. We further introduce a new switch structure

that has a symmetric implementation by construction.
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4.5.1 Tuning with Programmable Delay Lines

In this section, we introduce a low overhead and high precision PDL with pico-second

resolution. The introduced PDL is implemented by a single LUT. Figure 4.5 shows

the internal structure of an example 3-input LUT. An n-input LUT can be configured

to implement any n-input logic function. The LUT in Figure 4.5 is configured so that

the inputs A2 and A3 act as don’t-care bits. The LUT output is inverted A1 and

is not a function of A2 and A3. However, looking more closely, the inputs A2 and

A3 determine the signal propagation path inside LUT. For instance, if A2A3 = 00,

the signal propagates through the solid path (red), whereas if A2A3 = 11, the signal

propagates through the path marked with the dashed-lines (blue). The lower dashed

path is slightly longer than the upper solid path which results in a larger propagation

delay.

The Xilinx Virtex 5 FPGA has 6-input LUTs which can implement a PDL with

5 control bits - there are 4 LUTs in each Slice and two Slices per each CLB. Similar

to the above example, the first LUT input, A1, is the inverter input and the rest of

the LUT inputs control the delay of the inverter. For, A2A3A4A5A6=A[2:6]=00000,

the inverter has the smallest delay (shortest internal propagation path) and for

A2A3A4A5A6=A[2:6]=11111, the inverter has the maximum delay. In general if A[2:6] >

A′
[2:6] then DLUT (A) > DLUT (A′), where DLUT (A) and DLUT (A′) are the delay of the

inverter with A and A′ as the control inputs respectively.

We measured the changes in LUTs’ propagation delays under different inputs.

For delay measurements, we used the timing characterization circuit shown in Figure

4.1. The characterization circuit consists of a launch flip-flop, sample flip-flop, and

capture flip-flop, an XOR gate, and the Circuit Under Test (CUT) whose delay is to

be measured.
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At the rising edge of the clock a signal is sent through the CUT by the launch

flip-flop. At the falling edge of the clock, the output of the CUT is sampled by the

sample flip-flop. If the signal arrives at the sample flip-flop well before sampling

takes place, the correct value is sampled. The XOR compares the sampled value with

steady state output of the CUT and produces a zero if they are the same. Otherwise,

the XOR output rises to ‘1’, indicating a timing violation. If the signal arrival and

the sampling time (almost) simultaneously occur, the sample flip-flop would enter

into a metastable condition and produce a non-deterministic output. By sweeping

the clock frequency and monitoring the rate at which timing errors happen, the

CUT delay can be measured with a very high accuracy. For further details on the

delay characterization method the reader is referred to [13, 14]. The measurements

performed on Xilinx Virtex 5 FPGAs suggest that the maximum delay difference (i.e.,

A=00000, and A′=11111) achieved by each inverter is 9ps on average.

4.5.2 PDL-based Symmetric Switch

The first arbiter-based PUF introduced in [1] (see Figure 4.13) uses path swapping

switches as shown in Figure 4.14 (a). The switch, based on its selector bit, provides a

straight or cross connection. Figure 4.14 (b) shows the equivalent circuit implemen-

tation and delays. The path swapping switch structure does not lend itself to FPGA

implementation, since it is extremely difficult to equalize the nominal delays of the

top and bottom paths due to routing constraints, i.e., a and d (or the diagonal paths

b and c). To alleviate the issue, we propose a new non-swapping switch structure

as shown in Figure 4.14 (c). The yellow triangles in the figure represent two PDLs.

Figure 4.14 (d) shows its equivalent circuit where the nominal delay values of a and

d (or the diagonal paths b and c) must be the same.
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Figure 4.14 : (a),(b) path swapping switch and its delay abstraction (c),(d) PDL-
based switch and its delay abstraction.

The complete PUF circuit that uses the new switch structure and the tuning

blocks is shown in Figure 4.15. The presented system consists of N switches and K

tuning blocks. The tuning blocks insert extra delays into either the top or bottom

path based on their selector inputs to cancel out the delay bias caused by routing

asymmetry. The only difference between a tuning block and a switch block is that in

the former, the selectors to the top and bottom PDLs are controlled independently

but in the latter, the same selector bit drives both PDLs. Also note that the tuning

blocks do not necessarily have to be placed at the end of the PUF. As a matter of

fact, they can be placed anywhere on the PUF in between the switches.

Similar to the arbiter-based PUF with path swapping switches, the new PUF

structure is a linear system. The PUF response will be ‘1’ if the sum of the delay

switch differences along the path is greater than zero, and ’0’ otherwise:

N∑

i=1

Ci × (ai − di) + (1− Ci)× (bi − ci) +∆
R=0
≶
R=1

0, (4.14)

where ai, bi, ci, di are the i-th switch delays as shown in Figure 4.14 (d), Ci ∈ {0, 1}

is the i-th challenge bit, and R is the response. Also, ∆ is a constant delay difference

from first and last path segments and tuning blocks lumped together. The security
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aspects of the linear PUF structures against machine learning attacks can be boosted

by insertion of feed forward arbiter and attaching input/output XOR logic networks

to multiple rows of PUFs [2, 57]. The work in analyzing the complexity of machine

learning and model attacks against different classes of PUFs [58].

Figure 4.15 : The new arbiter-based PUF structure.

4.6 Precision Arbiter

Arbiters in practice are implemented by D flip-flops. As a result, an arbiter has a

limited resolution meaning that if the absolute delay difference of the arriving signals

is smaller than its setup and/or hold time, it enters a metastable state where its output

becomes highly sensitive to circuit noise and will be unreliable. The probability of

flip-flop output being equal to ‘1’ is a monotonically decreasing function of the input

signal timing difference (∆T ). Such probability in fact follows a Gaussian CDF curve

as shown in [9, 14]:

PO=1(∆T ) = Q(
∆T

σ
) (4.15)

where Q(x) = 1√
2π

∫∞
x exp

(
−u2

2

)
is the Q function. For an infinitely precise

arbiter, σ is infinitesimal i.e. σ → 1/∞, and PO=1(∆T ) → 1−U(∆T ) where U is the

step function.
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Figure 4.16 : Reducing the response instability due to arbiter metastability by using
majority voting.

To increase the arbiter accuracy, we propose multiple evaluations of the same

challenge to the PUF and running a majority vote on the output responses as shown

in Figure 4.26. The repetitive challenge evaluation combined with majority voting

is equivalent to having an arbiter with effectively smaller σ. We will quantify the

reduction in σ as a function of the number of repetitions in the experimental results

section.

4.7 Robust responses

Fluctuations in operational conditions such as temperature and supply voltage can

cause variations in device delays. The impact on delays may not be equal on all

devices. As an example, the signal propagation delay on the PUF top and bottom

paths is represented in Figure 4.17 by solid and dashed lines respectively. In this

example, the path delays increase with temperature at different rates. In the diagram

in Figure 4.17 (a), the delay difference ∆d at the end of the PUF for a given applied

challenge at nominal temperature is small, whereas ∆d in Figure 4.17 (b) is larger

for another challenge. The response to the challenge in Figure 4.17 (a) changes as

temperature varies because the delays change their order (cross). However, in Figure
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4.17 (b) the PUF response remains the same. As demonstrated by this example,

the responses to those challenges that cause large delay differences are unlikely to be

affected by temperature or supply voltage variations [6].

Figure 4.17 : Signal propagation delay as a function of temperature.

In this work, we estimate the delay difference at the input of the arbiter. To

estimate the cumulative delay difference (∆d), we ought to first train the delay pa-

rameters of the linear model of the PUF expressed in Equation 4.14 on the available

set of challenge and responses. After estimating the delay parameters, the left hand

sum in Equation 4.14 is evaluated for every new challenge. The distribution of the

resulting sum (∆d) to the set of available challenge-response pairs is next calculated.

Now based on the distribution, if the delay difference caused by a given challenge

falls in the tails of the distribution, we expect ( and will later verify and quantify it

through experiments) that the response to this challenge is less likely to be affected

by variations in operating conditions. Figure 4.18 shows the distribution of the delay

differences at arbiter input to a diverse set of challenges. The challenge set is parti-

tioned into equal sized partitions (bin) based on the delay difference each challenge
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Figure 4.18 : The distribution of ∆d and stability of responses in the corresponding
partitions.

produces. Next, the stability of response to the challenges in each set is measured.

We argue that the responses to challenges that fall into the center partitions exhibit

lower robustness compared to those in corner partitions.

4.8 Robustness versus Entropy

The next question that arises from classifying robust challenges from non-robust ones

is: ”Are robust challenges that good?”. In other words, are we trading off anything to

gain stability and robustness? From information theoretical point of view, it is likely

that the responses from more robust challenges bear lower entropy. For example,

consider the extreme case where responses are absolutely biased towards either zero

or one. In this case we have ultimate robustness whereas the entropy is zero and the

responses are not distinct enough for identification. This trade-off (if exists) can only

be quantified through measurements. We show this is in fact the case and quantify

the loss in entropy in return for robustness in the experimental results section.
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4.9 Experimental Evaluation

4.9.1 Programmable delay line

Before moving onto the PUF system performance evaluation, we shall first discuss

the results of our investigation on the maximum achievable resolution of the pro-

grammable delay lines. We set up a highly accurate delay measurement system similar

to the delay characterization systems presented in [13, 12, 14].

The circuit under test consists of four PDLs each implemented by a single 6-input

LUT. The delay measurement circuit as shown in Figure A.6 consists of three flip-

flops: launch, sample, and capture flip-flops. At each rising edge of the clock, the

launch flip-flop successively sends a low-to-high and high-to-low signal through the

PDLs. At the falling edge of the clock, the output from the last PDL is sampled by

the sample flip-flop. At the last PDL’s output, the sampled signal is compared with

the steady state signal. If the signal has already arrived at the sample flip-flop when

the sampling takes place, then these two values will be the same; Otherwise they

take on different values. In case of inconsistency in sampled and actual values, XOR

output becomes high, which indicates a timing error. The capture flip-flop holds the

XOR output for one clock cycle.

To measure the absolute delays, the clock frequency is swept from a low frequency

to a high target frequency and the rate at which timing errors occur are monitored and

recorded. Timing errors start to emerge when the clock half period (T/2) approaches

the delay of the circuit under test. Around this point, the timing error rate begins

to increase from 0% and reaches 100%. The center of this transition curve marks the

point where the clock half period (T/2) is equal to the effective delay of the circuit

under test.
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Figure 4.19 : The delay measurement circuit. The circuit under test consists of four
LUTs each implementing a PDL.

To measure the delay difference incurred by the LUT-based PDL, the measurement

is performed twice using different (complementary) inputs. In the first round of

measurement, the inputs to the four PDLs are fixed to A2−6 = 11111. In the second

measurement the inputs to the last PDL are changed to A2−6 = 00000. In our setup,

a 32×32 array of the circuit shown on Figure A.6 is implemented on a Xilinx Virtex 5

LX110 FPGA, and the delay from our setup is measured under the two input settings.

The clock frequency is swept linearly from 8MHz to 20MHz using a desktop function

generator and this frequency is shifted up by 34 times inside the FPGA using the

built-in PLL.

The results of the measurement are shown on Figure 4.20. Each pixel in the

image corresponds to one measured delay value across the array. The scale next to

the color-map is in nano-seconds. Figure 4.20 (a) and (b) show the path delay when

the last LUT in Figure is driven by A2−6 = 00000 and A2−6 = 11111 respectively.

Figure 4.20 (c) depicts the difference between the measured delays in (a) and (b). As

can be seen, the delay values in (b) are on average about 10 pico-seconds larger than

the corresponding pixel values in (a).
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4.9.2 Arbiter-based PUF evaluation

Next, we use the programmable delay lines to implement the arbiter-based PUF on

FPGA. The implemented PUF has 16 rows whose challenge input bits are connected

together and placed in parallel on the FPGA to produce 16 bits of responses per

challenge. Each PUF consists of 64 stages of PDLs, where the PDL is implemented

by 2 LUTs each acting as an inverter. Figure 4.21 shows the placement and routing

of one of the PUF rows. As it can be seen, except for the routing at the beginning

and end of the PUF, the rest follows a completely symmetric pattern.

