


ABSTRACT

Adaptive Similarity Measures for Material Identification in Hyperspectral Imagery

by

Brian D. Bue

Remotely-sensed hyperspectral imagery has become one the most advanced tools

for analyzing the processes that shape the Earth and other planets. Effective, rapid

analysis of high-volume, high-dimensional hyperspectral image data sets demands

efficient, automated techniques to identify signatures of known materials in such

imagery. In this thesis, we develop a framework for automatic material identification

in hyperspectral imagery using adaptive similarity measures. We frame the material

identification problem as a multiclass similarity-based classification problem, where

our goal is to predict material labels for unlabeled target spectra based upon their

similarities to source spectra with known material labels. As differences in capture

conditions affect the spectral representations of materials, we divide the material

identification problem into intra-domain (i.e., source and target spectra captured

under identical conditions) and inter-domain (i.e., source and target spectra captured

under different conditions) settings.

The first component of this thesis develops adaptive similarity measures for intra-

domain settings that measure the relevance of spectral features to the given classi-

fication task using small amounts of labeled data. We propose a technique based



on multiclass Linear Discriminant Analysis (LDA) that combines several distinct

similarity measures into a single hybrid measure capturing the strengths of each of

the individual measures. We also provide a comparative survey of techniques for

low-rank Mahalanobis metric learning, and demonstrate that regularized LDA yields

competitive results to the state-of-the-art, at substantially lower computational cost.

The second component of this thesis shifts the focus to inter-domain settings,

and proposes a multiclass domain adaptation framework that reconciles systematic

differences between spectra captured under similar, but not identical, conditions. Our

framework computes a similarity-based mapping that captures structured, relative

relationships between classes shared between source and target domains, allowing us

apply a classifier trained using labeled source spectra to classify target spectra. We

demonstrate improved domain adaptation accuracy in comparison to recently-proposed

multitask learning and manifold alignment techniques in several case studies involving

state-of-the-art synthetic and real-world hyperspectral imagery.
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Introduction

Material Identification in Hyperspectral Imagery

Analysis of remotely-sensed imagery has greatly improved our understanding of the

geologic and climactic processes that shape our planet and beyond. On Earth, remotely-

sensed imagery has provided a wealth of information for numerous applications

including natural resource allocation [Abrams et al., 1977; Merényi et al., 2000], global

climate change monitoring [King et al., 1995], urban planning [Herold et al., 2004]

and mineralogical surveys [Rowan et al., 2003]. Remote sensing also enables data

collection in dangerous or inaccessible areas and has been used to observe active

volcanoes [Davies et al., 2006], to monitor the effects of the Chernobyl nuclear accident

[Sadowski and Covington, 1988], and, more recently, to inform disaster recovery

efforts from the Red Mud spill in Kolontar, Hungary [Lenart et al., 2011]. Additionally,

planetary scientists have made extensive use of remotely-sensed imagery to characterize

the mineralogical composition of planets in our solar system [Gilmore et al., 2007;

Merényi et al., 1996; Pelkey et al., 2007] and other celestial bodies such as asteroids

[Howell et al., 1994]. Identification and characterization of materials from imagery is a

fundamental component of all of these applications.

Air and spaceborne hyperspectral sensors are a powerful enabling technology for re-

mote material identification. Much in the same way as the human eye sees visible light,

a hyperspectral sensor captures the interaction of electromagnetic (EM) radiation with

materials over tens-to-hundreds of contiguous, narrowly-spaced bandpasses, including

ultraviolet (UV) and infrared (IR) wavelengths outside the range of human vision.

Figure 1 demonstrates the concept of a hyperspectral image. Each pixel (spectrum

or spectral signature) in a remotely-sensed hyperspectral image is a high-dimensional
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vector that characterizes the material(s) at a particular geographic location. Each

entry in a given spectral signature is determined by the interaction of EM radiation at a

specific wavelength with the materials it represents. Thus, by comparing hyperspectral

image pixels to spectral signatures of known materials, scientists can determine which

materials the pixels represent [Adams and Gillespie, 2006]. However, the sheer volume

of hyperspectral imagery captured today precludes such comprehensive manual inspec-

tion. For instance, the hyperspectral Compact Reconnaissance Imaging Spectrometer

for Mars (CRISM, [Murchie et al., 2007]) onboard the Mars Reconnaissance Orbiter

(MRO) spacecraft will return over 4 terabytes of imagery to Earth over the duration of

its mission. Rapid exploitation of remotely-sensed hyperspectral imagery demands au-

tomated techniques that can identify and summarize the most scientifically interesting

spectral signatures.

It turns out that JPEG20006 has been successfully used in the context of hyperspectral image
compression, either in lossless and lossy fashion. Hence it can be used to evaluate the impact of
lossy compression on different techniques for hyperspectral data exploitation.

An important issue that has not been widely investigated in the past is the impact of lossy
compression on spectral unmixing applications,7 which are the tools of choice for dealing with
the phenomenon of mixed pixels,8 i.e. pixels containing different macroscopically pure spectral
substances, as illustrated in Fig. 1. In hyperspectral images, mixed spectral signatures may be
collected due to several reasons. First, if the spatial resolution of the sensor is not fine enough to
separate different pure signature classes at a macroscopic level, these can jointly occupy a single
pixel, and the resulting spectral measurement will be a composite of the individual pure spectra,
often called endmembers in hyperspectral analysis terminology.9 Second, mixed pixels can also
result when distinct materials are combined into a homogeneous or intimate mixture, and this
circumstance occurs independently of the spatial resolution of the sensor.7

Although the unmixing chain maps nicely to high-performance computing systems such as
commodity clusters,10 these systems are difficult to adapt to on-board processing requirements
introduced by applications with real-time constraints such as wild land fire tracking, biological
threat detection, monitoring of oil spills and other types of chemical contamination. In those
cases, low-weight integrated components such as commodity graphics processing units
(GPUs)11 are essential to reduce mission payload. In this regard, the emergence of GPUs
now offers a tremendous potential to bridge the gap toward real-time analysis of remotely sensed
hyperspectral data.12–18

In this paper we develop an implementation of the JPEG2000 compression standard in com-
modity GPUs for hyperspectral data exploitation. Specifically, we develop GPU implementa-
tions of the lossless and lossy modes of JPEG2000. For the lossy mode, we investigate the
utility of the compressed hyperspectral images for different compression ratios, using spectral
unmixing as a case study. The remainder of the paper is organized as follows. Section 2 describes
related work. Section 3 presents the JPEG2000 compression framework. Section 4 presents its
GPU implementation. Section 5 first presents the hyperspectral data sets used for evaluation
purposes, then briefly introduces the considered hyperspectral unmixing chain, and finally ana-
lyzes the proposed GPU implementation of JPEG2000 in terms of both unmixing accuracy (in
the lossy mode) and computational performance (in both modes). Section 6 concludes with some
remarks and hints at plausible future research.

2 Related Work

Previous work has been carried out on the use of JPEG2000 in the context of hyperspectral
image analysis. For instance, the impact of JPEG2000 on endmember extraction and spectral

Fig. 1 The mixture problem in hyperspectral data analysis.

Ciznickia, Kurowski, and Plaza: Graphics processing unit implementation of JPEG2000...

Journal of Applied Remote Sensing 061507-2 Vol. 6, 2012

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/05/2013 Terms of Use: http://spiedl.org/terms

Figure 1 : The concept of hyperspectral imaging. Each pixel characterizes the
material(s) it represents. Figure from Ciznicki et al. [2012], printed with permission.

As hyperspectral imagery became more readily available within recent decades,
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a number of automated approaches to address the material identification problem

have been proposed. Among the earliest and most successful automated material

identification systems for hyperspectral imagery is the USGS Tetracorder system

[Clark et al., 2003; Swayze et al., 1999]. Tetracorder is built upon an extensive library

of material signatures, each characterized in terms of diagnostic wavelengths. By

measuring the similarity between the reflectance values of the library signatures to the

reflectances of an observed spectrum for diagnostic wavelengths, Tetracorder can quite

effectively identify a wide range of terrestrial materials [Clark et al., 2003]. However, a

number of practical issues limit the applicability of Tetracorder for rapid exploitation

of large hyperspectral image data sets. In particular, Tetracorder requires expert

input to maximize material identification results [Gilmore et al., 2008], and must

also be modified by an expert to match a particular imaging system [Rauss et al.,

2000]. Adding new materials to the Tetracorder spectral library requires considerable

spectroscopic expertise, as each new material must be characterized according to its

diagnostic absorption features.

A more data-centric approach to automated material identification was pioneered

by Landgrebe et al. [Landgrebe, 1968; Lee and Landgrebe, 1993]. By building upon

established pattern recognition and image analysis techniques for panchromatic or

color (i.e., 1-4 spectral bands) imagery, and for multispectral (i.e., 10-20 bands) imagery,

they developed a methodology for hyperspectral image classification that is still widely

used today. In hyperspectral image classification, the goal is to construct statistical

models of a set of labeled pixels representing known material or land cover classes such

as water, soil or vegetation, and then apply the resulting models to predict class labels

for unlabeled pixels. If the labeled classes consist of a set of distinct material species,

we can apply hyperspectral image classification techniques to identify materials based

upon their spectral signatures.
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Many of the early hyperspectral image classification techniques, such as those

developed by Landgrebe et al., are based on simple statistical models such as Maximum

Likelihood classification. Such techniques perform reasonably well for imagery of

low spectral dimensionality and containing few classes of interest, but are often

inaccurate for classifying the numerous, and in many cases spectrally similar, material

classes present in remotely-sensed imagery. However, new developments within the

past 30 years have shown considerable progress in meeting the challenges posed

by hyperspectral image classification. Sophisticated classifiers such as Artificial

Neural Networks (ANNs [Merényi, 1998; Villmann et al., 2003]) and Support Vector

Machines (SVMs [Camps-Valls and Bruzzone, 2005; Gualtieri and Cromp, 1999])

have demonstrated the capability to learn complex and often nonlinear relationships

between training classes for applications such as monitoring ecosystem resources

[Merényi et al., 2000], analyzing the spread of invasive species [Ustin et al., 2002],

and investigating terrestrial analogues for planetary exploration [Gleeson et al., 2010].

Additionally, such classification techniques have been deployed onboard intelligent

spacecraft systems, such as the Earth Observing-1 (EO-1) Autonomous Sciencecraft

Experiment [Chien et al., 2005], to prioritize scientifically important observations for

immediate transmission to Earth and for autonomously scheduling supplementary

data collection when interesting science events occur [Bornstein et al., 2011; Thompson

et al., 2012].

An outstanding issue in classifying high-dimensional hyperspectral signatures is

developing methods to determine which spectral features are discriminative for the

materials of interest in each study. By finding a good feature representation that

emphasizes distinctions between spectral classes, we can improve both the classification

accuracy and the efficiency of hyperspectral image classification algorithms [Keshava,

2004]. However, precisely which spectral features are discriminative depends on the
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nature of the materials of interest – no “global” set of features exists that are

discriminative in all contexts. For example, vegetation can often be characterized

by broad, slowly varying spectral features, while other materials, such as minerals

and gases, can possess very narrow spectral features [Shaw and Burke, 2003]. A

number of feature selection techniques have been proposed to determine which spectral

features are most relevant to a given classification task [Benediktsson et al., 1995;

Berg and Jensen, 2007; Kuo and Landgrebe, 2001; Landgrebe, 1997; Mendenhall,

2006]. Robust feature selection can simplify a challenging classification problem by

mapping the original feature space to a typically low(er)-dimensional feature space

where class distinctions are emphasized. In this new feature space, we can potentially

estimate class parameters with fewer samples than in the original feature space, or

we can apply a simple classifier in the new space with results comparable to using a

more sophisticated classifier. However, as stated by Guyon and Elisseeff [2003], and

Mendenhall and Merényi [2008], many feature selection techniques fail to capture

the most relevant information to distinguish between classes, either by operating

independently of class labels, or by optimizing criteria that is often uninformative

for classification. Moreover, many traditional feature selection techniques assume

that labeled and unlabeled pixels are drawn from the same probability distribution

or, alternatively, reside in the same feature space. Such techniques are inadequate

for classifying spectral signatures when the capture conditions of the labeled and

unlabeled pixels differ. These issues demand techniques that optimize classification

accuracy to learn good feature representations for high-dimensional data, while being

robust to differences between feature spaces.

The problem of finding a good feature representation for a given classification

task is closely related to the problem of finding an accurate similarity measure to

compare samples [Balcan et al., 2006; Balcan et al., 2008a]. Much in the same way
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that a defining a good set of features emphasizes important class distinctions, a good

similarity measure provides contrast to distinguish between samples from different

classes [Hertz, 2006]. To illustrate this connection, consider the case when our features

consist of the correct class label for each sample, versus the case where our features

consist of random noise. We can expect any principled classification algorithm to

trivially solve the classification problem posed in the first scenario. In contrast,

we cannot expect any classifier to predict labels with accuracy better than random

guessing in the second scenario. Analogously, a similarity measure that indicates

samples from the same class are near one another while indicating samples in different

classes are far apart is far more useful for predicting class labels than a measure that

does not discriminate between samples from the same or different classes.

Most hyperspectral image classification algorithms rely upon unweighted similarity

measures such as the Euclidean Distance or cosine similarity, or various application-

specific measures that are hand-designed to incorporate domain specific knowledge

[Clark et al., 2003, 1990; van der Meer, 2000]. In recent years, there has been a growing

body of work in the field of metric learning to develop adaptive similarity measures

that adjust to a given classification task [Alipanahi et al., 2008; Davis et al., 2007;

Weinberger et al., 2006], which can be viewed as an alternative to conventional feature

selection techniques. Once learned, adaptive similarity measures can be “plugged in”

to algorithms relying on distance computations, potentially improving classification

accuracy while reducing training and prediction time. Additionally, adaptive similarity

measures can potentially be used to reconcile differences between spectra captured

under different conditions, allowing the incorporation of multi-source image data in

classification.
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Overview and Contributions

This thesis develops adaptive similarity measures designed for identifying materials

from hyperspectral signatures. Our goal is to predict material labels for a set of

unlabeled target signatures according to their relationships to a set of source sig-

natures with known material labels. We frame the material identification problem

as a similarity-based classification problem, where our predictions are based upon a

pairwise similarity measure that quantifies the relationships between the target spectra

and the labeled source spectra or statistical models derived from the source spectra.

We demonstrate that augmenting existing similarity-based classification algorithms

with adaptive, task-specific similarity measures improves classification accuracy and

also often reduces computation time, thereby improving our capabilities for rapid

exploitation of high-dimensional, hyperspectral imagery. Additionally, we provide a

novel framework that uses a specific form of adaptive similarity measure to reconcile

differences between spectral signatures captured under different conditions (e.g., by

different sensors, at different capture times, or at different spatial locations). This

framework allows us to incorporate data from multiple image sources in classifica-

tion, thereby mitigating issues with small training sets which commonly occur when

classifying hyperspectral imagery.

For clarity, these contributions are organized into three parts. Part I gives an

overview of the fundamental concepts of hyperspectral imaging and material identifi-

cation we consider in this work, and the challenges involved in automatic material

identification. We begin in Chapter 1 with a description of the automated mate-

rial identification problem, starting from the basic concepts involved in interpreting

remotely-sensed hyperspectral imagery, followed by a formal definition of the material

identification problem as a similarity-based classification problem. In Chapter 2 we
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assess the capabilities of several canonical spectral similarity measures for material

identification using a technique known in the remote-sensing community as spectral

matching. This evaluation provides insight into the spectral material identification

problem and allows us to identify circumstances where employing adaptive similarity

measures is desirable. We demonstrate that a similarity measure that captures the

shape of the spectral signature with particular emphasis on the positions of discrimina-

tive spectral features that characterize the composition of materials can significantly

improve material identification accuracy.

Our investigation of adaptive similarity measures for material identification begins

in Part II. Here, we consider methods for intra-domain material identification, where

source and target spectra are captured under identical conditions. We start with an

investigation of the problem of hybrid metric learning in Chapter 3. We propose a

technique that uses multiclass LDA to combine several distinct similarity measures into

a single hybrid similarity measure that captures the strengths of the individual measures

with respect to a given material identification task. We propose two novel hybrid

measures: the Continuum-Intact/Continuum-Removed measure, and the adaptive

Sobolev measure, and demonstrate improved classification accuracy using our hybrid

measures in comparison to the Euclidean distance and several conventional feature

selection techniques.

In Chapter 4 we consider the technique of Mahalanobis metric learning, which

assigns weights to individual spectral features according to their task-specific relevances.

We begin with a survey of state-of-the-art Mahalanobis metric learning techniques

applied to hyperspectral image classification problems. We show empirically on

several hyperspectral data sets that Mahalanobis metrics computed using regularized

multiclass Linear Discriminant Analysis (LDA) often achieves better, more stable

results than several state-of-the-art Mahalanobis metric learning techniques. We then



9

investigate the application of Mahalanobis metric learning techniques to hyperspectral

image segmentation tasks. We show that a learned Mahalanobis metric not only

increases separation between known image classes, but also suppresses noisy bands,

thereby improving the fidelity of image segments for subsequent analyses.

Part III shifts the focus to inter-domain material identification scenarios. We

introduce our novel domain adaptation algorithm, RelTrans, in Section 5.1, which

allows us to use labeled source spectra to classify target spectra captured under similar,

but not identical, conditions. In Chapter 5 we provide an analysis and evaluation of

RelTrans for supervised domain adaptation problems, where a small number of labeled

target spectra are available to construct a mapping between the source and target

feature spaces. Then in Chapter 6, we extend RelTrans to automatically construct a

mapping from the source to the target feature space using only labeled source spectra

and unlabeled target spectra. We conclude Part III with a review of functional and

band-weighted extensions for both supervised and unsupervised domain adaptation.

We conclude with a summary of our findings and directions for future research in

Chapter 7.

This thesis is the culmination of a variety of intensive collaborations. Where appro-

priate, the first page of each chapter provides a footnote listing primary collaborators,

who share credit for this work.



Part I

Hyperspectral Imaging and

Material Identification



Chapter 1

Automated Spectral Identification of

Materials

1.1 Material Identification from Spectral

Signatures

This chapter reviews the fundamental concepts that make material identification

from spectra possible, and the challenges involved in applying material identification

techniques to hyperspectral data. We begin in Section 1.2 with a description of how we

interpret the measurements captured by a spectral sensor. Section 1.3 then describes

issues specific to classifying hyperspectral data, and summarizes which issues we address

in this work, and Section 1.4 reviews the similarity-based classification algorithms we

apply to the material identification problem. However, our central focus is not on

defining new classification algorithms, but rather on developing similarity measures

that perform well for classifying high-dimensional, hyperspectral data independent

of the classification algorithm. Thus, Section 1.5 then reviews the canonical spectral

similarity measures we evaluate, and Section 1.6 briefly summarizes the types of

adaptive similarity measures that we develop in this thesis.
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1.2 Interpretation of Spectral Measurements

Hyperspectral sensors are a type of spectral imaging system. Spectral imaging systems

measure variations in the way materials respond to electromagnetic (EM) radiation.

EM radiation is a form of energy manifested as energy waves of varying lengths

(wavelengths). When EM radiation reaches surface materials, a number of interactions

may occur – the energy may be reflected off of the surface, it may be absorbed

by the surface, or it may be transmitted through the surface. The nature of the

interaction depends on the type of material, the wavelength, and the environmental

conditions under which the measurements are captured. The physics behind these

interactions are well-understood (see, e.g., the seminal works of Hunt and Salisbury on

the spectroscopic properties of rocks and mineral identification [Hunt and Salisbury,

1970, 1971, 1976a,b; Hunt et al., 1971a, 1973a, 1971b, 1974, 1972, 1973b,c; Salisbury

et al., 1975]). Based upon the amount of light reflected in each bandpass, we can

derive the molecular composition and some physical properties of materials from the

measurements captured by a spectral sensor. We refer to the measured response of

the sensor at a particular wavelength as a spectral feature. The set of spectral features

ordered by increasing wavelength at a particular geographic location is called a pixel,

spectrum or spectral signature. We refer to the integer-valued index of a specific

wavelength in a hyperspectral image or a given spectral signature as a spectral band.

We interpret each spectral signature as having two components: absorption features

and continuum. Figure 1.1 illustrates the difference between these two components.

Absorption features (or, simply, absorptions) are contiguous wavelengths of a spectral

signature where EM radiation is absorbed. Absorptions only occur at wavelengths

where EM radiation resonates with energy needed to trigger certain electronic or

vibrational processes related to particular materials [Adams and Gillespie, 2006]. The
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positions and widths of absorption features reveal information about the material

composition, and the depths of the absorptions indicate the concentration of the

material(s) the spectrum represents. The continuum of a spectral signature is the

“background absorption” onto which absorption features are superimposed [Clark,

1999].

Figure 1.1 : Continuum-intact (CI) spectral signature for Kaolinite (bottom, black
line), continuum fit (bottom, red line) and continuum-removed (CR) absorption
features (top, black line). The widths and positions of absorption features characterize
the material composition of the spectrum. Figure modified from Clark et al. [1987],
printed with permission.
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1.3 Fundamentals of Hyperspectral Image

Classification

1.3.1 Background and Notation

The variability of hyperspectral signatures according to their material compositions

make them well-suited as input to an automatic pattern recognition system. Thus, we

can view the automated material identification problem an instance of a hyperspectral

image classification problem. In hyperspectral image classification, our goal is to infer

labels Y T for a set of M unlabeled test spectra XT , based upon their similarities to a

set of labeled training spectra (X tr, Y tr) = {(xi, yi)}Ni=1 representing K discrete classes

(e.g., distinct materials) with labels yi ∈ {1, . . . , K}. To fix notation: We use the

symbol X to refer to the n-dimensional feature space in which the samples reside, and

the symbol Y to refer to the label space. We initially assume that the training and the

test sets are drawn i.i.d. from the same joint probability distribution p(X ,Y), and refer

to such classification problems as an intra-domain problems. Later in this work, we

consider problems where the training set are drawn from source distribution pS(X ,Y),

and the test samples are drawn from a similar, but not identical target distribution

pT (X ,Y). We refer to such classification problems as inter-domain classification

problems, and use notation (XS, Y S) and (XT , Y T ) to refer to the training and test

samples, respectively. Consequently, we use the terms source samples and target

samples interchangeably with training samples and test samples, respectively.
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1.3.2 Challenges of Hyperspectral Image Classification

Automated material identification in hyperspectral imagery faces several major theo-

retical and computational challenges. A detailed survey of these challenges is given by

Merényi in [Merényi, 1998]. In this section, we summarize these challenges.

Spectral and Spatial Resolution To distinguish between spectrally similar but

distinct materials, a spectral imaging sensor must capture spectra at sufficient

spectral resolution [Adams et al., 1989]. The high spectral resolution of hyper-

spectral sensors comes increased expectations to identify a wider range of ma-

terials than with low spectral resolution panchromatic or multispectral sensors.
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Figure 1.2 : Comparison of Landsat TM
(top), AVIRIS (middle) and lab-measured
(bottom) spectra. Figure modified after
Swayze [1997], printed with permission.

Such sensors often capture signatures

with insufficient spectral resolution to dis-

tinguish between similar materials, and

analyses using such data are intrinsically

limited by the spectral resolution of the

sensor [Goetz et al., 1985]. Hyperspectral

sensors, on the other hand, can cap-

ture fine-grained differences between spec-

trally similar, but compositionally unique

materials [Clark and Rousch, 1984; Goetz

et al., 1985; Merényi, 2000].Figure 1.2 il-

lustrates the difference in spectral reso-

lution between a lab-measured spectral

signature of the material kaolinte (bottom) vs. the signatures of the same material

captured by the multispectral Landsat TM sensor (top) and the hyperspectral AVIRIS
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sensor (middle). The low spectral resolution of the multispectral sensor often does

not resolve distinct materials distinguished by narrow-band spectral features [Vane

and Goetz, 1993]. The increased spectral resolution of hyperspectral imagery not only

allows a wider range of materials to be discriminated, but also enables the analysis of

materials in terms of their intrinsic properties such as temperature [Roush and Singer,

1986] and grain size [Ross et al., 1969].

While modern hyperspectral imaging systems benefit from high spectral resolution,

their high spectral resolution typically comes at the cost of lower spatial resolution

– usually on the meter to tens-of-meters / pixel scale. The spatial resolution of the

sensor also affects our capability to distinguish between materials, as low spatial-

resolution sensors often capture pixels that represent mixtures of several distinct,

spatially adjacent materials [Keshava and Mustard, 2002]. The presence of mixed

spectra greatly complicates precise material identification, as the properties of the

materials present in each pixel, along with the proportions in which they occur, can

mask or distort characteristic spectral features of the individual materials [Adams

et al., 1989]. Resolving materials on the sub-pixel scale is a difficult problem since it

requires advance knowledge of which materials may contribute to a given signature,

their concentrations within the signature, and the types of physical interactions which

can occur between the materials in the mixture.

Atmospheric Contamination The measurements of EM radiation collected by

a spectral imaging system are modified by scattering and absorption by gases and

aerosols while traveling through the atmosphere from the Earth’s surface to the sensor

[Adams and Gillespie, 2006; Schott, 2007]. In the context of material identification,

these atmospheric interactions are usually viewed as contamination, and are typically

resolved by converting the radiance measurements observed at the sensor to surface
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reflectance. Surface reflectance is a relative measure of how much a material departs

from being a “perfect” reflector. To retrieve the surface reflectance from remotely-

sensed radiance spectra, it is necessary to apply radiometric calibration techniques.

Radiometric calibration consists of two components: sensor calibration and atmospheric

calibration. Sensor calibration normalizes the responses captured by the sensor to

those of a standard light source, and validates the integrity of the observed spectra

according to the effective radiance reaching the sensor [Schott, 2007]. Atmospheric

calibration converts the sensor-calibrated radiances to surface reflectance by estimating

atmospheric parameters either directly from atmospheric measurements, or from

ground measurements of surface materials. After performing radiometric calibration,

spectral data are mapped to the same relative radiometric scale, allowing us to

potentially compare spectral signatures captured under different conditions, or by

different sensors. However, as the interactions caused by atmospheric scattering and

absorption are too complex to completely characterize, radiometrically calibrated

spectra are still only an approximation of the true reflectances. Additionally, some

spectral bands are unrecoverable even after calibration. For instance, in terrestrial

imagery, spectral bands in the [1.3, 1.5] and [1.7, 2.0] µm range are typically saturated

due to water vapor absorptions. Such noisy bands are generally removed, as they are

too noisy to provide useful discriminating information for most applications. Unless

otherwise indicated, we assume the hyperspectral data we analyze in this document

are reflectance spectra, and we will specify the range of wavelengths in each image

we examine. Additionally, to account for linear scaling factors caused by varying

illumination conditions, we scale pixels signatures by their L2 norm.

Dimensionality of Spectra, Quantity and Quality of Labels The lack of

exhaustive and detailed ground-truth labels for large-scale remote-sensing surveys also
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makes objective evaluation of spectral material identification challenging. Exhaustive

labels are not available due to the fact that obtaining labeled data for large-scale

remote-sensing surveys is expensive, time-consuming, and in some cases (e.g., planetary

missions) impossible. As a consequence, labels are often defined by human experts via

photogeologic interpretation of imagery, which is tedious, error-prone, and subjective.

Thus, the available labeled data is not only in limited quantity, but spectra may be

mislabeled. These issues make classifying hyperspectral data particularly challenging

using conventional techniques due to the well-known Hughes phenomenon [Hughes,

1968]. Specifically, the Hughes phenomenon occurs when the number of feature

dimensions outnumbers the number of available samples per class. In such cases,

conventional classification techniques often unreliably capture those poorly-represented

classes. Developing robust automated material identification techniques that are robust

to limited quantities of training samples is one of the main focuses of this thesis.

Another major issue is that labels are often provided on the object, rather than

the material, level. We define an object as a collection of one or more materials

collectively described as a high-level semantic concept. This distinction is crucial,

as determining the object to which a spectral signature belongs is often impossible

without additional context. For instance, an asphalt rooftop and an asphalt road

cannot be differentiated by their spectral signatures alone, as their signatures only

reflect their material composition (i.e., asphalt), and not the objects (i.e., rooftop and

road) composed of that (and possibly other) material(s). Conversely, determining the

material compositions of a spectral signature given only an object label also requires

additional context. For example, it is possible to determine if spectral signatures

labeled “rooftop” and “road” represent similar materials, but it is not possible to

automatically determine their materials given only their object labels. Consequently,

unless otherwise specified, we assume that material, rather than object, labels are
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provided for all labeled spectral signatures.

Spectral Sensitivity to Capture Conditions Incorporating labeled data from

previous analyses of similar imagery can potentially be a great resource in mitigating

the paucity of labeled data which commonly occurs when classifying hyperspectral

imagery. However, in spectral material identification, we typically assume that the

source and target spectra are captured under the same conditions. In such scenarios,

we can justifiably assume that the source and target spectra are drawn from the

same joint probability distribution, i.e., the classification problem is an intra-domain

problem. However, the spectral representations of identical materials varies across

sensors, geospatial regions, or under different environmental conditions, and we must

reconcile differences between spectra captured under different conditions in order

to incorporate them in classification tasks. In other words, when source and test

spectra are captured under different conditions, the assumption that the source and

test spectra are both drawn from the same joint distribution does not hold. When

the source and target distributions are similar, we can apply domain adaptation

techniques to reconcile differences between the source and target distributions. In

such scenarios, robust domain adaptation allow us to increase the effective number of

samples available to train a classifier, potentially increasing classification accuracy and

allowing us to classify a wider range of classes than with the available intra-domain

training data. However, when the source and target distributions differ significantly,

we cannot expect a classifier trained on the source data to yield performance better

than random guessing on test data that is irrelevant to the source data. For example,

a classifier trained on spectra of man-made materials such as concrete and asphalt

would likely generate inaccurate predictions for spectra representing different types of

vegetation. We discuss the issues involved in inter-domain material identification in
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greater detail in Part III.

1.4 Similarity-based Classification Algorithms

We consider similarity-based classification techniques in this thesis. A similarity-based

classification algorithm predicts the label of a given unlabeled test sample based

upon the similarity – or dissimilarity – of that sample vs. a set of labeled training

samples. Similarity-based classification techniques are distinguished from feature-based

classification algorithms in that a similarity-based classifier generates predictions

based solely upon the (dis)similarity measurements between samples, and does not

require direct access to the features of the test or training samples. Similarity-based

classification algorithms are among the oldest and most widely-used pattern recognition

techniques [Duda and Hart, 1973], and a number of recent works have investigated their

theoretical properties (e.g., [Balcan et al., 2008a; Cazzanti, 2007; Chen et al., 2009;

Kar and Jain, 2011; Pekalska, 2005]). In this section, we review the similarity-based

classification algorithms we consider in this dissertation.

Nearest Neighbor The most straightforward similarity-based classifier is the

nearest-neighbor (NN) classifier [Duda and Hart, 1973]. A nearest-neighbor classifier

assigns the label y of the nearest training sample x′ to the test sample x.

y = argmin
j∈{1,...,K}

(
min

x′∈Xtr
j

(d(x,x′))

)
(1.1)

where X tr
j is the set of training samples from the jth class. A popular variant of

nearest-neighbor is the k nearest-neighbor (KNN) classifier, which predicts the label of

x via majority vote from the k nearest training samples.
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Minimum Distance The minimum distance (MinDist) classifier assigns the label

of the nearest class mean to test sample x

y = argmin
j∈{1,...,K}

(
d(x,µj)

)
(1.2)

where µj is the mean of the training samples in the jth class. When the distance

measure d is the Euclidean distance, the MinDist classifier computes the maximum

likelihood estimate that x is an instance a multivariate Gaussian centered at µj with

unit covariance [van Otterloo and Young, 1978]. Despite its simplicity, the MinDist

classifier often performs surprisingly well for hyperspectral image classification tasks,

often yielding competitive results with significantly more sophisticated classification

algorithms [Merényi et al., 2011].

Artificial Neural Networks Artificial Neural Networks (ANNs, [Rumelhart et al.,

1986]) are a sophisticated suite of techniques that have produced state-of-the-art

hyperspectral image classification results [Merényi, 1998; Merényi et al., 2011]. An

ANN is a finely-distributed, massively-parallel learning machine that emulates the

information processing of a biological nervous system. While numerous types of neural

networks have been proposed (e.g., [Ackley et al., 1985; Hopfield, 1982; Kohonen, 1995;

Merényi, 1998; Rumelhart et al., 1986]), they typically consist of an interconnected

network of nodes (weights) that are iteratively adjusted according to the characteristics

of training data to minimize the difference between the network predictions and its

desired outputs (i.e., the training labels). One form of neural network that we

consider in this work is known as Generalized Learning Vector Quantization (GLVQ,

[Sato and Yamada, 1996]), and its extension, Generalized Relevance Learning Vector

Quantization (GRLVQ, [Hammer and Villmann, 2002]). The weights in an GLVQ
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network are a set of L labeled prototypes W = {(wl, yl)}Ll=1, yl ∈ {1, . . . , K}, that

reside in the same n-dimensional feature space as the training samples. Learning a

GLVQ network involves adjusting the prototypes through by randomly selecting a

training sample xi ∈ X tr and moving w+ – the nearest prototype (in terms of the

squared Euclidean distance d(·, ·)) with the same label as training sample xi – towards

xi, and moving w− – the nearest prototype with a different label as xi – away from

xi, according to the update rule

∆w± =
∓η d(x,w±)

(d(x,w+) + d(x,w−))2
δ

δw±
d(x,w±), (1.3)

where δ
δw±

denotes the gradient with respect to w+ or w−, respectively. The learning

rate η controls the rate of gradient descent. This procedure minimizes the energy

function

E(W ) =
N∑

i=1

Φ(µ(xi)) for µ(xi) =
d(xi,w

+)− d(xi,w
−)

d(xi,w+) + d(xi,w−)
(1.4)

Here, Φ(x) is a monotonically increasing function. One proposed choice of Φ is the

logistic function Φ(x) = (1 + exp(−σ · x))−1, where σ controls the steepness of the

function [Kästner et al., 2011; Sato and Yamada, 1996]. In a GRLVQ network, we not

only learn the prototypes W , but also an n-dimensional vector λ that characterizes

the relevances of each feature. Learning λ involves an additional stochastic gradient-

descent procedure where we minimize Equation (1.4) using the weighted distance

d(xi,xj) = (xi − xj)
Tdiag(λ)1/2(xi − xj). Once learned, both GLVQ and GRLVQ

predict the label of test sample x based on the label of its nearest prototype w′.

y = argmin
j∈{1,...,K}

(
min
w′∈Wj

(d(x,w′))

)
, (1.5)

where Wj is the set of prototypes representing the jth class.
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Support Vector Machines Support Vector Machines (SVMs, [Cortes and Vapnik,

1995]) are another type of sophisticated classification algorithm that have shown

good performance for high-dimensional data. Given the set of training samples, a

SVM constructs a (possibly high-dimensional) hyperplane that separates each pair of

training classes with the largest margin. Specifically, given the set of training samples

xi ∈ X tr with labels yi ∈ {−1, 1}, the SVM classifies test sample x according to

y =
N∑

i=1

yiαik(x,xi) + b, (1.6)

where k is a kernel function, α is a vector of weights that produce the largest margin

between the training samples from each class, and b ∈ R is a bias term. Computing the

αi ∈ [0, C] weights involves solving a quadratic programming optimization problem in

α and b (details regarding solving this optimization problem can be found in [Cortes

and Vapnik, 1995]). C is a regularization parameter that controls the convexity of the

optimization function. A large value of C increases the difficulty of the optimization

problem, as it involves finding a less-convex decision boundary that closely fits the

manifold of the feature space, in comparison to the smoother decision boundaries

produced by smaller values of C. The best value of C depends on the characteristics of

input data, and is typically selected via cross-validation. When the number of training

classes is greater than two, a single SVM is learned for each pair of classes (one-vs-one),

or, alternatively, for each individual class vs. the remaining classes (one-vs-rest). The

resulting predictions for each SVM are then combined using a variety of methods. Hsu

et al. give a thorough review of many such methods in [Hsu and Lin, 2002].
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1.5 Spectral Similarity Measures

The fundamental challenge we consider in this work lies in accurately measuring the

similarity between hyperspectral signatures. Accurate similarity measurements are

crucial, as they provide the mathematical basis used to distinguish between signatures

representing different materials. To measure similarity between spectra, we use a

pairwise function k : X×X → R that produces a scalar, real-valued output given a pair

of samples xi, xj. We call k a similarity measure when its output increases with the

similarity of xi and xj . Similarity is often phrased in terms of inverse distance: i.e., as

the distance between a pair of samples decreases, their similarity increases. Similarity

measures of this form are called distance or dissimilarity measures, and we use the

notation d(xi,xj) to denote such measures. Formally speaking, a distance measure is

a function that satisfies the first two of the following properties [von Luxburg, 2004]

D1: d(xi,xi) = 0 (identity)

D2: d(xi,xj) ≥ 0 (non-negativity)

D3: d(xi,xj) = d(xj,xi) (symmetry)

D4: d(xi,xj) + d(xj,xl) ≥ d(xi,xl) (triangle inequality)

D5: d(xi,xj) = 0 =⇒ xi = xj (definiteness)

When a distance measure satisfies all of the above properties, we refer to it as a metric.

Since distance and similarity are closely-related concepts, several techniques exist to

convert a similarity measure to a distance measure and vice-versa (see, e.g., [Hertz,

2006; von Luxburg, 2004]).

Most hyperspectral image classification algorithms employ unweighted (dis)similarity

measures to compare spectral signatures. Unweighted measures make no assumptions

on the relevances of individual spectral features, and thus, each feature contributes
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equally in measuring the distance between each pair of signatures. The (squared)

Euclidean distance

d(xi,xj) = ‖xi − xj‖2 = (xi − xj)
T (xi − xj) , (1.7)

the Spectral Angle (sometimes called the Spectral Angle Mapper, SAM [Yuhas et al.,

1992]) distance

d(xi,xj) = cos−1
(

xTi xj
‖xi‖‖xj‖

)
(1.8)

and the Spectral Information Divergence (SID [Chang, 2000]),

d(xi,xj) = KL(xi||xj) + KL(xj||xi) (1.9)

which is a symmetrized version of the Kullback-Leibler divergence [Kullback and

Leibler, 1951]

KL(xi||xj) =
n∑

`=1

pi,` log

(
pi,`
pj,`

)
(1.10)

pi =
xi
‖xi‖1

, pj =
xj
‖xj‖1

(1.11)

are examples of unweighted dissimilarity measures often used to compare spectral

signatures [Chang, 2000; Keshava, 2004; Li et al., 2006; Robila, 2004; van der Meer,

2006].

Kernel functions are another type of similarity measure that are widely used in the

remote-sensing community due to their attractive theoretical properties [Camps-Valls

and Bruzzone, 2005; Mwebaze et al., 2011]. A kernel function k : X × X → R is a
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similarity measure that satisfies

k(xi,xj) = 〈φ(xi), φ(xj)〉 (1.12)

where 〈·, ·〉 denotes the dot product between the two arguments, and φ(x) : x→ φ(x) ∈

Φ is a mapping to a (possibly high-dimensional) dot product space Φ. Commonly-used

kernels are the linear kernel

k(xi,xj) = 〈xi,xj〉 = xTi xj, (1.13)

and the radial basis function (RBF) kernel with width γ

k(xi,xj) = exp

(−‖xi − xj‖2
γ

)
. (1.14)

In some cases, scientists are aware of relevant characteristics of data or specific

classes of interest. For example, spectra representing vegetation can often be charac-

terized by broad, slowly varying spectral features, while materials such as minerals

and gases posses very narrow spectral features [Shaw and Burke, 2003]. When such

domain-specific knowledge is available, we can design a application-specific similarity

measure that emphasizes the aspects of the data that are useful for predicting class

labels. For instance, the positions/widths of spectral absorption features typify the

composition and abundance of material(s) the spectra represent. Several similarity

measures have been proposed that emphasize spectral absorption features by measur-

ing differences between Continuum-Removed (CR) spectral signatures, rather than

the original, Continuum-Intact (CI) spectra. Figure 1.1 illustrates the difference

between CI and CR spectra. Examples of CR-based measures include Spectral Feature

Fitting (SFF, [Clark et al., 2003, 1990]) and Cross-Correlation Spectral Matching for
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Continuum Removed signatures (CCSM-CR, [van der Meer, 2000]). These application-

specific similarity functions often achieve state-of-the-art performance, owing to their

capability to emphasize a fixed set of discriminative spectral features for spectral

classes of interest. However, while domain knowledge can provide guidance regarding

which spectral features are relevant for specific materials, their relative importances

depend on the spectra considered in each study.

1.6 Developments in Adaptive Similarity

Measures

A drawback of the aforementioned measures is that they do not consider which features

are most relevant to a specific classification task. Such measures are susceptible to

noise or features irrelevant to the task, and may produce ambiguous or misleading

outputs when the chosen features are not discriminative. For instance, Clark et al.

[2003] show that very different materials may have nearly identical CR spectra, and

thus, CR-based similarity measures cannot distinguish between such materials. Rather

than manually evaluating many different similarity measures to determine which best

suits a given task, it is often advantageous to employ adaptive similarity measures

that automatically adjust to characteristics of input data. We describe the three

different (but not necessarily mutually exclusive) types of adaptive similarity measures

we develop in this thesis, below.

1.6.1 Hybrid Similarity Measures

In many real-world situations, viewing different aspects of the data may lead to several

different, but equally valid, notions of similarity. When such notions of similarity are
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complimentary to one another, a weighted combination of measurements produced

by several distinct similarity measures can produce more accurate results than those

produced by each of the individual measures. One means to combine similarity

measures is to define a hybrid measure consisting of convex combination of L distinct

similarity measures dl as follows:

d(xi,xj) =
L∑

l=1

αldl(xi,xj), αl ∈ [0, 1],
L∑

l=1

αl = 1 (1.15)

Here, αl is a convex weight parameter that determines how much each of the dl

contributes to d. The objective in hybrid metric learning is to choose αl that combines

the individual dl measures in such a way that d is more accurate than each of the dl

measures. We propose a novel technique to learn αl weights based upon multiclass

LDA, and introduce several new hybrid similarity measures in Chapter 3.

1.6.2 Band-Weighted Similarity Measures

Learning a weighted combination of distinct similarity measures is not the only way

to adapt a similarity measure to characteristics of data. A complimentary approach

to the hybrid metric learning approach is to assign a weight to each spectral band

according to its relevance to the classification problem. A widely-used approach

(e.g.,[Davis et al., 2007; Globerson and Roweis, 2006; Goldberger et al., 2005a; Tsang

et al., 2005; Weinberger et al., 2006; Xing et al., 2003]) to achieve this is to compute a

transformation matrix A ∈ Rn×m that maps xi and xj to an m-dimensional feature

space where classes are better separated. This transformation induces a Mahalanobis

measure [Mahalanobis, 1936]

d(xi,xj) = (xi − xj)
TM(xi − xj), (1.16)
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where M is a positive semidefinite matrix that can be decomposed into the product

M = ATA. One classical technique for Mahalanobis metric learning that has generated

much recent interest in the hyperspectral imaging community (e.g., [Bandos et al., 2007;

Du, 2007; Weizman and Goldberger, 2009]) is multiclass Linear Discriminant Analysis

(LDA). Multiclass LDA is an extension of the original two-class LDA formulation by

Fisher [1936] proposed by Rao [1948] that maps n-dimensional samples belonging to

K classes into a K − 1-dimensional feature space where, under certain conditions,

classes are better separated. Ghodsi et al. [2008] recently showed that the closed-form

multiclass LDA solution performed competitively compared to the state-of-the-art

metric learning algorithms which use computationally expensive optimization routines

proposed by Xing et al. [2003] and Globerson and Roweis [2006]. We provide a detailed

evaluation of, and novel extensions to, Multiclass LDA in Chapter 4.

1.6.3 Inter-domain Similarity Measures

Conventional metric learning techniques are designed for intra-domain scenarios, and

typically perform poorly in inter-domain scenarios where the training and test samples

are drawn from different distributions. In such inter-domain scenarios, our objective

is to learn a similarity measure to compare samples from different domains. By

incorporating domain-specific characteristics into a similarity measure, we can use

pre-existing classifiers or models rather than building new models tied to a specific

learning system. One means to build such a similarity measure is to embed samples

into a dissimilarity space. In a dissimilarity space, each sample is replaced with a new

representation consisting of similarity measurements to a reference set consisting of

several training samples. This transformation was initially proposed by Pkalska and

Duin [2002] who showed empirically that when the reference set is discriminative for
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the classes of interest, the dissimilarity space is better separated than the original

feature space. Recent work by Balcan et al. [2006] provides theoretical justification

for this phenomenon by showing that if a set of classes are linearly separable using

a particular similarity or distance measure, the dissimilarity space representation is

potentially as expressive as a high-dimensional kernel space. In Part III, we describe

how we leverage these results to design a novel similarity measure capable of reconciling

differences between samples residing in similar, but not identical, feature spaces.



Chapter 2

Material Identification with Library-based

Spectral Matching

Portions of this chapter are based upon the following publications:

• BD Bue, E Merényi, and B Csathó. “Automated Labeling of Segmented Hyperspectral
Imagery via Spectral Matching”. Workshop on Hyperspectral Image and Signal Pro-
cessing: Evolution in Remote Sensing (WHISPERS) [Aug. 2009].

• BD Bue, E Merényi, and B Csathó. “Automated Labeling of Materials in Hyperspectral
Imagery”. IEEE Trans. on Geoscience and Remote Sensing 48.11 [2010], pp. 4059–
4070.

2.1 Library-based Spectral Matching

To gain insight into the challenges in automated material identification using hyper-

spectral imagery, we begin with an evaluation of spectral matching techniques. Because

hyperspectral signatures are of sufficient spectral resolution to uniquely identify the

materials they represent, spectroscopists can identify materials for unlabeled spectra

by comparing them to ground-truth spectra captured under controlled conditions

(i.e., field- or lab-measured spectra) with known material labels. Spectral matching

techniques mimic this approach by predicting the material composition of unidentified

spectra based upon their similarities to spectral signatures in libraries. Spectral

matching algorithms are an indispensable tool for spectroscopists that greatly reduce

the amount of time necessary to search through large spectral libraries such as those

provided by the USGS [Clark et al., 2007] and NASA (e.g., RELAB [Pieters, 1990],

ASTER [Baldridge et al., 2009] and CRISM [Slavney and Murchie, 2006]). The
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main challenge in spectral matching involve accurately and efficiently measuring the

similarity between large quantities of spectral signatures. In this chapter,∗ we describe

a spectral matching methodology that matches clusters of hyperspectral image signa-

tures to library signatures of known material species. We evaluate the performance

of several spectral similarity measures using this methodology, and propose a new

similarity measure that accounts for spectral characteristics that are often poorly

captured by canonical similarity measures. We show that our new measure yields

more accurate material identifications than conventional measures, both visually and

in terms of information-theoretic criteria.

2.2 Spectral Matching for Cluster Signatures

One challenge in spectral matching lies in efficiently comparing thousands/millions

of hyperspectral image pixels to each spectrum in a spectral library (which may,

itself, consist of thousands of signatures). In addition to the computational expense,

pixels taken independently are sensitive to instrument noise and intra-class variability

[Thompson et al., 2010]. A promising method to reduce both noise and computational

costs in spectral matching is to consider clusters of similar spectra that capture the

most relevant spectral variations in the image, rather than individual pixels. This

gives rise to the methodology shown in Figure 2.1. After a hyperspectral image has

been clustered, each cluster consists of the set of pixels most similar to one another,

according to the clustering algorithm. Because the pixels in each cluster are similar, we

can summarize each cluster by its mean spectral signature (we use mean signature and

cluster signature interchangeably). To assign a material label to a cluster, we calculate

∗The material presented in this chapter was performed in collaboration with Erzsébet Merényi
and Bea Csathó, with assistance from Dar Roberts and Bill Farrand.
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the similarity between its mean signature and the library signatures. We assume

that each spectral signature in the library is a unique descriptor for the material it

represents. Therefore, if the similarity measure yields a high similarity score for a

given cluster signature and a particular library signature, we can assign the material

label from the library signature to the members (pixels) of that cluster.

Spectral 
Matching

Scale by L2 
Norm

Segment 
Material 
Labels

Resample
to Image 

Wavelengths

Library of 
Material 
Spectra

Segmented 
Hyperspectral 

Image

Compute 
Segment Mean 

Signatures

Scale by L2 
Norm

Normalized 
Mean 

Signatures

Normalized,   
Resampled 

Library

Figure 2.1 : Spectral matching methodology. Image pixels representing unknown
materials are identified by comparing the mean signatures of groups of similar pixels
(clusters) to library signatures with known material labels. Both library and mean
signatures are normalized by their L2 norms to account for linear illumination effects.

However, while current spectral libraries generally contain a wide variety of distinct

material spectra, they often do not capture the diverse variations of individual materi-

als that can be extracted from hyperspectral imagery. In particular, typical spectral

libraries contain few (usually less than ten) samples of each distinct material species.

Consequently, conventional classification techniques cannot robustly model many dis-

tinct material classes with so few samples of each class, especially for high-dimensional

hyperspectral signatures. In contrast, spectral matching techniques simply return a

set of “hit lists” of the most similar material constituents for unidentified spectra,

which a scientist can interpret to verify if the correct material(s) are identified.
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2.3 Similarity Measures for Continuum-Intact

(CI) and Continuum-Removed (CR)

Signatures

We evaluate spectral matching performance using both the Euclidean distance (denoted

dED, Equation (1.7)), which is one of the most commonly used similarity measures

used to compare spectral signatures [Chang, 2000; Du and Chang, 2001; Keshava, 2004;

Sweet, 2004; Tarabalka et al., 2009b], and the Spectral Information Divergence (denoted

dSID, Equation (1.9)), which was recently shown to outperform several canonical

spectral similarity measures (including dED) in discriminating between spectrally-

similar spectra representing minerals such as alunite, kaolinite, montmorillionite and

quartz [van der Meer, 2006].

The dED and dSID are examples of similarity measures which take Continuum-Intact

(CI) spectral signatures as input (as shown in Figure 1.1). However, as mentioned

in Section 1.5, CR spectral signatures often better capture the composition and

concentration of the material(s) each spectral signature represents [van der Meer,

2004] than their CI counterparts. For this reason, we also consider the spectral

matching performance using the dED and dSID similarity measures with CR signatures

as input

dCR(xi,xj) = d(CR(xi),CR(xj)), (2.1)

where d(xi,xj) is either dED or dSID, and CR(x) is a function that returns the CR

representation of x. The output of CR(x) is a vector of the same dimensionality

as x with components in the range [0, 1], where values of zero lie on the estimated

continuum and values greater than zero indicate the depth of absorptions relative to
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the estimated continuum. We estimate the continuum of a given spectrum by fitting

a piecewise linear function to local maxima, which is then divided out of the original

CI spectrum. Pseudocode for our continuum-removal algorithm, loosely based upon

Clark et al. [1987], is given in Appendix 2.A.

2.3.1 The CICR Similarity Measure

While the CR representation better accounts for differences in absorption features than

the CI representation, the CR representation alone can be an unreliable descriptor

for material identification because signatures with considerably different continuua

can have equivalent CR representations [Clark and Rousch, 1984; Howell et al., 1994].

To compensate for this shortcoming, we introduce a new, hybrid similarity measure,

dCICR, that combines CI and CR distance measurements, thereby capturing differences

in both continuum shape and absorption features

dCICR(xi,xj, α) = dCI(xi,xj) + αdCR(xi,xj) (2.2)

dCI(xi,xj) =
1

vCI

d (xi,xj) (2.3)

dCR(xi,xj) =
1

vCR

d (CR(xi),CR(xj)) . (2.4)

Here d(xi,xj) and CR(x) are defined as in Equation (2.1), α is a scalar weight

parameter that controls the influence of the dCI vs. dCR terms, vCI and vCR are scaling

factors (described below) that equalize the influence of the dCI and dCR measures. We

set vCI (vCR) to the variance of all pairwise CI (CR) distances between the library and

mean signatures, and set α = 0.5 so the dCI and dCR distances contribute equally to

the similarity measurement. We investigate the influence of these parameters later in

Chapter 3. To distinguish between the CI-based (dCI), CR-based (dCR) and CICR-
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based (dCICR) distance measures, we hereafter refer to the corresponding dED and

dSID measures as (CIED, CRED, CICRED) and (CISID, CRSID, CICRED), respectively.

As described in Section 1.3.2, we normalize the CI signatures by their L2 norms to

mitigate scaling factors caused by linear illumination effects.†

2.4 Criteria for Evaluating Similarity Measures

2.4.1 Information-Theoretic Criteria

We consider the information-theoretic criteria proposed by Chang in [Chang, 2000]:

the Spectral Discriminatory Probability (SDPd), Spectral Discriminatory Entropy

(SDEd), and the Power of Spectral Discrimination (PWd). Each of these three criteria

characterizes the capability of a distance measure d(xi,xj) to distinguish a reference

signature from a set of library signatures. In this work, we measure the discriminatory

capabilities of each measure with respect to each cluster mean signature c, and the

hit list Lc = {l1, . . . , lm} consisting of the m library signatures most similar to c. We

consider hit lists of size three (m = 3) to balance the amount of manual validation

while providing a satisfactory demonstration of the technique.

The Spectral Discriminatory Probability calculates the probability of distinguishing

cluster signature c from a library signature lk ∈ Lc using distance measure d(·, ·).

SDPd(c, lk) =
d(c, lk)∑m
j=1 d(c, lj)

. (2.5)

A small SDPd value indicates the probability of distinguishing the cluster signature

and library signature is low, within the context of hit list. Thus, the “best” matches,

†Under this scaling, the dED distance is functionally equivalent to the cosine (or SAM) distance
(Equation (1.8)): dED(xi,xj) = 2

√
1− cos(dSAM(xi,xj)).
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according to measure d(·, ·), are those with the smallest SDPd values.

The Spectral Discriminatory Entropy quantifies the uncertainty in identifying

cluster signature c from the spectra in the hit list Lc.

SDEd(c,Lc) = −
m∑

j=1

SDPd(c, lj) log SDPd(c, lj). (2.6)

The SDEd takes values in the range 0 < SDEd ≤ log 1
m

, reaching its maximum when

all m values are equal. A smaller value indicates a better chance of distinguishing c

from the library signatures Lc.

The Power of Spectral Discrimination estimates the power of distance measure

d(·, ·) to discriminate between a pair of library signatures li, lj ∈ Lc, with respect to

cluster signature c.

PWd(c, li, lj) = max

{
d(c, li)

d(c, lj)
,
d(c, lj)

d(c, li)

}
(2.7)

= max

{
SDPd(c, li)

SDPd(c, lj)
,
SDPd(c, lj)

SDPd(c, li)

}
. (2.8)

PWd values near one indicate that li and lj are “indistinguishable” with respect to

cluster signature c. To consider hit lists with more than two signatures, we calculate

the mean Power of Spectral Discrimination for the corresponding m library signatures

in the hit list.

PWd(c,Lc) =
2

m(m− 1)

m∑

i=1

m∑

j=i+1

PWd(c, li, lj) (2.9)

The mean PWd for library signatures in Lc characterizes how “tightly packed” the

distances are between the library signatures in the hit list and the cluster signature c.

We want this value to increase for dissimilar signatures, and to approach unity for

similar signatures. However, the PWd may become skewed if distances between c and
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the signatures in its hit list are relatively far apart (as demonstrated in Section 2.4.4).

This often indicates that c is not well-represented in the spectral library, since the

dissimilar library signatures potentially represent materials different from the other

signatures in the hit list.

On the Order Equivalence of PWd and SDEd

Both the mean PWd and SDEd estimate the uncertainty in distinguishing cluster

signatures from library signatures. By estimating this uncertainty, we can compare

the capabilities of one similarity measure vs. another with respect to a fixed set of

spectral signatures [Chang, 2000; Du and Chang, 2001; Du et al., 2004]. However, we

will now show that the ordering produced by the PWd is equivalent to the ranking

generated by the −SDEd (i.e., the PWd and SDEd produce rankings that are order

isomorphic).

Figure 2.2 shows the functional behavior of the PWd and SDEd for a given reference

signature c vs. two library signatures l1and l2. We can see that the PWd (SDEd)

is a convex (concave) function, minimized (maximized) at the location 1
2
. Taken

independently, the PWd is better suited to discriminate between values at the extreme

ends of the distribution, whereas the SDEd gives better separation across the mid-

range. However, the two functions are order isomorphic because the PWd and −SDEd

are monotonically decreasing before, and monotonically increasing after the minimum

location, and consequently produce the same order of rankings.

This isomorphism also holds for hit lists with m > 2 library signatures. In this case,

the mean PWd is used (Equation (2.9)). We previously showed that, when m = 2,

the PWd is a convex function. Since the sum of convex functions is convex, the mean

PWd is also convex, and attains its minimum value of one at 1
m

(when all outcomes

are equiprobable). Because entropy is a concave function, −SDEd is a convex function,



39

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

�a� SDPd�l1,l2�

P
W

d
�l 1,l 2�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

�b� SDPd�l1,l2�

S
D
E
d
�l 1,l 2�

Figure 2.2 : The functional forms of the PWd (a) and SDEd (b) for Lc = {l1, l2},
according to Equations (2.6) and (2.8).

with minimum at log 1
m

, also attained when all outcomes are equiprobable. Once

again, we have two convex functions with minima at the same location, where the

−SDEd (and also, the PWd) monotonically increases after the minimum. Thus, the

order isomorphism holds when m > 2. Consequently, if our objective is to rank the

relative performances of different similarity measures, the PWd and SDEd both yield

the same ranking. For this reason, our subsequent analysis focuses only on the PWd.

Significance Testing

We assess the significance of our PWd-based comparisons using the Wilcoxon Signed-

Rank Test (WSRT) [Wilcoxon, 1945, 1947]. The WSRT is a non-parametric statistical

hypothesis test for paired measurements – in our case, N measurements (d1,i, d2,i), i ∈

{1, . . . , N} using two different similarity measures d1 and d2 – on a single sample (i.e.,

a cluster signature). Three quantities define the WSRT: the number of trials performed,

Nt, the sum of positive differences in paired measurements, W+ =
∑N

i=1 I(d1,i− d2,i >

0), and the sum of negative differences in paired measurements, W− =
∑N

i=1 I(d1,i −

d2,i < 0), where I(·) is the indicator function. Equal measurements are handled by

adding their mean to both W+ and W−. The significance of the performance is based

on Nt and max(W+,W−). Using the WSRT to test significance of spectral similarity
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measure comparisons has several advantages. First, it makes no assumptions on the

underlying distribution of the measurements. Second, greater emphasis is placed on

larger differences in measurements than on smaller ones. Third, because the statistic

for the signed rank test is unaffected by changes in a few observations (i.e., it is a

resistant statistic), outliers are naturally suppressed when the number of outliers is

not particularly large. For a detailed discussion on the WSRT, see [Demšar, 2006].

2.4.2 Visual Criteria

As we see later in this chapter, the information-theoretic measures described in the

previous section are sensitive to spectral representation (i.e., CI vs. CR), and often

do not capture visually strong matches. Therefore, we provide a manual assessment

of the perceived quality of spectral matches by assigning a visual score (VS) in the

range [0, 3] to each in the set of m signatures the hit list for each cluster signature, as

determined by each similarity measure. A visual score of zero indicates poor quality

of all m matches, in terms of overall spectral shape and the positions of absorption

features. A score of one indicates the majority (but not all) of the m matches are of

poor quality, a score of two indicates the majority of the matches are of good quality,

and if all m signatures strongly match the cluster signature, we assign a score of

three. Four independent observers assessed the hit lists produced by each measure to

corroborate the visual scores with adequate confidence.

2.4.3 Case Study: Ocean City AVIRIS Spectra

We evaluate spectral matching and material identification performance on a Low-

Altitude Airborne Visible / Infrared Imaging Spectrometer (AVIRISLA) [Green et

al., 1998] hyperspectral image of Ocean City, MD [Csathó et al., 1998]. This im-
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age (acquired Nov 5, 1998, with 4 m / pixel spatial resolution, in 224 spectral

bands from 0.4 2.5 µm) is an example of the complexity in a real urban study,

µ µ µ

Authorized licensed use limited to: Rice University. Downloaded on March 19, 2009 at 09:49 from IEEE Xplore.  Restrictions apply.

Figure 2.3 : Color composite of Ocean
City, MD AVIRIS image using the
(0.8749, 0.683, 0.5468) µm bands. Fig-
ure credit: Merényi et al. [2007].

with many (∼30) material species of inter-

est. It was analyzed in previous work to cap-

ture spectral clusters, verify them against

field knowledge and identify materials they

represent, as reported in detail in [Merényi

et al., 2007]. Figure 2.3 gives a false color

composite of the image. The white boxes

indicate the sub-regions we consider in this

work. We consider two different clusterings

of the Ocean City image, both generated

and analyzed by Merényi et al. [2007]. The

first clustering was produced using a Self-

Organizing Map (SOM), and is shown in

Figure 2.4. The high spatial and spectral

resolution of AVIRIS imagery, along with the

sensitive SOM-based clustering technique al-

lowed discrimination of 35 clusters with varied characteristics including (very) small

and spectrally similar ones. As verified from field data, most of the SOM clusters

represent objects associated with distinct material types. Examples of these are:

water tower, buildings, roads, boardwalks, parking lots, a mini golf course, a coast

guard lookout tower, and landscape units. However, we do not have corresponding

material labels for some of the clusters that can be recognized on the functional

level (e.g., the tennis court, mini golf course clusters). The second clustering was

produced using the ISODATA algorithm, and is shown in Figure 2.5. We emphasize
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that the cluster labels (colors) in the SOM-based and ISODATA segmentation are

not consistent with each other because reconciling clusters is nontrivial or impossible,

since there is not a one-to-one (or even a clean one-to-many) correspondence between

the two clusterings. The ISODATA clustering contains a total of 21 clusters that

differ greatly from the SOM clusters. In particular, a number of spectrally-similar

materials delineated in the SOM clustering are assigned to several quite different

ISODATA clusters. We anticipate poor spectral matching performance using the

ISODATA clustering, since the ISODATA cluster signatures do not accurately capture

distinctions between material species. Thus, many of the ISODATA clusters give no

clear, or worse, misleading material interpretations.

Authorized licensed use limited to: Rice University. Downloaded on March 19, 2009 at 09:49 from IEEE Xplore.  Restrictions apply.

Figure 2.4 : The 35 clusters of the Self-Organizing Map-based segmentation of the
Ocean City AVIRIS image produced by Merényi et al. [2007]. Left: the northern boxed
area from Figure 2.3. Right: the southern boxed area from Figure 2.3. Black (“bg”)
pixels indicate regions that are not assigned to any of the 35 clusters. Figure credit:
Merényi et al. [2007]

The spectral library we use consists of 1250 signatures from three sources: (1)

1164 field-measured spectra of mostly urban materials acquired in 1075 wavelengths

in the 0.35 to 2.4 µm range (described in [Herold et al., 2004]); (2) 17 lab-measured

vegetation spectra from the USGS splib06a spectral library [Clark et al., 2007]; (3) 21
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Figure 2.5 : The 21 clusters of the ISODATA segmentation of the Ocean City AVIRIS
image produced by Merényi et al. [2007]. Left: the northern boxed area from Figure 2.3.
Right: the southern boxed area from Figure 2.3. Figure credit: Merényi et al. [2007]

AVIRIS image spectra (mostly vegetation and soil types) from expert-labeled regions

described in [Merényi et al., 2000]. All library signatures are tagged with metadata

indicating the objects measured, and most include a corresponding material label.

We resampled the library signatures to the appropriate AVIRIS wavelengths and full

width at half maximum (FWHM) parameters, and exclude wavelengths outside of

the range [0.42, 2.39] µm due to noise present in some of the library signatures. The

remaining 165 of the original 224 AVIRIS bands are used for spectral matching.

2.4.4 Evaluation of Spectral Matching Results

Here, we evaluate the spectral matching performance on the Ocean City SOM clusters

according to the dCI, dCR, dCICR-based measures. We provide the mean PWd scores

for the hit lists consisting of the top three library matches (i.e., m = 3) for each cluster

mean signature in Figure 2.6. Table 2.1 gives the set of all visual scores for the Ocean

City SOM cluster hit lists, along with summary statistics for the visual and PWd

scores for all cluster signatures (hereafter referred to as All) and signatures which

are adequately represented in the library (hereafter referred to as Selected). We
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make the simplifying assumption that if the mean visual score (for all measures) for a

cluster signature is zero, then that signature does not have a representative library

signature. These include clusters P , S, X, a, and c. We also exclude clusters C, F

and d because the corresponding materials could not be precisely determined from

field data with adequate confidence. The objects which these clusters represent are

as follows: C is a green tennis court shown in Figure 2.8, discussed below; F is a

street/sidewalk; and d is likely a mixture of water and nearby building materials. For

each similarity measure, we also provide the mean visual and PWd scores, respectively

in Tables 2.2 and 2.3.
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Figure 2.6 : Left: mean PWd scores (m = 3) for the Ocean City SOM cluster signatures
according to the CIED (solid line, circle marker), CRED (dashed line, square marker),
and CICRED (dotted line, diamond marker) measures. Right: mean PWd scores for
each cluster signature using the CISID (solid line, circle marker), CRSID (dashed line,
square marker), and CICRSID (dotted line, diamond marker) measures. On average,
dED-based measures yield lower PWd scores than dSID-based measures, indicating
that the signatures in the dED-based hit lists are more similar to one another than
the dSID-based hit lists. Cluster M (discussed in detail below) is the most spectrally
ambiguous according to the similarity measures we consider.

As shown in Table 2.2, on average, the dED and dSID yield equivalent performance

as indicated by their visual scores. However, the mean PWd scores shown in Table 2.3
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Visual Scores for Individual Clusters  Mean Visual Score Mean PWd

A C D E F G I J K L M O P Q R S T U V W X Y Z a b c d e f g h i j l m All  Selected All Selected

CIED 2 1 1 1 1 1 2 1 2 3 1 1 0 1 1 0 1 2 1 2 0 2 2 0 1 0 0 2 2 0 1 1 1 1 1 1.1143 1.1053 1.0614 1.0708

CRED 0 2 2 0 1 0 2 0 2 3 2 1 0 1 1 0 1 2 2 1 0 1 1 0 1 0 1 2 2 1 0 1 1 1 0 1.0000 0.8947 1.0441 1.0503

CICRED 2 2 2 1 1 1 2 1 1 3 2 1 0 1 1 0 1 2 1 2 0 2 1 0 1 1 1 2 2 1 1 1 1 2 1 1.2571 1.3684 1.0395 1.0439

CISID 2 1 2 1 1 2 2 1 2 3 1 1 0 1 1 0 1 2 1 2 0 2 2 0 1 0 0 2 2 0 1 1 1 1 1 1.1714 1.2105 1.1354 1.1586

CRSID 0 2 1 0 1 0 2 0 2 3 2 1 0 1 1 0 1 2 2 1 0 1 1 0 1 0 1 2 2 1 0 1 1 1 0 0.9714 0.8421 1.0908 1.1029

CICRSID 1 2 2 1 1 1 2 1 2 3 2 1 0 1 1 0 1 2 2 1 0 1 1 0 1 1 1 2 2 1 1 1 1 2 1 1.2286 1.3158 1.0898 1.1047

Average 1 2 2 1 1 1 2 1 2 3 2 1 0 1 1 0 1 2 2 2 0 2 1 0 1 0 1 2 2 1 1 1 1 1 1

Table 2.1 : Visual scores and averages for Ocean City SOM clusters. Visual scores are
in the range {0, . . . , 3}, which increase in proportion to the perceived quality of the hit
lists. The mean PWd scores are in the range [1,∞], where a score of 1 indicates that
all members of the hit list are equidistant from the cluster signature. Average scores
are given for all clusters (“All”) and clusters represented in the library (“Selected”).
We assume clusters with average visual scores of zero (indicated by italics) are not
represented in the library. The best scores are given in bold text, and the worst
scores are underlined. On average dED and dSID produce comparable performance as
indicated by their visual scores, though the dED-based measures achieve lower PWd

scores than the dSID-based measures. The dCICR-based measures outperform both dCI

and dCR-based measures with both low PWd and high visual scores.

dCI dCR dCICR Mean
dED 1.1143/1.1053 1.0000/0.8947 1.2571/1.3684 1.1238/1.1228
dSID 1.1714/1.2105 0.9714/0.8421 1.2286/1.3158 1.1238/1.1228
Mean 1.1429/1.1579 0.9857/0.8684 1.2429/1.3421 1.1238/1.1228

Table 2.2 : Mean visual scores for All/Selected clusters according to dED and dSID

using dCI, dCR, and dCICR-based measures. The best scores are indicated in bold text.
Both dED and dSID produce equivalent performance on average, and are most visually
agreeable using the dCICR-based measure.

indicate that the hit lists produced by the dED are quantitatively more similar to their

respective cluster signatures than those produced by the dSID, particularly on the

Selected clusters. This suggests that the dED (and, equivalently, the SAM distance)

has slightly greater discriminatory power than the dSID for this spectral matching task

using both the CI and the CR representation.

When we compare the dCI, dCR and dCICR-based measures independently, we also ob-

serve similar performance by both the dED and dSID. In fact, the dCI-based visual scores

differ for only two clusters: D and G; and the dCR-based scores differ only on cluster D.
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dCI dCR dCICR Mean
dED 1.0614/1.0708 1.0441/1.0503 1.0395/1.0439 1.0483/1.1053
dSID 1.1354/1.1586 1.0908/1.1029 1.0898/1.1047 1.0550/1.1221
Mean 1.0984/1.1147 1.0675/1.0766 1.0647/1.0743 1.0517/1.1137

Table 2.3 : Mean PWd scores for All/Selected clusters according to the dED and dSID

using dCI, dCR, and dCICR-based measures. The best scores are indicated with bold
text. The dCI, dCR and dCICR measures using the dED achieve lower PWd scores than
those using the dSID, indicating that the signatures in the dED-based hit lists are more
similar to one another than the dSID-based hit lists. Both dED and dSID achieve their
lowest respective PWd with the dCICR measure.

CIED CISID

Figure 2.7 : dCI-based hit lists for SOM clus-
ters D (top) and G (bottom) using the dED

(left) vs. dSID. (right)

Figure 2.7 gives the dCI-based matches

for clusters D and G, and suggests

that the hit lists produced by dSID

include spectra that vary smoothly

with the cluster signatures than the

signatures in the dED-based hit lists,

whereas the dED-based matches are

closer in the least-squares sense, but

occasionally do not follow the shape of

the spectrum as well as the dSID-based

matches. This gives the dSID a slight edge in performance in terms of visual scores over

the dED using CI-based signatures. On the often jagged CR signatures, however, the

dSID performs slightly worse than dED. Because the dSID assumes that the densities

derived from the spectral signatures (Equation (1.11)) are smooth functions, so such

performance is expected.

However, the dCICR results are not only more visually agreeable than the dCI

and dCR results, but better represent spectroscopic similarities between signatures by

accounting for both spectral shape and absorption features. Such improvements are
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reasonably intuitive: dCI measures produce spectral matches that correspond well in

terms of spectral shape, but often fail to capture characteristic absorption features, as

shown in Figure 2.8. Here, we compare the dCI and dCICR spectral matching results

for Ocean City cluster C (a green tennis court). The signature has several significant

absorptions at ∼0.45, 0.64 and 2.22 µm that are captured by both dCICR measures,

but poorly captured by dCI measures. Conversely, using CR spectra alone will often

yield matches that differ greatly in spectral shape. Figure 2.9 gives the dCR vs. the

dCICR-based matches for cluster signature E (a metal rooftop). These signatures have

very similar CR representations, but differ significantly in terms of continua, resulting

in unsatisfactory dCR-based matches.

CIED CISID CICRED CICRSID
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Figure 2.8 : Top: Hit lists of CI signatures for SOM cluster C using CIED, CISID,
CICRED and CICRSID measures. Bottom: Corresponding CR spectra. Measures
using CI signatures can poorly capture differences in absorption bands. The dCICR-
based measures can exploit differences in absorption band characteristics, potentially
improving material identification capabilities.

Tables 2.2 and 2.3 indicate that the dED outperforms the dSID using the dCICR

measure in terms of visual and PWd scores, respectively. To corroborate these results,

we had the same four independent observers assign visual scores to an additional set

of randomly-selected matches selected from the CICRED and CICRSID hit lists. The
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Figure 2.9 : Top: Hit lists for SOM cluster E using CRED, CRSID, CICRED and
CICRSID measures. Bottom: Corresponding CR spectra. Because the CR representa-
tion discards information on the shape of the continuum in favor of absorption band
characteristics, spectral matching with CRED and CRSID can yield poor results. The
dCICR measures yield improved matches since both the continuum and the absorption
features are considered.

CICRED CICRSID

observer nranked mean std. nranked mean std.
1 80 1.7000 0.7649 88 1.4545 0.7371
2 10 2.1000 0.9434 3 1.6667 0.4714
3 158 1.4177 1.0139 172 1.3895 0.9791
4 17 1.1176 0.8319 19 1.0526 0.7591

mean 66.25 1.5838 0.8885 70.5 1.3908 0.7367

Table 2.4 : Average, per-observer visual scores of the nranked spectral matches randomly
selected from the CICRED and CICRSID hit lists.

improved performance by CICRED over CICRSID is confirmed by Table 2.4, which

gives the mean and standard deviation of the visual scores per-observer, along with

the number of matches they ranked (nranked) for each of the dCICR measures.

Table 2.5 gives the WSRT p-scores for the PWd for each similarity measure,

evaluated on the 35 SOM clusters. Larger values (shown in bold text) indicate that the

distributions of dCR and dCICR similarity values differ (i.e., low statistical significance),

and therefore should not be directly compared. The p-scores are also relatively high
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CIED CRED CICRED CISID CRSID CICRSID

CIED 0.0000 0.1542 0.0885 0.0000 0.0200 0.0797
CRED 0.1542 0.0000 0.7064 0.0007 0.0034 0.0238
CICRED 0.0885 0.7064 0.0000 0.0001 0.0004 0.0036
CISID 0.0000 0.0007 0.0001 0.0000 0.1957 0.0769
CRSID 0.0200 0.0034 0.0004 0.1957 0.0000 0.6465
CICRSID 0.0797 0.0238 0.0036 0.0769 0.6465 0.0000

Table 2.5 : WSRT-based p-values for the PWd using dCI, dCR and dCICR similarity
measures for the 35 Ocean City SOM cluster signatures. Significantly higher p-values
between CI and CR-based similarity measures indicate that the similarity values
produced by these measures do not follow the same distribution.

between dCI and dCR measures, since spectra that are very different in terms of

continuum shape can be identical after continuum removal (as shown by the dCR hit

lists in Figure 2.9, for instance). Because similar signatures produce PWd scores near

1.0, the dCR measures appear more discriminatory, in terms of low PWd values, than

the other measures. However, as we show in Figures 2.6, 2.8 and 2.9, low PWd values

do not necessarily indicate that a measure is performing well, as the PWd scores for

clusters C and E are among the lowest for the clusters and similarity measures we

consider.