4.9.3 Measurement setup

We have a population of 12 Xilinx Virtex 5 (LX110) FPGAs at our disposal. The

FPGAs are mounted on a ball-grid array socket available on Xilinx FF676 Proto-

type board only. Since the prototype board is stripped of any communication in-

terface, we create a synchronous serial communication protocol to send/receive the

data to/from XUP-V5 development board. From the XUP-V5 board, the data is

sent to the PC through the Ethernet communication interface at very high speed by

using SIRC API. SIRC (Simple Interface for Reconfigurable Computing) is an open

sourced software/hardware API developed at Microsoft Research that enables data

transfer at full Ethernet speed of 1GB/s between the FPGA and PC [59]. Addi-

tionally, to perform measurements under various temperature points, we use PTC10

temperature controller from Stanford Research Systems. The temperature controller

drives a TEC (Thermo-electric coupler) Peltier device. TEC is attached on the top

the FPGA and beneath a heat-sink. A closed-loop feedback system is established to

control the FPGA temperature accurately. The temperature feedback is provided by

an on-die diode junction voltage on the Virtex 5 device. This way the stable tem-
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perature would be that of the die temperature rather than the package temperature.

The temperature controller is further calibrated to reliably map the junction voltage

of the diode to die temperature using the temperature readings obtained through

ChipScope Pro on-die temperature sensor. The measurement system connections

and setup is depicted in Figure 4.22. Figure 4.23 shows the measurement system

setup in the lab. The raw data and scripts and software is made available online at

http://aceslab.org/node/1012.

4.9.4 Tuning the PUF

Before using the PUF, in order to see any changes in the responses, it must be tuned

to remove the delay bias resulting from routing asymmetry. In the first experiment,

we look at all 16 responses to find out at what tuning level their responses to a set of

random challenges are %50 zeros and %50 ones. To be able to find the best tuning

level, we feed the PUF with a set of 64,000 random challenges while for each challenge,

we sweep the tuning level from -10 to 40. In each sweep point (each tuning level),

we collect 64,000 responses from each PUF row (64,000×16 total for each FPGA).

Then, we look at the percentage of ones and zeros in each response set across different

tuning levels and find the set that is properly balanced.

We refer to tuning level as the difference in the number of ‘1’s in the top and

bottom PDL selector bits. The tuning level can be either positive or negative indi-

cating insertion of delays to the top and bottom path respectively. Note that when

the tuning level is set for example to 40, then it means that 40 of the PDL blocks out

of 64 blocks are dedicated to tuning and only 24 bits of the inputs serve as the input

challenge.

The response to a given challenge at each tuning level is repeated 128 times, and
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a majority vote on the responses is performed to resolve the repeated readings to a

single response value. Figure 4.24 shows the ratios of ones in each response set (y-

axis) as a function of tuning level (x-axis) for FPGA number 6. Since each PUF on

each FPGA produces 16 response bits, there are 16 lines on each subplot. There are

9 subplots in each plot. Each subplot corresponds to the measurement taken under

a different operating condition. The center subplot refers to the normal operating

condition (i.e. supply voltage VDD= 1 V and room temperature of 30oC). Note that

plot is only for one FPGA (FPGA number 6). We have repeated the same experiment

on all 12 FPGAs in the lab and the results are available online at [[XXXX.com]].

Figure 4.25 shows the distribution of center of the transition points across all

PUFs on all FPGAs.

4.9.5 Majority Voting

As discussed in the work, repeating the challenges to the PUF and running majority

voting on the obtained responses can help improve the precision of the arbiter. In

this section, we quantify this effect. Figure 4.26 shows the probability of observing

a ‘1’ output from a flip-flop as a function of the input signals delay difference. This

characteristic has been measured on Xilinx Virtex 5 FPGAs [9, 14]. The width of the

transition region ( 3σ) gets narrower as evaluation is repeated and more statistics is

gathered.

The equivalent σ which represents the width of the metastable window (i.e., 3σ) is

calculated for different number of repetitions as shown Figure 4.27. The reduction in

the metastable window width is logarithmic with respect to the number of repetitions.

For 10 repetitions, σ = 2.5 ps.
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4.9.6 Robust response classification

Next, we measure the effect of robust challenge classification on PUF error rate in

presence of temperature and supply voltage variations as discussed in Section 4.3.

Each challenge to the arbiter PUF creates a delay difference (∆) at the input of the

arbiter (flip-flop). The ∆s produced by all challenges in the challenge space form a

Gaussian distribution. If half of the responses are one and half are zero, then this

distribution has a mean of zero. The distribution is split by the arbiter decision edge.

Those challenges that create a ∆ that is larger that e, result in a ’1’ response and a

zero response otherwise, where e is basically the arbiter bias remained after tuning.

We partition the ∆ distribution and the corresponding challenge space into 20 sets

of equal size. The ∆s close to the decision border and their corresponding responses

are more sensitive to environmental condition fluctuations, and those farther apart

from the decision border (i.e. |∆ - e| & 0) are less affected by such variations. The

Figure 4.28 shows the robustness of the responses to different subset of challenges.

The x-axis in each subplot refers to the challenge partition (bin) number. Each

partition contains 64000/20 = 3200 challenges. The y-axis shows the stability of the

corresponding responses, where ’1’ means no errors in the responses and ’0’ means

completely erroneous responses. The error is measured by comparing the responses

from eight corner cases to the response at the normal operating condition (room

temperature and nominal supply voltage). Therefore, each subplot contains eight

lines for each corner case. As it can be observed the challenges in bins that are

closer to the decision border produce responses with larger error rates. There are 16

subplots in each figure where each correspond to a PUF output response bit.

Figure 4.29 shows the distribution of the error rates for each challenge partition

using boxplots. Each subplot corresponds to an operating condition corner. As it
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can be seen, the average error rates is considerably lower at corner (lower and higher)

partitions.

4.9.7 Robustness versus entropy

Now that we have quantified the stability of responses to different challenges, it is

time to investigate the entropy of the responses to such challenges. In order to

quantify the entropy, we look at the inter-chip Hamming distance of PUF responses

to challenges in different partitions. For the 12 available FPGAs, 66 distinct pairing

of FPGAs can be selected. However, since the tuning level of each PUF on FPGA

is different, the challenge set is selected based on the target FPGA. For example,

the challenge set for the pair FPGA A and FPGA B is different from FPGA B

and FPGA A. This asymmetric challenge selection requirement also means that the

inter-chip Hamming distance between FPGA A and FPGA B might be different from

FPGA B and FPGA A. Therefore, we investigate the Hamming distance for all 12×11

possible pairing (of course excluding similar chip parings). At each partition, a set

of 3200 response vectors of size 16 bits are compared to another set. The result is

3200 integer hamming distances between 0 and 16. We take the average value as the

inter-chip hamming distance and normalize it with 16. Next we need to link entropy

with Hamming distance. Entropy is maximum if the average normalized inter-chip

hamming distance is at 0.5. Any deviation from 0.5 lowers the entropy. In other

words, both Hamming distance of 0 and 1 indicate entropy of zero. Figure shows

the entropy as measured by Hamming distance for response to challenges in each

partition. Each line on this figure corresponds to one paring of FPGAs.



65

4.9.8 Correlation between effects of temperature and power supply vari-

ations

Variation of temperature and/or core voltage from nominal values changes the re-

sponse to challenges, especially the non-robust challenges. We argue that response

flips due to change in temperature is related to response flips due to change in core

voltage. Temperature testing is expensive; if a correlation between variation due to

temperature and variation due to core voltage can be established even partially, it

will help predict temperature effects from core voltage effects and thus lead to a huge

cost saving.

The 64000x16 responses for each of the 12 FPGA under various experimental con-

ditions (different temperature and voltage) are used to quantify this argument. The

response set obtained in a reference condition is compared to the response set obtained

in condition N1 and the challenges for which the response flips are noted, where N1

condition being an increment (or decrement) in core voltage from the reference value.

Then the response set obtained in reference condition are compared to the response

set obtained in N2 condition only for the challenges noted in N1, where N2 condition

being an increment (or decrement) in temperature from the reference value. In other

words, if the response to challenge ”C”, flips (changes from 0/1 to 1/0) as the power

supply goes from V1 to V2, how likely is it that the response to the same challenge

”C”, flips as the temperature goes from T1 to T2 (while the core voltage stays at V1).

Each PUF is set at a characteristic tuning level for which it has an equal probability

of 0 or 1 as an output and the response set is analyzed at that characteristic tuning

level to obtain a response error correlation value. (T1, V1) and (T2, V2) comprise

the condition N1 and N2 respectively. Figure 4.31 shows the results as boxplot for

18 different experimental conditions tabulated in Table 4.3. The low/high values for
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Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 L M L L M L L M L M H H M H H M H H

T2 M H H M H H M H H L M L L M L L M L

V1 L L L M M M L L L M M M H H H H H H

V2 M M M H H H H H H L L L M M M L L L

Table 4.3 : 18 correlation cases studies for various increments/decrements on temper-
ature and power supply

core voltage are set assuming a practical tolerance level of 5% in power supply. Low

(L), medium (M) and high (H) values for core voltage are 0.95V, 1.00V and 1.05V

respectively and for temperature are 5o C, 35o C and 65o C respectively.”

Each box in Figure 4.31 represents the result of the corresponding case and is

drawn for the set response error correlation values obtained from 12×16 PUF response

sets. The lower and upper edges represent the 25th and 75th percentile respectively

while the edge partitioning the box at the centre is the median correlation value

from the set of 192 correlation values which is used to quantify this response error

correlation. Correlation between voltage and temperature is maximized in case 16

(0.68355), while the correlation in case 7 is also comparable (0.66355). It is interesting

to note that case 16 and case 7 are complementary, i.e. (T1, V1) are interchanged

with (T2, V2).
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Figure 4.21 : Routing and placement of the PUF (a) first segment (b) last segment.
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Figure 4.22 : Measurement system setup diagram.

Figure 4.23 : Lab setup.
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Figure 4.24 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 6.
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Figure 4.25 : Distribution of the tuning levels across all PUF rows on all FPGAs for
different operating conditions.
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Figure 4.27 : The sharpness (σ) of the transition slope versus the number of repetitions
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Figure 4.28 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 6.
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Figure 4.29 : Boxplot showing the distribution of error rates for a given operating
condition corner and challenge partition.
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Figure 4.30 : Entropy of the response to the challenges at each robustness partition.
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Chapter 5

PUFs based on current variations

5.1 Concept and circuit realization

In this section, we present the concept and circuit architecture of the new low power

current-based PUF. Figure A.1(a) depicts the conceptual architecture of our new

PUF circuit. First, process sensitive (PV) voltages/currents are generated. These

quantities should ideally be as much sensitive to process parameters as possible but

highly insensitive to environmental parameters such as temperature to achieve high

levels of response stability and robustness. Next, based on a given input challenge, a

subset of these voltages/currents are selected and combined. The combined quantities

are compared and converted to digital responses. The comparator maybe tuned for

maximum accuracy and reliability based on the predicted statistics of the compared

signals.

The circuit implementation of the proposed PUF concept is shown in Figure 5.2.

In this implementation, process sensitive currents are generated by using individual

FETs whose gate voltages are tied to a fixed voltage source. Next, based on the input

challenge that drive the differential current switches, a subset of currents are selected

and combined. In other words, by connecting the outputs of the current switches as

illustrated in Figure 5.2 and controlling the inputs to the current switches, we can

select and add up a subset of currents into either left and right side of the circuit

which accordingly flows into the left and right inputs of the sense amplifier. Note
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Figure 5.1 : The conceptual block diagram of the proposed PUF structure.

that if both input challenges to a current switch are set to ‘0’ (ground) no current

will flow to either left or right sides. Additionally if both input challenge bits are set

to ‘1’ (VDD), then half of the total current that enters the current switch will flow

through each side. If input challenge bit on one side is ‘0’ and ‘1’ on the other side,

the total current that enters the current switch from the bottom single FET current

generator will be stirred to the latter side. Equations 5.1 and 2 formally express each

current in terms of the inputs to the current switch.