Conversely, large mean PWd scores do not necessarily indicate a similarity measure

is performing poorly. Instead, the average of the top m matches may be skewed

due to the relative scaling of the similarity values. For instance, consider the rather

large PWd scores shown in Figure 2.6 for signatures M (vegetation), and, to a lesser

degree, T (asphalt) and Y (sand). A closer look at the similarity and pairwise PWd

scores for the hit list of cluster signature M are given in Table 2.6. In this case (and

similarly with signatures T and Y ), a single similarity score is relatively distant from

the remaining two scores, resulting in relatively high PWd values. Note that each of

the dED and dSID-based dCI, dCR and dCICR similarity measures returns a different hit

list, yet we observe the same effect on the PWd values. This suggests that the PWd
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could potentially be used as an indicator that a given library contains fewer than m

suitable match candidates for a particular signature.

d(·, ·) M, l1 M, l2 M, l3
CIED 27.097 51.683 51.683

(shaded concrete) (green paint) (grass)
CRED 94.866 137.969 138.628

(grass) (tall grass) (gray shingle)
CICRED 165.857 217.640 222.888

(grass) (shaded concrete) (sage brush)
CISID 0.187 0.5817 0.610

(shaded concrete) (green paint) (green paint)
CRSID 0.052 0.107 0.110

(grass) (palm tree) (green paint)
CICRSID 0.309 0.793 0.844

(shaded concrete) (green paint) (green paint)

PWd M, l1, l2 M, l1, l3 M, l2, l3
CIED 1.907 1.954 1.025
CRED 1.454 1.461 1.004
CICRED 1.312 1.343 1.024
CISID 3.114 3.266 1.049
CRSID 2.026 2.080 1.026
CICRSID 2.565 2.731 1.065

Table 2.6 : Distance (top table) and PWd (bottom table) values for the three most
similar library signatures to cluster signature M using each distance measure. Sig-
nificantly higher PWd scores are due to ambiguity between cluster signature M and
library signatures l2 and l3 (bottom, bold), and a strong match to l1.

Another example where the PWd may not reliably capture the accuracy of a given

similarity measure is illustrated in a case described by van der Meer in [van der

Meer, 2006], Figure 7. The author concludes that the dSID is more effective than

the dED (SAM), according partly to an analysis of the PWd. The author considers

both a synthetic data set consisting of 601-band field-measured spectra, and on

AVIRIS imagery consisting of 50 bands in the 2.0 to 2.5 µm range, for material

signatures montmorillonite (mont), kaolinite (kaol), quartz and alunite (alun). While
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our observations do show slight improvement in terms of visual scores over the dED

when matching the Ocean City signatures, the dSID performance is worse than the dED

with the dCR measures, and nearly equivalent with the dCICR measures. Furthermore,

in terms of mean PWd scores, we see that the dSID-based measures appear less

discriminatory than CIED, CRED, and CICRED. The dED vs. dSID PWd values for

alun-kaol, alun-mont, and kaol-mont, with quartz as the reference signature. However,

this example is a somewhat pathological case for the dED because the alunite, kaolinite,

and montmorilionite signatures are nearly equidistant from the quartz reference

signature, thereby yielding high PWd values for these three signatures.

2.4.5 Evaluation of Automatic Material Identification

Results

We now provide an evaluation of whether the spectral matches produced by the

best-performing measure, CICRED, correspond to appropriate material labels. We

categorize the spectral library into ten distinct material groups (loosely based on

the taxonomy of urban materials given in [Herold et al., 2004]): Concrete materials,

Asphalts, Composites (which largely consist of shingle materials), Metals, Vegetation,

Coatings (i.e., paint), miscellaneous roofing materials (e.g., tile and wood shingles),

Soil/Dirt, Water, and “Other” (“Other” refers to library signatures for which no

material information is provided. In our library, this includes only the tennis and

basketball court signatures). If the material group of the matching library signature

corresponds well to the material group of the cluster signature, we consider the label

assignment a success. For some cases, determining this correspondence requires the

translation of an object label (for instance, “rooftop”) to a material group (“asphalt”)

based on manual inspection of the cluster signature and expert interpretation, since
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the expert interpretations are sometimes given on the object, rather than on the

material level.

C

D

j

j

UE

V
T

V

aU

c Expert Interpretation Matched Library Material
A Rooftop Roof Comp Shingle Gray New
C Tennis Court Roof Wood Shingle
D Rooftop Roof Comp Shingle Gray New
E Rooftop Roof Wood Shingle
F Unknown* Paved Road Asphalt New
G Rooftop Roof Comp Shingle Dark Tan New
I Road/Park/Walk Paved Road Asphalt New
J Road/Park/Walk Paved Parking Lot Oil Old
K Vegetation Green Dry Mixed Grass
L Vegetation Paved Sidewalk Concrete New Shade
M Vegetation Green Dry Mixed Grass
O Sand (Beach) Dry Long Grass
P Sand (Beach)* Roof Wood Shingle
Q Sand (Beach) Soil
R Road/Park/Walk Paved Road Seal New
S Water* Roof Tile
T Parking Lot Paved Road Seal New
U Rooftop Concrete Rooftop

c Expert Interpretation Matched Library Material
V Mini Golf/Rooftop Roof Comp Shingle Lt Gray New
W Road/Park/Walk Paved Parking Lot Oil New
X Water Fountain* Roof Wood Shingle
Y Sand (Beach) Paved Sidewalk Concrete New
Z Road/Park/Walk Paved Parking Lot Asphalt Old
a Rooftop* Roof Comp Shingle Red
b Rooftop Paved Road Asphalt Old
c Water/Rooftop* Roof Metal Green Paint New
d Unknown* Roof Tile
e Sand (Beach) Paved Parking Lot Oil Old
f Rooftop Roof Comp Shingle Mixed New
g Road/Park/Walk Roof Tile
h Road/Park/Walk Paved Road Asphalt New
i Road/Park/Walk Paved Road Seal New
j Water Tower Coating Paint White Old Thick
l Rooftop Roof Comp Shingle Gray Old
m Rooftop Roof Comp Shingle Lt Gray New

Figure 2.10 : Automatic labeling results for all Ocean City cluster signatures. Cluster
interpretations (from field knowledge) are given in black text (column 2) and the
corresponding best match using the CICRED measure is given in column 3 (colored
text). Cluster interpretations marked with an asterisk do not have representative
material signatures in the spectral library, and are not included in the “Selected”
measurements in Table 2.1. Matches in green text (in column 3) indicate that the
material of the best library match corresponds well to the expert interpretation, red
text indicates a mismatch, and black text indicates that the material composition
for the cluster signature is unknown. Spectral matches are discussed in detail in
Figures 2.11 to 2.15.

The automatic labeling results for each Ocean City SOM cluster using the CICRED

measure are given in Figure 2.10. The CICRED measure successfully labeled 21 of
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the 25 clusters with adequate library representation. These 21 clusters comprise

67.6% of the image pixels with known material labels available in the library. Expert

interpretations of clusters are given in plain text (column 2), and the CICRED library

matches are given in colored text (column 3). The text is colored green if the match

is considered a success according to our library categorization, while mismatches

are colored red. Clusters without clear expert interpretations of their materials are

displayed in black text. Clusters with an asterisk by the expert interpretation (in

column 2) lack representative material signatures in the spectral library; therefore

these matches should be disregarded. Selected spectral matches, grouped according

to their best matching library material label, are given in Figures 2.11 to 2.15. Even

within these categories, there are often significant differences in spectral shape for

similar materials. However, since our spectral library is sufficiently diverse, we find

relevant matches in almost all cases.

Not surprisingly, incorporating CR signatures in the CICRED measure does not

improve discrimination between materials without significant absorption features. We

observe this in the CIED vs. the CICRED matches for the asphalt signatures shown in

Figure 2.11. The best library matches using both measures are the same, but with

different ranking orders. Also, the visual scores (in Table 2.1) for the asphalt (h,

i, T ) and composite (G, I) signatures remain the same for both the dCI and dCICR

measures.

Two of the concrete matches are of particular interest. First, cluster signature L

(Figure 2.13) is matched to a “shaded concrete” library signature. This library signature

is described in detail in [Herold et al., 2004]), and is an example of an “intimate”

mixture [Clark and Rousch, 1984] of concrete shaded by a tree canopy. The mixture

of the flat concrete library signature does not significantly perturb the vegetation

library signature and thus appears representative of vegetation. Consequently, after L2
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Figure 2.11 : Top: CI and corresponding CR library matches for category “Asphalt”
using the CIED measure. Bottom: CI and corresponding CR library matches for
the same clusters using the CICRED measure. Both measures yield nearly the same
matches due to the lack of prominent absorption features in these signatures.

normalization, this signature matches well to cluster signature L (trees). Considering

geometric albedo in post-processing (e.g., by using a similarity measure which considers

spectral amplitude, such as [Nidamanuri and Zbell, 2011]) can potentially resolve such

ambiguities, as the albedo of the concrete signature will generally differ greatly from

the albedo the vegetation signature. The other concrete signature, U , corresponds well

to several gray/dark gray-colored rooftop material signatures. According to recent

aerial photographs, the smaller U signature (Figure 2.10, right image) is a viewing

tower, with a small enclosed building on top, that likely is composed of a concrete roof

and concrete base. The larger U signature (Figure 2.10, left image) appears to contain
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Figure 2.12 : CI and corresponding CR library matches for category ”Composites”
using CICRED. As observed by Herold et al. [2004], considerable spectral confusion
exists between dark asphalt road and composite shingle rooftop signatures since the
composite shingles often have a strong asphalt component, so material matches such as
those observed for signature G are expected. The material content of cluster signature
V (mini golf/rooftop) is unknown, but the marked similarity to other asphalt signatures
suggests it may be dominated by asphalt as well. Signature a (a building rooftop
consisting of a mixture of metal alloy and aluminum, painted blue) is a mismatch due
to both signatures having dramatically different spectral shapes, indicating that there
is not a representative signature present in the library.

concrete roof tiles. Also, since concrete materials generally consist of a mixture of

cement, gravel and water, the match to the gravel rooftop is expected.

In some cases, translation between the expert interpretations of image segments

and the labels provided in the spectral library is nontrivial. Figure 2.16 illustrates this

issue. Here, the expert interpretation of cluster C, “tennis court” material, matches

well to several of “wood shingle” library signatures, even though several tennis court

material signatures exist in the library. Since the precise material composition of

signature C is unknown, and the library metadata, in this case, does not provide a

material label for the tennis court signatures, it is difficult to assess the accuracy of this

labeling. Here, determining the correct labeling for C requires additional contextual

information, since the wood shingle signatures are clearly stronger matches than

the tennis court signatures (both in terms of spectral shape and absorption bands).
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Figure 2.13 : CI and corresponding CR
library matches for category ”Concrete”
using CICRED. The “shaded concrete”
library signature has spectral shape typi-
cal of vegetation, due to intimate mix-
ing effects caused by the shadow of a
tree canopy on the concrete material,
and closely matches cluster signature L
(grass).

0.42 0.64 0.86 1.08 1.29 1.51 1.73 1.95 2.17 2.39

Wavelength (µm)

400

600

800

1000

1200

1400

C
I 

N
o
rm

a
li

z
e
d

 R
e
fl

e
c
ta

n
c
e

c: K (Vegetation)

l
c

1
: Green Dry Mixed Grass

l
c

2
: Coatings Paint Green Old Thick

l
c

3
: Coatings Paint Green Old Thick

0.42 0.64 0.86 1.08 1.29 1.51 1.73 1.95 2.17 2.39

Wavelength (µm)

0.500

0.600

0.700

0.800

0.900

1.000

C
R

 N
o
rm

a
li

z
e
d

 R
e
fl

e
c
ta

n
c
e

c: K (Vegetation)

l
c

1
: Green Dry Mixed Grass

l
c

2
: Coatings Paint Green Old Thick

l
c

3
: Coatings Paint Green Old Thick

0.42 0.64 0.86 1.08 1.29 1.51 1.73 1.95 2.17 2.39

Wavelength (µm)

400

600

800

1000

1200

1400
c: M (Vegetation)

l
c

1
: Green Dry Mixed Grass

l
c

2
: Paved Sidewalk Concrete New Shade

l
c

3
: Whole Sage Brush

0.42 0.64 0.86 1.08 1.29 1.51 1.73 1.95 2.17 2.39

Wavelength (µm)

500

600

700

800

900

000

c: M (Vegetation)

l
c

1
: Green Dry Mixed Grass

l
c

2
: Paved Sidewalk Concrete New Shade

l
c

3
: Whole Sage Brush

Figure 2.14 : CI and corresponding CR
spectra for category “Vegetation” using
CICRED. The second and third “green
paint” matches for cluster K are due
to strong similarities in absorption fea-
tures common to vegetation species, as
observed in the CR signatures. As a result
of these similarities, the measure would
incorrectly label the vegetation spectra
as green paint if the first match, “grass,”
had not been present.
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Figure 2.15 : CI and corresponding CR
spectra for category “Coatings” using
CICRED. Cluster j corresponds to a wa-
ter tower, painted light blue, for which
the best match is a white paint signature.
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Figure 2.16 : Left plots: Tennis court clus-
ter signature C matched to tennis court li-
brary signatures. Right plots: Hit lists for
signature C using CICRED. The “shingle”
signatures are better matches, in terms of
both CI and CR spectra, than the tennis
court signatures.
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These ambiguities are best resolved by employing more diverse spectral libraries with

extensive metadata, complete with material descriptions.

The spectral matching results on the ISODATA clusters shown in Figure 2.17

exemplify the problem of identifying the materials of mixed or spectrally ambiguous

signatures. In this case, ISODATA assigns pixels, corresponding to a clearly recog-

nizable building (SOM cluster D shown in Figure 2.10 and Figure 2.7), into three

separate clusters (K, L and M (not to be confused with the SOM clusters with the

same labels), none of which represents the true signature of the building. There are

two related issues here: (1) ISODATA fails to detect an area of a unique signature

clearly delineated by the SOM, and (2) a number of spectrally similar materials

correctly grouped together by the SOM are incorrectly assigned to several dissimilar

ISODATA clusters. Consequently, these ISODATA clusters give no clear, or worse,

misleading interpretations. Matches from a library — while they may be good matches

to the mean cluster signatures — may not represent the species at the locations of

the incorrectly delineated ISODATA clusters.

ISODATA SOM
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Figure 2.17 : Left three figures: Hit lists for ISODATA clusters K (comprising SOM
clusters verified as rooftop shingles, roads/parking areas, and a mini golf course), L
(various rooftop materials) and M (various rooftop and road materials). Right figure:
Hit list for SOM cluster D (rooftop shingles). In this case, pixels that are delineated
well by the SOM cluster D are misclustered by ISODATA into 3 of its clusters —
K, L and M — none of which represent the true signature. Note that the spatial
distributions as well as the labels of the ISODATA clusters are different from those of
the SOM clusters (as shown in [Merényi et al., 2007]).
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2.5 Summary and Discussion

In this chapter, we evaluated the performance of the widely-used Euclidean Distance,

and the recently-proposed Spectral Information Divergence similarity measures, in

terms their capabilities to discriminate between different materials using their CI and

CR spectral representations. We began by measuring spectral matching performance

according to information-theoretic criteria proposed in [Chang, 2000]. We showed

that two of the proposed criteria, the mean PWd and SDEd, produced redundant

rankings of similarity measure performance, and consequently proceeded with a PWd-

based analysis. The mean PWd between hit lists of the top m = 3 matches for

each cluster/reference signature indicated that the dED produced spectral matches

that were more similar to the cluster signature than the dSID. However, we showed

that such criteria can be unreliable estimators of similarity measure performance.

Specifically, small mean PWd values indicate that the measure cannot distinguish

between the reference signature and the hit list signatures. While this is a desirable

property when the hit list signatures represent the same phenomena as the reference

signature, it is quite undesirable when the hit list signatures represent different

phenomena. Furthermore, large mean PWd values may become skewed when less than

m representative signatures are available for a given reference signature. Consequently,

criteria such as the PWd do not provide reliable estimates of material identification

performance.

Due to the unreliability of the information-theoretic criteria, we manually assessed

the quality of spectral matches by scoring them in terms of their visual similarity.

Here, dSID slightly outperformed dED using CI signatures, but performed slightly

worse than dED using CR signatures. The spectral matches on CI signatures suggest

that using the dSID may be advantageous for identifying the materials of smoothly-
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varying spectral signatures, but may be at a disadvantage for jagged or discontinuous

signatures. Further evaluation is necessary to confirm this hypothesis, but a number

of studies observed similar results [Du and Chang, 2001; Du et al., 2004; Sobhan, 2007;

Tarabalka et al., 2009a].

Based on our results using the dCI and dCR-based measures, we proposed a new

similarity measure, dCICR, which combines both the CI and CR distance measurements

to account for differences in both spectral shape and absorption features. We showed

improved matching accuracy using dCICR using both the dED and dSID, with the dED

outperforming the dSID in this case. We suspect that the improvement in performance

by dED is a result of two factors: first, normalizing the dCI and dCR components of

the dCICR distance by the variances of distances between spectral signatures may

not properly balance the CI and CR terms for the dSID measure, whose distances

vary more significantly than the dED (as indicated by the range of PWd scores in

Figure 2.6); and second, Table 2.5 indicates that the CI and CR distances for the dSID

measure are more strongly correlated than they are for the dED, as evidenced by the

smaller p-values for the (CIED/CRED) vs. the (CISID/CRSID) measures. Consequently,

the dSID CI vs. CR distances are more redundant with respect to each other than the

dED distances, and thus less information is gained by combining them, an effect also

observed by Lee et al. [2010].

Using the best-performing similarity measure, CICRED, we successfully identified

the materials of 21 of the 25 SOM clusters with known material interpretations and

representative library signatures. The remaining ten clusters could not be identified

because either their material interpretations were unknown, or the library lacked

representative material signatures for those clusters. Both of these issues could

potentially be mitigated by augmenting the spectral library with additional, detailed

metadata describing the exact material composition of all library spectra, or by
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including additional library spectra which include such metadata.

Our results show that capturing both the shape of the spectral continuum and

the positions/widths of absorption bands is essential to accurately measure similarity

between hyperspectral signatures, but the relative importances of these characteristics

are data dependent. We expect to achieve improved performance by selecting α using

an optimization procedure according to characteristics of input data. Furthermore,

we can potentially improve the dCICR similarity measure by substituting measures

into that apply data-dependant weightings to individual spectral bands such as the

Mahalanobis [1936] distance, or measures that capture functional characteristics of

spectral signatures such as the Sobolev [1963] distance. We investigate such measures

in detail in Chapters 3 and 4.

The presence of mixed spectral signatures representing multiple distinct materials

significantly complicates precise material identification. In spectral matching, a

representative signature must exist in the library to properly identify the material

species of an unlabeled signature. Thus, as we observed with the ISODATA cluster

signatures and also in cases of intimate mixing (e.g., the shaded concrete library

signature shown in Figure 2.13), the spectra we seek to identify have no clear material

interpretations, and the resulting spectral matches are also, inevitably, inaccurate or

misleading. Regrettably, automatically identifying all of the material constituents in a

given image is limited by the availability of representative labeled spectra, and the

lack of exhaustive and detailed ground-truth data makes the objective evaluation of

automated labeling methods challenging. Since it is currently not feasible to acquire

exhaustive material labels for large remote sensing surveys, synthetically-generated

hyperspectral imagery may be of significant help. Alternatively, we can potentially use

labeled spectra from other analyses of similar imagery when representative ground-truth

spectra are not available. However, reconciling differences caused by differing capture



61

conditions is necessary to use such data. We provide an evaluation of automated

material identification techniques using both synthetic data, along with real image

data from similar analyses, in Section 5.1.
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2.A Appendix: Continuum-Removal Algorithm

Algorithm 2.1 RemoveContinuum

Input: Spectrum x, wavelengths w, number of bands n
Output: Continuum removed spectrum cr, estimated continuum curve cc

1: cr = 1n, cc = x, h = 0n, h′ = 1n

2: for i ∈ [1, n− 1] do
3: hi = I(xi > xi+1 & xi−1 < xi) # Initial hull = inflection points
4: end for
5: while h′ 6= h do
6: h = h′ # Update hull until no further changes
7: h′ = SweepContinuum(x,w,h, n)
8: end while
9: h0 = hn = 1 # Endpoints always on hull

10: for i ∈ [1, n] do
11: if hi = 1 then
12: j = i+ 1
13: while hj = 1 do
14: j = j + 1 # Find last band of current absorption feature
15: end while
16: s = (xj − xi)/(wj −wi)
17: for k ∈ [i, j] do
18: cck = xi + (wk −wi)
19: crk = 1− (xk/cck) # crk > 0 =⇒ absorption feature
20: end for
21: i = j
22: end if
23: end for
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Algorithm 2.2 SweepContinuum

Input: Spectrum x, wavelengths w, current hull h, number of bands n
Output: Updated hull h

1: l = 0, r = 1
2: while r < n do
3: if hr = 1 then
4: s = (xr − xl)/(wr −wl)
5: for j ∈ [l, r] do
6: hj = I(xj < xl + s(wj −wl))
7: end for
8: l = r
9: end if

10: r = r + 1
11: end while
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Chapter 3

Hybrid Similarity Measures

Portions of this chapter are based upon the following publications:

• BD Bue, E Merényi, and B Csathó. “Automated Labeling of Segmented Hyperspectral
Imagery via Spectral Matching”. Workshop on Hyperspectral Image and Signal Pro-
cessing: Evolution in Remote Sensing (WHISPERS) [Aug. 2009].

• BD Bue, E Merényi, and B Csathó. “Automated Labeling of Materials in Hyperspectral
Imagery”. IEEE Trans. on Geoscience and Remote Sensing 48.11 [2010], pp. 4059–
4070.

• BD Bue and E Merényi. “An Adaptive Similarity Measure for Classification of
Hyperspectral Signatures”. IEEE Geoscience and Remote Sensing Letters 10.2 [2012],
pp. 381–385.

We demonstrated in Chapter 2 that capturing both the shape of the spectral

continuum and the positions/widths of absorption bands is essential to accurately

measure similarity among hyperspectral signatures. However, the relative importances

of these characteristics are data dependent. In this chapter∗ we demonstrate a technique

to learn a convex weighting among several distinct similarity measures using a technique

based on Linear Discriminant Analysis (LDA). We evaluate the performance of our

adaptive CICR measure on AVIRIS spectra sampled from a well-studied urban scene

and show that our technique yields improved classification accuracy in comparison to

classification using CI or CR Euclidean distance measurements alone. Our LDA-based

measure also yields competitive performance to brute-force computation of the CI vs.

CR weight parameter, at much reduced computational cost. As we discussed earlier,

a close relationship exists between finding a good set of features and choosing a good

∗This work was done in collaboration with Erzsébet Merényi, with assistance from David Thompson,
Kiri Wagstaff, Devika Subramanian, Bea Csathó, and Marika Kästner.
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similarity function. Consequently, we demonstrate that classifying spectra using a

classifier equipped with the CICR measure gives comparable or better results than

several conventional feature selection and dimensionality reduction techniques. We then

generalize our technique to exploit the functional nature of spectral data by calculating

the weighted relevances of spectral derivates – i.e., derivatives of a spectral signature

with respect to wavelength – using the Sobolev distance measure. We compare with

the classification accuracy of the adaptive Sobolev measure to classification using per-

derivate Euclidean distances on the Ocean City AVIRIS image described in Chapter 2.

We provide an in-depth analysis of the empirical and asymptotic behavior of the

Sobolev measure, and show improved performance over the Euclidean baseline when

the higher-order derivatives of spectral signatures are uncorrelated.

3.1 The Adaptive CICR Measure

In this section, we present an adaptive version of the CICR similarity measure that

automatically calculates a convex weighting between similarity measurements of

Continuum Intact (CI) and Continuum Removed (CR) signatures. To achieve this,

we reformulate the dCICR (Equation (2.2)) similarity measure as follows:

dCICR(xi,xj, α) = (1− α)dCI(xi,xj) + αdCR(xi,xj) (3.1)

where

dCI(xi,xj) =

∥∥∥∥
xi
‖xi‖

− xj
‖xj‖

∥∥∥∥ (3.2)

dCR(xi,xj) =

∥∥∥∥
CR(xi)

‖CR(xi)‖
− CR(xj)

‖CR(xj)‖

∥∥∥∥ (3.3)
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Here, α ∈ [0, 1] is a weighting parameter, and CR(·) performs continuum removal. We

estimate the continuum of a given spectrum by fitting a piecewise linear function to

local maxima using the procedure described in Algorithm 2.1. Observations on the

continuum are assigned values of zero, and absorption features (observations between

local maxima) are assigned values in the [0, 1] range, proportional to their relative

distance from the estimated continuum. Because the continuum removal procedure is

sensitive to spurious local maxima, we smooth each signature using a moving average

filter before performing continuum removal. Although smoothing can mask small

absorption features, such features are often close to the noise floor of the sensor, and

we accept this loss in specificity in favor of noise reduction. In our experiments using

AVIRIS data, smoothing windows ranging from three to five bands (0.03-0.05µm) have

done well.

The dCICR measure described given above differs from our original formulation

given by Equation (2.2) in two respects. First, the convex combination of CI and

CR terms yields more consistent performance than applying α to only the CR term.

Second, due to the nature of continuum estimation, CR signatures contain many

values near zero, which provides little discriminating information among signatures

when combined with the CI distance measure. We observed experimentally that

scaling the CR signatures by their L2 norms provides a greater degree of contrast

between classes by allowing the most prominent absorption features to play a greater

role in discrimination, in comparison to normalizing by the variance of CR distances

(as we described in Chapter 2). Additionally, L2 normalization has the benefit of

mapping the CR signatures to the same range as the CI signatures, which enables

fine-tuning of the weight parameter α according to input data. However, we note

that L2-normalization can exacerbate noise when CR signatures contain spurious

absorption features, whereas a “global” scaling factor (such as the variance of CR
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distances) does not accentuate noise on individual signatures.

3.1.1 LDA for Hybrid Similarity Measures

Continuum removal

Measure dCI, dCR 
between-/within-class 

separation 

L2 normalizationL2 normalization

CI spectra 

CR spectra

Compute w=[wCI, wCR]
maximizing LDA objective 

Normalized CI 
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Normalized CR 
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Figure 3.1 : Processing steps for calculating
dCICR weight parameter α.

Figure 3.1 gives an overview of the

methodology we use to calculate the

weight parameter α in Equation (3.1).

Given a set of N vectors {xi}Ni=1, xi ∈ Rn

belonging to K classes, with labels yi ∈

[1, K], we calculate α using a method

inspired by linear discriminant analysis

(LDA) ([Fisher, 1936; Rao, 1948]). LDA

computes the vector w that maximizes

the Rayleigh quotient (using the formu-

lation given in [Hastie et al., 2011])

S = (wTMBw)(wTMWw)−1, (3.4)

where MB and MW are (symmetric, positive-definite) between-class separation and

within-class scatter matrices. We form the MB and MW matrices according to the

capabilities of each of the {dCI, dCR} measures in separating the given classes.

MB =



sb(dCI, dCI) sb(dCR, dCI)

sb(dCI, dCR) sb(dCR, dCR)


 , (3.5)

MW =



sw(dCI, dCI) sw(dCR, dCI)

sw(dCI, dCR) sw(dCR, dCR)


 , (3.6)
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where sb(d1, d2) and sw(d1, d2) are the between-class and within-class separation,

respectively, according to distance measures d1 and d2

sb(d1, d2) =
1

N

K∑

j=1

Njd1(µj,µ)d2(µj,µ), (3.7)

= sb(d2, d1) (3.8)

sw(d1, d2) =
1

N

K∑

j=1

∑

i:yi=j

d1(xi,µj)d2(xi,µj) (3.9)

= sw(d2, d1). (3.10)

Here,
{
µj
}K
j=1

are the mean vectors of each of the K classes, µ is the mean of the µj ,

and Nj is the number of samples in class j.

The first (largest) eigenvector of M−1
W MB, w, maximizes Equation (3.4), with

separation S equal to the corresponding eigenvalue [Hastie et al., 2011]. The com-

ponents of w = [wCI , wCR] provide a weighting of the CI and CR distances with

good class separation on training data, but is not necessarily convex as we require

in Equation (3.1), and may not generalize well to test data. Because Rayleigh

quotients are invariant with respect to scaling of w (i.e., for any c > 0, cw also

maximizes Equation (3.4)) [Horn and Johnson, 1985], we scale the components of w

to a convex range by dividing each component by ‖w‖1. This yields the convex pair

{wCI/‖w‖1, wCR/‖w‖1} = {(1− α), α}, as desired.

As Equation (3.4) can become ill-posed, we regularize the within-class scatter

matrix via a shrinkage operator:

M′
W = (1− γ)MW + γI, (3.11)

where γ ∈ [0, 1] is a (convex) regularization parameter, and I is the (2× 2) identity
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matrix. In practice, we select γ via cross-validation, using the methodology described

in the next section.

3.1.2 Complexity Analysis

Calculating α using our LDA-based method is significantly less computationally

expensive than a brute force search over the range of α values. Quantitatively,

assuming N samples of dimensionality D belonging to K classes, we first compute

the continuum-removed representation of each spectrum using our piecewise linear

continuum estimation procedure – an O(D) operation per spectrum. Then, given the

set of (pre-computed) class means, a MinDist classifier must compare each signature to

each class mean, an O(DNK) operation. Let αLS be the current α value we consider,

and let A be the number of values αLS can take in the [0, 1] range (in this work, we

choose A=100). Using brute force search, we apply the O(DNK) MinDist classifier A

times. With the LDA-based method, calculating the (symmetric) MB involves three

O(DK) operations and MW involves three O(DN) operations, and calculating the

eigendecomposition of the (2× 2) M−1
W MB matrix can be done in constant time. This

amounts to roughly an A-fold improvement in performance by the LDA-based method

over line search. Because A must be large enough to adequately cover the weight

parameter space, our method is an order of magnitude faster than brute-force search.

3.1.3 Evaluation Methodology

We compare the performance of the adaptive dCICR measure to the dCI and dCR

measures using a minimum distance to class means (MinDist) classifier with 5-fold

random stratified sampling, using 50% for training and the remaining 50% for testing.

In each scenario, we select at most N samples for training in each fold, and use N
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samples for testing. When fewer than 2N samples are available for a given class, we

randomly split the available samples evenly into training and testing sets in each fold.

We calculate α by maximizing S(α) as described in Section 3.1. We compare this α value

to the αLS value obtained by line search (LS) on a uniformly spaced range of 100 points,

αLS ∈ (0, 1), that yields the highest training classification accuracy. We report accuracy

on only test data according to accuracy = (# of True Positives)/(# of Samples).

Accuracies produced via line search are an approximate upper bound on achievable

accuracy.

For the scenarios described below, we select the γ with the best classification

accuracy on the training set over 10 uniformly spaced values in [0.001,0.1]. We chose

this range because smaller γ values tended to yield ill-posed solutions, and larger

values did not improve classification accuracy in any of the scenarios we consider –

regardless of α. We calculate γ once for each scenario, and use the same value for each

cross-validation fold. We also reject any γ values that produce solutions to M−1
W MB

with no positive eigenvalues, as such γ yield rank-deficient M′
w (Equation (3.11)).

3.1.4 Case Study: Ocean City AVIRIS Spectra

The starting point of the work described in this section is a set of reflectance spectra

sampled across distinct material species from the AVIRISLA image of Ocean City,

MD described in Section 2.4.3. The 35 SOM clusters resulting from [Merényi et al.,

2007] guided the extraction of a trustworthy representative subset of spectra for

this study, by stratified random sampling across 14 of those 35 clusters for which

material identification was unambiguous and which served the methodology design for

evaluating the adaptive dCICR measure. The experimental design is explained below.

For this work the reflectance spectra were extracted from the already pre-processed
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Ocean City image.
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Figure 3.2 : Ocean City CI and CR mean signatures for Minor (top) and Major
absorption classes (bottom). Top inset: detail view of Minor absorption signatures,
wavelengths 1.5-2.5µm. The disconnected regions near 1.3-1.5 and 1.7-2.0 µm consist
of noisy bands removed due to water saturation. CI signatures are scaled by their L2

norms to compensate for varying illumination conditions.

We examine three different spectral scenarios specifically constructed to contrast

the performance of the adaptive dCICR measure. In the first scenario, all samples

contain only minor absorptions, where we define a “minor” absorption as one with

no CR band depths greater than threshold τ ; we use τ = 0.1 (10% absorption with

respect to the continuum) in this work. In this case, we anticipate similar classification
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accuracies from the dCICR and dCI measures, since the CR signatures lack prominent

absorption features (and therefore are flat and uninformative). The classes in this

scenario consist of asphalt rooftop materials (class A), roads/parking lots (classes I, J,

T, W, and h), and dry beach sand (class e). Figure 3.2 (top) shows the CI and CR

mean signatures for these classes. In the second scenario, all signatures contain one or

more major absorptions, where we define major absorptions as those with CR values

greater than τ . Here, we anticipate a more significant boost in accuracy in comparison

to the Minor absorption scenario, as the CR signatures are more informative. The

subset of data in this scenario consists of vegetation (classes L and M), a tennis court

(class C), wet sand (classes O and Q), and composite rooftop materials (classes D and

U). Figure 3.2 (bottom) shows the CI and CR mean signatures for these classes. The

7 spectral species in each of the Major and Minor absorption categories are relatively

“pure” representatives of their respective species. The last scenario, Combined, consists

of all classes from both Major and Minor absorption scenarios. We anticipate notable

performance gains with the dCICR measure in this scenario, as both the CI and CR

signatures provide information to discriminate between classes.

Figure 3.3 characterizes the relationship between the number of labeled samples

provided for training vs. classification accuracy. In each of the three scenarios, the

dCICR-based classifiers match or outperform the dCI-based classifier. Additionally, our

LDA-based technique for calculating α performs nearly as well ≈0.5-1% difference in

accuracy as brute force search when enough training samples (about 50 / class, for these

scenarios) are available. We observe the most significant performance gains of the three

scenarios in the Combined scenario, where the dCICR measure can exploit absorption

features to separate the classes belonging to the Major and Minor absorption scenarios

and also can capitalize on the absorption characteristics of individual classes. dCR

performs the worst in all three cases, and is not shown in Figure 3.3 to emphasize the
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performance of the other measures.
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Figure 3.3 : Classification accuracy vs. num-
ber of (training) samples per class for Minor
absorption (top), Major absorption (middle)
and Combined (bottom) scenarios. In each
scenario, the LDA-based dCICR measure (ma-
genta line) outperforms the baseline dCI-based
classifier (blue line), and with enough training
samples (∼20-30, scenario dependant) achieves
classification accuracy comparable to line search
(red line). dCR-based classification accuracy not
shown above due to significantly lower accura-
cies (∼65-77%) in comparison to the dCI and
dCICR-based classifiers.

We now consider a “typical” clas-

sification problem consisting of 100

training samples per class. Figure 3.4

gives the overall and per-class classi-

fication accuracies for α ∈ [0, 1]. The

vertical magenta dashed line marks

the α value determined by maximiz-

ing Equation (4.2), and the black

vertical line gives αLS. Table 3.1 pro-

vides average accuracies for each mea-

sure. In all three scenarios, small al-

pha values (< 0.3) yield the highest

classification accuracies (though we

do not constrain the search to this

range). This indicates that, for this

data set, CI signatures are more ro-

bust descriptors than CR signatures

for classification. This is particularly obvious in the Minor absorption scenario (Fig-

ure 3.4, top), where the CR signatures lack discriminative features. Here, classification

accuracy using dCI is close to dCICR, and both our method and the line search produce

α values near zero.

For the Major absorption classes (Figure 3.4, middle), note that the rate of decrease

in classification accuracy is less dramatic as α approaches one, by comparison to the

Minor (top) and Combined (bottom) absorption scenarios. This indicates that the CR

signatures provide additional discriminating information, which increases the α values
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Figure 3.4 : α vs. per-class dCICR classification accuracy for Minor (top), Major
(middle) and Combined (bottom) absorption classes. Colored lines indicate per-class
accuracies, and the black solid line gives the overall classification accuracy. The black
vertical bar gives αLS, and the magenta vertical bar gives α. The horizontal lines
give the CI (red, α = 0) and CR (blue, α = 1) classification accuracies. Because
the CI representation is generally more informative than CR, α values tend towards
zero, but larger values occur in cases when the CR representation provides additional
discrimination information (as in the Major and Combined absorption class scenarios).

yielding higher classification accuracy. Correspondingly, the maximum separation also

shifts towards larger α values. Although α and αLS differ the most in this scenario,

their corresponding classification accuracies are not far apart (97.4% vs. 98.4%). Both

are improvements over the baseline dCI accuracy (1.5% and 2.5% relative improvements

for our LDA-based α and αLS, respectively).