Ia[i] =






I[i], if Ca[i] = 1 and Cb[i] = 0;

0.5I[i], if Ca[i] = 1 and Cb[i] = 1;

0, if Ca[i] = 0 and Cb[i] = X ;

(5.1)
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Ib[i] =






I[i], if Ca[i] = 0 and Cb[i] = 1;

0.5I[i], if Ca[i] = 1 and Cb[i] = 1;

0, if Ca[i] = X and Cb[i] = 0;

(5.2)

...

...

Figure 5.2 : The proposed current based PUF system.

The ‘X’s in Equation 5.1 and 2 represent ‘don’t-care’. Ia[i] and Ib[i] denote the left

and right output currents of the i-th current switch respectively. Also Ca[i] and Cb[i]

respectively represent the left and right inputs to the i-th current switch. Therefore

the total current on the left side, i.e. Ia in Figure 5.2, and on the right side, i.e. Ib

in Figure 5.2, can be written as the sum of each individual current on each side,

Ia =
N∑

i=1

Ia[i], Ib =
N∑

i=1

Ib[i] (5.3)

where N is the total number of PV current generator FETs (or current switches).

Now, the total current on both sides flows into a latch-based sense amplifier. The
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sense amplifier, based on which current is larger, will produce a zero or one digital

response, i.e.,

response =






1, if Ia > Ib;

0, if otherwise;

(5.4)

The latch-based sense amplifier used in the PUF system in effect consists of a pair of

back-to-back connected inverters. Initially, the output of the inverters are pulled up to

VDD by the trigger signal, charging the output node capacitance. Once the challenges

are applied, trigger signal goes to zero releasing the output nodes. Soon after the

currents start flowing though both sides of the sense amplifier, the output capacitance

begin discharging. The discharge pace of the node capacitances is a function of each

current magnitude; i.e., the larger the current, the faster the discharge. Whichever

node voltage drops first by Vth turns on the top inverter transistor and establishes a

positive feedback which settles to a response. After the sense amplifier settles, one of

the transistors in each inverters turns off and the current flow stops automatically.

In order to avoid any bias and predictability of the output responses and to achieve

maximum randomness in responses, the mean/nominal value of the compared currents

must be the same. Meeting such property requires the number of combined currents

on each side or equivalently the number of ones in the right and left input challenges

to be equal, i.e.,
N∑

i=1

Ca[i] =
N∑

i=1

Cb[i]. (5.5)

In case of existence of any bias in sense amplifier operation, calibration and tuning

can be performed by introducing imbalances in Equality 5.5 to have more the number

of ones in challenges (larger the nominal current value) on the desired side. This

degree of freedom can also be used to sift and distinguish the robust challenges from

unstable challenges [16].
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5.2 Experimental results

In this section, the evaluation results for the new PUF architecture are presented. We

simulate the system with N=64 current generators (and current switches) using IBM

90nm technology models. To achieve maximum level of variability, the device sizes

are set to the technology minimum of W/L = 120nm/100nm. Using Monte Carlo

simulation guided by the IBM statistical models, 100 circuit instances are generated.

Next, we apply 100 challenges to each PUF circuit instance at frequency of 100MHz

and the responses to the applied challenges are evaluated and stored. We refer to this

setup as the base experiment. In what follows, we run multiple instances of the basic

experiment under different scenarios and operational conditions. Figure 5.3 shows

the sense amplifier response waveform to a series of random input challenges.
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Figure 5.3 : The sense amplifier output response waveform to a set of random chal-
lenges.

The first experiment consists of twelve base experiment runs under the combina-

tion of the following two sets of scenarios; In the first set of scenarios, the number of

active currents on each side is set to 8, 16, 32 (the number of ones in each challenge

vector, i.e., K =
∑N

i=1C
a[i] =

∑N
i=1C

b[i] where K = {8, 16, 32}). In the second set

of seniors, the gate voltage of the current-generator FETs (Vgate) is set at different

ratios of VDD, i.e. Vgate = {0.1, 0.3, 0.5, 0.7}× VDD. All of the base experiments are

performed under normal operating conditions i.e. temperature of 25oC and VDD=1.2
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volts. Therefore, if we define E1 as the set of scenarios for the first experiment, then

E1 = {Sk,v | (k, v) ∈ K × Vgate}, where Sk,v is the experiment scenario under a given

k and v.

For each experiment the number of ’1’s in 100 responses is counted and normalized

to 100. Ideally, we would like to have equal number of ones and zeros in responses for

highest level of randomness (see [2]). Figure 5.4 shows the distribution of this value

across the 100 PUF instances versus different gate voltages for different number of

active currents using boxplots. The central mark on the boxplot denotes the median,

the edges of the boxes correspond to the 25th and 75th percentiles, the whiskers extent

to the most extreme data points and the red plus signs show the outlier points. As

it can be observed on the plots, for Vgate/VDD = 0.1 the responses are highly biased

toward ‘1’. A closer investigation reveals that the for this gate voltage, the generated

currents are too small to provoke any response from the sense amplifier.
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Figure 5.4 : The distribution of number of ‘1’s in responses to 100 challenges over
100 PUFs obtained from pre-layout monte-carlo simulation

The goal of the second and third experiments is to find the operation parameters

which achieves the highest level of robustness against the fluctuations in tempera-

ture and supply voltage. Similar to the previous experiment, we first define a set
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Figure 5.5 : The distribution of number of ‘1’s in responses to 100 challenges over
100 PUFs obtained from post-layout monte-carlo simulation

of scenarios under which we run the base experiment. Let us denote the second set

of experiments by E2 such that E2 = {Sk,v,t | (k, v, t) ∈ K × Vgate × T} where T

= {−55, 125} are the operating temperatures in Celsius degrees, and K and Vgate

are the sets defined previously. Next the responses from experiments in scenarios

{Sk,v,t | t = −55} are compared to the responses from {Sk,v,t | t = 125} for all k, v

and the discrepancies and differences are counted and normalized to the total number

of responses (=100). Note that the same challenges are applied to the PUF in each

experiment. These two low and high temperatures correspond to standard military

operational conditions. The same experiment is repeated for T = {−40, 85} and

T = {0, 75} each corresponding to industrial and commercial operational conditions

respectively. The plots on the top row of Figure 5.6 depict the results of this ex-

periment. The ‘y’ axis on each plot shows the error rate in the responses averaged

over the 100 PUF instances and the ‘x’ axis corresponds to the gate voltage of the

current generator FETs. The lines on each plot marked by stars, circles, and dots

correspond to commercial, industrial and military operational conditions respectively.

The columns in the plot from left to right correspond to the cases where 8, 16, and 32
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currents are activated, combined, and compared. As it can be observed, increasing

the gate voltage of the current generator FETs raises the response error rates and

thus reduces the level of robustness in responses. Moreover, the results suggest that

as larger number of currents are combined, the error rate also increases. Note that

the error rates for Vgate/VDD = 0.1 are invalid due to the large bias in the responses

as shown in Figure 5.4. The plots in the bottom row of of Figure 5.6 present the

same results, however, this time the temperature is fixed to 25oC and supply voltage

is varied in three intervals of VDD = {1.1, 1.2}, VDD = {1.1, 1.3}, and VDD = {1, 1.4}.

The same conclusions apply to these results as well. Finally, note that the lowest error

rate can be achieved for the smallest sub-threshold currents that are large enough to

drive the sense amplifier. The PUF consumes 150 µWatt for a duration of 250 ps per

each response bit.
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Figure 5.6 : The average response error rate as a function of the current generator
transistor gate voltage obtained from pre-layout monte-carlo simulation.
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Figure 5.7 : The average response error rate as a function of the current generator
transistor gate voltage obtained from pre-layout monte-carlo simulation.



84

0 0.2 0.4 0.6 0.8
0

0.2

0.4

 Distance

 F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

 Distance

 F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

 Distance

 F
re

qu
en

cy

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

 Distance

 F
re

qu
en

cy

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

 Distance
 F

re
qu

en
cy

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

 Distance

 F
re

qu
en

cy

0 0.2 0.4 0.6 0.8
0

0.2

0.4

 Distance

 F
re

qu
en

cy

0 0.2 0.4 0.6 0.8
0

0.5

1

 Distance

 F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.5

1

 Distance

 F
re

qu
en

cy

No. of Active Currents = 8 No. of Active Currents = 16 No. of Active Currents = 32

VG=0.4VDD

VG=0.5VDD

VG=0.6VDD

Figure 5.8 : The inter-die and intra-die response distance distribution under different
usage scenarios.

Figure 5.9 : The floor planning of the PUF components on the die.
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(a) (b)

Figure 5.10 : (a) The PUF chip layout. (b) taped-out chip micrograph
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Chapter 6

Authentication Protocols

6.1 Authentication Protocol

In this section, we show how the extracted cell characteristics in Section 4.1 can be

utilized for FPGA authentication. The following terminology is used in the remainder

of the thesis. The verifier (V ) authenticates the prover (P ) who owns the genuine

FPGA device. The verifier authenticates the device by verifying the unique timing

properties of the device.

6.1.1 Classic Authentication

The registration and authentication processes for the classic authentication case are

demonstrated in the diagram in Figure 6.1(a) and (b) (disregard the darker boxes

for now). The minimum required assumptions for this case are: (i) the verifier is not

constrained in power, (ii) it is physically impossible to clone the FPGA, and (iii) the

characteristics of the FPGA owned by the prover is a secret only known to the prover

and verifier.

As shown in Figure 6.1(a), during the registration phase, the verifier extracts and

securely stores the cell delay parameters by performing characterization as explained

in Sections 4.1. By knowing the FPGA-specific features in addition to the structure

and placement of the configured PUF, the verifier is able to predict the responses to

any challenges to the PUF. After registrations, the FPGA along with the pertinent
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PUF configuration bitstream is passed to the end-user.

At the authentication, end-user (prover) is queried by the verifier to make sure

she is the true owner of the FPGA. Classic authentication is shown in Figure 6.1(b).

To authenticate the ownership, the verifier utilizes a random seed and generates a

set of pseudorandom challenge vectors for querying the prover. The prover responds

to the challenges she receives from the verifier by applying them to the configured

FPGA hardware. The verifier then compares the received responses from the prover

with the predicted ones, and authenticates the chip if the responses are similar.

To ensure robustness against errors in measuring the delays and the changes in

operational conditions, the registration entity may also compute the error correction

information for the responses to the given challenges. To prevent information leakage

via the error correction bits, secure sketch techniques can be used. A secure sketch

produces public information about its input that does not reveal the input, and still

permits exact recovery of the input given another value that is close to it [49].

The device is authenticated if the response after error correction would be mapped

to the verifier-computed hash of responses. Otherwise, the authentication will fail.

Alternatively, the verifier can allow for some level of errors in the collected responses

and remove the error correction and hashing from the protocol. However, accept-

ing some errors in the responses makes the verifier be more susceptible to emula-

tion/impersonating attacks [1, 2].

6.1.2 Time-bounded Authentication Using Reconfigurability

After the FPGA registration, the verifier is able to compute and predict the responses

to any set of challenges by knowing (i) the cell-level features of the pertinent FPGA,

(ii) the circuit structure, and (iii) placement of the PUF circuit. The information
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Figure 6.1 : (a) FPGA registration (b) Classic authentication flow (c) Time-bound
authentication flow.

on the PUF circuit structure and placement is embedded into the configuration bit-

stream. In the classic authentic method, the bitstream is never changed. A dishonest

prover, off-line and given enough time and resources can (i) extract the cell-level delays

of the FPGA, and (ii) reverse engineer the bitstream to discover the PUF structure

and its placement on the FPGA. During the authentication, the dishonest prover can

compute the responses to the given challenges online by simulating the behavior of

the PUF on the fly and producing the responses that pass the authentication.

A stronger set of security protocols can be built upon the fact that the prover is

the only entity who can compute the correct response to a random challenge within a

specific time bound since he has access to the actual hardware. In this protocol, prior

to the beginning of the authentication session, the FPGA is blank. The verifier then

sends a bitstream to the device in which a random subset of LUTs are configured for
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authentication. After the device is configured, the verifier starts querying the FPGA

with random challenges. The verifier accepts the responses that are returned back

only if ∆t ≤ ∆tmax where ∆t is the time elapsed on the prover device to compute the

responses after receiving the configuration bitstream, and ∆tmax is the upper bound

delay estimated computation of responses by the authentic FPGA prover device,

which is composed of device configuration, response generation, error correction, and

hashing time all performed in hardware.

The verifier will authenticate the device only if the time the device takes to gen-

erate the response is less than ∆tmax. We denote the minimum emulation time by

temu
min , where temu

min >> ∆tmax. Time-bounded authentication protocol can be added to

the authentication flow, as demonstrated in Figure 6.1(c). Compared to the classic

authentication flow, a time bound check is added after the hash function. While per-

forming the above authentication, we emphasize on the assumption that the time gap

between hardware response generation and simulation (or emulations) of the prover

must be larger than the variation in the channel latency. The time-bound assumption

would be enough for providing the authentication proof [9, 30, 60].

Estimating the time-bound

Now let us look at∆t, the time elapsed on the prover device to compute the responses.

Before proceeding, note that the characterization is a one-time offline operation which

happens prior to authentication phase and its time complexity does not affect the

time-bound discussed here. ∆t is the sum of time required to configure the FPGA,

Tconf , and the time spent on evaluating the PUF, Teval, i.e., ∆t = Tconf+Teval. During

the PUF evaluation, Np clock pulses at Nf distinct frequencies are sent to Ncell PUF

cells in serial with an average pulse width of Tavg , therefore the average evaluation
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time is, Teval = Np × Ncell × Nf × Tavg. For instance, in our experiments, Np = 8,

Np = 6, Ncell = 1024, and Tavg = 2ns, yielding Teval * 98µseconds.

Configuration time varies for different configuration schemes and depends on the

configuration file size, configuration port width, and frequency of the driving clock.

Configuration time can roughly be estimated by Tconf = Lb
fc×Pw

, where Lb is the

configuration bitstream length in bits, fc is the clock frequency in Hz, and Pw is the

configuration port width in bits. For example, In our experiment on Xilinx Virtex

5 FPGAs (LX110), Lb=3.5MB, fc=50MHz and Pw=16bit, the configuration time

equals 350 milli-seconds. Faster clocks can expedite the configuration process.

6.2 Attacks and Countermeasures

Perhaps the most dangerous attack to an authentication system is impersonation

attack. Impersonation attack aims at deceiving the verifier to get through the au-

thentication by reverse-engineering and simulation of the authentic device behavior,

or storing and replaying the communication, or random guessing. Storage and reply

attacks are impractical as long as the verifier uses a new random challenge every

time. Random guessing and prediction attacks pose a threat if the responses have

a low entropy and are predictable. As we mentioned in Section 4.2, by setting the

input clock pulse widths to the statistical median of the center of transition regions,

the entropy of the responses can be maximized. For a fixed binary challenge, there

are not more than six independent input clock pulse widths to be tried. In other

words, the responses to other input clock pulse widths would lack sufficient entropy.

To obtain more response bits, more binary challenges must be used instead.

Among the aforementioned threats, the reverse engineering and simulation at-

tacks are the most critical attacks to address. The time-bounded protocol discussed
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in Section 6.3 is constructed based on secrecy in placement of the PUF and the con-

nection of the input challenges to the CUTs. The secret expires within the given

time bound. To provide the correct response to a new challenge, the adversary has to

reverse engineer the bitstream to decipher the placement and connection of the input

challenges to the PUF. Next, he has to simulate (or emulate) the PUF behavior using

the public timing characterization. These two steps must be performed within the

given time constraint. Even after many years of research in rapid simulation tech-

nologies for hardware design and validation, accurate simulation or emulation of a

hardware architecture is extremely slow compared to the real device. In addition,

even though bitstream reverse-engineering have partially been performed on some

FPGAs [61], performing it would require a lot of simulations and pattern matching.

Thus, it would take many more cycles than the authentic hardware where the verify-

ing time is dominated by the bitstream configuration time (in the order of 100 mili

seconds).

6.3 Slender PUF Protocol

In this section, the proposed protocol is introduced and explained in detail. The

protocol is based on a Strong PUF with acceptable statistical properties, like the one

shown in Fig. 6.2. The protocol enables a prover with physical access to the PUF to

authenticate itself to a verifier. It is assumed that an honest verifier has access to

a compact secret model of the relationship between Strong PUF challenge-response

pairs (CRPs). Such a model can be built by training a compact parametric model of

the PUF on a set of direct challenge responses pairs. As long as the PUF challenge

response pairs are obtained from the linear PUF, right after the arbiter, building

and training such a compact model is possible with a relatively small set of CRPs as
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demonstrated in the previous literature [40, 42, 43, 2, 44]. The physical access to the

measurement points should be then permanently disabled before deployment, e.g., by

burning irreversible fuses, so other entities cannot build the same models. Once this

access point is blocked, any physical attack that involves de-packaging the chip will

likely alter the shared secret.

D

C

Q...

...

D

C

Q...

...

C0 C1 C2 Cn

Cn Cn-1 Cn-2 C0

Figure 6.2 : Two independent linear arbiter PUFs are XOR-mixed in order to imple-
ment an arbiter PUF with better statistical properties.

The Slender PUF methodology is different from the original PUF challenge re-

sponse pair identification and authentication methodology. The Slender PUF method-

ology is devised such that both prover and verifier jointly participate in producing

the challenges. The joint challenge generation provides effective protection against a

number of attacks. Unlike original PUF authentication methods, an adversary cannot

build a database of CRPs and use an entry in the database for authentication.

In the next step of the protocol, the prover generates a set of Strong PUF responses

corresponding to the jointly generated challenges. After that, the prover selects a

random substring of responses from the response super-string, without revealing the

location in the response stream and sends it to the verifier. The verifier, with access to

the secret compact PUF model, can perform substring matching, within a predefined

error threshold, and validate the responses with a very high probability. The prover
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gets authenticated if his submitted response substring matches at any location in the

simulated response super-string on the verifier side.

6.3.1 Slender PUF protocol steps

Fig. 6.3 illustrates the steps of the Slender PUF protocol. Steps 1-4 of the protocol

ensure joint generation of the challenges by the prover and the verifier. In Steps 1-2

the prover and the verifier each uses its own true random number generator (TRNG)

unit to generate a nonce. Note that arbiter PUFs can also be used to implement a

TRNG [10]. The prover and verifier generated nonces are denoted by Noncep and

Noncev respectively. The nonces are exchanged between the parties, so both entities

have access to Noncep and Noncev. Step 3 generates a random seed by concatenating

the individual nonces of the prover and the verifier; i.e., Seed = {Noncev ‖ Noncep}.

The generated Seed is used by a pseudo-random number generator (PRNG) in

Step 4. Both the prover and the verifier have a copy of this PRNG module. The

PRNG output using the seed, i.e., C = G(Seed), is then applied to the PUF as a

challenge set (C). Note that in this way, neither the prover nor the verifier has full

control over the PUF challenge stream. In Step 5, the prover applies the challenges

to its physical PUF to obtain a response stream (R); i.e., R = PUF(C). An honest

verifier with access to a secret compact model of the PUF (PUF model) also estimates

the PUF output stream; i.e., R
′
= PUF model(C).

Let us assume that the full response bitstring is of length L. In Step 6, the prover

randomly chooses an index (ind) of bit-size log2(L) that points to a location in the

full response bitstring. The index is used to generate a substring W from the PUF

output bitstream with a predefined length, denoted by Lsub. We use the full response

string in a circular manner, so that if the value (ind + L) > log2(L), the remainder
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Verifier Prover

Noncep

Seed ={Noncev, Noncep} Seed = {Noncev, Noncep}

C = G(Seed) C = G(Seed)

R’ = PUF_model(C) R = PUF(C)

W = sub-seq (ind, Lsub, R)

(3)

(4)

(2)

(6)

(5)

Noncev(1)

T =match(R’, W, e)

Auth. pass: T = true? 

(7)

Figure 6.3 : The 7 steps of the SlenderPUF lightweight protocol.

of the substring values are taken from the beginning of the full response bitstream.

The prover then sends W to the verifier. In step 7, an honest verifier, with

access to the compact secret PUF model, finds the secret index by searching and

matching the received substring to its simulated PUF output sequence (R
′
). The

authentication is successful, only if the Hamming distance between the received and

the simulated substrings is lower than a predefined threshold value. In this way,

prover does not reveal the whole response stream and the protocol leaks a minimal

amount of information. This process is illustrated in Fig. 6.4.

The SlenderPUF protocol is lightweight and is suitable for ultra-low power and

embedded devices. Besides a Strong PUF, the prover only needs to implement one

TRNG and one PRNG. The information communicated between the parties is also

minimal. In addition to exchanging their respective session nonces, the prover only
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R:
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10errors:

Figure 6.4 : Top: random selection of an index; Middle: extracting a substring
of a predefined length; Bottom: the verifier matches the received substrings to its
estimated PUF response stream.

needs to send a relatively short substring to the verifier.

6.3.2 Secret sharing

So far we assumed that the verifier possesses a model of the PUF and uses the model

to authenticate the prover. The PUF in fact uses an e-fuse to protect the secret

and prevent modeling attacks. The chip sets are handled by a trusted party before

distributing to end users. The trusted party performs modeling on the PUF and

disables the fuse before distribution. Anyone with access to the IC afterwards will

not be able to model the PUF since the fuse is disabled. The trusted party can share

the PUF models with other authorized trusted parties that want to authenticate the

ICs.

The e-fuse mechanism is set up as follows. Before the e-fuse is disabled, the output

of the arbiter prior to any XORs can be read and accessed from chip IO pins. This

way, the verifier can obtain as many CRPs as needed to build an accurate model of

the PUF. After the model is successfully trained, the trusted party and/or the verifier
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disables the e-fuse so that no one can obtain the “raw” PUF output.

6.4 Analysis of attacks

In this section, we quantify the resistance of the proposed protocol against different

attacks by a malicious party (prover or verifier). First, we quantitatively analyze

the resiliency of the method to machine learning and modeling attacks. Second, we

probabilistically investigate the odds of authentication by random guessing. Third,

we address the attack where a dishonest prover (verifier) attempts to control the PUF

challenge pattern. Lastly, the effects of non-idealities of PUFs and PRNGs and their

impact on protocol security are discussed.

Throughout our analysis in this section, we investigate the impact of various

parameters on security and reliability of protocol operation. Table 6.1 shows the list

of parameters.

6.4.1 PUF modeling attack

In order to model a linear PUF with a given level of accuracy, it is sufficient to ob-

tain a minimum number (Nmin) of direct challenge response pairs (CRPs) from the

PUF. Based on theoretical considerations (dimension of the feature space, Vapnik-

Chervonenkis dimension), it is suggested in [44] that the minimal number of CRPs,

Nmin, that is necessary to model a N -stage delay based linear PUF with a misclassi-

fication rate of ε is given by:

Nmin = O(
N

ε
). (6.1)

For example, a PUF model with 90% accuracy, has a misclassification rate of ε =

10%. In the proposed protocol, the direct responses are not revealed and the attacker
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Table 6.1 : List of design parameters

Parameter notation Description

L Length of PUF response string

Lsub Length of PUF response substring

Ln Length of the nonce

ind Index value, 0 ≤ ind < L

Nmin Minimum number CRPs needed to train

the PUF model with a misclassification

rate of less than ε

k Number of XORed PUF outputs

N Number of PUF switch stages

th Matching distance threshold

ε PUF modeling misclassification rate

perr Probability of error in PUF responses

needs to correctly guess the secret index to be able to discover Lsub challenge response

pairs. The index is a number between 0 and L − 1 (L is the length of the original

response string from which the substring is obtained). Assuming the attacker tries to

randomly guess the index, then he is faced by L choices. For each index choice, the

attacker can build a PUF model (Mindex) by training it on the set of Lsub challenge

response pairs using machine learning methods.