In the Combined scenario (Figure 3.4, bottom), due to potentially increased

class confusion among signatures (compared to the other two scenarios), locating a

compromise between the CI and CR terms is challenging. As we see in Figure 3.4,
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dCI dCR dCICR (α = 0.5) dCICR (α± σα) dCICR (αLS ± σαLS
)

Minor 88.5 66.1 66.7 90.1 (0.0510±0.0375) 90.4 (0.0485±0.0003)
0.83 1.10 0.72 0.71 0.74

Major 92.9 76.7 81.3 97.4 (0.1493±0.0041) 98.4 (0.0770±0.0195)
0.98 1.51 1.67 0.98 0.32

Combined 88.2 66.4 70.6 91.4 (0.0903±0.0006) 92.6 (0.0670±0.0057)
1.28 1.12 0.64 0.35 0.78

Table 3.1 : Mean and standard deviation of classification accuracy obtained with each
of the dCI, dCR, dCICR measures shown in Figure 3.4. Results using the unweighted
dCICR measure (α = 0.5) are also provided. Mean and standard deviation (σ) of α
values for dCICR measures are given in parentheses. The most accurate measure for
each scenario (excluding the αLS-based measure) is given in bold text.

the mean classification accuracy for this scenario generally falls between the mean

accuracies of the Minor and Major absorption scenarios. However, we see the most

significant improvement, over the baseline dCI method, in classification accuracy in

this scenario (4.5%, by comparison of the thick black line to the horizontal red dashed

line in Figure 3.4, bottom), vs. the other two scenarios, since both the CI and CR

representations provide complimentary information to discriminate the classes. This

is noteworthy given that the CI and CR classification accuracies in the Combined

scenario are close to those of the Minor absorption scenario (88.5% vs. 88.2% and

66.1% vs. 66.4%, in the Combined vs. Minor scenarios, respectively), yet the relative

improvement in the Minor scenario is, not surprisingly, lower (1.7%).

3.2 Comparisons to Related Work

The problem of combining multiple similarity measures is closely related to the problem

of combining predictions produced by multiple classifiers. Hansen and Salamon [1990]

and later Dietterich [2000] showed that a Combined set of classifiers can be more

accurate than the best of the individual classifiers if and only if each classifier produces

better than random error (i.e., each classifier is accurate) and the classifiers produce
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uncorrelated errors with respect to one another (i.e., the classifiers are diverse). As

the accuracy of a classifier is coupled with the quality of the similarity measure used

to compare samples, a similar theory holds when combining similarity functions. Lee

et al. [2010] empirically illustrated this connection by measuring classification accuracy

on separate vs. combined Euclidean distance measures on separate representations

of identical samples. They observed that as the distances produced by each measure

became less correlated, classification accuracy using the combined measure typically

improved.

We may also view a hybrid measure as a form of feature weighting where the

features of input samples are scaled according the discriminative capabilities of a

particular representation. For instance, the dCICR measure may be viewed as a weighted

form of the distance measure d(xi,xj) whose outputs are scaled according the overall

discriminative utility of the absorption features. This is similar in many ways to

applying a feature selection or dimensionality reduction procedure to determine which

spectral features are most relevant to the classification task. Here, we compare our

results using the adaptive dCICR measure to several conventional feature selection

/ dimensionality reduction techniques. We consider univariate χ2
p feature selection,

where we select the top p% of features by discarding statistically independent features

according to the χ2 criterion [Manning et al., 2008, Eq. 136], and Recursive Feature

Elimination (RFE, [Guyon et al., 2002]), which iteratively removes features that

contribute the least to a decision function of a generalized linear model. We also

consider the feature weighting approach where we compute weight vector w applied to

each sample x as x = [w1x1, . . . , wnxn] using a L1-penalized generalized linear model

(GLM) ([Guyon and Elisseeff, 2003]). We remove any features whose corresponding

weight is zero, thereby reducing the dimensionality of the feature space from n to

nw 6=0, where nw 6=0 is the number of nonzero values of w. Additionally, we consider the
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dimensionality reduction techniques principal components analysis (PCA), selecting

the top m principal components that explain 99% of the observed variance, and

LDAFW, where we map features to a K − 1 dimensional space using regularized

feature-weighted Linear Discriminant Analysis (described in detail later in Chapter 4).

We mimic the methodology described in Section 3.1.3, and evaluate the classification

accuracy in each of the Ocean City scenarios using five cross-validation folds. As

before, we evenly split the data from each scenario into training and test sets, and

compute the vector of feature weights w, or, in the case of PCA and LDA, the

transformation T (x) : Rn → RK−1, using the (CI) training set, and then classify

the weighted/transformed test spectra using the MinDist classifier. For the RFE, L1

and LDAFW algorithms, we select the scalar regularization parameter γ from the set

{10−10, . . . , 10−2, 0.2, . . . , 0.8, 1− 10−2, . . . , 1− 10−10} that yields the highest accuracy

on the training data.

Baseline Feature Selection/Dimensionality Reduction dCICR

dCI dCR χ2
25 χ2

50 RFE L1 PCA LDAFW LDA LS
Minor 0.8866 0.6580 0.8376 0.8875 0.8848 0.8872 0.8819 0.9172 0.9032 0.9055

0.0076 0.0208 0.0090 0.0083 0.0114 0.0163 0.0099 0.0095 0.0049 0.0065
Major 0.9250 0.7750 0.8493 0.8917 0.9330 0.8638 0.9203 0.9714 0.9721 0.9754

0.0186 0.0101 0.0093 0.0143 0.0159 0.0573 0.0127 0.0062 0.0075 0.0029
Combined 0.8654 0.6730 0.8302 0.8441 0.8617 0.8310 0.8672 0.9176 0.9076 0.9207

0.0069 0.0075 0.0064 0.0060 0.0056 0.0125 0.0063 0.0049 0.0111 0.0045

Table 3.2 : Mean (shaded rows) and standard deviation (unshaded rows) of dCICR

results in comparison to feature selection methods. The best and second-best per-
forming techniques (excluding dCICR LS) for each scenario are given in red and blue
italics, respectively. LDAFW yields the best overall performance, though dCICR LDA
performs competitively at lower computational cost.

Table 3.2 gives the classification accuracies for the baseline dCI, dCR, and dCICR

measures in comparison to the feature selection and dimensionality reduction tech-

niques. Perhaps unsurprisingly, LDAFW gives the best overall performance across the

three scenarios, as it can exploit discriminative characteristics of individual spectral
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features. However, the performance of dCICR is competetive to LDAFW, and can be

achieved at significantly lower computational cost. Of the remaining feature selection

algorithms, only RFE yields an improvement over the baseline dCI measure in the

Major absorption scenario, and it is still 3-5% less accurate than both LDAFW and

dCICR with LDA. One caveat is that both RFE and L1 select features according to the

weights of a GLM, and thus, their selected features may be suboptimal for a MinDist

classifier. However, this suggests that such techniques are limited in that they are

tied to a specific classification technique, whereas dCICR can be substituted into any

similarity-based classification algorithm.

3.3 The Adaptive Sobolev Measure

Thus far, we have shown that our hybrid LDA framework can efficiently and accurately

combine CI and CR-based Euclidean distances. In this section, we describe how we

extend our hybrid LDA framework to exploit the functional properties of spectral data

using a distance measure based upon the Sobolev distance. Specifically, we define a

convex weighted form of the parameterized Sobolev distance proposed by Villmann

and Hammer [2009] that automatically weights distances between spectral derivates

according to their relevance to the classification problem.

The form of the Sobolev distance we consider measures the distance between

spectral signatures xi and xj according to

dSκ(xi,xj) =
κ∑

l=0

γlαl d(l)(xi,xj) (3.12)

d(l)(xi,xj) = ‖x(l)
i − x

(l)
j ‖ (3.13)

where d(l) is the Euclidean distance between the lth spectral derivatives of xi and xj , γl
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are scaling factors applied to each derivate (described below), and αl are convex weight

parameters (i.e., αl ∈ [0, 1],
∑

l αl = 1) determining the contribution of each derivate

in the hybrid measure. When κ = 1, dSκ reduces to the Euclidean distance (i.e., d(0)).

We equalize the contribution of the derivates by setting γl = 1/

√
var
(

d(l)
)

, where

var
(

d(l)
)

is the sample variance with respect to derivate l. This maps the derivates of

each sample to at most unit variance, and allows us better fine-tune the αl weight

parameters according to data-specific characteristics. As with the dCICR distance, we

are faced with the problem of estimating the relevances of each of the d(l) distances

to maximize classification accuracy. To achieve this goal, we turn to our LDA-based

hybrid metric learning method from Section 3.1.1. We calculate the vector of weights

α = [α1, . . . , ακ] by extending the MW and MB matrices (Equations (3.5) and (3.6))

to measure the within and between class separation for each of the κ derivates, as

follows:

MB =




sb(d
(1), d(1)) . . . sb(d

(κ), d(1))

...
. . .

...

sb(d
(1), d(κ)) . . . sb(d

(κ), d(κ))




(3.14)

MW =




sw(d(1), d(1)) . . . sw(d(1), d(κ))

...
. . .

...

sw(d(1), d(κ)) . . . sw(d(κ), d(κ))



, (3.15)

where sb and sw are computed using Equations (3.7) and (3.9), respectively.

3.3.1 Evaluation Methodology

We mimic the evaluation methodology described in Section 3.1.3, with two key differ-

ences. First, we consider a wider range of γ values than in our previous evaluation.
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Specifically, we select γ from the {10−10, . . . , 10−2, 0.2, . . . , 0.8, 1− 10−2, . . . , 1− 10−10}.

Second, because we now must select a vector of αi values of the form αLS =
[

α1∑κ
l=1 αi

, . . . , ακ∑κ
l=1 αi

]
, we limit the size of the line search space (LS) by allowing

each αl to take A = 15 (rather than A = 100, as before) uniformly spaced values in

the [0, 1] range. This is due to the fact the search space is of size O(Aκ−1), which

becomes too large to search exhaustively for large values of A and κ. We evaluate the

classification accuracy using the d(l) measure for l ∈ {0, 1, 2, 3}, and with the Sobolev

measure with κ ∈ {1, 2, 3}. We consider the unweighted (i.e., αi = 1/κ) Sobolev

measure (UW), the LDA-based measure (LDA) and the αLS-based measure (LS). In

each scenario, we consider the same set of 100 training and 100 testing samples per

class as we used in Section 3.1.4.

3.3.2 Evaluation on Ocean City AVIRIS Imagery

We evaluated the performance of our adaptive Sobolev measure on the Minor, Major,

and Combined absorption scenarios sampled from the Ocean City AVIRIS image,

as described in Section 3.1.4. Table 3.3 gives the classification accuracy for each

of the Ocean City scenarios using the d(l) and dSκ measures. We typically observe

2-4% improvements in classification accuracy using the Sobolev measures over the

baseline Euclidean distance (d(0)) and the remaining d(l) measures. The LDA-based

Sobolev measure generally produces slightly (1-2%) more accurate results than the

unweighted Sobolev measure. However, the improvements in classification accuracy

between the LDA and unweighted Sobolev measures are not nearly as significant as

previously observed using our LDA-based technique with the dCICR measure. Moreover,

we observe that both the unweighted and LDA-based Soboev measures decrease in

accuracy as κ increases. This reduction in accuracy with respect to increasing κ is
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partially explained by the poor performance by the d(l)-based measures for the larger

l values, indicating that the higher-order derivates are more ambiguous than the

lower-order derivates. This is not surprising, as the derivatives become more smooth

with increasing κ, eventually becoming completely flat as κ→∞. However, despite

the ambiguity of the higher-order derivates, the LS-based Sobolev measure becomes

more accurate with increasing κ values by exploiting the additional degrees of freedom

provided with larger κ values in conjunction with the true class labels.

d(l) dSκ , κ = 1 dSκ , κ = 2 dSκ , κ = 3

d(0) d(1) d(2) d(3) UW LDA LS UW LDA LS UW LDA LS
Minor 0.8863 0.7717 0.6362 0.6364 0.9047 0.9108 0.9210 0.8808 0.9090 0.9254 0.8627 0.9052 0.9268

0.0134 0.0128 0.0067 0.0104 0.0134 0.0052 0.0043 0.0090 0.0077 0.0025 0.0084 0.0121 0.0066
Major 0.9256 0.9299 0.8857 0.8759 0.9616 0.9659 0.9707 0.9630 0.9703 0.9830 0.9543 0.9688 0.9804

0.0108 0.0093 0.0104 0.0110 0.0087 0.0120 0.0063 0.0088 0.0178 0.0022 0.0085 0.0049 0.0031
Combined 0.8698 0.8276 0.7219 0.7082 0.9123 0.9121 0.9257 0.8976 0.9011 0.9300 0.8925 0.8967 0.9321

0.0056 0.0137 0.0077 0.0090 0.0071 0.0070 0.0021 0.0079 0.0081 0.0045 0.0087 0.0075 0.0052

Table 3.3 : Mean (shaded rows) and standard deviation (unshaded rows) of classifi-
cation accuracy on Ocean City spectra obtained with the d(l) measures for derivates
l ∈ {0, 1, 2, 3}, and with the dSκ measure for κ ∈ {1, 2, 3}. The best and second-best
of the UW and LDA-based accuracies in each scenario are given in red and blue italics,
respectively.
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Figure 3.5 : Correlation coefficients for d(l)-based distances from each labeled sample
to its class mean. Only d(0) is substantially uncorrelated to the remaining d(l).

The reduced classification accuracy using the unweighted and LDA-based Sobolev

measures with large κ values can be explained by considering both the performance of

the d(l) measures and the correlation between the outputs produced by each of the d(l)
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measures. Figure 3.5 gives the correlation coefficients for d(l)-based distances from

each labeled sample to its class mean. As we can clearly see, distances produced by

the d(0) measure exhibit much lower correlation values to the d(l), l > 0 measures in

each scenario. The high correlations between the d(l), l > 0 distances is unsurprising,

as each derivate is simply a linear transformation of each spectral signature. The

intuition here is that a classifer trained using one of two distinct similarity measures

will produce increasingly similar errors as the correlation between the outputs each

measure increases, an effect also observed by Lee et al. [2010]. Consequently, a hybrid

measure consisting of several correlated distance measures will produce similar errors

as the individual distances. This fact, combined with the decreasing performance of

the d(l) measures with increasing l, explains the increased accuracy using both the

unweighted and LDA-based Sobolev measures with κ = 1 over d(0), and the decrease

in accuracy between the (κ = 1)-based and (κ > 1)-based unweighted and LDA-based

Sobolev measures. This effect did not occur for our previous experiments with the

CICR measure, where the CI and CR distaces were relatively uncorrelated. The

LS-based measure does not suffer from these issues to the same degree in that it can

explicitly select the αi weights which maximize classification accuracy on both training

and test data, at significantly higher computational cost.

An additional side-effect of the high correlation between the higher-order d(l) is that

the within-class scatter matrix (Equation (3.9)) does not provide useful discriminating

information, and consequently we favor γ values near one. Table 3.4 gives the γ values

with respect to κ for the LDA-based Sobolev measure. Note that the smallest γ value

occurs in the Major absorption scenario for κ = 1, where we observe (in Table 3.3)

similarly high classification accuracies for d(0) and d(1). As κ increases, γ also increases

as the ambiguity between the within-class distances for higher order d(l) increases.
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Minor

κ = 1
α1 α2

α 0.8088 0.1912
0.0038 0.0038

αLS 0.6260 0.3740
0.0646 0.0646

κ = 2
α1 α2 α3

0.7435 0.1797 0.0768
0.0080 0.0039 0.0052
0.6787 0.1693 0.1520
0.0725 0.0813 0.1017

κ = 3
α1 α2 α3 α4

0.6769 0.1693 0.0737 0.0801
0.0082 0.0021 0.0036 0.0039
0.7451 0.0000 0.0458 0.2090
0.0482 0.0000 0.0651 0.0549

Major

α 0.6882 0.3118
0.0437 0.0437

αLS 0.6235 0.3765
0.0687 0.0687

0.6365 0.1558 0.2077
0.0702 0.0403 0.0474
0.6805 0.1591 0.1604
0.0698 0.1544 0.1188

0.5360 0.1712 0.0960 0.1969
0.1674 0.0716 0.0897 0.0481
0.7021 0.0799 0.1113 0.1067
0.1060 0.1058 0.0776 0.0783

Combined

α 0.5013 0.4987
0.0027 0.0027

αLS 0.5637 0.4363
0.0692 0.0692

0.3552 0.3418 0.3030
0.0062 0.0031 0.0043
0.6394 0.2427 0.1179
0.0548 0.0483 0.0663

0.2911 0.2606 0.2210 0.2273
0.0045 0.0019 0.0027 0.0028
0.6934 0.0586 0.0624 0.1856
0.0339 0.0752 0.1036 0.1178

Table 3.5 : Mean (shaded rows) and standard deviation (unshaded rows) of α and αLS

values for Ocean City spectra obtained with the dSκ measure for κ ∈ {1, 2, 3}. The
first and second largest αi for i ∈ {1, . . . , κ} values for both α and αLS are given in
red and blue italics, respectively.

κ = 1 κ = 2 κ = 3

Minor 1.0000 1.0000 1.0000

4.00e-7 4.89e-7 4.89e-7

Major 0.9520 0.9900 0.9920

0.0760 0.0000 0.0040

Combined 0.9999 0.9999 0.9999

0.0000 0.0000 0.0000

Table 3.4 : Mean (shaded rows) and
standard deviation (unshaded rows) of
γ values with respect to κ for the LDA-
based Sobolev measure.

Examining the differences between the

LDA-based α vs. αLS values for the Ocean

City scenarios is also instructive (shown in

Table 3.5). We see that, for κ ∈ {1, 2}, the

LDA-based α closely approximates αLS in

both of the Major and Minor scenarios, but

in the Combined scenario only the κ = 1 α

aligns well with αLS. The α estimates differ

from αLS most significantly for κ = 3 in all

three scenarios, though arguably less so for the Minor and Major scenarios. These

results are no surprise, as the d(l) distances become more highly correlated to one

another for increasing values of l, and are most correlated in the Combined sce-

nario. Consequently, the α predictions become less stable when the distances are

highly-correlated.



85

3.3.3 Asymptotic Behavior

While theory suggests that the asymptotic behavior of the Sobolev distance given

in Equation (3.12) converges to the Sobolev distance consisting only of derivatives 0

and κ [Villmann, 2007], our observations show that in practice, data characteristics,

errors induced in differentiation and combining redundant d(l) distances may decrease

the accuracy of the Sobolev measure for large κ. A solution is to avoid summing all

derivates l ∈ {1, . . . , κ}, but instead to select a single derivate l > 1 that contributes

to the Sobolev distance, as follows:

d′Sκ(xi,xj) = γ0α
′
0d

(0)(xi,xj) + γlα
′
ld

(l)(xi,xj) (3.16)

= γ0(1− α′l)d(0)(xi,xj) + γlα
′
ld

(l)(xi,xj). (3.17)

Once again, {α′0, α′l} ∈ [0, 1] are scalar weight parameters that emphasize the contri-

bution of their respective derivate (described in detail below). We now need to select

the l that produces the best classification accuracy for a given data set. The obvious

approach implied from theory is to simply assign l = κ. We refer to this approach

as lκ. However, this approach may yield poor performance for large κ when the

higher-order derivates become uninformative for classification. Thus, we also select the

l corresponding to the maximum LDA-based weight according to l = argmax
`, `>0

α` ∈ α.

We call this approach lLDA. Given this l value, we form the convex combination

{α′0, α′l} = {1− α′l, α′l} by re-weighting the {α0, αl} from our previous estimate of α

as follows

α′l =
αl

α0 + αl
, {α0, αl} ∈ α. (3.18)

For comparison, we also evaluate the classification accuracy using the unweighted (i.e.,

α′l = 0.5) version of Equation (3.17). As before, we use the notation UW to refer to
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the unweighted versions of the lκ and lLDA-based d′Sκ measures, respectively.

Table 3.6 gives the classification results for the dSκ vs the d′Sκ measures for

κ ∈ {2, 3}. In most cases, the weighted versions of lκ and lLDA outperform their

unweighted counterparts, though the differences are not particularly significant in

the Minor and Major scenarios. In the Combined scenario, we see a small (≈ 1%)

improvement using the weighted d′Sκ measure for κ = 2, but observe only a slight

increase for κ = 3 using the weighted d′Sκ measure vs. its unweighted counterpart. It

is interesting to note that the lκ and lLDA accuracies, along with their corresponding

unweighted versions, produce very similar results. This observation suggests that

in cases where lLDA 6= lκ and the classification accuracies of d(κ) and d(lLDA) are

comparable, using either method to select l produces similar results with the d′Sκ

measure.

More interesting perhaps is the comparison between dSκ and d′Sκ . In all three

scenarios, both the weighted and unweighted d′Sκ measures yield accuracies comparable

to the LDA-based dSκ . However, while the dSκ versus the d′Sκ accuracies in the Minor

and Major scenarios do not differ significantly, d′Sκ consistently outperforms dSκ in

the Combined scenario by 0.5− 1.5%. The Combined scenario results indicate that in

cases where it is unclear which derivates are the most informative, a good strategy is

to select the most relevant of the d(l) (l > 0) measures based upon our initial estimate

of α, and re-weight d(0) and d(l) in Equation (3.17) according to Equation (3.18).

Although the results given in Table 3.6 show only a small (0.5-1.5%) difference

in accuracies between the dSκ and the d′Sκ measures, it is important to note that the

lκ and lLDA measures produce roughly the same accuracies independent of the value

of κ, whereas the accuracies produced using the LDA-based dSκ measure decrease

slightly with increasing κ. While this effect is not particularly dramatic, with less

than a 0.5% decrease for the LDA-based dSκ measure, we expect larger κ values to
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κ
=

2

dSκ d′Sκ
UW LDA LS UWlκ lκ UWlLDA lLDA

Minor 0.8808 0.9090 0.9254 0.8930 0.9058 0.9111 0.9087
0.0090 0.0077 0.0025 0.0147 0.0103 0.0106 0.0089

Major 0.9630 0.9703 0.9830 0.9645 0.9652 0.9645 0.9659
0.0088 0.0178 0.0022 0.0129 0.0166 0.0129 0.0152

Combined 0.8976 0.9011 0.9300 0.9058 0.9147 0.9058 0.9163
0.0079 0.0081 0.0045 0.0070 0.0093 0.0070 0.0041

κ
=

3

UW LDA LS UWlκ lκ UWlLDA lLDA
Minor 0.8627 0.9052 0.9268 0.9006 0.9087 0.9000 0.9067

0.0084 0.0121 0.0066 0.0050 0.0062 0.0039 0.0065
Major 0.9543 0.9688 0.9804 0.9638 0.9645 0.9620 0.9659

0.0085 0.0049 0.0031 0.0044 0.0061 0.0044 0.0050
Combined 0.8925 0.8967 0.9321 0.9105 0.9144 0.9142 0.9165

0.0087 0.0075 0.0052 0.0058 0.0063 0.0053 0.0052

Table 3.6 : Mean (shaded rows) and standard deviation (unshaded rows) of classifica-
tion accuracy on Ocean City spectra obtained with the dSκ and the d′Sκ measures for
κ ∈ {2, 3}. The best and second-best accuracies (excluding the LS-based measure) for
each value of κ in each scenario are given in red and blue italics, respectively.

decrease classification accuracy more substantially using the LDA-based dSκ measure.

Specifically, based upon our results from Table 3.5 for κ = 3, we see that the most

second most-relevant αi weights according to α and αLS differ in all three scenarios.

Additionally, the scales of the most-relevant weights (i.e., α1) according to α and αLS

also differ substantially, particularly in the Combined scenario. These issues suggest

that the weights computed using the LDA-based dSκ measure may not accurately

reflect the relevances of the individual distance measures to the classification task when

an increasing number of the independent measures are highly correlated. The d′Sκ-

based measures are less susceptible to this issue, as they discard the least-informative

d(l) distances.



Chapter 4

Feature-Weighted Similarity Measures

Portions of this chapter are based upon the following publications:

• BD Bue, DR Thompson, MS Gilmore, and R Castaño. “Metric Learning for Hyper-
spectral Image Segmentation”. Workshop on Hyperspectral Image and Signal Process-
ing: Evolution in Remote Sensing (WHISPERS) [2011].

• BD Bue. Low-rank Mahalanobis Metric Learning for Hyperspectral Image Classification:
A Comparative Survey. Tech. rep. Rice University (in preparation), 2013.

In Chapter 3 we considered the problem of learning a hybrid similarity measure

consisting of a weighted combination of several distinct similarity measures. Such

techniques are well-suited to scenarios where multiple similarity measures are available,

each capturing uncorrelated notions of similarity. However, such notions of similarity

are not always straightforward to define, and often require detailed a priori knowledge

of the problem domain. An alternative, but complimentary, approach to hybrid

metric learning is to learn the relevances of the individual features each sample

represents with respect to the classification task. In this chapter∗ we consider the

problem of low-rank Mahalanobis metric learning, where the objective is to learn a

linear transformation matrix from Rn to Rm, m << n, that induces a Mahalanobis

distance measure. We provide a comprehensive evaluation of several Mahalanobis

metric learning algorithms on the Ocean City, MD AVIRIS spectra described in

Chapter 3, in addition to three well-studied, high-dimensional hyperspectral images

captured by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)

instrument. We show empirically that, when properly regularized, multiclass LDA

∗The work described in this chapter was performed in collaboration with David Thompson, Martha
Gilmore and Rebecca Castaño, with assistance from Erzsébet Merényi and Marika Kästner.
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is not only significantly more efficient, but also produces more stable and accurate

results than several widely-used Mahalanobis metric learning algorithms. We then

propose a methodology to improve hyperspectral image segmentation results using

learned Mahalanobis metrics, and compare the performance of metrics learned using

multiclass LDA vs. the state-of-the-art Information Theoretic Metric Learning (ITML)

algorithm. We demonstrate our methodology by segmenting the three aforementioned

CRISM images and show that segmentations produced using learned metrics are both

visually and quantitatively superior to those produced using the Euclidean distance.

4.1 Mahalanobis Metric Learning

The goal in Mahalanobis metric learning is to compute a n× n symmetric, positive

semi-definite matrix M that induces a Mahalanobis distance

d(xi,xj) = (xi − xj)
TM(xi − xj) (4.1)

that best separates N labeled samples (X, Y ) = {(xi, yi)}Ni=1, xi ∈ Rn representing K

classes with labels yi ∈ {1, . . . , K}. Because any n×n positive semidefinite matrix can

be decomposed into the product of a n×m matrix A with its transpose M = AAT ,

the Mahalanobis metric learning problem is often framed in terms of learning an

linear transformation A by optimizing an objective function f(A) with respect to the

labeled data.

Within the past decade, a number of approaches to learn Mahalanobis metrics

have been proposed (e.g.,[Davis et al., 2007; Globerson and Roweis, 2006; Goldberger

et al., 2005a; Tsang et al., 2005; Weinberger et al., 2006; Weizman and Goldberger,

2009; Xing et al., 2003]). Although the theoretical properties of several Mahalanobis
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metric learning algorithms have been compared [Yang and Jin, 2006], their relative

performances for high-dimensional, multiclass classification tasks have not been sys-

tematically evaluated. Moreover, the current literature does not adequately address a

number of challenges inherent to application domains where such classification prob-

lems arise, such as in hyperspectral image classification. Hyperspectral image data

are high-dimensional, often contain many, potentially nonlinearly-separable, classes

(K > 10), and in many cases, limited labeled data is available for training. Considering

each of these issues is essential to demonstrate the effectiveness of Mahalanobis metric

learning techniques for hyperspectral data, yet many existing studies only provide

results on data sets of relatively low dimensionality or on classification problems with

few classes (e.g., [Davis et al., 2007; Globerson and Roweis, 2006; Goldberger et al.,

2005a; Sugiyama, 2007; Tsang et al., 2005; Weizman and Goldberger, 2009; Xing

et al., 2003]). Additionally, several previous works [Davis et al., 2007; Jain et al., 2009;

Weinberger et al., 2006] propose applying a feature selection algorithm or transforming

data via Principal Components Analysis (PCA) as a preprocessing step before learning

the Mahalanobis metric. However, such preprocessing discards important functional

relationships between adjacent spectral bands, and often limits the classification

sensitivity to discriminate between spectrally-similar classes in hyperspectral data

[Merényi, 2000].

Current Mahalanobis metric learning techniques can be grouped into two categories:

LDA-based algorithms, and gradient-descent algorithms. LDA-based algorithms learn

the Mahalanobis matrix M = ATA in closed-form by solving some formulation of the

multiclass LDA objective function (Equation (4.2)). LDA-based algorithms have the

advantage of speed, but may produce degenerate transformations when the number

of features is greater than the number of available training samples. In contrast, the

computation time of the gradient-descent algorithms varies with the complexity of the
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learning problem, but such algorithms typically rely upon weaker assumptions than

the LDA-based algorithms, and do not necessarily produce degenerate transformations

when the number of features outnumber the number of training samples. Thus, it is

often argued that the benefits of gradient-descent algorithms in terms of classification

robustness outweigh their computational costs. Indeed, several works demonstrate

that such algorithms outperform LDA-based algorithms in various classification tasks

[Globerson and Roweis, 2006; Weinberger et al., 2006; Weizman and Goldberger,

2009]. However, recent results demonstrate that regularized versions of LDA perform

significantly better than the classical, unregularized form of LDA, often achieving

accuracies comparable to state-of-the-art gradient-descent algorithms [Alipanahi et al.,

2008] and more sophisticated classifiers such as SVMs [Bandos et al., 2009].

4.1.1 Low-rank Mahalanobis Metric Learning for

Hyperspectral Image Classification

The goal of this work is to provide a comparative study of several state-of-the-art

Mahalanobis metric learning algorithms evaluated on hyperspectral image classification

tasks. We focus on the problem of low-rank Mahalanobis metric learning, where our

objective is to learn a n×m transformation matrix A, where m << n. Applying such

a transformation reduces the dimensionality of the feature space, and potentially allows

for convenient visualization of high-dimensional data. We consider both LDA-based and

gradient-descent algorithms, and evaluate their performance on several hyperspectral

image classification tasks of varying complexity. We characterize the performance

of each algorithm in terms of its classification accuracy, computation time, and its

sensitivity to tuning parameters and the size of the training set. We demonstrate that

in most cases, multiclass LDA, combined with a simple and computationally efficient
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regularization procedure, performs as well or better than state-of-the-art techniques

for low-rank Mahalanobis metric learning, with significantly lower computation time.

We now review the main details of the algorithms we consider in this work, along

with information regarding their software implementations and our strategies for

computing their respective free parameters. For as direct comparison as possible to

previous works, we evaluate the K Nearest Neighbor (KNN) classification accuracy

using the Mahalanobis matrix M calculated by each algorithm. We fix the number

of neighbors for the KNN classifier to 3. All experiments are performed using 64-bit

Matlab v7.12 on a Macbook Pro with 2.66GHz Intel Core i7 processor with 4GB

memory. All implementations are pure Matlab implementations using native linear

algebra routines – no pre-compiled (e.g., Matlab mex) functions are used. For more

detailed information regarding each algorithm, we refer the reader to the corresponding

references.

LDA-based Algorithms

Multiclass Linear Discriminant Analysis: Multiclass Linear Discriminant Anal-

ysis (LDA, Fisher [1936]) is a classical approach for classification and dimensionality

reduction which has recently been applied in metric learning contexts (e.g., [Ghodsi

et al., 2008; Hayden et al., 2011]). To learn the transformation matrix A, we employ

a regularized version of multiclass LDA. Multiclass LDA calculates the transformation

matrix A which maximizes the ratio of between-class vs. within-class separation

f(A) =
det(ATMBA)

det(ATMWA)
, (4.2)
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where det(M) is the determinant of matrix M and MW and MB are the within and

between class scatter matrices, respectively, calculated according to

MW =
1

N

K∑

j=1

∑

i:yi=j

(xi − µj)(xi − µj)T (4.3)

MB =
1

N

K∑

j=1

Nj(µj − µ)(µj − µ)T , (4.4)

Here,
{
µj
}K
j=1

are the mean vectors of each of the K classes, µ is the mean of

the µj, and Nj is the number of samples in class j. By forming A from the top

K-1 eigenvectors of

M−1
W MB (4.5)

we define a projection into a K-1 dimensional subspace that captures the variability

between features with respect to training data [Fisher, 1938].

When the number of training samples is less than the number of features, Equa-

tion (4.2) may become ill-posed. To prevent this, we regularize MW using the shrinkage

operator

M′
W = (1− γ)MW + γIn, (4.6)

where In is the n× n identity matrix and γ ∈ [0, 1] is a regularization parameter that

controls the influence of the within-class scatter matrix in the objective function. We

use our LDA implementation from [Bue et al., 2011b] in this work †.

Local Fisher Discriminant Analysis: Local Fisher Discriminant Analysis (LFDA,

Sugiyama [2007]) combines LDA with an unsupervised dimensionality reduction tech-

nique known as Locality Preserving Projections (LPP, Niyogi [2003]). LFDA uses

†Available at: http://www.ece.rice.edu/~bdb1/#code

http://www.ece.rice.edu/~bdb1/#code
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local within-class and between-class scatter matrices M̃W and M̃B, defined as

M̃W =
N∑

i,j=1

W̃ij (xi − xj)(xi − xj)
T (4.7)

M̃B =
N∑

i,j=1

B̃ij (xi − xj)(xi − xj)
T , (4.8)

where the matrices W̃ and B̃ weight the pairwise local affinities Gi,j between xi and

xj, according to

W̃ij =





Gij/N` yi = yj = `

0 yi 6= yj

(4.9)

B̃ij =





Gij(1/N − 1/N`) yi = yj = `

1/N yi 6= yj.
(4.10)

Here, the local affinities are computed according to Gij = exp
(
‖xi−xj‖2

σ2

)
, where

σ approximates the width of the Gaussian Gij as the Euclidean distance between

xi and its kth nearest neighbor. As with LDA, LFDA computes A by maximizing

Equation (4.2), substituting M̃W and M̃B for MW and MB, respectively. However,

rather than forming A from the top K − 1 eigenvectors of Equation (4.5), the author

suggests using one of the following two methods (1) weighting the top m generalized

eigenvectors of Equation (4.5), {ψi}mi=1 according to

A =
(√

λ1ψ1| · · · |
√
λmψm

)
, (4.11)
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where λi is the eigenvalue associated with ψi; or (2) orthonormalizing the top m

eigenvectors via the QR decomposition. We experimented with both methods and

found that the orthonormalized A produced significantly better results than the

weighted A.

The primary benefit of using LFDA over traditional LDA is that sample pairs

that are far apart within the same class have less influence on M̃W and M̃B. This

better accounts for classes with multimodal structure, in comparison to the original

LDA formulation that assumes that each class is well-represented by its class mean.

Sample pairs in different classes are not weighted by LFDA since the objective is to

separate them regardless of their similarities in the original space. Additionally, while

the between-class scatter matrix in the original LDA formulation (Equation (4.4))

has maximum rank K − 1, the rank of the LFDA between-class scatter matrix is

generally much larger. Thus, LFDA permits dimensionality reduction to more than

K-1 dimensions. We use the LFDA implementation provided by the author‡, and

assign k = 3, using the same number of nearest neighbors we use with the kNN

classifier, as we describe in Section 4.1.2.

Discriminative Components Analysis: Discriminative Components Analysis

(DCA, Hoi et al. [2006]) is a metric learning technique closely related to LDA. The

primary difference between the two algorithms is in the form of class labels. While

LDA assumes the class labels for training samples are known, DCA assumes a set of

similarity/dissimilarity constraints between examples is provided, where each constraint

indicates whether a pair of samples are similar (positive constraint) or dissimilar

(negative constraint). DCA groups all of the samples with positive constraints together

into chunklets – groups of samples belonging to the same, but potentially unknown,

‡Available at: http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/index.html

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/index.html
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class. DCA then defines a discriminative set for each chunklet by identifying the

remaining chunklets that contain at least one negative constraint between them.

Given the N samples in C chunklets, each sample is then labeled according to their

discriminative sets {ŷi}Ni=1, ŷi ∈ [1, C]. Then, DCA calculates the within-class and

between-class scatter matrices using the chunklets as follows:

M̂W =
C∑

j=1

∑

i:ŷi=j

(xi − µ̂j)(xi − µ̂j)T (4.12)

M̂B =
C∑

j=1

Cj(µ̂j − µ̂)(µ̂j − µ̂)T (4.13)

where
{
µ̂j
}C
j=1

are the mean vectors of each of the C chunklets, µ̂ is the mean of the

µ̂j, and Cj is the number of samples in chunklet j. DCA forms A using the same

method as LDA, i.e., from the top m eigenvectors of Equation (4.2), substituting

M̂W and M̂B for MW and MB, respectively. When the similarity and dissimilarity

constraints defining the chunklets are constructed using all of the labeled samples

in the training set, the DCA objective reduces to the classical, unregularized LDA

described above (Equation (4.5)). However, we emphasize that DCA uses a subset

of the training samples based upon the number of classes to define the chunklets,

rather than the entire training set. We describe the method we use to select the

similarity/dissimilarity constraints that form the set of DCA chunklets in Section 4.1.2.

We use the DCA implementation provided by Yang§. We note that this implementa-

tion uses the optimization technique proposed in [Yu and Yang, 2001] to solve the LDA

objective function, and can be viewed as an alternative to the regularization-based

approach we apply for multiclass LDA (Equation (4.6)).