Now, the attacker could launch L rounds of authentication with the verifier and

each time use one of his trained models instead of the actual PUF. If he correctly

guesses the index and his model is accurate enough, one of his models will pass
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authentication. To build an accurate model as mentioned above, the attacker needs

to obtain Nmin correct challenge response pairs. If Lsub > Nmin, then attacker can

break the system with O(L) number of attempts. However if Lsub < Nmin, then the

attackers needs to launch Nmin/Lsub multiple rounds of authentication to obtain at

least Nmin challenge response pairs. Under this scenario, the number of hypothetical

PUF models will grow exponentially. Since for each round of authentication there

are L models based on the choice of index value, for Nmin/Lsub rounds, the number

of models will be of the following order:

O(L
Nmin
Lsub ). (6.2)

From the above equation, it seems intuitive to choose small values for Lsub to

make the exponent bigger. However, small Lsub increases the success rate of random

guessing attacks. The implications of small Lsub will be discussed in more detail in

the next section.

The model the attacker is building has to be only more accurate than the specified

threshold during the matching. For example, if we allow a 10% tolerance during the

substring matching process, then it means that a PUF model that emulates the actual

PUF responses with more than 90% accuracy will be able to pass authentication.

Based on Equation 6.1, if we allow higher misclassification rate ε, then a smaller

number of CRPs is needed to build an accurate enough model which passes the

authentication.

For example, based on the numbers reported in [44], using 640 CRPs, an arbiter

PUF of length 64 can be modeled with an accuracy of 95%. In this example we set the

threshold to 5%, then to get an exponent equal to 10 from Equation 6.2, Lsub must

be 64. In other words, the attacker needs to performs L10 operations to obtain 640
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CRPs so that he can build a PUF model of 95% accuracy to pass the authentication.

For L=1024, L10 will be a huge number. However we are faced with another problem.

What if the PUF error rate (perr) is higher than the maximum Hamming distance

threshold (th)? Then we will have a lot of false negatives (i.e., the honest prover with

access to the legitimate PUF will not be able to pass authentication due to noise in

responses).

To improve the security while maintaining reliable performance, Nmin must be

increased for a fixed ε and N . This requires a structural change to delay based PUF.

In this work, we use the XOR PUF circuit shown in Figure 6.2 for two reasons. First,

to satisfy the avalanche criterion for the PUF. Second, to increase Nmin for a fixed ε.

Based on the results reported in [44], Nmin is an order of magnitude larger for XOR

PUF compared to a simple delay based PUF.

6.4.2 Random guessing attack

A legitimate prover should be able to generate a substring of PUF responses that

successfully match a substring of the verifier’s emulated response sequence. The legit-

imate prover must be authenticated by an honest verifier with a very high probability,

even if the response substring contains some errors. Therefore, the protocol allows

some tolerance during matching by setting a threshold on the Hamming distance of

the source and target substrings.

Simultaneously, the probability of authenticating a dishonest prover should be

extremely low. These conditions can be fulfilled by carefully selecting the Hamming

distance threshold (th), the substring length (Lsub) and the original response string

length (L) by our protocol.

A dishonest prover without access to the original PUF or its model, may resort
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to sending a substring of random bits. In this case, the probability of authenticating

a randomly guessing attacker would be:

Pauth,guessing ≤ L×
Lsub∑

i=Lsub−th

(
Lsub

i

)
1

2

i

· 1
2

Lsub−i

, (6.3)

where Lsub and th are the length of the substring and the Hamming distance threshold,

respectively. Note that Eq. 6.3 is a binomial cumulative distribution function. For

an honest prover, the probability of being authenticated is:

Pauth,honest *
Lsub∑

i=Lsub−th

(
Lsub

i

)
(1− perr)

i · perrLsub−i, (6.4)

where perr is the probability of an error in a response bit. If Lsub is chosen to be a

sufficiently large number, Eq. 6.3 will be close to zero and Eq. 6.4 will be close to one.

6.4.3 Compromising the random seed

In Slender PUF protocol, the prover and the verifier jointly generate the random

PRNG seed by concatenating the outputs of their individual nonces (generated by

TRNGs); i.e., seed = {Noncev ‖ Noncep}. The stream of PRNG outputs after

applying the seed is then used as the PUF challenge set. This way, neither the prover

nor the verifier has full control over generating the PUF challenge stream.

If one of the parties can fully control the seed and challenge sequence, then the

following attack scenario can happen. A dishonest verifier can manipulate an honest

prover into revealing the secret information. If the same seed is used over and over

during authentication rounds, then the generated response sequence (super-string)

will always be the same. The response substrings now come from the same original
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response string. By collecting a large enough number of substrings and putting the

pieces together, the original super-string can be reconstructed. Reconstruction will

reveal L CRPs. By repeating these steps more CRPs can be revealed and the PUF

can be ultimately modeled.

A dishonest prover (verifier) may intentionally keep his/her portion of the seed

constant to reduce the entropy of seed. This way, the attacker can exert more control

over the random challenges applied to the PUF. We argue that if the seed length is

long enough this strategy will not be successful.

This attack leaves only half of the bits in the generated Seed changing. For a seed

of length 2Ln-bits (two concatenated nonces of length Ln-bits), the chance that the

same nonce appears twice is 1
2Ln ). For example, for Ln = |Noncev| = |Noncep| = 128,

the probability of being able to fully control the seed will be negligibly small.

Therefore, one could effectively guard against any kind of random seed compromise

by increasing the nonce lengths. The only overhead of this approach is a twofold

increase in the runtime of the TRNG.

6.4.4 Substring replay attack

A dishonest prover may mount an attack by recording the substrings associated with

each used Seed. In this attack, a malicious prover records the response substrings

sent by an honest prover to an honest verifier for a specific Seed. The recording may

be performed by eavesdropping on the communication channel between the legitimate

prover and verifier. A malicious party may even pre-record a set of response substrings

to various random Seeds by posing as a legitimate verifier and exchanging nonces with

the authentic prover.

After recording a sufficiently large number of Seeds and their corresponding re-
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sponse substrings, the malicious party could attempt to impersonate an honest prover.

This may done by repeatedly contacting the legitimate verifier for authentication and

then matching the generated Seeds to its pre-recorded database. This attack could

only happen if the Seeds collide. Selecting a sufficiently long Seed that cannot be

controlled by one party (Subsection 6.4.2) would hinder this collision attack.

Passive eavesdropping is performed during the pre-recording phase, the chances

that the whole Seed collides will be 1/2Ln . The worst-case scenario is when an

adversary impersonates a verifier and controls half of the seed which reduces the

collision probability to 1/2Ln/2.

6.4.5 Exploiting non-idealities of PRNG and PUF

Thus far, we assumed that the outputs of PRNG and PUF are ideal and statistically

unbiased. If this is not true, an attacker may resort to exploiting the statistical bias

in a non-ideal PRNG or PUF to attack the system. Therefore, in this section we

emphasize the importance of the PUF avalanche criterion for securing against this

class of attacks.

If the PUF has poor statistical properties, then the attacker can predict patterns

in the generated responses. The attacker can use these predicted patterns to more

confidently find/guess a matching location for the substring. In other words, statisti-

cal bias in the responses will leak information about the location index of the response

substring.

Recall that an ideal Strong PUF should have the strict avalanche property [9].

This property states that if one bit of the PUF’s input challenges is flipped, the

PUF output response should flip with a 1
2 probability. If this property holds, the

PUF output for two different challenges will be uncorrelated. Fig. 6.5 shows the
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probability of output flipping versus the Hamming distance between two challenge

sequences for the Strong PUF proposed in [9]. It is desirable to make this probability

as close as possible to 1
2 .
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Figure 6.5 : The probability of the arbiter PUF output flipping versus the Hamming
distance between two challenge sequences for 2, 4, and 8 independent XOR-mixed
PUFs [2]

The figure shows that this probability is very close to the ideal number when at

least four independent PUF output bits are mixed by an XOR. As more independent

PUF response bits are mixed, the curve moves closer to the ideal case; however, this

linearly increases the probability of error in the mixed output bit. For instance, for a

single Strong PUF response bit error of 5%, the probability of error for 4-XOR mixing

is reported to be 19% in [9].

In our implementation of Slender PUF protocol, Linear feedback shift registers

(LFSRs) are used as a lightweight PRNG. An ideal LFSR must have the maximum

length sequence property [62]. This property ensures that the autocorrelation func-

tion of the LFSR output stream is “impulsive”, i.e., it is one at lag zero and is −1
N for
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all other lags, where N is the LFSR sequences length. N should be a sufficiently large

number, which renders the lagged autocorrelations very close to zero [62]. Therefore,

if an LFSR generates a sequence of challenges to the PUF, the challenges are uncor-

related. In other words, for an ideal LFSR, it is highly unlikely that an attacker can

find two challenges with a very small Hamming distance.

Even if the attacker finds two challenges with a small Hamming distance in the

sequence, Fig. 6.5 shows that the output of our proposed PUF would be sufficiently

uncorrelated to the Hamming distance of the input challenges. Therefore, a combina-

tion of PRNG and PUF with strict avalanche criteria would make this attack highly

unlikely. It is worth noting that it is not required by any means the PRNG to be a

cryptographically secure generator. The seed in the protocol is public and the only

purpose of the PRNG is to automatically generate a sequence of challenge vectors.

Simultaneously, it must not allow an attacker to completely control the challenges

and thus the responses.

6.5 Experimental evaluation

In this section, we use the PUF measurement data collected in the lab to estimate

the practical protocol parameters values and present methodology to arrive at the

parameter values. False acceptance and false rejection probabilities depend on PUF

error rates. Unfortunately, there has been no comprehensive reports till this date

on PUF response error rates (caused by variations in temperature and power supply

conditions) nor any solid data on modeling error rates measured on real PUF challenge

response pairs. The data reported in the related literature mainly come from synthetic

(emulated) PUF results rather than actual reliable PUF measurements and tests.

We used the data we measured and collected across 12 Xilinx Virtex 5 (LX110)
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FPGAs at 9 accurately controlled operating condition (combination of different tem-

peratures and power supply points). Each PUF holds 16 PUFs and each PUF is

tested using 64,000 random challenges.

To obtain the error rate, each PUF evaluation at nominal condition (temperature

= 35oC and VDD = 1 V) is repeated 128 times and then majority of the response

values to the same challenge is taken as the ideal response of PUF. Then the variation

from the ideal response is measured compared as the percentage of the bits in the 128-

bit vector that deviate from the ideal response. For example if 10 bits from the 128

bits are ones and the rest are zeros, and the deviation from the majority response,

or the response error rate, is (10/128)×100 = 7.8%. The same method is used to

measure the response error in different operating condition with respect to the ideal

response at the nominal condition.

The center cell of Table 6.2 shows the average deviation (taken over 64,000 challenge-

response pairs) of these experiments from the ideal response at the nominal condition.

These experiments are also repeated for different voltage and temperature conditions

and then the average deviation of these outputs from the ideal PUF response is re-

ported in Table 6.2. As it can be seen from this table, the error rate can substantially

increase in non-nominal conditions. The worst case scenario happens when the tem-

perature is 5oC and the voltage is 0.95V. The table shows that 30oC degree change

in temperature will have a bigger effect on the error rate than a 5% voltage change.

As mentioned earlier, the verifier repeatedly tests the PUF in the factory to obtain

a consensus of the PUF responses for an array of random challenges. The verifier then

uses the reliable response bits to build a PUF Model for himself. When the PUF is

deployed in the field, the prover challenges its own PUF and send the responses

to the verifier. The average error rate of the prover response in different working
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!!!!!!!!!!!!!!!
VDD

Temperature
5oC 35oC 65oC

0.95 V 8.4% 6.2% 7.1%

1.00 V 6.8% 3.1% 6.4%

1.05 V 7.2% 6.7% 7.9%

Table 6.2 : Average bit error rate of PUF in different voltage and temperature con-
ditions in comparison with the ideal PUF output at nominal condition.