§Available at: http://www.cs.cmu.edu/~liuy/dca.zip

http://www.cs.cmu.edu/~liuy/dca.zip
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Gradient Descent Algorithms

Neighbourhood Components Analysis: The Neighborhood Components Anal-

ysis algorithm (NCA, Goldberger et al. [2005b]) learns a Mahalanobis distance metric

that minimizes an approximation of the leave-one-out (LOO) cross-validation error

of nearest-neighbor classification. Specifically, let Yi = {j|yi = yj} be the indices of

samples with the same label as xi, and pA(j|i) = pij be the probability that xi and xj

are neighbors after applying transformation matrix A, defined as follows:

pA(j|i) = pij =
exp (−‖Axi −Axj‖)2∑

k 6=i
exp (−‖Axi −Axk‖)2

, pii = 0. (4.14)

The probability of classifying xi correctly can be expressed as pi =
∑

j∈Yi pij, and

thus, the criterion we wish to maximize is the expected classification accuracy after

applying transformation A

f(A) =
N∑

i=1

pi. (4.15)

Differentiating f with respect to A yields the gradient rule:

δf

δA
= 2A

∑

i

(
pi
∑

k

pikxikx
T
ik −

∑

j∈Yi

pijxijx
T
ij

)
(4.16)

where xij = xi − xj. Since Equation (4.15) is non-convex, it is not guaranteed to

converge to the global optimum and may overfit to training data, particularly in

high-dimensional feature spaces with few training samples [Yang and Jin, 2006]. To

prevent overfitting, Singh-Miller et al. [2007] suggest regularizing f(A) as follows:

f(A) =
1

N

∑

i

pi − γ
∑

j,k

A2
j,k (4.17)
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for γ ≥ 0, selected via cross-validation.

Computationally, NCA minimizes Equation (4.15) using a conjugate gradient

method that recomputes pi for all of the training samples in each iteration, and thus

NCA incurs a rather high computational cost. Although some recent work addresses

this issue [Yang et al., 2012], we consider the original formulation of NCA in this study.

We allow NCA to run for a maximum of 50 iterations, where each iteration consists of

a single pass over all of the training samples. We consider the NCA implementation

provided in the Matlab Toolbox for Dimensionality Reduction [van der Maaten, 2007].

Maximally Collapsing Metric Learning: Maximally Collapsing Metric Learning

(MCML, Globerson and Roweis [2006]) is a convex extension of NCA that seeks to

map all samples with the same class label to a single point, while pushing the

samples from the other classes infinitely far apart. To do so, MCML selects A that

minimizes the Kullback-Leibler divergence KL(p0||pA) (Equation (1.10)) between

pA(j|i) (Equation (4.14)) and the distribution p0, which represents the distribution of

optimally separated samples:

p0(j|i) ∝





1 yi = yj

0 yi 6= yj

(4.18)

KL(p0||pA) is minimized using the objective function

f(A) = −
∑

i,j:yj=yi

log pA(j|i) =
∑

i,j:yj=yi

dAij +
∑

i

logZi, (4.19)

where dAij = (xi − xj)
TATA(xi − xj), and Zi is a convex function of affine functions

in A. The authors solve Equation (4.19) by taking a small step in the gradient

direction during each iteration, and then by taking the eigendecomposition of A
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while removing (i.e., zeroing) the negative eigenvectors. This procedure projects the

solution to the positive semidefinite cone of matrices A. Due to the convexity of the

objective function, this approach is guaranteed to converge to the globally optimal

solution. However, since each iteration involves computing an eigendecomposition of

an m-dimensional matrix, MCML is computationally expensive, as observed in, e.g.,

[Sugiyama, 2007]. Moreover, the MCML optimization problem becomes non-convex in

low-rank settings. To resolve this issue, the authors propose solving for the full-rank

matrix, and then using the spectral decomposition of that matrix to determine a low

rank projection based on its top m eigenvalues. As with NCA, we allow MCML to

run for a maximum of 50 iterations, using the implementation provided in the Matlab

Toolbox for Dimensionality Reduction [van der Maaten, 2007].

Large Margin Nearest Neighbors: The Large Margin Nearest Neighbors (LMNN,

Weinberger et al. [2006]) algorithm learns the Mahalanobis distance by finding a

transformation that separates samples from different classes by a large margin, while

simultaneously reducing the distances between each training sample to its kLMNN

nearest neighbors. To achieve this, LMNN computes A by solving a piecewise linear,

convex function of the elements in the matrix M using the following semidefinite

program (SDP):

min
A

[
(1− γ)

∑

ij

ηijd
A
ij + γ

∑

ijl

ηij(1− yil)ξijl
]

(4.20)

s.t.





dAil − dAij ≥ 1− ξijl
ξijl ≥ 0

ATA � 0,

(4.21)
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where dAij = (xi − xj)
TATA(xi − xj). Here, yij ∈ {0, 1} and ηij ∈ {0, 1} are binary

indicator variables that specify whether yi = yj and whether xi and xj are neighbors,

respectively. γ ∈ [0, 1] is a regularization parameter that controls the influence of the

penalty terms with respect to slack variables ξijl, which are nonzero iff xi, xj, and

xl have different labels. The left term of Equation (4.20) penalizes large distances

between each input and its neighbors, while the right term penalizes small distances

between examples with different labels. We note that as with the NCA and MCML

algorithms, obtaining low-rank transformations using LMNN requires solving a non-

convex optimization problem, but the authors claim that the objective function does

not appear to suffer from poor local minima [Weinberger and Saul, 2009].

LMNN often outperforms other baseline Mahalanobis metric learning algorithms

such as NCA and MCML due to its maximum-margin formulation [Jin et al., 2009;

Kulis et al., 2009; Yang et al., 2010]. However, it is also quite computationally

expensive, sometimes scaling quadratically with the number of input dimensions, as

shown empirically later in this work, and also in Shen et al. [2009]. In Weinberger and

Saul [2009], the authors note that this may be a result of the poor performance of

many SDP solvers, and thus developed a special-purpose solver¶ for LMNN. While

this new version may be more efficient than a general SDP solver, it also this requires

tuning several additional free parameters. Consequently, for as direct comparison

as possible to the other Mahalanobis metric learning algorithms, we consider the

implementation provided in the Matlab Toolbox for Dimensionality Reduction [van

der Maaten, 2007]. We allow LMNN to run for a maximum of 105 iterations, where a

single iteration involves computing the distances between the training samples with

the current Mahalanobis matrix M to update the slack variables (Equation (4.20)) and

¶Available at: http://www.cse.wustl.edu/~kilian/code/page21/page21.html.

http://www.cse.wustl.edu/~kilian/code/page21/page21.html
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performing a gradient update on the kLMNN nearest neighbors corresponding to those

slack variables. We set kLMNN = 3 to mirror the k parameter of our kNN classifier as

described in Section 4.1.2.

Information Theoretic Metric Learning: The Information Theoretic Metric

Learning (ITML, Davis et al. [2007]) algorithm exploits a bijection between the

set of Mahalanobis distances and the set of multivariate Gaussians. This allows

them to formulate the problem of learning M = ATA as one of minimizing the

Kullback-Leibler divergence (KL) divergence between two multivariate Gaussians: one

that represents the Mahalanobis distance constrained by a set of similar/dissimilar

samples, and one that represents a known Mahalanobis distance for regularization.

Specifically, they express a Mahalanobis distance dM parametrized by M = ATA as

p(x; M) = 1
Z

exp(−1
2
dM(x,µ)), where Z is a normalizing constant (without loss of

generality, they assume the Gaussians share the same mean µ). The KL divergence

between the Gaussians parametrized by Mahalanobis matrix M and regularization

matrix M0 is expressed as the convex function

KL(p(x; M0)||p(x; M)) ∝ Dld(M,M0) = tr(MM−1
0 )− log det(MM−1

0 )− n. (4.22)

Given a set of similarity Sij ∈ {0, 1} and dissimilarity constraints Dij ∈ {0, 1},

Sij 6= Dij between sample pairs (xi,xj), ITML solves the following optimization

problem:

min
M

Dld(M,M0) + γDld(diag(ξ), diag(ξ0)) (4.23)

s.t.





dM(xi,xj) ≤ ξCij , Sij = 1

dM(xi,xj) ≥ ξCij , Dij = 1,
, (4.24)
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where γ ∈ [0, 1] is a regularization parameter controlling the influence of slack variables

{ξ}NCi=1, and Cij gives the index of constraint (i, j). The entries of ξ are initially assigned

the value u if Sij = 1, and the value l if Dij = 1. The values of u and l are estimated

as the 5th and 95th percentiles, respectively, of the distribution of pairwise distances

between training samples. The optimization procedure used to solve Equation (4.24)

repeatedly computes projections of the current solution Mt onto a randomly-selected

constraint Cij ∈ {S ∪D} according to

Mt+1 = Mt + βMt(xixj)(xixj)
TMt (4.25)

where β is a Lagrange multiplier corresponding to Cij. Unlike the other gradient-

descent algorithms we consider in this work, the ITML-based solution to the low-rank

Mahalanobis metric learning problem is convex.

We use the ITML implementation provided by the authors‖, and allow the algorithm

to run for a maximum of 105 iterations, where a single iteration involves a single

constraint projection (Equation (4.25)). We follow the methodology of Davis et al.

[2007], and use the n-dimensional identity matrix In as the regularization matrix M0,

and thus γ = 1 yields the squared Euclidean distance (i.e., the Mahalanobis distance

parametrized by In). We choose the set of similarity/dissimilarity constraints using

the methodology described in Section 4.1.2, below.

4.1.2 Experimental Methodology

Rank of Projection Matrix A: We choose the dimensionality of the low-rank

projection matrix A to be Rn×K−1, where K is the number of classes. We select

‖Available at: http://www.cs.utexas.edu/~pjain/itml/

http://www.cs.utexas.edu/~pjain/itml/
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m = K − 1 because it is the theoretically optimal value for LDA, but also because it

yields stable performance using the remaining algorithms.

Performance Assessment: We measure the effects of training set size vs. classifi-

cation accuracy by selecting a maximum of Nj ∈ {25, 50, 100, 200, 250} samples from

each class, and use two-fold cross-validation folds to balance the amount of computa-

tion time necessary while providing some detail on the generalization performance of

each algorithm. In each fold, we evenly split the samples into training and test sets

via stratified random sampling, and use the training samples to learn the Mahalanobis

metric using each of the aforementioned algorithms. We report the mean and standard

deviation of test accuracy over the two folds for each value of Nj.

Regularization: For those algorithms requiring regularization, we select their re-

spective values of the regularization parameter γ via cross-validation. We evenly split

the training data into trainCV and testCV sets using stratified random sampling. We

then learn a metric on the trainCV set for each value of γ ∈ {0, 0.001, 0.1, .25, .5,

.75, 0.99, 0.999, 1}, and compute the accuracy on the testCV set using the metric

produced using each γ value. We repeat this process twice and return the value of γ

yielding the highest average accuracy over the two cross-validation splits.

DCA/ITML Similarity/Dissimilarity Constraints: To form the similarity and

dissimilarity constraint sets used by DCA and ITML, select NC = CfK
2 (Cf > 0)

pairs of samples from the training set via random uniform sampling using the method

implemented by Davis et al. [2007]. We add pairs of points in the same class to

the set of similarity constraints, and pairs with different class labels to the set of

dissimilarity constraints. Identical samples to one another are discarded from the

constraint sets. Davis et al. [2007] found that ITML was generally robust to Cf ≥ 20,
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but smaller values increased the variance in accuracy between folds. We experimented

with different values of Cf and found that Cf = 40 produced generally stable results,

and larger values did not significantly improve classification accuracy.

Gradient-descent Convergence Tolerance Parameter τ : Each of the gradient-

descent algorithms test for convergence by determining if the value of their respective

objective function is within some tolerance τ of the objective value at the previous

iteration. A gradient-descent algorithm converges faster for large τ than for small

τ , but small values of τ allow the algorithm to fine-tune its parameters, and are

typically more accurate than large τ . Because the best value of τ depends on both

the algorithm and the data, we vary τ ∈ {25, 5, 1, 0.5, 0.1} and report the accuracy

and computation time corresponding to most accurate value of τ . We discuss each

algorithm’s sensitivity with respect to τ in greater detail in Section 4.2.1.

4.2 Case Studies: Ocean City AVIRIS and Mars

CRISM Imagery

Ocean City, MD AVIRIS Image: We first evaluate the performance of each of the

above metric learning algorithms on the minor, major and combined scenarios described

in Section 3.1.4. With respect to Mahalanobis metric learning, the minor absorption

scenario represents the most significant challenge due to the lack of discriminative

spectral features to exploit. In contrast, the classes in the major absorption scenario are

each distinguished by dramatic differences in absorption features, and are consequently

better separated than the minor absorption classes, as suggested by our results in

Chapter 3. In the combined scenario, each algorithm must find a compromise between

the discriminative spectral features of the major absorption classes, and the spectrally
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similar and largely featureless classes of the minor absorption scenario.

CRISM Images 3e12, 3fb9, 863e: We also consider three well-studied CRISM

[Murchie et al., 2007] images. The CRISM instrument captures spectral measurements

over the [1, 4] µm range, with over 400 measurement channels with spatial resolution

of approximately 18 meters / pixel. The images we consider, 3e12, 3fb9, and 863e

(omitting the frt0000 catalog prefix), originally studied by Thompson et al. [2010], are

typical of planetary science data, with high noise and relatively low spatial resolution,

and contain diverse spectra consistent with olivine, phyllosilicate, carbonate and

sulfate minerals. The images were calibrated using the Brown CRISM Analysis Toolkit

[Morgan et al., 2009], and noisy bands in the extreme short and long wavelengths were

removed in previous work [Thompson et al., 2010], leaving a total of 231 bands in the

[1.06, 2.58] µm range for analysis. An expert geologist (M. Gilmore) identified the

primary material constituents in each of the images, along with the pixels containing

the purest examples of each mineral, and defined class maps for the materials using

the ENVI spectral angle mapper (SAM) function [RSI, 2008]. As a final step, the

geologist examined the spectral angles for each class to filter out ambiguous or mixed

materials. We exclude such pixels from the following performance evaluation. Our final

preprocessing step is to normalize each spectrum by its Euclidean norm, to compensate

for linear illumination effects [Pouch and Campagna, 1990]. See [Thompson et al., 2010]

for further details regarding these images and their constituent materials. False color

images of each image and the locations of labeled classes, along with the corresponding

L2 normalized mean spectra of each class are shown in Figure 4.1. The “dark” class

in image 863e consists of mostly absorption-free spectra of dark materials, and has

been used in previous work to enhance certain geologic features of interest [Mandrake

et al., 2010; Thompson et al., 2010]. However, after L2 normalization, the dark class
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appears quite similar to several of the other material classes in the scene. We stress

that we do not exclude the dark pixels to provide a more comprehensive evaluation of

our methodology.
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Figure 4.1 : Top: False color images with locations of labeled classes for CRISM images
3e12 (left), 3fb9 (middle) and 863e (right). Bottom: Corresponding class means and
sample counts for each image. Due to varying capture conditions, spectra representing
the same material species often have dramatically different spectral representations in
each image.

While the CRISM images contain fewer classes than the Ocean City scenarios, with

a total of 231 spectral bands they are of nearly twice their dimensionality and have

a lower signal to noise ratio due to instrument artifacts and calibration errors that

often occur in planetary imagery. Also, each image poses a distinct set of problems

to the metric learning techniques. The first of the images, image 3e12, represents

a fairly simple classification task involving a pair of similar olivine and magnesite

classes vs. a spectrally dissimilar phyllosilicate class. In contrast, the classes in image
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3fb9 are the most challenging to classify of the three images, with two pairs of similar

classes – specifically: (phyllosilicate, kaolinite) and (carbonate, olivine) – along with a

mixed class consisting of phyllosilicate and kaolinite minerals. The last of the three

images, image 863e, also poses some interesting challenges, with four spectrally similar

classes with comparable absorption features, distinguished primarily by differences in

continuua.

4.2.1 Experimental Results

Accuracy vs. Training Set Size

Table 4.1 provides the average cross-validated accuracies over all values of Nj for each

algorithm on each data set. The best and second-best performing algorithm on each

data set are given in red and blue italics, respectively. We see that LDA yields the

highest overall accuracy (97.72%) for these six data sets, with MCML (96.35%) and

ITML (96.32%) following closely behind. LMNN yields comparable accuracy (96.23%)

to MCML and ITML, but falls slightly behind due to poor performance on the Ocean

City Combined data set. The remaining algorithms (LFDA, DCA and NCA) produce

overall accuracies near the Euclidean baseline.

To give a more detailed view of the results summarized in Table 4.1, we display

the cross-validation accuracy vs. the number of samples per class Nj in Figure 4.2

for each of the Ocean City scenarios (top three plots), and on the CRISM images

(bottom three plots). Here, we see that LDA consistently matches or outperforms

the Euclidean baseline on each data set. In contrast, MCML and ITML yield good

performance for some training set sizes, but occasionally perform worse than the

Euclidean distance. For instance, for the Minor data set, ITML yields the best

accuracies of all of the algorithms for Nj ∈ {50, 100}, but produces the worst accuracy
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EUC LDA LFDA DCA ITML NCA LMNN MCML Mean
O

ce
a
n

C
it

y
Minor (mean) 94.6630 95.7437 94.9773 95.0654 95.1356 91.7682 95.6077 95.7893 94.8438

(std) 1.5033 0.8797 1.7054 0.9147 1.1968 2.0639 1.1710 1.3797 1.3518
Major (mean) 98.9563 99.0247 99.3011 98.7627 99.3596 97.8212 98.6416 99.0467 98.8642

(std) 0.6659 0.6980 0.1782 0.7308 0.4975 0.5267 0.6737 0.7047 0.5844
Combined (mean) 97.2308 97.4018 96.7522 94.6506 97.1351 94.9593 96.9959 97.3196 96.5557

(std) 0.2166 0.2945 0.4008 0.4513 0.5952 0.4230 0.3406 0.4147 0.3921
Average (mean) 96.9500 97.3901 97.0102 96.1596 97.2101 94.8496 97.0817 97.3852 96.7546

(std) 0.7953 0.6241 0.7615 0.6989 0.7632 1.0045 0.7284 0.8330 0.7761

C
R

IS
M

3e12 (mean) 98.3581 98.6337 98.4915 99.0391 98.5892 98.2425 98.6089 98.8337 98.5996
(std) 1.3917 1.6557 1.5803 1.1578 1.5929 1.2057 1.2634 1.3729 1.4026

3fb9 (mean) 88.1268 92.0010 88.6068 88.0427 90.5458 90.3243 90.2225 89.7439 89.7017
(std) 1.2670 1.6550 1.4933 0.5077 1.0319 2.0527 0.9556 1.3094 1.2841

863e (mean) 97.1800 97.5700 96.7900 96.1567 97.2100 98.3667 97.3000 97.3900 97.2454
(std) 1.0842 0.8344 1.4661 1.6358 1.2115 0.4997 1.1785 1.1361 1.1308

Average (mean) 94.5550 96.0682 94.6294 94.4128 95.4483 95.6445 95.3771 95.3225 95.1822
(std) 1.2476 1.3817 1.5132 1.1004 1.2788 1.2527 1.1325 1.2728 1.2725

Overall (mean) 95.7525 96.7292 95.8198 95.2862 96.3292 95.2470 96.2294 96.3539 95.9684
(std) 1.02145 1.0029 1.1374 0.8997 1.0210 1.1286 0.9305 1.0529 1.0243

Table 4.1 : Mean and standard deviation of classification accuracies averaged over
training set sizes Nj ∈ {25, 50, 100, 200, 250} using each metric learning algorithm.
Average accuracies for the Ocean City and CRISM data sets, and the overall accuracy
across the data sets (bottom row), and across the algorithms (last column) are also
provided. The top two most accurate algorithms for each data set are given in red
and blue italics, respectively.

for Nj = 25. MCML, on the other hand, produces the best and second-best accuracies

for Nj = 25 and Nj = 50, respectively, but produces poor accuracy for Nj = 100. We

note that the high standard deviations in the Minor scenario using all of the algorithms

for Nj ∈ {25, 50, 100} indicates that the Minor absorption scenario is particularly

challenging for Mahalanobis metric learning, as the classes do not contain significant

distinguishing absorption features. However, the somewhat inconsistent performance

of MCML and ITML on the Minor data set suggest that they are particularly sensitive

to the choice of training set in scenarios involving fairly similar, perhaps nonlinearly-

separable, classes and few training samples. The third best-performing algorithm

overall, LMNN, while it does not always outperform ITML and MCML, typically

produces more stable results than the other algorithms, as observed by its low overall

standard deviation in classification accuracy (0.93%). This is most likely due to its
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Figure 4.2 : Average kNN classification accuracy vs. training/testing samples/class
on the Ocean City Minor (top left), Major (top center) and Combined (top right)
data sets, and on the CRISM image 3e12 (bottom left), 3fb9 (bottom center) and
863e (bottom right) data sets. Error bars give the standard deviation of the cross
validation folds.

large-margin formulation. In fact, only DCA produces consistently more stable (albeit

less accurate) results than LMNN (std. dev. 0.90%). This is not surprising, as DCA’s

constraint-based formulation is computed using a smaller training set whose size varies

with the number of classes, rather than the number of samples Nj . Conseqently, DCA

typically produces similar Mahalanobis distances for different values of Nj, with the

exception of the smaller Nj values where classification accuracy is less stable. It is

also interesting to recall that DCA is, in essence, an unregularized version of LDA,

and thus, DCA’s poor overall performance reflects the problem of applying LDA

without an appropriate regularization procedure. This issue is also evidenced in the

poor overall accuracies of LFDA, which generally produces accuracies comparable
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to the Euclidean distance. Despite the lack of regularization, both DCA and LFDA

outperform the worst-performing gradient-descent algorithm, NCA, which generates

unusually inconsistent results. More specifically, in the Minor and Combined scenarios,

NCA performs up to 6% worse the Euclidean baseline. In others, such as on image

863e, NCA produces fairly stable (std. dev. 0.5%) and accurate (98.37%) results. This

inconsistent performance may be attributed to the non-convex nature of the low-rank

projection technique employed by NCA (and similarly, but to a lesser degree, MCML).

However, such a wide range of accuracies is rather alarming, and suggests that NCA

may not be well-suited for learning low-rank Mahalanobis metrics for hyperspectral

image classification tasks.

CPU Time vs. Training Set Size

We now evaluate the computation time used by each algorithm with respect to the

number of samples for each cross-validation fold. For those algorithms requiring

regularization, we include the cost of searching over the values of γ specified in

Section 4.1.2 in each fold. Figure 4.3 gives the CPU time vs. training set size for the

cross-validation folds that produced the results shown in Figure 4.2. Not surprisingly,

we see a clear dichotomy between the CPU times of the LDA-based algorithms vs. the

gradient-descent algorithms. The somewhat atypical ITML runtimes are a result of

the fact that ITML employs a constant number of similarity constraints (proportional

to the number of classes), and thus ITML produces comparable CPU times regardless

of training set size. For the remaining gradient-descent algorithms (i.e., NCA, LMNN,

and MCML), the differences between the two paradigms are particularly severe for

the larger sample sizes (i.e, Nj ∈ {150, 250}), whose CPU times are several orders-of-

magnitude greater than the LDA-based algorithms. In particular, LMNN and MCML

take over an hour to converge on the larger training sets. For the smaller sample sizes
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(i.e., Nj ∈ {25, 50}), the gradient-descent algorithms (with the exception of ITML)

converge in a matter of minutes, but are still far more expensive than the closed-form

LDA-based algorithms.
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Figure 4.3 : Average CPU time (seconds / fold) vs. training/test samples/class
on the Ocean City Minor (top left), Major (top center) and Combined (top right)
data sets, and on the CRISM image 3e12 (bottom left), 3fb9 (bottom center) and
863e (bottom right) data sets. Y-axis scales differ to reflect the relative relationships
between algorithms for each data set. The inset box in each figure gives a zoomed
view of the EUC, LDA, LFDA and DCA CPU times. Error bars give the standard
deviation of the cross validation folds.

Gradient-Descent Algorithms: Sensitivity to Tolerance Parameter

Our observations from Section 4.2.1 show that the gradient-descent algorithms exhibit

different rates of convergence. We now investigate the sensitivity of each of the

gradient-descent algorithms to tolerance parameter τ for both small (50 samples /

class) and large (250 samples / class) training sets. Here, we limit our discussions to
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the Ocean City data sets, as we observed similar trends on the CRISM data sets.

Figure 4.4 gives the average classification accuracy with respect to the tolerance

parameter τ for the Ocean City scenarios using 50 (top plots) and 250 (bottom

plots) training samples/class. When few training samples are available, we observe

that classification accuracy generally improves with smaller tolerance values, with

τ ∈ {1, 0.5} and occasionally 0.1 producing the most accurate results. This is

expected, as the additional fine-tuning imposed with a small value of τ can potentially

compensate for ambiguities resulting from limited training data. Perhaps more

interesting, however, are the accuracies observed with large training sets. While

we note that classification accuracy does not vary widely (≈ ±0.05%) with τ in all

three scenarios, we observe a slight upward trend in the Minor scenario for each

algorithm except NCA (which exhibited particularly unstable performance in this

scenario), with τ ∈ {1, 0.1} producing the most accurate results, while we observe

slightly downward trends in the Major and Combined Scenarios, where τ ∈ {5, 1}

yield the most accurate results. As the classes in the Minor scenario are distinguished

by subtle differences in features, the results suggest that the additional fine-tuning

imposed by smaller τ can potentially improve accuracy on such data. In cases where

the classes are already well-separated, such as in the Major scenario (and, to some

extent, the Combined scenario), our observations suggest that smaller τ may produce

minor overtraining effects. This may be a result of the algorithm attempting to find a

transformation matrix that separates samples from non-linearly separable classes, and,

as a consequence, reduces the separability of samples near the decision boundaries.

Figure 4.5 gives the average computation time per fold with respect to τ for the

small and large training set cases shown in Figure 4.4. We reiterate that ITML employs

a training set of size proportional to the number of classes and not the number of

samples per-class, and thus produces similar CPU times regardless of the number
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Figure 4.4 : Average classification accuracy vs. tolerance parameter τ for 50 samples
/ class (top plots) and 250 samples / class (bottom plots) on the Ocean City Minor
(left), Major (middle) and Combined (right) data sets.

of samples / class. In general, computation time increases in inverse proportion to

τ for both small and large training sets. For small training sets, the computation

times for the most accurate τ are relatively short, converging in 30 − 60 seconds

per-fold in the Minor and Major scenarios, and about 60− 120 seconds per-fold in the

combined scenario – owing to the fact that the Combined scenario contains twice as

many samples as the other two scenarios. With large training sets, we observe the

smallest variance in CPU times for the selected values of τ in the Minor scenario,

where each algorithm must rely upon detailed fine-tuning to achieve the most accurate

results. In contrast, we observe significantly longer computation times in the Major

and Combined scenarios for the smaller τ values, which produce the least accurate

results. This supports our hypothesis that the fine-tuning induced with small τ in

these two scenarios is attempting to separate nonlinearly-separable samples, as each
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algorithm takes very small steps during each iteration in a ill-defined gradient direction.

However, it is crucial to note that the computation time required for the τ values

achieving the best accuracies are generally several orders-of-magnitude greater than

the computation times produced by the LDA-based algorithms.
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Figure 4.5 : Average CPU time (seconds / fold) vs. tolerance parameter τ for 50
samples / class (top plots) and 250 samples / class (bottom plots) on the Ocean
City Minor (left), Major (middle) and Combined (right) data sets. Figure scales are
different to reflect relative relationships between algorithms for each of the data sets.

Comparisons Between Learned Mahalanobis Matrices

Examining the characteristics of the Mahalanobis matrices computed by each algorithm

is also instructive. Here, we focus on the diagonal entries of each matrix, which can

be interpreted as a vector of weights applied to each spectral band. Figure 4.6 gives

the diagonal vector of the Mahalanobis matrix for each algorithm for CRISM image

3fb9, in comparison to the mean signatures for each of the five mineral classes. We
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Figure 4.6 : Class means for CRISM image 3fb9 (top) vs. diagonals of Mahalanobis
matrices computed by each metric learning algorithm for Nj = 100 samples/class.
Several prominent peaks which occur for multiple algorithms are indicated by red
dotted vertical lines.

scale each matrix by its L2 norm ‖M‖ to map the entries of the diagonal vectors

to a common range, and flag prominent peaks in the diagonal vectors which occur
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for multiple algorithms with red dotted vertical lines. Perhaps unsurprisingly, the

most prominent peaks occur for spectral bands where absorption features differ the

most among the classes, which, to some extent, explains the comparable accuracy

of the CICR measure to the feature-weighted LDA Mahalanobis metric described

in Section 3.2. We also observe that several of the algorithms produce relatively

similar diagonal vectors. The similarity between LDA and DCA is expected, as DCA

is effectively a constraint-based version of LDA. More interesting is the similarity

between the ITML and NCA diagonals, with peaks occurring at nearly identical

positions, with the exception of the differing double peaks at ≈ 1.63 and ≈ 2.27

µm. The MCML diagonal also bears some resemblance to LDA/DCA, particularly in

terms of the peaks near 1.63µm and for wavelengths ≥ 2.0µm, but the peaks at the

remaining wavelengths differ in their relative amplitudes. Of the remaining algorithms,

both LFDA and LMMN produce diagonals that differ substantially from the other

techniques. These differences are expected, as both LFDA and LMNN place specific

emphasis on local relationships between samples, and thus, the weights characterize

the relationships between samples in close proximity to one another more so than

samples that distant from each other in the original feature space. Consequently,

their Mahalanobis matrices differ from the other algorithms, which emphasize the

global relationships among classes. Despite their differences, however, both LFDA

and LMNN produce reasonably accurate results, with LMNN producing the 2nd best

accuracy of all the algorithms, and while LFDA does not perform as well, it still

outperforms the Euclidean distance by ≈ 3%.

Figure 4.7 shows the pairwise differences between the L2 normalized Mahalanobis

matrices computed by each algorithm for Nj ∈ {25, 100} samples per class. A value of

zero indicates the matrices are identical, while a value of 2 indicates the (L2 normalized)

matrices are maximally dissimilar from one another. To emphasize the sometimes
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Figure 4.7 : Differences between L2-normalized Mahalanobis matrices computed using
each algorithm for Nj = 25 samples/class (left) Nj = 100 samples/class(right). Values
less than 0.65 and greater than 1.05 are shown in dark blue and dark red, respectively.

subtle differences between the matrices, we clip the range of the values we display to

[0.65, 1.05], where values less than 0.65 and greater than 1.05 are shown in dark blue

and dark red, respectively. We can see that the similarities in the diagonals shown

in Figure 4.6 are largely reflected in the differences between the matrices. As before,

due to its local nature, the matrix computed using LFDA is substantially different

from those produced by the other algorithms. Interestingly, the NCA and ITML

matrices become increasingly similar to one another with increasing quantities of

training samples, with distances of about 0.8554 for Nj = 25 and 0.4467 for Nj = 100.

This trend continued for Nj ∈ {150, 250}, where the difference between the ITML and

NCA matrices are typically 15% more similar than the mean similarity between the

remaining algorithms. We also see that the matrices produced by both LDA and DCA

are most similar to ITML and MCML, and to a lesser degree, NCA. Interestingly, we

observe that LDA and DCA are relatively dissimilar to one another, in comparison to

the matrices produced by the other algorithms, despite the visual similarity of their

diagonal vectors shown in Figure 4.6. This is primarily a result of a difference in

the dynamic range of the entries of their respective matrices – which causes a slight
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shift in scale after L2 normalization. The relatively low values between LMNN and

ITML/MCML suggest a small degree of structural similarity between their matrices,

but additional examination is necessary to verify if this is truly the case, as their

diagonals appear (visually) dissimilar from one another.

4.2.2 Summary and Discussion

Table 4.2 summarizes the performance each metric learning algorithm on the Ocean

City and CRISM scenarios. We assign a score of one when the algorithm yields good

performance, and a score of three when the algorithm performs poorly, on average,

over the set of classification scenarios we consider. We consider the performance of

each algorithm with respect to three variables: the number of training samples Nj , and,

for the gradient-descent algorithms, the tolerance parameter for small sample sizes

(i.e., Nj = 50) vs. large sample sizes (Nj = 250). For each variable, we consider the

following criteria: Acc.: measures the performance in terms of the overall classification

accuracy produced using each algorithm, on average, for each value of the given variable

(i.e., the number of samples or tolerance) and for all of the scenarios we consider;

Degen.: measures how often the algorithm produces degenerate results (i.e., below the

Euclidean baseline) – a score of 1 indicates the algorithm falls subtantially below (i.e.,

by roughly > 10% of the range between the minimum and maximum accuracies for a

particular scenario) the baseline accuracy less than twice (total), for each value of the

variable in all of the scenarios; Stable: gives the variability in classification accuracy

for each algorithm with respect to the baseline Euclidean distance and the other

algorithms; CPU: scores the variability in computation time / fold for each algorithm

in comparison to the other algorithms;. In the case of the tolerance parameter, scores

are based upon relative comparisons between the gradient-descent algorithms only. We
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omit the Acc. and Degen. criteria from the table for the tolerance parameter, as all

of the gradient-descent algorithms, with the exception of NCA, produced comparable

results (as shown in Figure 4.4).

# Samples Tol (Nj = 50) Tol (Nj = 250)
Acc. Degen. Stable CPU Stable CPU Stable CPU Mean

LDA 1 1 1 1 n/a n/a n/a n/a 1.000
LFDA 2 2 2 1 n/a n/a n/a n/a 1.750
DCA 2 3 3 1 n/a n/a n/a n/a 2.250
ITML 1 1 2 2 1 2 2 2 1.625 (1.500)
NCA 3 3 3 2 2 1 2 2 2.250 (2.750)
LMNN 1 1 2 3 2 1 2 3 1.875 (1.750)
MCML 1 1 2 3 1 2 1 3 1.750 (1.750)

Table 4.2 : Summary of performance of each metric learning algorithm on Ocean City
and CRISM scenarios. 1=good performance, 3=poor performance. Values indicated
as n/a are not included in the mean calculation, and values in parenthesis give the
mean scores for the gradient-descent algorithms with respect to the # Samples criteria
alone. The best and second-best performing algorithms are given in red and blue
italics, respectively.

Our results demonstrate that low-rank metrics learned using several metric learning

techniques employing computationally expensive gradient-descent methods produce

results comparable to those generated by several LDA-based techniques. In par-

ticular, when appropriately regularized, LDA produces the most accurate low-rank

Mahalanobis matrices of all of the algorithms we considered, on a diverse set of

classification problems, each with training sets of varying size. While these results

may seem somewhat sobering, we stress that they are limited to the case of learning

Mahalanobis matrices of rank K − 1. This distinction is crucial, as the rank K − 1

solution produced by LDA is optimal if all class distributions are Gaussian with a

single shared covariance. Although this condition rarely holds in practice, when the

class distributions are well-approximated by Gaussians of this form, a LDA-based

formulation has an advantage over competing algorithms. However, this also limits
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the transformations that can be produced by the classical LDA algorithm to at most

K − 1 dimensions. In contrast, the gradient-descent techniques, and additionally, the

LFDA algorithm, can produce transformation matrices of rank up to n. Indeed, the

NCA, MCML, and LMNN algorithms can be solved in convex form only when M is

full-rank (i.e., when the rank of the transformation matrix is equal to the number of

features). Learning a transformation matrix of rank larger than K − 1 using such

techniques allows for additional degrees of freedom to separate samples from different

classes, and can potentially produce more accurate and stable results than in the

K − 1 rank case, at the cost of extra computation time and higher dimensionality.

We also note that the techniques described in this work learn linear transformations

to separate samples from different classes. When classes are nonlinearly separable in

their original n-dimensional feature space, it is often advantageous to employ nonlinear

techniques to separate such data. Several kernel-based approaches have been proposed

to extend the techniques we describe in this work to learn transformations that

can separate nonlinearly separable classes ([Alipanahi et al., 2008; Davis et al., 2007;

Globerson and Roweis, 2006; Hoi et al., 2006; Sugiyama, 2007; Weinberger et al., 2006]).

The high-dimensional kernel spaces employed by these techniques are often more

informative than the original feature space, and thus, low-rank transformations can

be learned efficiently with more accurate results, as demonstrated in, e.g., [Globerson

and Roweis, 2006].

Our results also indicate that the simple shrinkage-based regularization procedure

we apply to the classical LDA algorithm produces better results in low-rank scenarios

than the alternative formulations of LDA employed by the DCA and LFDA algorithms.

To some extent, this supports the claims reported in previous works that applying

LDA without regularization performs poorly. However, we could potentially apply

the same type of regularization as in Equation (4.6) to either of the LDA or LFDA
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techniques. Regularizing the LFDA objective is of particular interest, as it would

allow us to potentially find a compromise between the local affinities on the manifold,

and the global smoothness of the regularized objective function.
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4.3 Mahalanobis Metric Learning for

Hyperspectral Image Segmentation

In this section, we focus on the problem of hyperspectral image segmentation, where

the goal is to partition an image into disjoint, spectrally homogeneous groups of

spatially adjacent pixels called segments. A good segmentation not only reveals

spatial trends that show the physical structure of a scene to an analyst, but also

dramatically reduces the number of effective spectra to be analyzed. However, many

segmentation algorithms employ unweighted similarity measures to quantify the

relationships between spectral signatures. Such measures are often confused by noise,

instrument artifacts, or spectral variations that are irrelevant to the classes of interest.