!!!!!!!!!!!!!!!
VDD

Temperature
5oC 35oC 65oC

0.95 V 13.2% 10.5% 10.7%

1.00 V 8.9% 6.4% 8.9%

1.05 V 9.3% 10.2% 11.8%

Table 6.3 : Average bit error rate of the Verifiers PUF model against the PUF outputs
in different voltage and temperate conditions.

condition against the verifiers model is listed in Table 6.3. The listed errors are the

superposition of two types of error. The first type is the error in PUF output due

to noise of environment as well as operating condition fluctuations. The second type

is the inevitable modeling error of the verifiers PUF model. These error rates are

tangibly higher than the error rates of Table 6.2. The worst error rate is recorded

at 5oC temperature and voltage of 0.95V. This error rate is taken as the worst-case

error rate between an honest verifier and an honest Prover. We will use this error rate

to estimate the false acceptance and false rejection probability of the authentication

protocol.
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Q: As explained in the thesis, the attack complexity depends exponentially on the

minimum required number of challenge response pairs (CRPs), i.e., Nmin, to reach

a modeling error rate of less than ’th’, the matching threshold in the protocol. The

matching threshold in the protocol is incorporated to create a tolerance for errors in

the responses caused by modeling error as well as errors due to environment variations

and noise.

By relaxing the tolerance for errors in the protocol (i.e., increasing ’th’), we ba-

sically increase the probability of attack. For example, if we allow for 50% error in

during the matching, then any randomly generated response set will pass the au-

thentication. On the contrary, by lowering the tolerance for errors, rate at which

authentication of genuine PUF fails due to noisy responses increases. As a rule of

thumb, the tolerance has to be set greater than the maximum response error rate to

achieve sensible false rejection and false acceptance probabilities.

Once the tolerance level (th) is fixed to achieve the desired false rejection and

false acceptance probabilities, Nmin must be increased to hinder modeling attacks.

However,Nmin and th are inter-related for a given PUF structure. In other words, for

a given fixed PUF structure, increasing th mandates that a less accurate model can

pass the authentication, and that model can be trained with few number of CRPs

(smaller Nmin). The only way to achieve a higher Nmin for a fixed th is to change the

PUF structure.

Earlier in the thesis, we proposed using XOR PUFs instead of a single arbiter-

based PUF in order to increase Nmin for a fixed th. As reported previously in the

related literature, xor-ing the PUF outputs makes the machine learning more difficult

and requires a larger CRP set for model building. The major problem with XORing

the PUF outputs is error propagation. For example, if the outputs of two arbiter-
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!!!!!!!!!!!!!!!
VDD

Temperature
5oC 35oC 65oC

0.95 V 24.7% 19.9% 20.3%

1.00 V 17.0% 12.4% 17.0%

1.05 V 17.7% 19.4% 22.2%

Table 6.4 : 2-input XOR.

based PUFs are mixed with XORs, the XOR PUF response error rate will be the sum

of each individual arbiter-based PUFs (minus the multiplication of both error). This

means the error tolerance has to be also doubled to have a reliable operations. This

observation of trade-off between Nmin and th, led us to quantify this effect. It was nor

clear in a practical scenario adding to the number of XORs will make it more difficult

to break the protocol or not, since the data reported in other papers are mainly from

synthetic (emulated) PUF results rather than reliable PUF error rate estimates.

In order to quantify the trade-off between Nmin and th, we first calculate the effec-

tive compound error rate at the XOR PUF output for different operating conditions

and different number of XOR inputs. Tables 6.4, 6.5, 6.6 show the effective response

error rate for 2-input, 3-input, 4-input XOR PUF respectively.

According to the above tables, the maximum error rates measured from the XOR

PUF responses are 24.7%, 34.6%, 43.2% 2-input, 3-input, 4-input XOR PUF respec-

tively. To guarantee reliable authentication at all operating conditions, the error

tolerance th must be set above the maximum error rates. Now after deriving the

error tolerance level for each PUF, we would like to know how many challenge re-

sponse pairs are required to train the PUF model and reach a modeling error that
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!!!!!!!!!!!!!!!
VDD

Temperature
5oC 35oC 65oC

0.95 V 34.6% 28.3% 28.8%

1.00 V 24.4% 18.0% 24.4%

1.05 V 25.4% 27.6% 31.4%

Table 6.5 : 3-input XOR.

!!!!!!!!!!!!!!!
VDD

Temperature
5oC 35oC 65oC

0.95 V 43.2% 35.8% 36.4%

1.00 V 31.1% 23.2% 31.1%

1.05 V 32.3% 35.0% 39.6%

Table 6.6 : 4-input XOR.
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Figure 6.6 : The modeling error rate for arbiter-based PUF, and XOR PUFs with 2
and 3 outputs as a function of number of train/test CRPs.

falls below the tolerance level. In other words, how many challenge/response pairs

does the adversary need to collect in order to pass the authentication and break the

system?

To answer this question, we trained and tested the PUF model on the data col-

lected in the lab from real PUF implementations. We measured the modeling accuracy

as a function of train/test set size for each PUF. The results in Figure 6.6 show the

modeling error using evolutionary strategy (ES) machine learning method.

Based on the results in Figure 6.6, the largest Nmin for all three PUFs, after taking

into account the error threshold (th) derived earlier, is achieved for XOR-PUF with

3 inputs, i.e. to achieve a modeling error rate of less than 34.6%, 64,000 CRPs must

be collected, therefore Nmin = 64,000 for 3-input XOR PUF.

Table 6.7 shows the false rejection and false acceptance error rate of our protocol
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Lsub 500

Error threshold 210 200 190

False rejection 0.1% 1% 9%

False acceptance 7.1% 1.5% 0.001%

Lsub 1000

Error threshold 395 385 375

False rejection 0.2% 1% 5%

False acceptance 1.1e-8 1.1e-10 8e-13

Lsub 1250

Error threshold 487 477 467

False rejection 0.2% 1% 5%

False acceptance 1.8e-12 0 0

Table 6.7 : False rejection and acceptance error probabilities for different protocol
parameters.
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with the length of substring (Lsub) fixed at 500, with different matching distance

thresholds. False rejection rate is the rate in which the service to the truthful prover

is disrupted. The requirements on the false rejection rate are not usually as stringent

on the requirements on the false acceptance rate, however, one should assume that a

customer would deem a product impractical if the false rejection rate is higher than

a threshold. In our protocol design, we tune the system parameter to achieve a false

negative rate of 1%, while minimizing the false acceptance rate. Also, we take the

worst-case error rate as the basis of our calculation for false acceptance and false

rejection rates. The error rates that we report are the upper bound of what can be

observed in the field by a customer/prover.

Table 6.7 shows that the desired false rejection rate of 1% is achieved when the

threshold is 200 for Lsub=500. However, this results in a false acceptance rate of

1.5%, which is not acceptable. Therefore, the substring length should be increased

in order to achieve a much lower false acceptance probability. Table 6.7 lists these

rates for Lsub = 500, Lsub = 1000, Lsub = 1250. The second column for Lsub = 1250

shows that a false negative rate of 1% and a false positive rate of 0 can be achieved

if error threshold is 477/1250 = 38%. If we set L = 1300, with this parameters, an

adversary needs to perform O(1300(64000/1250)) ≈ O(2527) machine learning attacks in

order to break this system which makes the system secure against all computationally

bounded adversaries.

6.6 Hardware implementation

In this section, we present an FPGA implementation of the proposed protocol for

the prover side on Xilinx Virtex 5 XC5VLX110T FPGAs. Since there is a stricter

power consumption requirement on the lightweight prover, we focus our evaluation
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on prover implementation overhead. The computation on the verifier side can run

solely in software, however, the computation on the verifier may also be carried out

in hardware with negligible overhead.

For the Slender PUF protocol, it is desirable to use a low overhead PUF imple-

mentation, such as the one introduced in [7]. If an ASIC or analog implementation of

the PUF is required, the ultra-low power architecture in [10] is suitable for this pro-

tocol. A very low-power verifier implemented by a microcontroller such as MSP430

can easily challenge the PUF and run the subsequent steps of the protocol.

We use the implementation of the arbiter-based PUF in [16]. The arbiter-based

PUF on FPGA is designed to have 64 input challenges. In total, 128 LUTs and one

flip-flop are used to generate one bit of response. To achieve a higher throughput,

multiple parallel PUFs can be implemented on the same FPGA.

There are various existing implementations for TRNGs on FPGAs [63, 56]. We

use the architecture presented in [7] to implement a true random number generator.

The TRNG architecture is shown in Figure 6.8. This TRNG operates by enforcing a

metastable state on the flipflop through a closed loop feedback system. The TRNG

core consumes 128 LUTs that are packed into 16 CLBs on Virtex 5. In fact, the

TRNG core is identical to the arbiter-based PUF except that the switches act as tun-

able programmable delay lines. The core is incorporated inside a closed-loop feedback

system. The core output is attached to a 12-bit counter (using 12 registers) which

monitors the arbiter’s metastability. If the arbiter operates in a purely metastable

fashion, the output bits become equally likely ones and zeros. The counter basically

measures and monitors deviations from this condition and generates a difference feed-

back signal to guide the system to return back to its metastable state. The counter

output drives an encoding table of depth 212 where each row contains a 128-bit word
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resulting in a 64KByte ROM. A table of size 212 × 8-bits (=4KByte) implemented

by a RAM block is used to gather and update statistics for online post processing.

Tunable PUF Counter

Feedback - Encoder

Post

Processing

TRNG based on arbiter metastability

Figure 6.7 : True random number generation architecture based on flipflop metasta-
bility

The nonce size is set to 128 for both the prover and verifier. Each 128-bit nonce

is fed into a 128-bit LFSR. The content of the two LFSRs are XORed to form the

challenges to the PUF.

The pattern selection can be achieved by shifting the intended substring of the

PUF responses into a FIFO. The shifting operation, however, begins only when

needed. In other words, before running the PUF, the random index is generated by

the TRNG. For example, in our implementation the response sequence has a length

of 1024 which results in a 10-bit index. To generate a 10-bit random index, we have

to run the TRNG 8×10 clock cycles according to Table 6.8. Since we do not care

about the response bits that are generated before and after the substring window, we

do not need to even generate or store those bits. Therefore, the PUF has to only be

challenged for the response bits in the substring. This significantly reduces the over-

all run time and the storage requirement on the FIFO. The FIFO size is accordingly

equal to the length of the substring which is set to 256 in our implementation.

The propagation delay through the PUF and the TRNG core is equal to 61.06ns.

PUF outputs can be generated at a maximum rate of 16Mbit/sec. Post-processing
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on the TRNG output bits can lower the throughput from 16Mbit/sec to 2Mbit/sec.

Since the TRNG is only used to generate the nonce and the index, its throughput

does not affect the overall system performance; the number of required true random

bits is smaller than the PUF response bits.

Table 6.8 : Implementation overhead on Virtex 5 FPGA

No. Type LUT Registers RAM ROM Clock

blocks blocks Cycles

4 PUF 128 1 0 0 1

1 TRNG 128 12 4KB 64KB 8

1 FIFO 0 256 0 0 N/A

2 LFSR 2 128 0 0 N/A

1 Control 12 9 0 0 N/A

Total 652 278 4KB 64KB N/A

FIFO

TRNG

PUF C
o
n
tro

l

Prover

Matching 

Algorithm

PUF

Model

Verifier

PRNG

TRNG

Figure 6.8 : Resource usage on prover and verifier sides

The implementation overhead of our proposed protocol is much less than tradi-

tional cryptographic modules. For example, robust hashing implementation of SHA-2
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as listed in Table 6.9 requires at least 5492 LUTs of a Virtex-II FPGA [3] and it takes

68 clock cycles to evaluate. This overhead will occur on the top of the clock cycles

required for PUF evaluation.

Finally, note that most of the area overhead for the protocol implementation is

coming from the TRNG. By using non-volatile memory storage, TRNG can also be

avoided. A Slender PUF implementation without a TRNG generates log2(L) extra

response bits and uses the extra bits as the index value. Also to generate the nonce,

previously used and revealed substring response bits can re-write the nonces and be

used for the next round of authentication. This is because for a statistically unbiased

PUF, the responses follow random number properties. In this case, the contents of

the non-volatile memory is publicly available and there will be no external access

point to change or re-write the values to the memory. However, this implementation

is vulnerable to invasive attacks that aim to alter the memory content.

Table 6.9 : SHA-2 implementation overhead as reported in [3]

SHA-256 Freq. Clock TP Area

(MHz) Cycles (Mbps) (LUTs)

Basic 133.06 68 1009 5492

2x-unrolled 73.97 28 996.7 8128

4x-unrolled 40.83 23 908.9 11592
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Chapter 7

Conclusion

This doctoral thesis presented novel formal requirements, properties, and protocols for

PUFs that are used to design new architectures and implementations. The thesis lays

out the foundation to formally define and derive a set of requirements and properties

for physically unclonable functions. These requirements provide us with tools and

guidelines to analyze, test, and evaluate PUF architectures and the implications of

the choice of architecture on security and performance.

Once the requirements and desired properties are determined, robust and effi-

cient PUFs architectures were introduced and implemented across various platforms

including digital and analog ICs that conform to the introduced requirements. In par-

ticular, two PUF implementation were shown on FPGAs leveraging delay variation

of digital components. The first method uses an at-speed characterization mecha-

nism to measure component delays. The second is the long-sought implementation of

arbiter-based PUF. Many efforts made by the research community to implement the

arbiter-based PUF on FPGA had been previously unsuccessful. The main reason for

such difficulty was the inability to achieve a symmetric routing of the arbiter PUF.

The difficulty arises from the lack of freedom in routing on FPGA dictated by the

rigid fabric of FPGA interconnects. In this thesis, I showed the first implementation

of arbiter-based PUF on FPGA realized through a novel delay tuning mechanism of

pico-second resolution. An ultra-low power analog implementation on ASIC was pre-

sented that exploits variations in sub-threshold leakage currents of MOS devices. This
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is the most power efficient and smallest PUF known to date. The circuit was taped

out in IBM 90nm low power technology. The results show that the leakage-based PUF

circuit consumes 40 femto-joules to generate one bit of response. Full performance

analysis and comparison were carried out on these implementations. Statistical prop-

erties and performance metrics such as response error rate in presence temperature

and voltage supply variations as well as speed, area, and power consumption were

measured and reported.

Finally, design of low overhead and secure protocols using PUFs was presented.

The goal of these protocols is to protect the PUF against machine learning attacks

and prevent eavesdroppers or dishonest provers to pass the authentication without

having access to the physical medium (PUF). Also, the protocols prevent an attacker

disguised as a verifier to extract information from the PUF. The protocols are designed

with elegant simplicity in mind specifically to lower overhead and to refrain from

using computationally expensive classic cryptographic modules and error correction

techniques. Two specific protocols, one exploiting a time bound on the authentication

process and the other one utilizing a pattern matching index-based authentication on

PUF responses were introduced to integrate the PUF in lightweight applications. The

pattern matching protocol use a true random number (TRNG) to generate the nonces

and the random secret index. A TRNG based on flip flop metastability and a closed

loop feedback system is further developed and implemented on FPGA.
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Appendix A

TRNG

A.1 TRNG System Design

To drive the flip-flop into its metastable state, we use an at-speed monitor-and-control

mechanism that establishes a closed loop feedback system. The monitor module keeps

track of the output bit probabilities over repeated time intervals. It then passes on the

information to the control unit. The control unit based on the received probability

information decides to add/subtract the delay to/from top/bottom paths to calibrate

the delay difference so that it gets closer to zero. For instance, if the output bits are

highly skewed towards 1, then the delay difference (∆) must be decreased by increas-

ing the top path delay to balance the probabilities. Figure A.1 (a) demonstrates this

concept.

Control

MonitorD
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Binary Sequence
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Figure A.1 : The TRNG system model.

A straightforward implementation of the monitoring unit can be realized by using
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a counter. The counter value is incremented every time the flip-flop outputs ‘1’ and

is decremented whenever the flip-flop generates a ‘0’. This is analogous to performing

a running sum over the sequence of output bits where zeros are replaced by ‘−1’. If

zeros and ones are equally likely, the value of the counter will stay almost constant. A

feedback signal is generated proportional to any deviation from this constant steady

state value. The generated error signal is fed back to the signal-to-delay transducer,

i.e., the PDL. The delay difference (∆) is updated/corrected based on the feedback

signal.

The described system is in effect a proportional-integral (PI) controller. The

system is depicted in Figure A.1 (b). In this figure, ∆b is the constant bias/skew

in delays caused by the routing asymmetries. ∆p is the delay difference induced

by changes in environmental and operational conditions such as temperature and

supply voltage, and/or delay difference imposed by active adversarial attacks. ∆f is

the correction feedback delay difference injected by the PDL based on the counter

value. Equation A.1 expresses the total delay difference at the input of the flip-flop.

G represents transformation carried out by the PDL from the counter binary value

to an analog delay difference. The arbiter and integrator refer to the flip-flop and

counter respectively. Therefore, the following relationship holds;

∆ = ∆p +∆b −∆f . (A.1)

An example PDL-based implementation of the TRNG system is shown in Figure A.2.

The PDLs are depicted as gray triangles which provide the finest and most granular

level of control over the delays. If the resulting delay difference from one PDL is equal

to δ, the effective input/output delay of a PDL, D(i), for the binary input i would

be:

D(i) = i× dc + (1− i)× (dc + δ). (A.2)
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Figure A.2 : The TRNG system implementation with a PI controller on FPGA.

where dc is a constant delay value. Each programmable delay block consists of two

PDLs. The control input of top PDL inside each block is the complement of the bot-

tom PDL control input in order to make a differential programmable delay structure.

Based on Equation A.3, the differential delay is:

Ddiff (i) = (1− 2i)× δ = (−1)iδ, i = 0 or 1. (A.3)

In this example, the programmable delay blocks are packed in groups with sizes of

multiples of two to efficiently generate any desirable delay difference using a binary

control input. In other words, the first programmable delay block consists of two

PDLs, the second one contains 4 PDLs, and so on. With this arrangement, the total

incurred delay difference can be written as:

∆f = G(C) =
K∑

i=0

(−1)Ci2iδ, (A.4)

where Ci ∈ C is the ith counter bit with i = 0 being the least significant bit

(LSB) and i = K being the most significant bit (MSB), and C represents the

counter value. δ is the smallest possible delay difference produced by one PDL.
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111 1111 0000 +4

110 0111 0000 +3

101 0011 0000 +2

100 0001 0000 +1

000 0000 0001 −1

001 0000 0011 −2

010 0000 0111 −3

011 0000 1111 −4

Figure A.3 : Decoding
operation.

Let us assume that in the beginning the counter is re-

set to zero. The resulting feedback delay difference is

∆f = (2(K+1) − 1) × δ according to Equation A.4. This

large delay difference skews the output of flip-flop toward

‘1’. This keeps raising the counter value, lowering the de-

lay difference (∆). As ∆ approaches zero, the flip-flop be-

gins to output ‘0’s more frequently and lowers the rate at

which the counter value was previously increasing. At the

steady state, the counter value will settle around a con-

stant value with a slight oscillatory behavior. Any outside

perturbation on delays will cause transient fluctuations in

bit probabilities; however, the automatic adjustment mechanism brings the system

back to the equilibrium state.

Although the performance of the system in Figure A.2 seems ideally flawless, a

straightforward hardware implementation was not successful. This is because the

design is based on the assumption that δs from PDLs are equal. However, due to

manufacturing process variability, the δs slightly vary from one PDL to another. As

a result, it is not feasible to generate any desirable delay difference, because the

intended weights are not exactly multiples of two anymore. In particular, the input

to the largest programmable delay block dominates the system’s output behavior.

Instead, we took an alternative approach and used two sets of fine and coarse

delay tuning blocks as shown in Figure A.4. With n fine tuning delay lines with a

resolution of δfn, and m coarse tuning delay line with resolution of δcs, any delay

difference in the range of R = [nδfn+mδcs,−nδfn−mδcs] that satisfies Equation A.5
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can be produced.

∆f = wfnδfn + wcsδcs (A.5)

where wfn and wcs are integer weights (or levels) such that −n < wfn < n and

−m < wcs < m. By carefully selecting n,m, δfn, and δcs, any delay difference with a

resolution of δfn can be produced within the range R.

The system in Figure A.4 is designed such that the weights (or tuning levels) in

Equation A.5 are a function of the difference in the total number of ‘1’s at PDL inputs

on the top and bottom paths;

wfn =
n∑

i=1

I t[i]−
n∑

i=1

Ib[i], wcs =
m∑

i=1

I t[i]−
m∑

i=1

Ib[i] (A.6)

where I t[i] ∈ {0, 1} and Ib[i] ∈ {0, 1} are the input signals to PDLs as demonstrated

in Figure A.4. Thus, decoder block in Figure A.4 needs to perform a mapping from

the counter value to the number of ‘1’s at PDL inputs. For example, if n = 4, the

counter value of ‘111’ corresponds to -4 and ‘000’ corresponds to +4. Table A.3

shows an example of decoding operation and corresponding tuning weights for a 3-

bit counter. The conversion from the counter value to the effective tuning weight is

expressed by Equation A.7.

wfn = (−1)CK ×
(
1 +

K−1∑

i=0

Ci2
i

)
, K = -log2n.. (A.7)

The fundamentals of the system’s operation shown in Figure A.4 are the same as

the system in Figure A.2 with the only difference lying in how the feedback signal is

generated based on the counter states.

Notice that the controller type determines the response time to changes in delays

as well as the error in the steady state response. Proportional integral (PI) controllers

as opposed to proportional integral derivative (PID) controller due to the lack of
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derivative function can make the system more stable in the steady state in the case

of noisy data. This is because derivative action is more sensitive to higher-frequency

terms in the inputs. Additionally, a PI-controlled system is less responsive to inputs

(including noise) and so the system will be slower to respond to quick perturbations

on the delays than a well-tuned PID system.

The following two observations are important from a security standpoint. First, in

the steady state, the counter value oscillates around a constant center value (Ccenter).

Let us define the oscillation amplitude as the peak-to-peak range of the oscillations,

i.e. the maximum counter value minus the minimum counter value (Cmax − Cmin).

The oscillation is not as periodic as one might think. It is rather a random walk

around the center value. Each step in the random walk involves going from one

counter value to a one lower or higher value:

Step : Ccurrent → Ccurrent ± 1

The probability of each step (move) is a function of the current location. Intuitively
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the probability of going outside the range is almost zero:

Prob{Cmax → Cmax + 1} * 0

Prob{Cmin → Cmin − 1} * 0 (A.8)

Also assuming a smooth monotonically increasing probability curve as shown in

Figure A.5 for the flip-flop, the farther the current counter value is from the center

(Ccenter), the lower the probability of moving farther away from the center:

Prob{Ci → Ci + 1} < Prob{Cj → Cj + 1} for Cj < Ci

Prob{Ci → Ci − 1} < Prob{Cj → Cj − 1} for Cj < Ci (A.9)
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Figure A.5 : (a) Flip-flop operation under four sampling scenarios, (b) probability of
output being equal to ‘1’ as a function of the input signals delay difference (∆). The
numbers on the probability plot correspond to each signal arrival scenario.

Each generated output bit corresponds to a counter value. The probability of the

output being to ‘1’ is a function of the feedback counter value. The maximum counter

value almost always results in a ‘0’ output, since a ‘0’ value decrements the counter

value. Based on Equation A.8, transition Cmax → Cmax + 1 is unlikely, thus r(Cmax)
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can almost never be ‘1’. The following deductions can be explained similarly:

Prob{r(Ccenter) = 1} * 0.5

Prob{r(Cmin) = 1} * 1

Prob{r(Cmax) = 1} * 0 (A.10)

In other words, during the random walk only those steps that pass close at the

center point will result in high entropy and non-deterministic responses. A smaller

error in the steady state response means oscillations happen closer to center of the

probability transition curve which in turn leads to higher randomness in generated

output bits.