Here, we propose a methodology to improve hyperspectral image segmentation results

using task-specific similarity/distance measures.

4.3.1 Felzenszwalb Segmentation Algorithm

We consider the Felzenszwalb segmentation algorithm for its simplicity and com-

putational efficiency [Felzenszwalb and Huttenlocher, 2004; Thompson et al., 2010].

Figure 4.8 shows the main concepts of the Felzenszwalb algorithm, which we describe

in detail below.

The Felzenszwalb algorithm employs an agglomerative clustering approach that

groups spatially-adjacent pixels xi and xj based on a pairwise distance d(xi,xj).

The algorithm represents the image as an 8-connected grid of nodes where each

node corresponds to a single pixel. The edges between the nodes in the graph are

weighted according to d(xi,xj). All pixels are initially treated as separate segments

and iteratively joined into larger groups. The maximum internal edge weight of a
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•  Agglomerative clustering iteratively connects segments by growing minimum spanning trees!

•  Segment merging criterion:"

•  Small k = many segments, large k = few segments, dependant on d(xi,xj)"

Graph-based Segmentation Algorithm [Felzenszwalb]!

2!

Figure 4.8 : Conceptual details of the Felzenszwalb segmentation algorithm. Pixels are
represented as nodes in an 8-connected graph. Weights in the graph are determined
by the distance d(xi,xj) between spatially-adjacent pixels xi and xj. Segments Sa
and Sb are indicated by red and blue regions, respectively. Segment boundaries are
determined by the difference between their neighbors Dif(Sa, Sb) vs. their internal
weights: MInt(Sa, Sb), respectively.

segment S, Int(S), is defined as the largest edge weight in its minimum spanning tree,

MST(S).

Int(S) = max
xi,xj

d(xi,xj) ∀ xi ∈ S, xj ∈ S, (xi,xj) ∈ MST(S) (4.26)

The smallest edge weight that joins two neighboring segments Sa and Sb (i.e. the most

similar pixel pair on their border) defines the cross-segment distance:

Dif(Sa, Sb) = min
xi,xj

d(xi,xj) ∀ xi ∈ Sa,xj ∈ Sb, (xi,xj) ∈ E (4.27)

Two adjacent segments are merged when the cross-segment distance Dif(Sa, Sb) is

larger than Mint – the minimum of both internal weights weighted by an internal bias

b and inversely proportional to the area of the segment |S|.

Mint(Sa, Sb) = min

(
Int(Sa) +

b

|Sa|
, Int(Sb) +

b

|Sb|

)
(4.28)
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Larger b values cause a preference for larger segments, but is not a minimum segment

size – smaller segments are allowed when there is a sufficiently large difference between

spatially neighboring segments. However, in some cases, a minimum segment size is

desirable, so we merge small segments below a user-defined threshold t ≥ 1 with their

spectrally-closest neighbors.

We attempt a superpixel segmentation in which the image is conservatively over-

segmented; that is, we accept that single surface features may be split into multiple

segments, but try to ensure that each individual segment - or superpixel - has homo-

geneous mineralogy [Thompson et al., 2010]. Figure 4.9 gives example superpixels

produced by coarse vs. fine segmentations. By analyzing superpixels rather than

individual pixels, we reduce the number of effective spectra to analyze in a given image,

and potentially mitigate issues caused by instrument noise and intraclass variability.

Example Pixel! Fine Superpixel! Coarse Superpixel!

Target Image!
(CRISM 3e12)!

Figure 4.9 : Segmentation of an image patch from CRISM image 3e12 (described
in detail in Section 4.2). Fine segmentations capture distinctions between materials
better than coarse segmentations, but are more susceptible to noisy features. Coarse
segmentations are less susceptible to noise and produce fewer segments to analyze, but
may blur important class distinctions. Figure adapted from [Thompson et al., 2010].

Figure 4.10 outlines the main steps of the methodology we use to learn the

Mahalanobis metric and apply it using the Felzenszwalb segmentation algorithm. We
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consider both multiclass LDA and the state-of-the-art Information-Theoretic Metric

Learning (ITML) algorithm [Davis et al., 2007]. Both algorithms and their respective

parameters are described in detail in Section 4.1.

Evaluation Methodology!

•  # of segments (for a fixed image) dependant on (1) similarity metric and !
(2) segmentation parameter k"

•  Vary k to compare segmentation maps with similar # of segments for each 
measure"

(100 samples/class)!

7!

Figure 4.10 : Methodology for hyperspectral image segmentation using learned simi-
larity measures.

4.3.2 Measuring Segmentation Quality

We measure the quality of the segmentations produced by each distance measure

according to the homogeneity of the segments with respect to the class labels. However,

because each superpixel segmentation is an oversegmentation of a given image, each

expert-labeled class will be split into multiple segments. We expect the resulting

segments to be better separated with respect to the training classes – i.e., pixels in

each segment will belong to a single training class, rather than multiple classes – when

we use a learned metric to segment the image, in comparison to metrics which do

not account for class relationships. We define two measures to quantify the degree

to which the resulting segments partition distinct classes. The first measure is the

conditional entropy of the class map given the segmentation map, H(class|segment).

H(class|segment) quantifies the remaining uncertainty for a random variable – in

our case, the distribution of material classes – given the value of another random
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variable – the partitions produced by segmentation algorithm. In the case of a perfect

segmentation of the classes, H(class|segment) will be zero, as the segmentation perfectly

reconstructs the class map. Thus, we prefer smaller values of H(class|segment). Our

second measure of segmentation quality, the impurity ratio, is the ratio of impure

vs. pure segments with respect to the class labels. A pure segment consists of pixels

belonging to a single class, whereas an impure segment consists of pixels belonging to

multiple classes. Because segment size can bias this score, we scale the impurity ratio

for each segment by its pixel area. As with H(class|segment), smaller impurity ratios

are better.

4.4 Case Study: CRISM Image Segmentation

We now evaluate the quality of segmentations produced by the Euclidean distance vs.

the LDA and ITML metric learning algorithms on the CRISM images described in

Section 4.2. We proceed by splitting each image into two spatially contiguous halves,

sampling 100 spectra from each class from the first half of the image (subsequently

referred to as the “train” image), and use these points to train each metric learning

algorithm. We then segment the train image and the remaining half of the image (the

“test” image), using the (baseline) Euclidean distance and the LDA and ITML-based

Mahalanobis distances. To objectively compare results between several metrics, we

must compare segmentations that produce a similar number of superpixels. Because

both the distance metric and the internal bias b (Equation (4.28)) alter the size

– and subsequently the quantity – of the resulting superpixels, we describe results

for segmentations produced by each distance measure using a range of b ∈ {10−4,

. . ., 101}. We choose this range because the number of superpixels produced by

each distance measure followed a similar trend for all of the images we studied. We
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focus on segmentations that produce 200-1250 superpixels, as segmentations with few

superpixels tend to inadequately capture morphological characteristics of the imagery

we study, while segmentations with large quantities of superpixels are more sensitive to

noise and insignificant differences in spectra. We ignore superpixels consisting of less

than t = 50 pixels, as they tend to be unstable and noisy with respect to the training

classes. Ignoring these small superpixels allows for a more consistent evaluation of the

resulting segmentation maps between different distance measures.

4.4.1 Experimental Results

Class (# pixels) EUC LDA ITML

FeMg Smectite (6443) 26 49 48

Kaolinite (4051) 98 99 99

Montmorillonite (10901) 11 31 17

Nontronite (4753) 37 52 40

Neutral Region (115225) 97 99 98

Average 53 66 60

Table 4.3 : Average pure pixels / segment
for Euclidean, LDA and ITML-based seg-
mentations of image 863e (Figure 4.11).
Best and worst average per-class accuracy
given in green and red font, respectively.

Figure 4.11 gives a set of segmenta-

tion maps for image 863e where the Eu-

clidean and LDA/ITML-learned metrics

produced a comparable number of seg-

ments. The number of segments for the

train/test images are provided for each

segmentation. Visually, the LDA-based

segmentation tends to produce segments

that better match the underlying mor-

phology of the image data. This is par-

ticularly evident in the Fe/Mg-smectite class (light blue region) shown in the zoomed

images. The Euclidean-based segmentation, and to a lesser degree, the ITML-based

segmentation, both suffer from column striping artifacts as the noisy spectral bands

are not adequately attenuated using these metrics. The LDA-based segments also tend

to follow class boundaries slightly better than the other two algorithms, as evidenced

by the tightness of the segment boundaries to the colored regions. These differences
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are also reflected in the percentages of pure pixels / segment given in Table 4.3. Both

learned metrics outperform the baseline, with LDA improving over the Euclidean

metric for material classes FeMg Smectite, Montmorillonite and Nontronite. ITML

gives comparable performance to LDA for most materials, but the gains are not as

significant for the very similar Montmorillionite and Nontronite classes.

Figure 4.11 : Image 863e class locations and segments produced using the Euclidean
(left), LDA (middle) and ITML (right) measures. Top images: Training/testing
regions indicated by the white vertical line. Bottom images: zoom of rectangular
region shown in each of the top images. Segments are indicated by purple lines, class
locations colored according to the legend shown in Figure 4.1. The total number of
segments produced in each of the training/test images using each measure is given in
text above the zoomed regions. Visually, we see that the LDA-based segmentation
does not split spatially-adjacent pixels with identical class labels as frequently as the
EUC/ITML-based segmentations. This is particularly evident in the Fe/Mg-smectite
class (light blue region) shown in the zoomed images, where column-striping artifacts
split the region up into numerous segments in the Euc and ITML-based segmentations.

Figures 4.12 and 4.13 give the H(class|segment) and impurity ratios vs. the number

of segments produced using each metric. LDA outperforms both the Euclidean metric
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and ITML, sometimes dramatically (e.g. on images 863e and 3fb9). The Euclidean

metric gives the worst performance of the three distance measures, which is not

surprising since it is more susceptible to noise that a learned metric can often suppress.

ITML yields similar performance to the Euclidean distance for training images 3e12

and 3fb9, which is likely because the quantity of training samples is small for these

two images. On image 863e, with training samples belonging to 5 material classes,

ITML approaches the performance of LDA. This is also reflected in the summary

statistics per-image for each segmentation given in Tables 4.4 and 4.5. Note that the

performance improvements on testing data over training data on the 863e image are

due to the fact that the test image contains a smaller number of Kaolinite (670) and

Montmorillionite (93) pixels than in the training image, which are easily confused

with other training classes (e.g., Kaolinite vs. FeMg Smectite).

H(class|segment) (Train/Test)
EUC LDA ITML

3e12 0.017/0.068 0.015/0.059 0.019/0.066
3fb9 0.088/0.380 0.050/0.242 0.097/0.354
863e 0.047/0.004 0.018/0.001 0.031/0.002

Table 4.4 : Average H(class|segment) for
each image and similarity measure. Green
and red fonts indicate the best and worst
performing metrics, respectively.

Impurity (Train/Test)
EUC LDA ITML

3e12 0.018/0.062 0.012/0.057 0.020/0.060
3fb9 0.066/0.296 0.037/0.195 0.075/0.294
863e 0.068/0.032 0.040/0.012 0.061/0.027

Table 4.5 : Average impurity ratios for
each image and similarity measure. Green
and red fonts indicate the best and worst
performing metrics, respectively.
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3e
12

3f
b9

# segments (test)# segments (train)

86
3e

Figure 4.12 : Impurity ratios for EUC (green), LDA (yellow) and ITML (magenta)
segmentations vs. number of segments on training (left) and testing (right) images.
LDA produces the smallest number of impure superpixels, followed by ITML and
EUC.
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# segments (train) # segments (test)
Figure 4.13 : H(class|segment) values for EUC (green), LDA (yellow) and ITML
(magenta) segmentations vs. number of segments on training (left) and testing (right)
images. As with Figure 4.12, LDA produces the most informative superpixels, followed
by ITML and EUC.
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Chapter 5

Supervised Domain Adaptation

Portions of this chapter are based upon the following publications:

• BD Bue and E Merényi. “Using spatial correspondences for hyperspectral knowledge
transfer: evaluation on synthetic data”. Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS) [June 2010].

• BD Bue, E Merényi, and B Csathó. “An Evaluation of Class Knowledge Transfer from
Real to Synthetic Imagery”. Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing (WHISPERS) [June 2011].

5.1 Inter-domain Material Identification

We have illustrated that hyperspectral image spectra provide ample signal content

to distinguish spectrally similar but distinct materials. However, in many practical

remote sensing scenarios, we do not have a sufficient quantity of representative samples

to train a classifier to reliably classify all materials in a given scene. In such situations,

leveraging labeled data captured under similar conditions can be a great resource, but

poses significant challenges. In particular, the spectral representations of identical

materials differ when they are captured under different conditions (e.g., by different

sensors, at different spatial locations, or at different capture times). Consequently,

reconciling differences between training (or source domain) and test (target domain)

spectra captured under different conditions is crucial to accurately transfer our existing

knowledge of the source domain to predict the materials of spectra in the target domain.

These inter-domain material identification problems are the focus of this chapter. We
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begin∗ with a formal definition of the inter-domain material identification problem,

and describe the classification settings we consider. We then introduce our similarity-

based domain adaptation framework, RelTrans (Relational class knowledge Transfer),

which calculates a mapping between domains using a set of source spectra to a set of

target spectra representing identical materials in both domains. This mapping, applied

as a similarity measure, captures structured, relative relationships between classes

shared between the source and target domains, allowing us to apply a classifier trained

using labeled source domain samples to classify samples from the target domain.

5.2 Domain Adaptation for Multiclass

Knowledge Transfer

We apply domain adaptation techniques to reconcile the differences between the

source and target domains. Formally, we assume we have NS labeled examples

(XS, Y S) =
{

(xSi , y
S
i )
}NS

i=1
, ySi ∈ {1, . . ., KS} drawn from a source distribution pS(X ,Y)

to train a predictor to classify NT samples XT =
{
xTi
}NT

i=1
with unknown labels Y T

drawn from a target distribution pT (X ,Y). We assume the unlabeled target samples

are available at training time. In some cases, we have a small quantity of labeled

target samples available to guide the domain adaptation procedure. We refer to such

problems as supervised domain adaptation problems. When no labeled target data is

available, we refer to the problem as an unsupervised domain adaptation problem. Our

objective in both cases is train a classifier using the available labeled and unlabeled

data to predict labels for the unlabeled target examples.

∗The work described in this chapter was performed in collaboration with Erzsébet Merényi, David
Thompson and Beáta Csathó, with assistance from Bill Farrand, John Kerekes, Mike Mendenhall,
David Pogorzala, Devika Subramanian and Kiri Wagstaff.
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In practical inter-domain material identification settings, the number of source

classes KS will often differ from the number of target classes KT . For instance, if

our source and target data are drawn from images of different geospatial regions,

there will likely be classes in the target domain that are not present in the source

domain, and vice-versa. Even when the source and target data represent the same

geospatial region, the underlying scenery itself may have changed between image

capture times. Figure 5.1 summarizes the domain adaptation settings we consider in

this thesis. In the first setting, we assume that all KS classes present in the source

data are represented in the target data (i.e., KS = KT ). Thus, we can potentially

predict accurate labels for all of the target classes, assuming the differences between

source and target feature spaces can be adequately reconciled. We refer to this setting

as domain adaptation (abbreviated DA). A special case of the DA setting occurs when

the source data contains several classes not present in the target data (i.e., KS > KT ).

Here, the extraneous source classes may increase misclassifications if they closely

resemble any of the source classes. In the second setting, the target domain data

contains samples from all of the source classes, and also contains a number of classes

not present in the source domain (i.e., KS < KT ). We refer to this setting as outlier

detection (OD), as it is necessary to detect which target samples represent the outlier

or unknown classes that are absent from the source domain to minimize the number

of misclassifications.

5.3 The RelTrans Framework

We now introduce the Relational class knowledge Transfer, or RelTrans, framework,

which allows us to reconcile differences between spectra captured under similar, but

not identical, conditions. Our framework is inspired by the Structural Correspondence
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Figure 5.1 : Multiclass class knowledge transfer settings for KS source classes (top
box) vs. KT target classes (bottom three boxes). In the domain adaptation setting
(DA, purple dashed box), we can potentially predict accurate labels for all of the target
classes if differences between the source and target feature spaces can be adequately
reconciled. In the outlier detection setting (OD, orange dashed box), it becomes
necessary to detect samples representing target classes not present in the source
domain as unknowns.

Learning (SCL) algorithm of Blitzer et al. [2006], which creates a mapping between a

set of labeled source domain samples and a set of unlabeled target domain samples

using a set of discrete pivot features common to both domains. RelTrans extends

SCL to feature spaces where the samples we classify are continuous-valued functions

(e.g., hyperspectral signatures) by defining the mapping between domains based upon

distances to a set of canonical pivot samples that represent classes present in both the

source and target domains.

Figure 5.2 summarizes the main steps of the RelTrans framework. Formally,

RelTrans maps samples xD, D ∈ {S, T} (S=source, T=target) to a common, relational

feature space (the R-space) according to distances d(·, ·) to Q paired pivot samples
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(P S, P T , Y P ) =
{

(pSi ,p
T
i , y

P
i )
}Q
i=1

via the following function:

R(xD, PD) =

(
d(xD,pD1 )∑Q
`=1 d(xD,pD` )

, . . . ,
d(xD,pDQ)

∑Q
`=1 d(xD,pD` )

)
, (5.1)

Unless otherwise specified, d(·, ·) is the Euclidean distance. The output of Equa-

tion (5.1) is a Q-dimensional vector whose ith element estimates the likelihood of

distinguishing sample xD from pivot pDi with respect to the other samples in the pivot

set PD.

Figure 5.3 illustrates the effects of applying Equation (5.1) to spectra representing

the same material class (i.e., “grass”) in the source and target domains. When the

relative distances between samples from different classes are approximately preserved

across the domains, the R-space mapping captures the multiclass structure common

to both domains. This allows us to effectively train a classifier using labeled source

samples to classify target samples.

5.4 Related Work

Several recent works propose domain adaptation techniques to reconcile differences

between spectra captured under different conditions. Some of these involve active

learning techniques, which require user intervention during training to select target

samples most relevant to the domain adaptation problem (e.g., [Kim et al., 2008;

Persello and Bruzzone, 2011]). While active-learning approaches produce good results,

requiring expert intervention during training limits the applicability of the technique

for fully-autonomous applications, such as onboard spacecraft, and is often impractical

for rapid exploitation of new data. Another approach is to automatically adapt a

pre-trained classifier to classify similar imagery (e.g., [Bruzzone and Marconcini, 2010;
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… 

Input: Labeled Source 

Spectra (xS,yS)

Target Domain

3. Train Classifier in Relational Space … 

Input: Unlabeled

Target Spectra xT 

… 

Output: Target

 Predictions yT 

asphaltT 

treeT 

grassT
 

PS PT 

R(xS , PS) → rS

R(xT , PT ) → rT

2. Apply Relational Transform

R 
R 

Figure 5.2 : Overview of the Relational Class Knowledge Transfer (RelTrans) frame-
work. The set of pivot samples define the mapping to the “R-space” (step 2) between
a set of source domain spectra and a set of target domain spectra, typically sampled
from two different images. The R-space mapping reconciles systematic differences
between the source and target domains, allowing us to train a classifier on the source
samples that we can subsequently apply to classify the target samples.

Kim and Crawford, 2010; Rajan et al., 2006]). However, such techniques assume a

specific type of classifier has been trained that can subsequently be tuned to the new

data.

Domain adaptation problems bear a close resemblance to multi-task learning

problems [Caruana, 1997], also called inductive or transfer learning problems. In

multi-task learning, labeled samples are available from one or more related source and

target tasks (i.e., domains), and the goal is to model the underlying structure of the
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Figure 5.3 : Effect of R-transform with (Q = 3) source and target pivots (left six plots)
on a source sample (red plots, top right) and a target sample (blue plots, bottom right)
representing the same class (i.e., “grass”). Domain-specific differences are reconciled
in the R-space than in the original feature space.

tasks to construct a classifier to classify samples from the target task. Supervised

domain adaptation problems can potentially be viewed as an instance of the latter case,

that is, by viewing the set of labeled target samples as one of the source tasks. We

evaluate several widely-used multitask learning techniques in comparison to RelTrans

in Section 5.9.2. However, as we show later, an issue with many existing domain

adaptation/multitask learning techniques is that they are designed for problems

involving two classes (e.g., [Chen et al., 2011; Daume, 2007; Zhen and Li, 2008]), and

do not generalize well to multiclass domain adaptation problems.

An alternative to the aforementioned domain adaptation/multitask learning meth-

ods is to apply manifold alignment techniques to learn a transformation that maps

the spectral features of the source and target spectra to a similar feature space. By

learning such a mapping, we can apply a classification algorithm of our choosing

in the transformed feature space. Yang et al. recently demonstrated that manifold
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alignment techniques are well-suited to learn such mappings for hyperspectral domain

adaptation tasks [Yang and Crawford, 2011]. However, existing manifold alignment

techniques learn a single global transformation between domains. While applying a

global transformation can resolve systematic differences between domains, it may

prove inadequate in resolving the class-specific differences caused by varying viewing

geometries, illumination or atmospheric conditions that alter the radiances observed

at the sensor of specific materials [Adams and Gillespie, 2006]. In Section 6.8, we

describe an extension to our RelTrans framework aligns the manifolds of the source

and target data on a per-class basis, and show our extension outperforms manifold

alignment techniques that learn a single global transformation between the domains.

5.5 Class Knowledge Transfer using Labeled

Source and Target Data

In this section, we consider inter-domain material identification problems in the

supervised domain adaptation setting, where a small number of labeled target samples

are available to define the mapping between the domains. We start with an overview

describing how we adapt a MinDist classifier trained on data from a source image

to classify a similar target spectra. We demonstrate that we significantly improve

inter-domain classification accuracy by using RelTrans to map source and target

spectra to the R-space, in comparison to classifying the target spectra in their original

feature space. We then demonstrate RelTrans generalizes to arbitrary similarity-

based classifiers. We provide several case studies demonstrating the effectiveness of

RelTrans for domain adaptation and outlier detection tasks on both synthetic and

real hyperspectral image data sets, and show that our techniques produce comparable

or better performance than several recent multi-task learning algorithms.
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5.5.1 RelSim: A RelTrans Proof of Concept

In this section, we describe how we apply the RelTrans framework to adapt a MinDist

classifier (Equation (1.2)) trained on source domain data to classify data from a

similar target domain data. Our algorithm, RelSim, is given in Algorithm 5.1. RelSim

computes an NT × KS similarity matrix R between the unlabeled target samples

XT and the source classes in the R-space. Given the set of Q pivot samples P =

(P S, P T , Y P ) =
{

(pSi ,p
T
i , y

P
i )
}Q
i=1

, the algorithm computes the class means for the

labeled source samples µSj and for the source and target pivot samples µP
S

j and

µP
T

j , respectively (Step 1), which are subsequently mapped to the R-space (Step 3).

We then map each target sample xTi to the R-space vector rTi using the R-space

target pivot means (Step 5), and compute its similarity to the R-space source means

Rsim(rTi , r
S
j ), weighted by the similarity to the R-space pivot class means (Rsim(rTi , r

PS

j ),

Rsim(rTi , r
PT

j ), Step 6). We measure the similarity between samples ri and rj in the

R-space according to

Rsim(ri, rj) = 1−
√
Q

2
‖ri − rj‖, (5.2)

where ‖ · ‖ is the L2 norm. The Rsim(ri, rj) function yields values in the [0, 1] range

that increase with the similarity of ri and rj.
†

We predict the class label yTi of target pixel xTi according to the following decision

rule

yTi = argmax
j

Ri,j. (5.3)

where the (i, j)th entry of the similarity matrix R gives the likelihood that target pixel

xTi is a member of the jth source class.

†In [Bue and Merényi, 2010], we scale ‖ri − rj‖ by 1/2, rather than
√
Q/2. However, scaling by 1/2

collapses the range of the Rsim function to [1− 1/
√
Q, 1], whereas scaling by

√
Q/2 yields values in the

entire [0, 1] range. We use the
√
Q/2 scaling in this work.
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Algorithm 5.1 RelSim

Input: Labeled source samples (XS, Y S), unlabeled target samples XT , pivot set
P = (P S, P T , Y P )

Output: NT ×KS similarity matrix between target samples vs. source classes R

1: MS =
{
µSj
}KS

j=1
, MPS =

{
µP

S

j

}KS

j=1
, MPT =

{
µP

T

j

}KS

j=1

2: for j = 1 to KS do
3: rSj = R(MS

j ,M
S), rP

S

j = R(MPS

j ,MPS), rP
T

j = R(MPT

j ,MPT )
4: for i = 1 to NT do
5: rTi = R(xTi ,M

PT )
6: Ri,j = Rsim(rTi , r

S
j ) · Rsim(rTi , r

PS

j ) · Rsim(rTi , r
PT

j )
7: end for
8: end for

In settings where outlier detection is desirable, we can apply a user-specified

confidence threshold τ ∈ [0, 1] to Equation (5.3) to detect samples representing target

domain classes that are dissimilar from the source domain classes, using the updated

decision rule

yTi =





argmax
j

Ri,j if Ri,j ≥ τ

0 otherwise,

(5.4)

We flag sample xTi as a member of an unknown class by assigning label yTi = 0 when

Ri,j is not sufficiently similar (i.e., Ri,j < τ) to any of the source classes in the R-space.

5.5.2 Adaptive Outlier Detection with RelThresh

We can potentially predict a good value of τ based upon the relationships between

the source and target domain classes captured in the pivot set using our RelThresh

algorithm (Algorithm 5.2). The algorithm takes as input the R matrix produced by

the RelSim algorithm (Algorithm 5.1), along with the Q×KS matrices RPS and RPT

matrices that give the Rsim similarities between each pivot pDi vs. their respective
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pivot class means MPD according to

RPS

i,j = Rsim(R(pSi ,M
PS), rP

S

j ) (5.5)

RPT

i,j = Rsim(R(pTi ,M
PT ), rP

T

j ), (5.6)

where i ∈ {1, . . . , Q}, j ∈
{

1, . . . , KS
}

and MPS , MPT , rP
S

j , and rP
T

j are calculated

as described in Algorithm 5.1. RelThresh discretizes the range of RelSim similarities

between the source pivots and target samples into nstep segments, and traverses the

range (Steps 2-9) to select the threshold τbest that ensures none of the source or target

pivots are flagged as unknowns (Step 6) while correctly classifying the most target

pivots (Step 8).

Algorithm 5.2 RelThresh

Input: RelSim similarity matrices R, RPS , and RPT . Total τ steps nstep

Output: RelSim threshold τbest
1: τmax = max(R), τmin = min(R), τstep = τmax−τmin

nstep
, τcur = τmax, n

best
correct = −∞

2: while τcur > τmin do
3: ncorrect = 0
4: for i = 1 to Q do
5: j = argmax

j
RPT

i,j

6: if RPS

i,j > τcur and RPT

i,j > τcur then ncorrect = ncorrect + I(yPi = j)
7: end for
8: if ncorrect > nbest

correct then nbest
correct = ncorrect, τbest = τcur

9: τcur = τcur − τstep
10: end while

5.6 Multisensor Material Identification

For our first experiment, we consider a class knowledge transfer problem using state-

of-the-art synthetic imagery generated using RIT Digital Imaging and Remote-Sensing
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Image Generation (DIRSIG, [Schott et al., 1999]) model. We study a subregion

of the RIT “Megascene” [Salvaggio et al., 2005], with 400x400 pixels at 4m/pixel

resolution. Spectral responses are modeled after the HYDICE [Basedow et al., 1995]

instrument, with 210 bands over 0.4-2.5 µm. We perform atmospheric calibration via

the empirical line method using the software package ENVI [RSI, 2008]. For this initial

evaluation, we assume the spatial extents of the source and target images partially

overlap, which provides a natural means to select pivot samples that correspond to the

same material classes between the two images. We extract two spatially overlapping

sub-images (Source and Target in Figure 5.4) from the RIT Megascene. The source

image remains at HYDICE spectral resolution, while the target image is downsampled

to MASTER [Hook et al., 2001] spectral resolution. Initial experiments using spectral

responses modeled after the 128-band HyMap [Cocks et al., 1998] instrument proved

trivially classifiable with a simple linear classifier. Thus, we opted for the lower

spectral resolution of the MASTER instrument, with 23 bands in the 0.4-2.5 micron

range, for our target image. Examples of the HYDICE spectra and their MASTER

equivalents are shown in Figure 5.5. We considered the 159 overlapping wavelengths

that remained after removing saturated water absorption bands in both images, and

then upsampling the MASTER spectra back to the HYDICE wavelengths, using the

appropriate FWHM parameters. The overlapping wavelengths are shown in Figure 5.6,

and the removed water bands are indicated as gaps in the spectra shown in Figure 5.5.

We scale each pixel by its Euclidean norm to account for linear illumination effects.

5.6.1 Evaluation Methodology

We consider the domain adaptation (DA, KS = KT and KS > KT ) and outlier

detection (OD, KS < KT ) settings described in Section 5.2. In each setting, we use
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Figure 5.4 : Source (left, red tint), and Target (right, green tint) sub-images of the RIT
DIRSIG synthetic image. The source image remains at HYDICE spectral resolution,
and the target image is downsampled to MASTER spectral resolution. The target
image is then upsampled back to HYDICE spectral resolution. Pivot samples are
selected from the overlap region (center, blue tint). The relative difference in Euclidean
distances between source and target pixels in the overlap region is also provided (right)
and is largest for shadow pixels (Figure 5.5, class C).

the Self-Organizing Map-based clustering described in [Merényi et al., 2009] to guide

the extraction of 1000 spectra from each of the source and target images. The mean

signatures of the SOM clusters are provided in [Merényi et al., 2009], and the material

class labels of the clusters we consider are provided in the second column of Table 5.2,

below. An additional 300 labeled spectra are selected as pivot samples by using the

labeled source data to pick target samples at identical spatial locations in the overlap

region. We distribute the pivot samples evenly over the set of classes shared between

the source and target domains, and assume that at least one pivot sample is available
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Figure 5.5 : Mean and standard deviation for classes B, U, V and C from source
(HYDICE, green) and target (MASTER, magenta) images. Class B consists of a
combination of tan asphalt shingle and gray gravel roof spectra, and is often confused
with class U (brown asphalt shingles) and class V (black and gray asphalt materials).
Class C is an example of a shadow class consisting of several heterogeneous materials.
Predictions for such heterogeneous classes tend to be poor due to high intra-class
variance.

Spectral overlap: 159 overlapping wavelengths ∈ [0.45,2.48] µm

Figure 5.6 : Range of overlapping HYDICE and MASTER wavelengths.

for each class.

The set of classes shared between the source and target domains we consider in

each of the DA and OD settings include the following SOM cluster labels: {A, C,

J, K, Q, R, U, V, Y, a, c, d, j}. In the KS > KT setting, the source data also

contains samples from SOM clusters {F, L, h, i}, not present in the target data. In
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the OD setting (i.e., KS < KT ), we exclude samples from clusters {B, E, M, P, S, k}

from the source data. The absence of these samples in the source data forces each

classifier to choose the best matching source class when the “true” target class is

not present, and thus, the maximum attainable accuracy without applying outlier

detection techniques is limited by the number of target samples that represent source

classes. In this case, samples from the unknown target classes represent ≈ 30% of the

total target samples – and thus, the maximum attainable accuracy without outlier

detection is ≈ 70%. We consider incorrectly flagged pixels (i.e., flagged target pixels

that represent classes present in the source data) misclassifications – i.e., we report

the classification accuracy as 100% if all target samples representing source classes are

correctly classified, and all unknown samples are correctly flagged.

We compare results using the following classifiers: MinDist– Minimum Euclidean

Distance to class means (Equation (1.2)); MinDistrel – MinDist applied to image pixels

in the R-space using the source class means as pivot samples (i.e., P S = P T = MS);

RelSimsrc – RelSim algorithm without pivot weighting (i.e., Ri,j = Rsim(rTi , r
S
j ));

RelSim – the “full” RelSim algorithm as described in Algorithm 5.1, RelSimthresh

– RelSim with ≈15% of the least-confident target predictions flagged as unknowns;

and finally, RelSimRT – RelSim using the τ calculated by RelThresh. We classify

samples in each setting using ten-fold random stratified sampling of the source and

target classes, using half of the combined source and target data for training and the

remaining half for testing. Target class labels used only for validation purposes, and

are not used in training. We report classification accuracy on test predictions only.
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5.6.2 Multisensor Material Identification Results

Table 5.1 summarizes our classification results for the DA and OD settings. We see a

dramatic performance increase by classifying target spectra in the R-space, rather than

in their original feature spaces. We stress that the decision rules for MinDistrel and

RelSimsrc are functionally equivalent, as a result these classifiers produce equivalent

accuracies. The improved accuracies in the R-space is not surprising, since the

spectra of identical materials are much less detailed lower-resolution MASTER image

spectra than their HYDICE equivalents, particularly at longer wavelengths where

downsampling from HYDICE to MASTER spectral resolution causes aliasing (see

Figure 5.5 for examples). This reduction in spectral fidelity results in misclassifications

using MinDist (85.8% in the KS = KT setting) that do not occur with RelSim (94%),

as the inter-class relationships in each domain are not significantly altered by the

difference in spectral resolution. Thus, by characterizing the multiclass structure

within each domain, we are able to form a more robust descriptor for inter-domain

comparisons than the pixels themselves (a similar phenomenon was also observed

by Rajan et al. in their domain adaptation work [Rajan et al., 2006]). We also

observe that the R matrix weighted using the Rsim similarities between the pivot

samples (RelSim) yields improved accuracies over RelSim using only the source class

means (RelSimsrc). In the domain adaptation setting (KS = KT and KS > KT ), we

acheive the same accuracy using RelSimthresh as RelSim, indicating that RelSimthresh

does not incorrectly flag any target samples as unknowns. In the outlier detection

(KS < KT ) setting, we observe an 12% relative improvement in classification accuracy

using RelSimthresh (74.4% vs. 66.4%), and a 47% relative improvement (97.4% vs.

66.4%) with the automatically-calculated threshold used by RelSimRT.

We provide the per-class accuracies using RelSim vs. RelSimthresh in Table 5.2. Of
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DA OD
KS = KT KS > KT KS < KT

MinDist 0.858 (1.898e-3) 0.825 (4.922e-4) 0.579 (2.054e-4)
MinDistrel 0.947 (3.355e-4) 0.877 (4.197e-4) 0.640 (1.038e-4)
RelSimsrc 0.947 (3.355e-4) 0.877 (4.197e-4) 0.640 (1.038e-4)
RelSim 0.990 (3.454e-6) 0.933 (1.736e-5) 0.664 (2.036e-6)
RelSimthresh 0.990 (8.343e-8) 0.933 (1.599e-6) 0.744 (1.210e-7)
RelSimRT 0.991 (9.636e-8) 0.933 (1.671e-6) 0.974 (1.210e-7)

Table 5.1 : Mean and standard deviation of classification accuracies for HYDICE
(source) vs. MASTER (target) data. The mean and standard deviation of the τ
computed by RelThresh for the RelSimRT classifier are: 0.9689 and 0.0015, respectively.
We observe substantial improvements in accuracy over MinDist using RelSim in both
the DA and OD settings.

the 303 pixels RelSimthresh flags as unknowns, 227 are from classes not present in the

source data. 113 of these pixels are from class P (red tennis court) and another 113

belong to class E (glass). Both of these classes are fairly dissimilar from the source

classes, and are consequently flagged appropriately as unknowns by RelSimthresh. Of

the remaining flagged pixels, 34 from class K (green and brown grass) are flagged due

to their close similarity to class K (Norway and silver maple trees). Class V has trace

elements of gray gravel rooftop spectra (along with several asphalt-based materials),

and is often confused with class k (containing only gray gravel rooftop spectra). The

pairings of class M (also gray gravel rooftops) with class Q (red weathered stained

wood), and class S (gray tarp) with class j (brown mixed brick) are unintuitive, given

their respective material compositions. Nonetheless, their spectra are quite similar,

even at full HYDICE resolution, and as a consequence are often confused.

More interesting are the results for classes B and C. The material composition of

class B (a class not represented in the source data) is a combination of tan asphalt

shingles (73.9%) and gray gravel roof (23.6%) spectra. Class U consists entirely of

brown asphalt roof shingles, and class V is primarily composed of black (25.6%) and

gray (73.9%) asphalt surfaces, with trace elements of gravel rooftop materials. Of
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RelTranscorr RelTransthresh

Class Primary Materials ? n PA(%) EO(%) EC(%) CA(%)
A Roof Shingle, Asphalt, Brown and Red Blend 0 109 100.0 0.0 50.9 49.1

B* Roof Shingle, Asphalt, Tan (73.9%), Roof, Gravel,
Gray (23.6%) 0 113 0.0 100.0 0.0 100.0

C Shadow Materials 0 30 100.0 0.0 0.0 100.0
E* Glass 0 113 0.0 100.0 0.0 100.0
J Tree, Maple, Silver (46.7%), Norway (53.3%) 0 113 100.0 0.0 9.6 90.4
K Grass, Green, Healthy (91.1%), Brown (8.9%) 0 113 89.4 10.6 0.0 100.0
M* Roof, Gravel, Gray (98.9%) 0 92 0.0 100.0 0.0 100.0
P* Tennis court, Playing Surface, Red 0 113 0.0 100.0 0.0 100.0
Q Wood, Stained, Red, Old, Weathered 0 113 100.0 0.0 45.4 54.6

R Roof Shingle, Asphalt, Brown, Black, New (86.5%),
Roadway Surfaces, Asphalt, Old, Gray (8.7%) 0 113 100.0 0.0 0.0 100.0

S* Gray Tarp 0 112 0.0 100.0 0.0 100.0
U Roof Shingle, Asphalt, Mix Brown 0 113 100.0 0.0 42.9 57.1

V Roadway Surfaces, Asphalt, Old, Gray (73.9%), As-
phalt, Black, New (25.6%) 0 113 97.3 2.7 56.0 44.0

Y Grass, Brown and Green w/Dirt 0 113 100.0 0.0 0.0 100.0
a Roof Shingle, Asphalt, Black, Weathered 0 110 100.0 0.0 0.9 99.1

c Sheet Metal, White, Fair (72.8%), Saturn Hood
Paint, White (18.5%) 0 79 100.0 0.0 0.0 100.0

d Roof Shingle, Asphalt, Black 0 113 100.0 0.0 50.0 50.0
j Brick, Siding, Mix Brown, Fair (98.8%) 0 113 100.0 0.0 49.8 50.2
k* Roof, Gravel, Gray 0 112 0.0 100.0 0.0 100.0
Totals 0 2000 OVR=66.4%, AVG =67.6%, κ=0.6445

? n PA(%) EO(%) EC(%) CA(%)
0 109 100.0 0.0 0.0 100.0

1 112 0.0 100.0 0.0 100.0

30 0 100.0 0.0 0.0 100.0
113 0 100.0 0.0 0.0 100.0
0 113 100.0 0.0 2.6 97.4
34 79 96.2 3.8 0.0 100.0
0 92 0.0 100.0 0.0 100.0

113 0 100.0 0.0 0.0 100.0
0 113 100.0 0.0 44.9 55.1

8 105 100.0 0.0 0.0 100.0

0 112 0.0 100.0 0.0 100.0
0 113 100.0 0.0 42.6 57.4

4 109 100.0 0.0 56.2 43.8

0 113 100.0 0.0 0.0 100.0
0 110 100.0 0.0 0.0 100.0
0 79 100.0 0.0 0.0 100.0

0 113 100.0 0.0 0.0 100.0
0 113 100.0 0.0 49.8 50.2
0 112 0.0 100.0 0.0 100.0

303 1697 OVR=74.4%, AVG =78.5%, κ=0.7277

Table 2: RelTrans class statistics for scenario III before thresholding (left table) and after thresholding (right table). ?=Unknown class counts, n=Labeled
class counts, PA=producer’s accuracy, CA=consumer’s accuracy, EO=omission errors, EC=commission errors, OVR=#correct/#samples, AVG=mean producer
accuracy, κ=kappa statistic. Classes with an asterisk* were not included in the source (training) data. Green cells indicate excluded classes that were correctly
flagged as unknowns, orange cells indicate flagged source classes which were included in source data, and red cells indicate excluded source classes which
were not flagged. Classes B, U, V, and C shown in Fig. 2

between image capture times. Thus, an additional filtering step may
be necessary to discard/weight correspondences based on how well
they match between images. This also involves an assessment of the
robustness of the class similarity function in the presence of noisy
correspondences, and is a crucial focus of future work.

Since this method allows for the discovery of new classes in the
target data, one has to decide how to annotate these new classes. In
previous work [13], [14], we employed external spectral libraries to
annotate clusters in hyperspectral imagery. One could use a similar
approach here as a post-processing step: after we transfer the source
labels to the target image, we could compare pixels flagged as un-
knowns to a database of known material signatures to automatically
annotate newly discovered classes.
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segmented hyperspectral imagery via spectral matching,” Pro-
ceedings IEEE WHISPERS 2009, Aug 2009.
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RelSim RelSimthresh

Table 5.2 : RelSimthresh class statistics for the outlier detection (KS < KT ) set-
ting before thresholding (left table, under RelSim heading) and after thresholding
(right table, under RelSimthresh heading). ?=Unknown class counts, n=Labeled class
counts, PA=producer’s accuracy, CA=consumer’s accuracy, EO=omission errors,
EC=commission errors, OVR=#correct/#samples, AVG=mean producer accuracy,
κ=kappa statistic. Classes with a (*) represent outlier/unknown classes, and are not
included in the source (training) data. Green cells indicate unknown classes correctly
flagged as unknowns, orange cells indicate incorrectly flagged source classes, and red
cells indicate unknown classes that are not correctly flagged. Classes B, U, V, and C
are shown in Figure 5.5.

the 113 target pixels in class B, the RelSim classifier assigns 84 (74.3%) to source

class U, and 28 (24.7%) to source class V, thereby reproducing the true proportions

of U and V, with high confidence (i.e., large R values). Class C, which is represented

the source data, is small (64 pixels), and consists of several materials in shadows –

specifically, gray and black asphalt roof shingles (53.1%, 1.6%), brown plank wood

siding (18.8%), concrete cinder blocks (23.4%), and dark gray BMW Paint (1.6%). Due

to this heterogeneity combined with the relatively large variance caused by the shadow

pixels, these pixels receive low R scores, and are incorrectly flagged as unknowns as a

result.

To demonstrate that thresholding target samples in the R-space yields better

performance than in the original feature space, we calculate the number of samples
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flagged by RelSimthresh as unknowns, and then flag the same quantity of the least-

confident MinDist predictions, referring to this thresholded version of MinDist as

MinDistnthresh. Intuitively, by thresholding the same number of samples using the

predictions produced by each classifier, the more robust feature space will yield higher

classification accuracy. Table 5.3 provides a comparison between MinDistnthresh and

RelSimthresh using several values of τ in the OD setting. We observe that RelSimthresh

outperforms MinDistnthresh for each threshold. Also, while the MinDistnthresh accuracy

does improve with increasing τ values, the relative improvements occur more slowly

than with RelSimthresh. These results suggest that the source and target spectra are

not only better reconciled in the R-space, but also that the target classes are better

separated in the R-space than in their original feature space. Additionally, we note

that the τ value computed by RelThresh for the RelSimRT classifier shown in Table 5.1

(τ = 0.9689) yields competitive accuracy (97.4%) to the most accurate τ shown in

Table 5.3.

τ = 0.820 τ = 0.892 τ = 0.964
MinDistnthresh 60.8 73.1 86.3
RelSimthresh 75.0 95.9 98.7

Table 5.3 : Comparison of RelSimthresh vs. MinDistnthresh for several values of τ . The
RelSim classifier produces more accurate results than MinDist by operating in the
R-space.

5.7 Hyperspectral Class Knowledge Transfer

We now consider several class knowledge transfer scenarios using synthetic hyper-

spectral images captured under different environmental conditions. Our target image

for this experiment, which we denote D1, is the 400x400 pixel, 210 band HYDICE

image described in Section 5.6. We select source samples from two different versions
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of D2, which is a “cleaner” version of D1 with reduced atmospheric contamination and

fewer shadow pixels. The first, D2
G, was converted from image radiances to reflectances

using the empirical line (ELM) method using the software package ENVI [RSI, 2008].

The second,D2
B, is a distorted version of D2 produced by an incorrect atmospheric

calibration procedure. Specifically, we applied the EML calibration procedure to

D1 using a relatively absorption-free radiance spectrum paired to a field reflectance

spectrum with prominent absorption features. As before, we remove noisy spectral

bands in the extreme short and long wavelengths, and also remove the water vapor

saturation bands, leaving 160 of the original 210 bands for analysis, and perform

illumination normalization by dividing each spectrum by its L2 norm.

5.7.1 Evaluation Methodology

We mimic the methodology described in Section 5.6 and sample 1000 pixels from

each of the source and target images via random stratified sampling, and report the

average test classification accuracies over five randomized 50%/50% training/testing

splits. We manually select a maximum of 50 pivot samples for each source class that

represent the same class in the target image, and match the target class pixels well in

terms of spectral shape and absorption features. Figure 5.7 gives the mean signatures

of the pivot samples for the six classes shared between the source and target domains

that consider in the D1, D2
G and D2

B images. We compare the classification accuracies

produced by the RelSimRT and MinDistnthresh classifiers. The mean spectra of the five

target classes excluded from the source data in the OD setting, consisting of 44% of

the total target samples, are shown in Figure 5.8.
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Figure 5.7 : Mean spectra for manually-selected pivot samples between D1 (magenta),
D2

G (yellow) and D2
B (red) images. Spectra from images D1 and D2

G are similar after
ELM atmospheric calibration, while those from the poorly-calibrated D2

B image are
considerably distorted with respect to the D2

G spectra.
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Figure 5.8 : Mean spectra of target classes in D1 image excluded from the source data
representing 44% of the total target samples in the OD setting.



154

5.7.2 Experimental Results

Table 5.4 summarizes the results in the DA and OD settings using the D2
G or D2

B

images as source data to classify spectra from the D1 image. The intra-image (i.e.,

training and testing samples are drawn from the same image) classification accuracies

for the three images in each setting are given in the shaded columns. We observe

equivalent MinDist and RelSim accuracies in the D2
G vs. D1 scenario, which is not

surprising, given that the D2
G and D1 spectra are nearly identical. However, we observe

more substantial improvements in accuracy in the D2
B vs. D1 scenario (73% MinDist

vs. 100% RelSim). MinDist tends to misclassify samples from the “Siding, Brick,

Mix Brown, Fair” class as “Wood, Stained, Red, Old, Weathered” (Figure 5.7, top

right and bottom right, respectively). Visually, these classes are similar in image D2
B,

but less so in D1, and our results suggest that these spectrally-similar materials are

difficult to discriminate using the source data without first reconciling their domain-

specific differences. We also point out that the RelThresh procedure produces no

incorrectly-flagged samples in the DA setting for both of the D2
G vs. D1 and D2

B vs. D1

cases, as shown by the percentages of correctly-flagged samples in square brackets.

In the OD setting, MinDist performs about 50% worse than RelTrans in the

D2
B vs. D1 scenario, due to considerable differences between the D1 and the distorted

D2
B spectra, combined with the presense of the unknown target classes. RelTrans

is unaffected by these differences, since the systematic distortions in D2
B do not

significantly alter the relative intra-class distances in the source and target images.

As a result, the RelSim classification accuracy without thresholding is optimal (56%)

regardless of whether D2
G or D2

B is used as source data. With outlier detection, we

observe a substantial MinDist improvement in classification accuracy using both

MinDist (24→ 50) and RelSim (56→ 93). However, RelSim correctly flags 100% of
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DA (KS = KT ) OD (KS < KT )
D1 D2

G D2
B D2

G vs. D1 D2
B vs. D1 D1 D2

G D2
B D2

G vs. D1 D2
B vs. D1

MinDist 99 99 84 99 73 99 96 83 56 24
MinDistnthresh 99 99 84 99 [100] 73 [100] 99 96 83 93 [92] 50 [17]
RelSim 99 99 84 100 100 99 96 83 56 56
RelSimRT 99 99 84 100 [100] 100 [100] 99 96 83 99 [100] 99 [100]

Table 5.4 : Domain adaptation (KS = KT ) and outlier detection (KS < KT ) results
for source images D2

G and D2
B vs. target image D1. For each of the DA and OD

settings, the intra-image classification accuracies for each of the D1, D2
G and D2

B images
are given in the shaded columns. Values in square brackets give the percentage of
correctly flagged unknown samples.

the samples representing unknown classes, whereas MinDist only flags 92% and 17%

of the unknown samples correctly in the D2
G vs. D1 and D2

B vs. D1 cases, respectively.

5.8 Synthetic to Real Class Knowledge Transfer

We now assess the feasibility of predicting the materials of spectra from a real low-

altitude AVIRIS target image using a classifier trained using samples from the synthetic

D2
G image. We consider the AVIRISLA image of Ocean City, MD, initially described in

Section 2.4.3, denoted AVIRISOC. We select a set of six clusters from the AVIRISOC

cluster map described in [Merényi et al., 2007] that correspond well to in terms of

spectral characteristics and expert field-knowledge to materials present in the D2
G

image. Specifically, we match cluster C to “Tennis Court, Playing Surface, Green,”

G to “Roadway Surfaces, Asphalt, Old, Gray,” U to “Roof Shingle, Asphalt, Brown

and Red Blend, Fair,” L to “Grass, Brown and Green w/ Dirt,” T to “Roof, Gravel,

Gray,” and f to “Wood, Stained, Red, Old, Weathered.” Note that we select these

matches based on expert knowledge and spectral characteristics of materials, and not

the objects to which the materials belong. For instance, we know from field knowledge

that segment G is made of rooftop materials with spectral features indicating the
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presense of asphalt, and we pair it with the “Roadway Surfaces, Asphalt Old Gray”

synthetic image class, as they share the same material composition.

5.8.1 Evaluation Methodology

We apply the same methodology as in Section 5.7.1, sampling 1000 pixels from each

of the D2
G and D2

B images. We manually select 50 pivot samples for each source class.

The mean spectra of the pivot samples are shown in Figure 5.9. The mean spectra

of the five unknown target classes in the OD setting excluded from the source data,

consisting of 46% of the total target data, are shown in Figure 5.10.
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Figure 5.9 : Mean spectra for pivot samples between the D2
G (yellow), and AVIRISOC

(blue) images.



157

N
or

m
al

iz
ed

 R
ef

le
ct

an
ce

Figure 5.10 : AVIRISOC class mean spectra excluded from source classes in the outlier
detection setting. These spectra represent 46% of the total target samples in the OD
setting.

5.8.2 Experimental Results

Table 5.5 provides the overall accuracies for the DA and OD settings, respectively. We

see similar trends in classification accuracy as we observed on the synthetic data with

both MinDist and RelSim. In particular, we observe considerable improvements with

RelSim over MinDist in the DA (72%s vs. 45%) and OD (43% vs. 26%) settings. We

observe a 138.7% relative improvement with RelSimRT over MinDistnthresh. Notably,

RelSimRT achieves comparable classification accuracy in the outlier detection setting

to the domain adaptation setting (74% vs. 72%, respectively) by correctly flagging

100% of the unknown samples.

The per-class accuracies for MinDist and RelSim in the DA setting are shown in

Table 5.6. We observe that the RelSim misclassifications are generally more intuitive

than MinDist. For instance, MinDist misclassifies all “T: Roof, Gravel, Gray” samples

as either “f: Wood, Stained, Red, Old, Weathered”, “G: Roadway Surfaces, Asphalt,

Old, Gray”, or “C: Tennis Court, Playing Surface, Green,” whereas RelTrans correctly
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DA (KS = KT ) OD (KS < KT )
D2

G AVIRISOC D2
G vs. AVIRISOC D2

G AVIRISOC D2
G vs. AVIRISOC

MinDist 98 83 45 92 82 26
MinDistnthresh 98 83 45 [100] 92 82 31 [77]
RelSim 98 83 72 92 82 43
RelSimRT 98 83 72 [100] 92 82 74 [100]

Table 5.5 : Domain adaptation (KS = KT ) and outlier detection (KS < KT ) results
for source image D2

G vs. target image AVIRISOC before/after thresholding. For each of
the two settings, the intra-domain classification accuracies for each of the AVIRISOC

and D2
G images are given in the shaded columns. Values in square brackets give

the percentage of correctly flagged unknown samples. No target samples belong to
unknown classes in the domain adaptation (KS = KT ) setting (and thus, no samples
should be flagged), while 461 of the 1000 target samples are unknowns in the outlier
detection setting (KS < KT ).

classifies 35% of those same pixels, with the remaining misclassifications falling into

classes G and f, but not the (spectrally dissimilar) class C.

Accuracy (%)
Cluster Label: Material Class MinDist RelSim
C: Tennis Court, Playing Surface, Green 7 100
G: Roadway Surfaces, Asphalt, Old, Gray 55 26
L: Grass, Brown and Green w/ Dirt 63 93
T: Gravel Roof Gray 0 100
U: Shingle, Asphalt, Brown and Red Blend, Fair 57 100
f: Wood, Stained, Red, Old, Weathered 28 83

Table 5.6 : Per-class accuracy (%) for D2
G source classes and AVIRISOC target classes in

the domain adaptation setting. MinDist produces poor performance due to substantial
differences between the source and target feature spaces.

Table 5.7 gives the per-class percentages of unknown samples that each classifier

correctly flags as unknowns. We see relatively good outlier detection performance with

both MinDist and RelSim, as the unknown target classes are reasonably dissimilar

from the source classes. However, MinDist regularly misclassifies the AVIRISOC

class “Vegetation2” as “Tennis Court, Playing Surface, Green” due to their similar

absorption features. MinDist also often misclassifies “Road/Park/Walkway” and
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“Rooftop” pixels as the “Roadway Surfaces, Asphalt, Old, Gray” D2
G material class,

which are misclassifications that RelSim correctly resolves, despite their similar material

compositions.

Outlier class in AVIRISOC image
Water/Sediment Road/Park/Walk Rooftop Vegetation1 Vegetation2

MinDistnthresh 100 90 78 100 44
RelSimRT 100 100 100 100 100

Table 5.7 : Percentage of correctly flagged unknowns for the D2
G vs. AVIRISOC OD

setting. Both classifiers yield good performance, but RelSim flags a higher percentage
of unknown pixels correctly.

5.9 Radiance vs. Reflectance Classification

The majority of hyperspectral image classification techniques consider atmospherically-

corrected reflectance spectra. This is largely motivated by the fact that reflectance

signatures provide a dimensionless frame-of-reference that can be directly compared

to lab-measured spectral reflectance signatures. To convert a given target image

from at-sensor radiance measurements to reflectance units, it is necessary to apply

atmospheric calibration techniques requiring ground-measured reflectance signatures

from the scene under investigation, or computationally intensive radiative transfer

modeling techniques. However, if we have access to labeled reflectance spectra for the

materials we wish to classify in our target image, we can potentially avoid the process

of calibrating the target image by mapping the radiance and reflectance spectra to

a similar feature space using RelTrans. This can be of great advantage when such

ground-measured reflectance spectra from the target scene are unavailable, and/or

when applying radiative-transfer modeling techniques is not computationally feasible.

We can also apply the same methodology to classify atmospherically-calibrated target
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spectra using labeled radiance spectra, potentially enabling faster exploitation of

newly-captured radiance imagery.

To demonstrate this capability, we use RelTrans to classify spectral signatures

in radiance units using a classifier trained using reflectance signatures of identical

materials. We refer to this scenario as RAD2RFL. In our second scenario, RFL2RAD,

our goal is to classify target spectra in radiance units using atmospherically-calibrated

source spectra in reflectance units. Our data consists of spectral signatures from a

set of ten distinct materials that reflect the diversity in a typical urban material

identification problem, sampled from the DIRSIG synthetic HYDICE image D2

(described in Section 5.7). We denote the atmospherically-calibrated version of the

D2 image in reflectance units as D2
RFL, and its uncalibrated counterpart in radiance

units as D2
RAD. As described in Section 5.7, we use the ELM atmospheric calibration

technique to calibrate the D2
RFL image. We use the ground-truth labels to sample a

set of 400 “pure” pixels (i.e., unmixed pixels consisting of a single material) for each

class at identical spatial locations in the D2
RFL and D2

RAD, selecting the pixels nearest

to their respective class means in the D2
RFL image. This filtering step is necessary

to exclude pixels representing multiple materials, or those that are excessively noisy

or in shadows. The resulting class means for the D2
RAD and D2

RFL data are shown in

Figure 5.11. In both scenarios, we assume a small number of labeled target spectra

Qk are available for each class to help reconcile differences between the source and

target domains. For simplicity, we select the top Qk pixels nearest their class means

in each of the source and target domains to form the pivot sets P S and P T .

5.9.1 RelTrans with Different Classifiers

So far, we have focused on domain adaptation results using the RelSim classifier,

which can be viewed as a thresholded version of MinDist applied in the R-space.
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Figure 5.11 : L2-normalized class means from image D2 in radiance (left) vs. reflectance
(right) units. Y-axis tick marks give the minimum and maximum value for each
spectrum in each class.

In this section we demonstrate that the R-space mapping is robust to the choice of

classification algorithm by using several different multiclass classification algorithms
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to generate predictions for the target spectra in the R-space. Specifically, we map

each sample xD to the R-space using its corresponding pivot set PD, for D ∈ {S, T},

according to Equation (5.1). We then train a multiclass classifier using the source

samples in the R-space, and use the classifier to predict labels for the target samples

in the R-space.

As before, our baseline multiclass classifier is MinDist. We also consider the

multiclass (one-vs.-one) Support Vector Machine provided in the LIBSVM package

[Chang and Lin, 2011] with linear (SVM-lin) and radial basis function (SVM-rbf)

kernels, along with the GLVQ and GRLVQ algorithms described in Section 1.4, using

the implementation provided by Strickert‡ [Strickert, 2011]. We select the SVM slack

parameter C, and the SVM-rbf kernel width parameter γ from the range {10−4, . . .,

104}; the number of GLVQ/GRLVQ prototypes per class nproto from {1, 3, 5, 10}; and

the steepness parameter for the GLVQ/GRLVQ logistic function σ from {1, 25, 50, 100,

250}, that produce the highest accuracy on the training data. To balance the amount

of computation time while also characterizing generalization performance, we report

the average test accuracy over five cross-validation folds. In addition to evaluating

classification accuracy in the R-space for Qk ∈ {10, 25, 50, 75, 100}, we provide

the baseline intra-domain (denoted RAD and RFL, respectively) and inter-domain

(denoted Base) classification accuracies acheived by applying each classifier in the

original RAD and RFL feature spaces.

Table 5.8 gives the mean and standard deviation of classification accuracies in the

RAD2RFL and RFL2RAD scenarios using each classifier. The Overall column gives

the mean of RAD2RFL and RFL2RAD accuracies for each value of Qk. The mean of

the R-space accuracies over the range of Qk for each classifier are also provided. We

‡Available at: http://mloss.org/software/view/323/

http://mloss.org/software/view/323/
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observe extremely low baseline classification accuracies (shaded cells) in both scenarios

due to the considerable difference between the source and target feature spaces. This

difference between feature spaces typically forces the classifier to predict almost all

of the target samples belong to two source classes representing ≈ 20% of the total

target samples (e.g., SVM-lin/SVM-rbf in the RAD2RFL scenario), or a single source

class representing ≈ 11% of the target samples (e.g., MinDist/GLVQ/GRLVQ in both

scenarios, in the RFL2RAD scenario).

We see that classifying the spectra in the R-space yields considerable improvements

over the baseline accuracies, often acheiving accuracies comparable to or better than

the respective intra-domain accuracies. MinDist, in particular, performs substantially

better in the R-space than in the original feature space, achieving accuracies ≈4-8%

better than in the original feature space, due to the additional structure that the

classifier can exploit in the R-space. Overall, the SVM-lin and SVM-rbf classifiers

produce the highest average accuracies in the R-space, owing to their good performance

(85− 92%) for the smallest Qk = 10 value, where the other algorithms occasionally

yield relatively low (76− 83%) accuracies. However, classification accuracy remains

reasonably high (> 85%) and stable using all of the algorithms with a sufficiently

large Qk(≈ 25), as evidenced by the typically small (< 1%) standard deviation of

the classification accuracies, and by the relative differences between the accuracies

of adjacent Qk values. The typically lower accuracies in the RFL2RAD scenario

in comparison to the RAD2RFL scenario, combined with the lower intra-domain

RFL accuracies, suggest that the RFL2RAD scenario is the more challenging of the

two domain adaptation problems. However, the accuracies in the domain adaptation

scenarios are reasonably close (within 5%) to one another for each Qk value. This

suggests that the quality of the pivot set has a similar effect on the classification

accuracy independent of whether the RAD or the RFL is used as the training data.
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RAD2RFL RFL2RAD Overall
Qk Mean Std Mean Std Mean Std

MinDist Base 0.1123 0.0087 0.1123 0.0008 0.1123 0.0048
RAD=0.8254 10 0.8880 0.0036 0.8476 0.0187 0.8678 0.0112
RFL=0.8195 25 0.8908 0.0028 0.8838 0.0254 0.8873 0.0141

50 0.8908 0.0027 0.8653 0.0111 0.8781 0.0069
75 0.8919 0.0076 0.8608 0.0120 0.8764 0.0098
100 0.8903 0.0123 0.8597 0.0024 0.8750 0.0074
Mean 0.8904 0.0058 0.8634 0.0139 0.8769 0.0099

GLVQ Base 0.1123 0.0000 0.1123 0.0000 0.1123 0.0000
RAD=0.9102 10 0.8701 0.0075 0.8262 0.1148 0.8482 0.0612
RFL=0.9068 25 0.8962 0.0039 0.8737 0.0150 0.8850 0.0095

50 0.8757 0.0377 0.8681 0.0056 0.8719 0.0217
75 0.8869 0.0108 0.8585 0.0112 0.8727 0.0110
100 0.8701 0.0273 0.8611 0.0012 0.8656 0.0143
Mean 0.8798 0.0174 0.8575 0.0296 0.8687 0.0235

GRLVQ Base 0.1123 0.0000 0.1123 0.0000 0.1123 0.0000
RAD=0.9107 10 0.8285 0.0241 0.7569 0.0271 0.7927 0.0256
RFL=0.8978 25 0.9001 0.0080 0.8793 0.0063 0.8897 0.0072

50 0.8900 0.0199 0.8684 0.0138 0.8792 0.0169
75 0.8779 0.0211 0.8706 0.0004 0.8743 0.0108
100 0.8976 0.0075 0.8585 0.0182 0.8781 0.0129
Mean 0.8788 0.0161 0.8467 0.0132 0.8628 0.0146

SVM-lin Base 0.2024 0.0076 0.1123 0.0000 0.1574 0.0038
RAD=1.0000 10 0.8658 0.0007 0.8869 0.0035 0.8764 0.0021
RFL=0.9941 25 0.8863 0.0084 0.8844 0.0008 0.8854 0.0046

50 0.8729 0.0012 0.8796 0.0076 0.8763 0.0044
75 0.8720 0.0063 0.8768 0.0019 0.8744 0.0041
100 0.8740 0.0036 0.8754 0.0095 0.8747 0.0066
Mean 0.8742 0.0040 0.8806 0.0047 0.8774 0.0044

SVM-rbf Base 0.2063 0.0011 0.1123 0.0000 0.1409 0.0266
RAD=1.0000 10 0.8571 0.0234 0.9183 0.0067 0.8877 0.0151
RFL=0.9962 25 0.8908 0.0170 0.8437 0.0670 0.8673 0.0420

50 0.8978 0.0047 0.8939 0.0096 0.8959 0.0072
75 0.8931 0.0020 0.9032 0.0027 0.8982 0.0024
100 0.8726 0.0024 0.8877 0.0112 0.8802 0.0068
Mean 0.8823 0.0099 0.8894 0.0194 0.8858 0.0147

Table 5.8 : Mean and standard deviation of classification accuracy using different
multiclass classifiers to classify RAD2RFL and RFL2RAD data in the original source
and target feature spaces (Base, shaded cells) vs. in the R-space with Qk ∈ {10, 25,
50, 75, 100} labeled pivots/class. The mean accuracy over the range of Qk values and
the intra-domain accuracies on the RAD and RFL data are provided for each classifier.
The best and second best performing classifiers are given in red and blue italics for
each scenario. All of the R-space classifiers produce considerable improvements over
their respective baseline accuracies, and show competitive performance to one another,
with overall accuracies differing by < 2%.
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5.9.2 Comparisons to Multitask Learning Techniques

We also provide a comparison between classifying spectra using RelTrans vs. using

MultiTask Learning (MTL) techniques. Given the set of N t tasks (i.e., domains)

{(Xi, Yi)}N
t

i=1, each consisting of N t
i samples {(Xi,j, Yi,j)}N

t
i

j=1 of dimensionality n with

corresponding binary labels Yi,j ∈ {−1, 1}, the MTL techniques we consider minimize

the regularized logistic loss

min
W,c

Nt∑

i=1

Nt
i∑

j=1

log (1 + exp (−Yi,j (〈Wi,·, Xi,j〉+ ci))) + Ω(W,γ), (5.7)

where W is the N t × n matrix of weight vectors for each of the tasks, c is the vector

of scalar offsets for each task, and Ω(W,γ) is an algorithm-specific regularization

function that encodes the relatedness between the tasks, according to parameter vector

γ. The binary prediction y ∈ {−1, 1} for sample vector x from task i is computed

according to y = sign(〈Wi,·,x〉+ ci).

We stress that the above formulation is designed for binary classification problems.

At this time, however, we are not aware of existing techniques that can handle MTL

problems consisting of more than two classes. Consequently, to compare our multiclass

classification results to those produced using the MTL techniques, we decompose our

multiclass domain adaptation problem into K(K−1)
2

binary subproblems, and learn a

MTL model using one of the algorithms described below for each pair of classes. We

predict the label for each unlabeled sample via majority vote over all of the binary

models. We note that this scheme (i.e., one-vs.-one decomposition + majority-voting)

is the same method used by the LIBSVM classifier for multiclass classification [Duan

and Keerthi, 2005]. The training data for each of the binary subproblems consists of

the labeled source data and the set of labeled target pivots for each pair of classes.
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The MTL techniques we consider are Joint Feature Selection (JFS,Obozinski

et al. [2009]), Multi-task Feature Learning (MTFL, Argyriou et al. [2007]) and Trace

norm minimization (Trace, Ji and Ye [2009]). Each technique computes a low-

dimensional feature representation that is shared among the tasks by applying different

regularization functions to W. The form of the regularization function Ω(W,γ) for

each algorithm are summarized in Table 5.9. The JFS technique enforces sparsity

across the tasks by penalizing the L1 norm of the matrix W, and limits the complexity

of each model by penalizing the L2 (Frobenious) norm of W. MTFL also penalizes

the L2 norm of W, and also promotes similar sparsity patterns among the tasks by

penalizing the sum of the L2 norms of the tasks ‖W‖1,2 =
∑n

j=1 ‖Wj‖2. Finally,

the Trace method gives preference to low-rank models by penalizing the trace norm

(i.e., the sum of singular values) ‖W‖∗. We use the implementation of each of

the aforementioned algorithms provided in the Multi-tAsk Learning via StructurAl

Regularization (MALSAR) toolbox [Zhou et al., 2011].

Method Ω(W,γ)

JFS γ1‖W‖1 + γ2‖W‖22
MTFL γ1‖W‖1,2 + γ2‖W‖22
Trace γ1‖W‖∗

Table 5.9 : Regularization func-
tions Ω(W,γ) for MTL Algo-
rithms.

We use the labeled source data and the set of

Qk labeled target pivots from each class as training

data for the binary multitask subproblems, and

report the average test accuracy on the target task

over five cross-validation folds. In each fold, we

estimate the regularization parameters γ for each

multitask model by splitting the training data for

each binary task evenly into a trainCV and a testCV set twice, and selecting the

values of γ yielding the highest accuracy on the testCV set when trained on the

trainCV set. We found experimentally that selecting the γ values that maximize the

average accuracy on both the source and target domains produced more accurate and

stable results than the γ values that maximize accuracy on the target domain only,
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most likely due to the limited quantity of available labeled target samples to train the

MTL algorithm.

Table 5.10 gives the classification accuracies using the multitask classifiers for the

RAD2RFL and RFL2RAD scenarios. We observe comparable performance in the

RAD2RFL scenario to the R-space classifiers shown in Table 5.8 using the MTFL and

Trace algorithms, with MTFL slightly outperforming SVM-rbf (89.21% vs. 88.25%).

Interestingly, we observe notably better accuracies for small values of Qk in comparison

to large Qk using all three MTL algorithms, suggesting that a small set of representative

labeled target samples is preferable to a larger set of potentially redundant labeled

target samples, in some cases. However, we see significantly worse performance by all

of the MTL algorithms in the more challenging RFL2RAD scenario in comparison

to the R-space classifiers, with the most accurate MTL algorithm (MTFL, 80.15)

yielding an average accuracy 4% worse than the least accurate R-space classifier

(GRLVQ, 84.67%). Consequently, the overall accuracies in the two scenarios using the

MTL algorithms are at least 2% worse than the R-space classifiers. We suspect that

the reduced performance by the MTL algorithms is primarily due to the fact that

each binary MTL task is learned independently of the others, and thus, the learned

parameters only reflect the characteristics of each pair of classes across the tasks.

With RelTrans, even if the problem is decomposed into a set of binary subproblems

(as is the case with the SVM), the multiclass structure of the problem is reflected in

the embedding in the R-space (we discuss this in greater detail later in Section 6.6).

Consequently, the R-space classifiers can more accurately account for relationships

between all of the classes across domains, instead of only pairwise relationships.
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MTL RAD2RFL RFL2RAD Overall
Qk Mean Std Mean Std Mean Std

JFS 10 0.9248 0.0008 0.7980 0.0072 0.8614 0.0040
25 0.8712 0.0099 0.7862 0.0127 0.8287 0.0113
50 0.8681 0.0175 0.8143 0.0024 0.8412 0.0100
75 0.7048 0.2214 0.7926 0.0155 0.7487 0.1185
100 0.8530 0.0111 0.7854 0.0139 0.8192 0.0125
Mean 0.8444 0.0521 0.7953 0.0103 0.8198 0.0312

MTFL 10 0.9273 0.0004 0.7943 0.0012 0.8608 0.0008
25 0.8861 0.0032 0.8123 0.0139 0.8492 0.0086
50 0.8852 0.0020 0.8143 0.0071 0.8498 0.0046
75 0.8260 0.0436 0.7957 0.0048 0.8109 0.0242
100 0.8678 0.0139 0.7910 0.0020 0.8294 0.0080
Mean 0.8785 0.0126 0.8015 0.0058 0.8400 0.0092

Trace 10 0.9276 0.0000 0.8019 0.0119 0.8648 0.0060
25 0.8861 0.0056 0.8002 0.0151 0.8432 0.0104
50 0.8838 0.0008 0.8134 0.0083 0.8486 0.0046
75 0.8833 0.0008 0.7943 0.0139 0.8388 0.0074
100 0.8796 0.0004 0.7924 0.0048 0.8360 0.0026
Mean 0.8921 0.0015 0.8004 0.0108 0.8463 0.0062

Table 5.10 : Mean and standard deviation of classification accuracy in the RAD2RFL
and RFL2RAD scenarios using different MTL algorithms for Qk ∈ {10, 25, 50, 75,
100} labeled target samples / class. The mean accuracy over the range of Qk values is
provided for each algorithm. The best and second best performing algorithms for the
average of the Qk values are given in red and blue italics for each scenario, and overall.
While the MTFL and Trace algorithms show competitive accuracies to RelTrans in
the RAD2RFL scenario, they perform substantially worse in the RFL2RAD scenario.

5.9.3 Domain Adaptation, Learning Bounds and Model

Selection

So far, we have shown that training/applying a multiclass classifier in the R-space

often signficantly improves class knowledge transfer for a wide range of Qk values. A

question remains on how we can measure the quality of a set of pivots with respect to

the domain adaptation task. Here, we describe an algorithm which leverages recent

work by Ben-David et al. [2010a], who provide learning bounds on target domain error
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for binary domain adaptation problems.

The learning bounds provided by Ben-David et al. [2010a] each take the form

εT (h) ≤ εS(h) + div(DS,DT ) + V (5.8)

where h(x)→ {−1, 1} is a binary classifier trained using the source domain data, εD(h)

is the error in the domain D ∈ {S, T} using h, div(DS,DT ) is a measure of divergence

between the source and target distributions (described below), and V characterizes the

complexity of the learning problem in each domain, along with the adaptability of the

problem across the domains according to the true labeling functions fD(x) for domain

D ∈ {S, T}. However, because the true labeling functions are unknown, we cannot

estimate V in practical domain adaptation settings. Although it is possible to bound

V based on the Vapnik-Chervonenkis (VC) dimension of the problem [Vapnik and

Chervonenkis, 1971], determining the VC dimension is itself a nontrivial task, and the

resulting bounds are typically too conservative to be of practical utility. Despite these

issues, we show later that a classifier h which minimizes both the source domain error

εS(h) and a measure of divergence between the domains div(DS,DT ) often produces

lower target domain error εT (h) than classifiers that do not minimize these criteria.

Measuring the difference between the source and target domains is a challenging

problem, and a number of approaches have been proposed to acheive this goal (e.g.,

[Ben-David et al., 2010a; Gretton et al., 2009; Kifer et al., 2004]). The approach we

take is inspired by the empirical H-divergence proposed by Ben-David et al. [2010a],

which measures the difference between two distributions by learning a binary classifier

to separate samples drawn from either. Here, we assume DS and DT are similar, and

estimate the generalization performance of predictor f by measuring the divergence

d̂hj between the set of source samples belonging to class j, XS
j , and the set of target
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samples that f predicts belong to class j, XT
j
′
, according to

d̂hj(X
S
j , X

T
j

′
) = min

hj


 1

NS
j

∑

x:hj(x)=1

I
(
x ∈ XS

j

)
+

1

NT
j

∑

x:hj(x)=−1

I
(
x ∈ XT

j

′
)

 (5.9)

where I(·) is the indicator function. d̂hj scores near 0.5 indicate we cannot distinguish

samples drawn from either domain. Thus, we seek the classifier f that minimizes the

average d̂hj over all K classes

d̄h =
1

K

K∑

j=1

d̂hj(X
S
j , X

T
j

′
) (5.10)

Intuitively, if the classifier f generates accurate predictions, the set of samples XT
j
′

will contain many of the true target samples representing the jth class. Moreover,

because we assume the source and target domains are similar, it should be difficult

to distinguish samples in XS
j from samples XT

j
′
. Quantitatively, we measure the

difference XS
j and XT

j
′

by training a binary classifier hj(x)→ {−1, 1} that outputs

the label 1 if sample x ∈
{
XS
j , X

T
j
′
}

is a member of the source domain, and outputs

the label −1 if x is a member of the target domain.