In addition, it is desired that the system responds as quickly as possible to external

perturbations since the during the recovery time the TRNG generates output bits with

highly skewed probabilities.

A.2 Experimental results

In this section, we present the LUT-based PDL delay measurement evaluations and

TRNG hardware implementation results obtained from Xilinx Virtex 5 LX50T FPGA.

Before moving onto the TRNG system performance evaluation, we shall first dis-

cuss the results of our investigation on the maximum achievable resolution of the

PDLs. We set up a highly accurate delay measurement system similar to the delay

characterization systems presented in Section 4.1 of Chapter 4.

The circuit under test consists of four PDLs each implemented by a single 6-input

LUT. The delay measurement circuit as shown in Figure A.6 consists of three flip-

flops: launch, sample, and capture flip-flops. At each rising edge of the clock, the

launch flip-flop successively sends a low-to-high and high-to-low signal through the
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PDLs. At the falling edge of the clock, the output from the last PDL is sampled by

the sample flip-flop. At the last PDL’s output, the sampled signal is compared with

the steady state signal. If the signal has already arrived at the sample flip-flop when

the sampling takes place, then these two values will be the same; Otherwise they

take on different values. In case of inconsistency in sampled and actual values, XOR

output becomes high, which indicates a timing error. The capture flip-flop holds the

XOR output for one clock cycle.

To measure the absolute delays, the clock frequency is swept from a low frequency

to a high target frequency and the rate at which timing errors occur are monitored and

recorded. Timing errors start to emerge when the clock half period (T/2) approaches

the delay of the circuit under test. Around this point, the timing error rate begins

to increase from 0% and reaches 100%. The center of this transition curve marks the

point where the clock half period (T/2) is equal to the effective delay of the circuit

under test.
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Figure A.6 : The delay measurement circuit. The circuit under test consists of four
LUTs each implementing a PDL.

To measure the delay difference incurred by the LUT-based PDL, the measurement

is performed twice using different inputs. In the first round of measurement, the

inputs to the four PDLs are fixed to A2−6 = 11111. In the second measurement the

inputs to the last PDL are changed to A2−6 = 00000. In our setup, a 32×32 array of
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the circuit shown on Figure A.6 is implemented on a Xilinx Virtex 5 LX110 FPGA,

and the delay from our setup is measured under the two input settings. The clock

frequency is swept linearly from 8MHz to 20MHz using a desktop function generator

and this frequency is shifted up by 34 times inside the FPGA using the built-in PLL.

To evaluate the performance of the TRNG system, we implement the system

shown in Figure A.4 using 32 coarse and fine programmable delay lines (n = m = 32).

A 12-bit counter performs the running sum operation on the output generated bits.

The first six (LSB) bits control the finely tunable PDLs, and the next six (MSB) bits

control the coarsely tunable PDLs. Both fine and coarse PDLs are implemented by

using one LUT as shown in Figure A.7. As illustrated in Figure A.7, to implement

the fine PDL, the LUT inputs A3 to A6 are fixed to zero and the only input that

controls the delay is A2. For the coarse PDL, all of the LUT inputs are tied and

controlled together.
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Figure A.7 : Coarse and fine PDLs implemented by a single 6-input LUT.

In the first experiment, we only examine the forward system, which consists of the

PDLs, the flip-flop, and the decoders. The tuning weights/levels are swept from the

minimum to maximum, and the probability of the flip-flop producing a ‘1’ output is

measured at each level. This probability is measured by repeating each experiment

over 100 times and counting the number of times the flip-flop outputs a ‘1’. Since
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n = m = 32, both the fine and coarse tuning levels can go from −32 to 32. Recall

that the tuning level represents the difference in the total number of ones at PDL

inputs on the top path minus those on the bottom path (see Equation A.6). As

can be observed from Figure A.8, increasing both the coarse and fine tuning levels

increase the probability of output being equal to ‘1’. The non-smoothness of the

probability curve is due to variability in the manufacturing process which creates

local non-monotonicity. With these observations, we expect the feedback system
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Figure A.8 : The probability of flip-flip generating a ‘1’ output as a function of the
fine and coarse tuning levels.

behavior to stabilize somewhere close to the center of the transition point. Next, we

close the feedback loop and initialize the operation. At the beginning, the counter is

loaded with all ‘1’s (which results in a decimal value of 212-1 = 4095). Figure A.9

shows the counter value as the operation progresses. The x-axis is the number of clock

cycles. Once the operation starts, the counter value keeps decreasing until it reaches

the value of approximately 700 after about 3,400 clock cycles. From this point further,

the counter value reaches a steady state with a slight oscillatory behavior around a
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Figure A.9 : The transient counter value (decimal) versus the clock cycles.

constant value. A close-up of the steady state behavior is depicted in the lower plot

of Figure A.9. The close-up zooms into the segment between 25,000 to 30,000 clock

cycles. As can be observed in the steady state, the counter value oscillates between

559 and 564.

Next, we investigate the frequencies at which counter values appear in the steady

state. In this experiment, we collect 1,000,000 counter values in the steady state

and plot the histogram of the observed values as shown in the middle plot (b) in

Figure A.10. The normalized histogram suggests that the counter holds the value of

561 more than 40% of the time. Next, it is critical to investigate the probabilities

associated with each courter value. In other words, we would like to know for the

given counter values − which produce a feedback input to the TRNG core − the

probability of the flip-flop output being equal to ‘1’. The top plot (a) in Figure A.10

presents this result. It is interesting to see that most of the counter values produce

highly skewed probabilities. Among these counter values, 561 leads to a ‘1’ output
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Figure A.10 : Distribution of the steady state counter values and associated bit
probabilities.

slightly more than 40% of the time. We define a metric which is the multiplication

of the counter values’ frequency of occurrence with the probability of output being

equal to one for each counter value. This metric represents the contribution of each

counter value to the total number of ‘1’ in the output sequence. The metric values

are shown in bottom plot (c) in Figure A.10.

To remove the bias in the output sequence in a systematic way as well as to

eliminate predictable patterns, we propose a filtering mechanism based on the steady

state counter values. The filter unit analyzes the output bit probabilities for each

counter value within a window of specific size and flags the counter values that lead to

outputs bits with skewed probabilities. Next, it filters out the output bits associated

with the flagged counter values. For example, in our implementation, the filter only
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allows output bits associated with the counter value of 561 to pass through. As a

result, the bit-rate is lowered to almost half of the original bit-rate. However, the

output bits may still suffer from bias in the bit probabilities. Therefore, a post-

processing unit after the filter unit is used to remove any localized biases from the

bitstream. In our implementation, we use a von Neumann corrector to perform the

post-processing task. The results of the NIST randomness test from running on

megabytes of data is shown in Table A.1. The comprehensive test results are available

online at http://www.ruf.rice.edu/ mm7/trng/.

Table A.1 includes the results of the NIST statistical test suite on megabytes of

collected data after counter-based filtering and von Neumann correction are performed

on the TRNG output bitstream. Due to the large bias in the probabilities, most of the

randomness failed when the test was run on the output bitstream before the filtering

and correction were carried out.

Finally, according to the ISE Synthesis report, the propagation delay through the

TRNG core is equal to 61.06ns which achieves a bit-rate of 16Mbit/sec. The bit-rate

drops to 1/8 of the original bit-rate (to 2Mbit/sec) after filtering and von Neumann

correction. The TRNG core consumes 128 LUTs that are packed into 16 Virtex 5

CLBs. Note that in practice multiple TRNG cores can run in parallel to offer a higher

bit-rate.
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Table A.1 : NIST Statistical Test Suite results.

Statistical Test Block/Template length Lowest success ratio

Frequency - 100%

Frequency within blocks 128 100%

Cumulative sums - 100%

Runs - 100%

Longest run within blocks - 100%

Binary rank - 100%

FFT - 100%

Non-overlapping templates 9 90%

Overlapping templates 9 100%

Maurer’s universal test 7 100%

Approximate entropy 10 100%

Random excursions - 100%

Serial 16 100%

Linear complexity 500 90%
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Appendix B

Plots

In this appendix, a comprehensive list of measurement results and plots for each

FPGA is shown. The Figures B.1 through B.12 show the transition in the number of

’1’s in responses as the tuning level is swept from 40 to -10. At each fixed tuning level,

64,000 challenges are fed to the PUF and 64,000 responses are collected. The best

tuning level is the one for which the PUF responses are half zeros and half ones. Each

line ine the following figures corresponds to each of the PUF output bits. Since each

PUF on each FPGA produces 16 response bits, there are 16 lines on each subplot.

There are 9 subplots in each plot. Each subplot corresponds to the measurement

taken under a different operating condition. The center subplot refers to the normal

supply voltage and room temperature.

The Figures B.13 to B.24 show the robustness of the responses to different subset

of challenges. Each challenge to the arbiter PUF creates a delay difference (∆) at the

input of the arbiter (flip-flop). The ∆s produced by all challenges in the challenge

space form a Gaussian distribution. If half of the responses are one and half are

zero, then this distribution has a mean of zero. The distribution is split by the

arbiter decision border (line). Those challenges that create a ∆ that is larger that

e, result in a ’1’ response and a zero response otherwise. e is basically the arbiter

bias remained after tuning. We partition the ∆ distribution and the corresponding

challenge space into 20 sets of equal size. The ∆s close to the decision border are

more sensitive to environmental condition fluctuations, and those farther apart from
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the decision border (i.e. —∆ - e — & 0) are less affected by such fluctuations.

The following figures quantify these effects for each of the twenty challenge sub-sets.

The x-axis in each subplot refers to the challenge partition (bin) number. Each

partition contains 64000/20 = 3200 challenges. The y-axis shows the stability of the

corresponding responses, where ’1’ means no errors in the responses and ’0’ means

completely erroneous responses. The error is measured by comparing the responses

from eight corner cases to the response at the normal operating condition (room

temperature and nominal supply voltage). Therefore, each subplot contains eight

lines for each corner case. As it can be observed the challenges in bins that are closer

to the decision border produce responses with larger error rates. There are 16 subplot

in each figure where each correspond to a PUF output response bit.
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Figure B.1 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 6.
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Figure B.2 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 7.
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Figure B.3 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 8.
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Figure B.4 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 9.
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Figure B.5 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 10.
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Figure B.6 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 11.
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Figure B.7 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 12.



143

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=5C VDD=0.95V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=5C VDD=1V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=5C VDD=1.05V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=35C VDD=0.95V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=35C VDD=1V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=35C VDD=1.05V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=65C VDD=0.95V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=65C VDD=1V

Tuning Level

Pr
ob

{O
=1

}

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
 Temp=65C VDD=1.05V

Tuning Level

Pr
ob

{O
=1

}

Figure B.8 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 13.
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Figure B.9 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 14.
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Figure B.10 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 15.
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Figure B.11 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 16.
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Figure B.12 : Number of ’1’s in responses (normalized) as a function of tuning level
for the PUF on FPGA 17.
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Figure B.13 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 6.
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Figure B.14 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 7.
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Figure B.15 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 8.
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Figure B.16 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 9.
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Figure B.17 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 10.
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Figure B.18 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 11.
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Figure B.19 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 12.



155

0 10 20
0

0.5

1
 Bit # 1

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 2

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 3

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 4

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 5

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 6

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 7

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 8

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 9

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 10

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 11

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 12

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 13

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 14

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 15

 Bin Number

 E
rr

or
 R

at
e

0 10 20
0

0.5

1
 Bit # 16

 Bin Number

 E
rr

or
 R

at
e

Figure B.20 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 13.
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Figure B.21 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 14.
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Figure B.22 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 15.
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Figure B.23 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 16.
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Figure B.24 : Response stability measured across different challenge partitions with
reference to eight operating condition corner cases for FPGA 17.
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