Algorithm 5.3 summarizes our algorithm, Prediction Divergence (PredDiv), which

estimates d̄h according to the predictions generated by classifier f(x)→ {1, . . . , K}.

The algorithm proceeds by collecting the labeled source samples for each class j, XS
j ,

and the set of samples that classifier f predicts belong to class j, XT
j
′

(Step 2). When

f predicts no target samples belong to class j, then we assume we can easily distinguish

between source and target samples from class j, and thus d̂hj = 1. Otherwise, we

calculate d̂hj by training a binary classifier hj to separate 50% of the (randomly-

selected) samples from (XS
j , X

T
j ), and applying hj on the remaining 50%, averaging
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over L random splits (Step 8). d̄h is calculated from the average sum of the d̂hj values.

Below, 1N is an N -dimensional vector of ones, and |X| gives the cardinality of set X.

Algorithm 5.3 PredDiv

Input: NS source samples XS, source labels ySi ∈ {1, . . . , K}, NT target samples
XT , multiclass predictor f(x)→ {1, . . . , K}, number of splits L

Output: Average per-class divergence score d̄h.
1: for j = 1 to K do
2: XS

j =
{
xS
}
xS :ySi =j

# Labeled source data for class j

3: XT
j
′
=
{
xT
}
xT :f(xT )=j

# Target predictions for class j

4: if |XT
j
′| = 0 then

5: d̂hj = 1 # No target predictions with label j
6: else
7: Xj =

{
XS
j , X

T
j

}
, Yj ←

[
−1|XS

j |,1|XT
j
′|]

8: d̂hj = 1
L

∑L
`=1 TwoFoldCV(Xj, Yj)

9: end if
10: end for
11: return d̄h = 1

K

∑K
j=1 d̂hj

In the experiments below, we apply Algorithm 5.3 to measure the quality of the

R-space models parameterized by the number of pivots/class Qk ∈ {10, 15, 20, 25,

30, 35, 40} in the RAD2RFL and RFL2RAD scenarios. We use the linear SVM

classifier described in Section 5.9.1 as our multiclass predictor f , and train a separate

binary linear SVM for each hj. We select the SVM slack parameter C for f via

cross-validation as described in Section 5.9.1. For each hj, we fix C to one of {10−50,

10−25, 10−10, 10−5, 10−2 }. As we show later, fixing C for each hj classifier is necessary

in order to compare the d̄h values for different models. We set the number of splits L

in the PredDiv algorithm to 5.

Figure 5.12 gives the R-S and R-ST accuracies for the RAD2RFL and RFL2RAD

scenarios for the R-space models with Qk ∈ {10, 15, 20, 25, 30, 35, 40} pivots/class.

Also provided are the corresponding d̄h scores for each model, using the C values
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listed above. Several trends are apparent. First, the d̄h scores follow similar trends for

the values of C, although their ranges are dependant on the value of C. Consequently,

we must select a fixed value of C for each hj classifier in order to compare d̄h scores of

different models. We also observe that, for each value of C, the models which maximize

the R-S and R-ST accuraces differ in both scenarios. In fact, the most accurate R-S

model in the RAD2RFL scenario yields the 2nd lowest R-ST accuracies (0.8647). The

models that minimize d̄h yield comparable or higher R-ST accuracies in comparison

to those produced by maximizing the R-S accuracies. However, while we observe an

inverse relationship between the R-ST accuracy and d̄h in the RAD2RFL scenario,

a similar trend does not occur in the RFL2RAD scenario. The low R-S accuracies

and relatively high d̄h scores for the most accurate R-ST models Qk ∈ {20, 25} in

the RFL2RAD scenario indicates that an inaccurate source model may increase the

difference between the domains, but can potentially be more accurate for domain

adaptation than models that are measureably more similar. However, we note that all of

the models in the RFL2RAD scenario produce nearly equivalent R-ST accuracies, with

the most accurate and least accurate models differring by only ≈ 1.5%. Additionally,

the low d̄h scores for the models with the lowest dimensionality (Qk ∈ {10, 15}) suggest

that d̄h may show a preference for low-dimensional models when provided several

models that yield similar target predictions.

5.9.4 On the Analysis of Synthetic Hyperspectral Data

An issue with synthetic hyperspectral data is that it often does not adequately capture

all of the complex phenomena that occur in real imagery. For instance, in the studies

we just described, the intra-domain accuracies for the source data and the target data

are fairly high. While it is certainly possible to achieve such high accuracy when
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Figure 5.12 : RAD2RFL (top) and RFL2RAD (bottom) R-S and R-ST classification
accuracies for R-space models with Qk ∈ {10, 15, 20, 25, 30, 35, 40} pivots/class,
along with corresponding d̄h scores using C ∈ {10−50, 10−25, 10−10, 10−5, 10−2 }. The
numerical value of each vertical bar is given in rotated text. The most accurate R-S
and R-ST results, and the minimum d̄h scores are indicated in bold font. The Qk at
minimum d̄h values produce higher R-ST accuracies than those with the highest R-S
accuracies.

classifying real data, real image data is often less pristine, and classification accuracies

using such data may be optimistic. However, recent work suggests [Mendenhall

and Merényi, 2009] that the DIRSIG model is viable for the development of complex
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exploitation algorithms, based upon a comparative analysis between DIRSIG generated

imagery and two previous analyses on real hyperspectral (AVIRIS) images. Yet, further

validation on real hyperspectral imagery is crucial to ensure the robustness of the

techniques we proposed. In the next chapter, we describe one such study using real

hyperspectral imagery, and demonstrate that our methods yield good performance in

both supervised and unsupervised domain adaptation problems.



Chapter 6

Unsupervised Domain Adaptation

Portions of this chapter are based upon the following publications:

• BD Bue and DR Thompson. “Multiclass Continuous Correspondence Learning”. NIPS
Domain Adaptation Workshop [Dec. 2011].

• BD Bue and C Jermaine. “Multiclass Domain Adaptation with Iterative Manifold
Alignment”. Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS) (to appear) [2013].

6.1 Class Knowledge Transfer without Labeled

Target Data

In this chapter∗ we extend the RelTrans framework to the unsupervised domain

adaptation setting by providing a methodology to automatically select pivot samples

that represent similar classes in the source and target domains. We evaluate our

technique on a multisensor, multitemporal class knowledge transfer task using real

hyperspectral imagery in comparison to several baseline approaches and recently-

proposed domain adaptation techniques. We show empirically that when between-

class distances are preserved across domains, our automated pivot selection technique

performs competitively to the supervised domain adaptation setting. We also discuss

the theoretical ramifications of classifying samples in the R-space vs. the original

source and target feature spaces. Based on these investigations, we provide extensions

to RelTrans that (1) exploit functional characteristics of hyperspectral data to improve

∗The work in this chapter was performed in collaboration with David Thompson and Chris
Jermaine, with assistance from Erzsébet Merényi, Devika Subramanian and Kiri Wagstaff.
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pivot selection, and (2) apply manifold alignment techniques to better reconcile

differences between the source and target domains in terms of the spectral features

most relevant to each class.

6.2 The Multiclass Continuous Correspondence

Learning Algorithm

We now present the Multiclass Continuous Correspondence Learning (MCCL) algo-

rithm for unsupervised domain adaptation (Algorithm 6.1). We consider the KS = KT

setting where source and target distributions share the same set of classes with labels

{Y S, Y T} ∈ {1, . . . , K}. Given a discrete set of Qk values Qrange, we begin by forming

the source pivot set P S from the Qk samples nearest to each class mean for each class

(Step 4). We then choose target pivots P T for each class that best preserve the relative

distance relationships between source pivots (Step 7). After collecting Qk samples for

each class, we evaluate the Pivot Divergence (Pdiv, Algorithm 6.2, described below)

between the resulting pivot sets P S and P T (Step 9). Finally, we train a multiclass

predictor using the transformed source samples (Step 13) to classify the transformed

target samples (Step 14).

The Pdiv algorithm uses a technique inspired by the H-divergence [Ben-David

et al., 2010b] (described in Section 5.9.3), which measures the difference between two

distributions by finding a classifier which separates samples drawn from either. Low

H-divergence scores indicate we cannot distinguish between samples drawn from either

domain. Thus, we seek the pivot set size Qbest yielding the smallest average per-class

H-divergence Hbest.
†

†We note that the Pdiv algorithm is a predecessor of the PredDiv algorithm discussed in Sec-
tion 5.9.3, which uses a similar model selection strategy. Further analysis is underway to evaluate
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Algorithm 6.1 Multiclass Continuous Correspondence Learning (MCCL)

Input: source training data (XS, Y S), target data XT , set of Qk values Qrange.
Output: predicted target labels Y T

1: Hbest = 0, Qbest = min(Qrange)
2: for Qk in Qrange do
3: for j in {1, . . . , K} do
4: Select Qk source pivots P S

j with class labels yPi = j.
5: end for
6: for j in {1, . . . , K} do
7: Build target pivot set P T

j from XT by selecting best matching target pivot,
pTi = xT` , for each source pivot pSi ∈ P S with class label yPi = j according to

` = argmin
j
‖R(pSi , P

S)− R(xTj , P
S)‖, j ∈ {1, . . . , NT} (6.1)

8: end for
9: H = Pdiv(P S, P T )

10: if H < Hbest then Hbest = H, Qbest = Qk

11: end for
12: Translate source and target samples to common feature space using Qbest paired

source, target pivots: RS = {R(xSi , P
S)}NS

i=1, R
T = R(xTi , P

T )
NT

i=1.
13: Train a multiclass predictor h : R(x, P )→ Y using RS.

14: return Prediction vector Y T = h(rTi )
NT

i=1, rTi ∈ RT .

Algorithm 6.2 Pivot Divergence (Pdiv)

Input: pivot sets (P S, P T ), each of length Q =
∑K

k=1Qk

Output: pivot divergence score H.
1: for k = 1 to K do
2: Define label vector y = ((−1)Qki=1, (1)Qki=1) for pivot samples belonging to class k.
3: Train binary predictor h : R(p, P )→ {−1, 1}.
4: Calculate divergence between class k source and target pivots

Hk = 1
2Qk

(∑Qk
i=1 I(h(pSi , P

S) = yi) +
∑2Qk

i=Qk+1 I(h(pTi , P
T ) = yi)

)

5: return H = 1
K

∑K
i=1Hk

the relative capabilities of each technique.
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6.3 Evaluation Methodology

We evaluate the performance of the MCCL algorithm in comparison to several other

contexts. First, we calculate the baseline intra-domain source (S) and target (T)

classification accuracies. The maximum of these gives a rough upper bound on the

best achievable domain adaptation accuracy. In the baseline class knowledge transfer

context (ST), we train a classifier on the source data to classify the target data in

the original source and target feature spaces, which gives a lower bound we expect to

improve. Next, we calculate the domain adaptation accuracy in the supervised context,

where we sample the Qk pivots from labeled source and target data (R-S, R-T, and

R-ST, respectively). Lastly, we calculate the accuracy in the unsupervised domain

adaptation context, where we choose the target pivots using the MCCL algorithm

(R∗-ST). We classify samples using the multiclass (one-vs-one) Support Vector Machine

implemented in the LIBSVM package [Chang and Lin, 2011] with the linear kernel, and

report test accuracy averaged over five cross-validation folds. We select the SVM slack

parameter C from {10−4, . . ., 104} that yields the highest accuracy on the training

set.

6.4 Synthetic Example: Transformed Gaussians

We first provide an illustrative example of our methodology on a synthetic data set,

shown in Figure 6.1 (left two plots). Each class consists of 500 samples drawn from one

of four 2D Gaussians, each with unit covariance. The mean of each target Gaussian

(bottom plot) is a randomly perturbed version of its corresponding source mean (top

plot). Diamond markers indicate the Qk = 50 source/target pivots selected using

MCCL. The source and target accuracies in the original feature space (S, T and
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ST) vs. the R-space (R-S, R-T, R-ST), along with the accuracy using MCCL for

unsupervised pivot selection (R-ST*) are shown at the top of the left plot. In the

right plot we show the class means µDi mapped to the R-space R(µDi , P
D) using pivots

PD for D ∈ {S, T}.

B. Bue: Adaptive Similarity Measures

XS

Class Means in R-SpaceS=0.97, T=0.97, ST=0.88, R-ST=0.95, R*-ST=0.93
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Unsupervised Domain Adaptation 
Synthetic Example: Transformed Gaussians

39

UnsupervisedBaseline Supervised

MCCL-selected target pivots

Source pivots (50/class)

39Tuesday, April 16, 2013

Figure 6.1 : Left: 4 class synthetic source (top) and target (bottom) data. Diamonds
indicate the automatically-selected pivot samples selected by the MCCL algorithm.
Right: source class means (top) and target class means (bottom) in the R-space
R(µDi , P

D) using source pivots P S selected near the source class means, and target
pivots P T selected using MCCL.

Visually, the R-space class means appear better reconciled than in the original

feature space, though not perfectly so due to the non-linear relationships between

classes across the two domains, particularly between classes 2 (cyan) and 3 (yellow)).

Despite this, we observe a notable improvement in accuracy over the baseline context

(ST=0.88) after mapping the samples to the R-space in both the supervised (R-



180

ST=0.95) and unsupervised (R∗-ST=0.93) context. We also observe that, although

the pivots selected by MCCL in the target domain differ by a reasonable amount in

position than the target class means, we still observe robust domain adaptation with

the pivots, with the unsupervised (R∗-ST) accuracy only 2% less than the supervised

(R-ST) accuracy.

6.5 Case Study: Hyperspectral Imagery of

Cuprite, NV

We now address the task of classifying a set of mineralogical spectra from one image

using training data from another image captured under different conditions. This

task represents a challenging multi-sensor, multi-temporal domain adaptation problem

and is highly relevant to global hyperspectral mapping and analysis tasks. Our data

consists of five mineralogical classes manually labeled by an expert geologist from two

images of the Cuprite mining district in Cuprite, NV. Image Av97 was captured in

June 19, 1997 by the AVIRIS instrument, consists of 512×614 pixels, and was studied

in detail in [Kruse et al., 2003]. Image Hyp11 was acquired more recently on Feb. 06,

2011 by the Hyperion instrument onboard the EO-1 satellite, and contains 1798×779

pixels. Each pixel is a 29-dimensional vector of image radiance values measured at

wavelengths in the range 2.1029-2.3249µm. We preprocess the images by applying

the EML atmospheric calibration (i.e., conversion from spectral radiance to surface

reflectance) procedure, and perform illumination normalization by scaling each pixel

by its L2 norm. False color composites of each image, along with training sample

locations and class means are given in Figure 6.2.

We consider the following two domain adaptation scenarios. In the first scenario,

we train a classifier using the Av97 image as the source data and test the classifier
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Figure 6.2 : Top: false color composites with sample locations for Av97 (left) and
Hyp11 (right) images. The number of available training samples for each class are
provided in parenthesis. Bottom: mean and standard deviation of each class.
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on target data from the Hyp11 image. We refer to this scenario as Av97⇒Hyp11. In

the second scenario we use the Hyp11 data as the source image, and the Av97 as the

target image. We refer to this scenario as Hyp11⇒Av97. Because the smallest image

contains over 300,000 pixels, we reduce the number of target pixels considered by the

MCCL procedure by selecting the target pivots P T from the means of the segments

produced using the technique described in [Thompson et al., 2010].

6.5.1 Evaluation on Whitened Cuprite Spectra

As we can see from Figure 6.2, the means of identical classes appear differently in

each image due to the differences in sensor type, environmental conditions, capture

dates, and different atmospheric calibration techniques. In this section, we evaluate

the domain adaptation performance after whitening each spectrum xI for I ∈{Av97,

Hyp11} as follows

xI
white = (xI − µI)(VI)(DI)−1/2(VI)T (6.2)

where µI = E[I] and cov(I) = (VI)(DI)(VI)T are the mean vector and global scatter

matrix of all L2-normalized samples in image I. The whitened class means are shown

in Figure 6.3. We stress that, while the whitened spectral signatures are visually

more similar than their unwhitened counterparts, and therefore potentially allow

for improved class knowledge transfer over the unwhitened spectra, this may largely

be a consequence of the fact that the Av97 and Hyp11 images both represent the

same geographic region. Therefore, the images are quite similar in terms of their

global covariance matrices, as the pixels from the same spatial locations represent

identical materials. Even so, as we show in subsequent sections, we can often greatly

improve class knowledge transfer between the two domains using MCCL without such

preprocessing.
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Figure 6.3 : Class means for Av97 (left) and Hyp11 (right) images after applying
whitening filters.

Figure 6.4 gives classification accuracies (left two plots) and Pdiv scores (right two

plots) on the whitened Av97 and Hyp11 data with respect to the number of pivots

per class Qk. Using RelTrans in the supervised domain adaptation context (R-ST), we

select the top Qk pivots for each class nearest to their corresponding class mean, as

in Chapter 5. In the unsupervised context (R∗-ST), we select the target pivots using

Algorithm 6.1. We observe that the intra-image classification accuracies (S, T) are

close to their corresponding R-space accuracies (R-S, R-T) when Qk is sufficiently large

(Qk ≥ 10), indicating that the R-space is as robust as the original feature space for

intra-domain classification. We also observe that we achieve relatively high accuracy

even for small Qk in the supervised scenario (R-ST) when target labels are available.

More importantly, both the R-ST and R*-ST results produce significantly higher

accuracies than the baseline (ST) accuracies (> 10% in the Av97⇒Hyp11 scenario, and

≈ 3% in the Hyp11⇒Av97 scenario). Additionally, the supervised and unsupervised

results are comparable in both scenarios, differing by at most ≈ 2%. However, in

the Av97⇒Hyp11 scenario, we observe lower domain adaptation accuracies than in

the Hyp11⇒Av97 scenario, along with a larger gap between the R-ST and R∗-ST

results. Recall that the mapping between domains is defined by the source pivots, so

if the classes are better separated in the target domain then in the source (e.g. the

Hyp11⇒Av97 scenario), the mapping performs well. However, if the target classes
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are less separable than the source classes (e.g., the Av97⇒Hyp11 scenario), then the

R-space induced by the source pivots may not discriminate the most ambiguous target

classes, as the lower Av97⇒Hyp11 accuracies suggest.

We can see from the Pdiv scores in Figure 6.4 that the value ofQk that minimizes the

Pdiv also yields good classification performance. Specifically, we achieve the maximum

R∗-ST classification accuracy at the minimum Pdiv value in the Av97⇒Hyp11 scenario

at Qk = 10. Also, Pdiv increases with Qk while the R∗-ST accuracy remains relatively

constant, indicating that additional pivots determined by the Av97 source data do not

improve domain adaptation. In the Hyp11⇒Av97 scenario, while we see a gradual

decrease in Pdiv for increasing Qk – with slight improvements in accuracy, the Av97

classes are well separated for mid-range Qk values ∈ {10, . . . , 50}. For small Qk, we

observed low accuracy in all of R-S, R-T and R∗-ST contexts, indicating the pivot set

is inadequate to describe the classification task. We can filter such degenerate cases

by ensuring that the R-space accuracy on the source data (R-S) is approximately the

same as in the original feature space (S) (an approach also described in [Ben-David,

2006]). This potentially allows us to define a lower limit on the number of pivots

necessary to define a feature space expressive enough for domain adaptation.

6.5.2 Comparison to Baseline and Related Techniques

In Section 6.5.1, we demonstrated improved domain adaptation performance by using

RelTrans with automatically-selected pivot samples to reconcile differences between

whitened source and target domain spectra representing identical classes from the

same geographic region. However, as mentioned in Section 6.5, applying whitening

filters can potentially reduce generalization performance for source and target data

sets that differ in covariance structure (e.g., spectra from different regions). To
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Figure 6.4 : Classification accuracies for Av97⇒Hyp11 and Hyp11⇒Av97 scenarios
(left two plots) along with corresponding Pdiv scores vs. pivots/class Qk (right two
plots) for Av97⇒Hyp11 and Hyp11⇒Av97 scenarios. Black diamonds indicate the
best Pdiv score for the R∗-ST context yielding the classification accuracy in the left
two plots.

further demonstrate the effectiveness of our methodology, here we compare our results

to several baseline techniques applied to the unwhitened Av97 and Hyp11 spectra,

to illustrate that we achieve similar accuracies without applying such preprocessing

techniques. We provide the baseline (S, T, and ST) classification accuracies, along with

the intra-domain accuracies in the R-space in both the supervised (R-T, R-ST) and

unsupervised (R-T*, R-ST*) contexts, using the methodology described in Section 6.3.

Additionally, we compute the target prediction accuracy using a classifier trained using

only the Q target pivot samples (P T , Y P ) selected using MCCL in the unsupervised

(PivST*) context, and from the Qk labeled samples nearest to each class mean in

the supervised (PivST) contexts. We also compare these results to those produced

using a classifier trained using the source data augmented with the target pivots

(
{
XS ∪ P T

}
,
{
Y S ∪ Y P

}
) in the unsupervised (AugST*) and supervised (AugST)

contexts, using the same pivots as in the PivST* and PivST contexts, respectively.

Table 6.1 shows the mean and standard deviation of classification accuracy using

each the methods described above for Qk ∈ {10, 25, 50, 75, 100}. We observe that

the RelTrans results with unsupervised pivot selection (R*-ST) are nearly 8% better
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than the PivST* and AugST* results in the Av97⇒Hyp11 scenario, and produce

comparable (within 0.5%) results in the Hyp11⇒Av97 scenario. In the supervised

context, RelTrans (R-ST) performs comparably, but slightly worse (1-2%) than PivST

and AugST in the Av97⇒Hyp11 scenario, whereas RelTrans outperforms PivST and

AugST a similar (1-2%) margin in the Hyp11⇒Av97 scenario. The supervised results

provide further insight into the difference in accuracies between the two scenarios

observed in Section 6.5. Specifically, while we observe more significant gains in accuracy

using RelTrans in comparison to the baseline in the Av97⇒Hyp11 scenario due to the

source data being better separated than the target data, the PivT and AugT accuracies

suggest that we may acheive higher accuracies by training/applying a classifier using

the target pivots in the original feature space, instead of applying a classifier in the

R-space. However, because the pivots in the R-ST context are selected by choosing the

top Qk samples nearest their respective class means in both of the source and target

feature spaces, the respective R-space mappings are consequently skewed according

to the inter-class distances in each feature space. Thus, the mapping to the R-space

imposes a source-domain specific bias based upon these inter-class relationships. When

the source and target feature spaces are already fairly similar (as with the Av97 and

Hyp11 data), this bias slightly degrades prediction accuracy when the target classes

are less separable than the source classes (as in the Av97⇒Hyp11 scenario), but does

not degrade the classification accuracy in the other direction (as in the Hyp11⇒Av97

scenario). As we show later in Section 6.7, we can potentially improve these results by

selecting source and target pivots that better preserve inter-class relationships across

domains, rather than using the pivots nearest to their respective class means in the

supervised setting.

We also compared our results to several related domain adaptation techniques. Each

of the following techniques computes transformation functions TD(xD) : Rn → Rm,
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A
v
9
7
⇒

H
y
p
1
1

S T ST
Base 0.9963 0.9679 0.7429

0.0027 0.0098 0.0098
Qk R-S R-T* R-T R-ST* R-ST PivST* PivST AugST* AugST
10 0.9905 0.9223 0.9251 0.8062 0.8206 0.7466 0.8568 0.7466 0.8227

0.0059 0.0141 0.0095 0.0126 0.0207 0.0271 0.0233 0.0040 0.0200
25 0.9914 0.9231 0.9235 0.8206 0.8597 0.7408 0.8696 0.7462 0.8725

0.0042 0.0083 0.0159 0.0074 0.0101 0.0173 0.0109 0.0140 0.0194
50 0.9926 0.9157 0.9194 0.8285 0.8692 0.7347 0.8675 0.7557 0.8704

0.0023 0.0089 0.0114 0.0155 0.0111 0.0229 0.0092 0.0168 0.0070
75 0.9926 0.9169 0.9186 0.8350 0.8383 0.7577 0.8700 0.7400 0.8737

0.0043 0.0137 0.0105 0.0086 0.0110 0.0088 0.0064 0.0109 0.0176
100 0.9918 0.9165 0.9190 0.8388 0.8610 0.7594 0.8947 0.7462 0.8799

0.0041 0.0143 0.0117 0.0113 0.0138 0.0147 0.0104 0.0198 0.0135
Mean 0.9918 0.9189 0.9211 0.8258 0.8498 0.7478 0.8717 0.7469 0.8638
Std 0.0042 0.0119 0.0118 0.0111 0.0133 0.0182 0.0120 0.0131 0.0155

H
y
p
1
1
⇒

A
v
9
7

S T ST
Base 0.9679 0.9963 0.9428

0.0098 0.0027 0.0057
Qk R-S R-T* R-T R-ST* R-ST PivST* PivST AugST* AugST
10 0.9239 0.9926 0.9914 0.9741 0.9918 0.9515 0.9860 0.9424 0.9535

0.0117 0.0037 0.0037 0.0082 0.0025 0.0231 0.0045 0.0155 0.0078
25 0.9218 0.9930 0.9922 0.9576 0.9901 0.9729 0.9856 0.9379 0.9679

0.0090 0.0047 0.0027 0.0054 0.0067 0.0086 0.0050 0.0090 0.0110
50 0.9149 0.9934 0.9926 0.9864 0.9909 0.9749 0.9720 0.9646 0.9720

0.0191 0.0037 0.0047 0.0034 0.0034 0.0106 0.0047 0.0067 0.0024
75 0.9206 0.9922 0.9926 0.9552 0.9905 0.9424 0.9766 0.9757 0.9679

0.0154 0.0031 0.0045 0.0098 0.0034 0.0149 0.0087 0.0072 0.0078
100 0.9198 0.9914 0.9914 0.9605 0.9905 0.9909 0.9889 0.9848 0.9650

0.0098 0.0061 0.0027 0.0099 0.0023 0.0031 0.0031 0.0072 0.0033
Mean 0.9202 0.9925 0.9920 0.9668 0.9908 0.9665 0.9818 0.9611 0.9653
Std 0.0130 0.0043 0.0037 0.0073 0.0037 0.0121 0.0052 0.0091 0.0065

Table 6.1 : Mean and standard deviation of classification accuracy in the
Av97⇒Hyp11 and Hyp11⇒Av97 scenarios using different baseline techniques using
the Qk ∈ {10, 25, 50, 75, 100} pivot samples. The mean accuracy over the range of
Qk values is provided for each technique. In the unsupervised context, R-ST* matches
or outperforms both PivST* and AugST* techniques. In the supervised context R-ST
outperforms PivST/AugST in the Hyp11⇒Av97 scenario, but performs slightly worse
than PivST/AugST in the Av97⇒Hyp11 scenario. This discrepancy is likely caused
by selecting the source and target pivots near the means of each class, which slightly
misaligns samples in the R-space.
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for m > 0, D ∈ {S, T}, that reconcile the differences between the source and target

feature spaces. However, each algorithm described below assumes a set of labeled

target samples are available to guide the reconciliation process between the domains.

To provide a balanced comparison to our results, we provide each algorithm with the

set of target pivots selected by MCCL as the labeled target domain data.

Manifold Alignment with Procrustes Analysis:: Procrustes manifold alignment

is a technique proposed by Wang and Mahadevan [2008] that computes a transformation

that minimizes the Frobenious norm ‖P S − P T‖F between the paired source pivot

samples P S and P T . The resulting transformation can be subsequently applied to

samples in the source domain to map them to a similar feature space as the target

samples using the following function

T S(xS) = sfx
SUV (6.3)

where UDV = SVD(COV(P S, P T )) is the singular value decomposition of the co-

variance matrix between the paired source and target pivot matrices, and sf =

tr(D)/tr(COV(P S)) is a source-domain dependant scaling factor.

Feature-level Manifold Alignment:: Wang and Mahadevan [2009] also proposed

an alternative manifold alignment approach that computes the transformation function

from the source feature space to the target domain feature space by framing the

alignment problem as a graph embedding problem. Given the NS labeled source

samples (XS, Y S) and NT labeled target domain samples XT , their algorithm computes
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transformation matrices FS and FT by solving the generalized eigenvalue problem

ZLZTψ = ρZDZTψ (6.4)

where

Z =




XS 0

0 XT


 , D =




DS 0

0 DT


 , L =




LS + µΩS −µWS,T

−µWT,S LT + µΩT


 (6.5)

where LD = WD − DD is the graph Laplacian of the samples in D ∈ S, T de-

fined by adjacency matrix WD and diagonal matrix DD
i,i =

∑
j Wk

i,j; WS,T is a

NS × NT matrix with WS,T
i,j = 1 when xSi and xTj are in correspondence, 0 other-

wise; WT,S is the transpose of WS,T ; and ΩD is an ND ×ND diagonal matrix with

ΩD
i,i =

∑
j WS,T

i,j . By forming the transformation matrices FS =
(
ψ1,., . . . ,ψd,.

)
and

FT =
(
ψNS+1,., . . . ,ψNS+d,.

)
, the algorithm ensures that the local geometries of each

manifold are captured (as characterized by their respective graph Laplacians), while pe-

nalizing the differences between the manifolds (as characterized by the correspondence

mapping) according to scalar weight parameter µ. We compute the adjacency matrices

WD using the k-Nearest-Neighbor (kNN) graph for each domain, where WD
i,j = 1

if xDj ∈ kNN(xDi , k), 0 otherwise. We apply transformation TD(xD) = (xD)TFD to

reconcile the differences between the source and target samples, respectively, and

classify the transformed samples using the linear SVM classifiver, as above. We select

the k for the kNN graph from the set {1, 3, 5, 10, 15, 25, 50, 100} and the weight

parameter µ ∈ {10−2, . . ., 102} that yield the highest accuracy on the training set.

EasyAdapt:: EasyAdapt is a kernel-based feature augmentation approach proposed

by Daume [2007] that maps source and target examples from Rn to R3n according to
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the transformation functions

TS(xS) =
[
xS,xS,0n

]
(6.6)

TT (xT ) =
[
xT ,0n,xT

]
(6.7)

where 0n is an n-dimensional zero vector. Under this mapping, the kernel product

k(·, ·) between samples in this new space becomes

k(TS(xS),TS(xS)) = 2k(xS,xS) (6.8)

k(TT (xT ),TT (xT )) = 2k(xT ,xT ) (6.9)

k(TS(xS),TT (xT )) = k(xS,xT ) (6.10)

In other words, during both learning and prediction, the EasyAdapt tranformation

maps samples to a feature space where samples in the same domain are given twice

as much weight as samples in different domains. We apply the EasyAdapt transfor-

mations to each of the source and target samples, and train a classifier using the

labeled source samples (XS, Y S), along with the MCCL-selected target pivot samples

(P T , Y P ) to predict labels for the unlabeled target samples XT .

Table 6.2 compares the classification accuracies produced by RelTrans to the

domain adaptation techniques described above on the (unwhitened) Av97 and Hyp11

data described in the previous section. We also provide results using the Trace

norm regularization multitask learning technique described in Section 5.9.2. RelTrans

produces the highest average accuracies in both of the Av97⇒Hyp11 (82.8%)and

Hyp11⇒Av97 (96.9%) scenarios. Of the remaining algorithms, only EasyAdapt and
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MTL-Trace produce overall accuracies comparable to the baseline (84.3%), although

both perform 3-6% worse than RelTrans. Interestingly, the relatively simple EasyAdapt

tranformation yields the second-best accuracies overall (86.5%), which indicates that

its domain-specific weighting approach provides useful information a classifier can

exploit in both training and prediction. However, like MTL-Trace, we believe that the

EasyAdapt transformation is better suited for binary classifiation problems, as it does

not encode information on the multiclass structure of the problem (as RelTrans does)

that a classifier can leverage in training/prediction.

We also observe that both manifold alignment techniques generate poor prediction

accuracies for small values of Qk in both scenarios, and yield comparable overall accu-

racies, but only the feature-level alignment technique shows performance competitive

to RelTrans for large Qk, and requires a reasonable number of correspondences (i.e.,

Qk ≥ 50) to produce accuracies better than the baseline. This is likely a result of

the fact that Procrustes alignment computes a single affine transformation between

the source and target feature spaces, whereas the feature-level alignment technique

is capable of computing non-affine transformations. However, both algorithms are

also limited by the fact that they do not distinguish between correspondences in the

same class vs. correspondences in different classes when computing their respective

transformations between the domains. We will explore this relationship in more detail

later in Section 6.8.

6.6 Model Selection and Unsupervised Domain

Adaptation

Evaluating generalization performance of trained models on unseen test data is crucial

for classification tasks. Such evaluation is particularly challenging in domain adaptation
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Av97⇒Hyp11 Hyp11⇒Av97 Overall
Qk Mean Std Mean Std Mean Std

Baseline N/A 0.7429 0.0098 0.9428 0.0057 0.8429 0.0078
Procrustes 10 0.6985 0.0156 0.7639 0.0159 0.7312 0.0158
Alignment 25 0.7289 0.0174 0.8128 0.0117 0.7709 0.0146

50 0.8054 0.0134 0.8437 0.0143 0.8246 0.0139
75 0.7993 0.0089 0.8671 0.0195 0.8332 0.0142
100 0.8104 0.0115 0.9025 0.0263 0.8565 0.0189
Mean 0.7685 0.0134 0.8380 0.0175 0.8033 0.0155

Feature-level 10 0.4932 0.0136 0.6442 0.0344 0.5687 0.0240
Alignment 25 0.6623 0.0168 0.9576 0.0075 0.8100 0.0122

50 0.7750 0.0143 0.9400 0.0245 0.8575 0.0194
75 0.8268 0.0163 0.9704 0.0058 0.8986 0.0111
100 0.7532 0.0152 0.9441 0.0242 0.8487 0.0197
Mean 0.7021 0.0152 0.8913 0.0193 0.7967 0.0173

EasyAdapt 10 0.7520 0.0259 0.9317 0.0240 0.8419 0.0250
25 0.7478 0.0258 0.9638 0.0206 0.8558 0.0232
50 0.7808 0.0214 0.9696 0.0088 0.8752 0.0151
75 0.7861 0.0185 0.9877 0.0087 0.8869 0.0136
100 0.7450 0.0175 0.9885 0.0043 0.8668 0.0109
Mean 0.7623 0.0218 0.9683 0.0133 0.8653 0.0176

MTL-Trace 10 0.7422 0.0076 0.9659 0.0076 0.8541 0.0076
25 0.7537 0.0076 0.9042 0.0331 0.8290 0.0204
50 0.7434 0.0151 0.9141 0.0145 0.8288 0.0148
75 0.7484 0.0047 0.9009 0.0227 0.8247 0.0137
100 0.7368 0.0267 0.8956 0.0081 0.8162 0.0174
Mean 0.7449 0.0123 0.9161 0.0172 0.8305 0.0148

RelTrans 10 0.8062 0.0126 0.9741 0.0082 0.8902 0.0104
25 0.8235 0.0099 0.9622 0.0096 0.8929 0.0098
50 0.8318 0.0188 0.9663 0.0028 0.8991 0.0108
75 0.8375 0.0048 0.9840 0.0047 0.9108 0.0048
100 0.8396 0.0139 0.9568 0.0116 0.8982 0.0128
Mean 0.8277 0.0120 0.9687 0.0074 0.8982 0.0097

Table 6.2 : Mean and standard deviation of classification accuracy in the
Av97⇒Hyp11 and Hyp11⇒Av97 scenarios using different domain adaptation al-
gorithms using the Qk ∈ {10, 25, 50, 75, 100} paired pivot samples / class selected
by MCCL as labeled target data. The mean accuracy over the range of Qk values is
provided for each algorithm. The best and second best performing algorithms for the
average of the Qk values are given in red and blue italics for each scenario, and overall.
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settings, as the distributions of the training (source) and testing (target) data differ.

In such circumstances, it is necessary to measure generalization performance on target

data, but labeled target data is often scarce or unavailable. When labeled target

data is limited or unavailable, model selection methods using widely-used techniques

such as cross-validation may overfit to the source distribution, and consequently fail

to accurately measure generalization performance to target data. For example, in

traditional, intra-domain classification settings, we select the SVM model with slack

parameter C via cross-validation on a hold-out set of labeled samples. In unsupervised

domain-adaptation settings, only labeled source samples are available, and thus, the C

value selected using the labeled source data may be suboptimal for the target samples.

However, as we show below, by mapping the source and target domains to a common

feature space using RelTrans, the model (e.g., the SVM parameterized by C) selected

using only the labeled source data will typically generalize well to the target data.

Consider Figure 6.5. Here, we show the accuracies with respect to SVM slack

parameter C in the original Av97 and Hyp11 feature spaces, using the unwightened

data from the previous section (top), in comparison to the average accuracies for

Qk ∈ {10, 25, 50, 75, 100 } in the R-space (bottom). In both of the Av97⇒Hyp11

and Hyp11⇒Av97 scenarios, we compute the “true” classification accuracy for each

value of C using labeled target data. Our model selection objective in unsupervised

domain adaptation is to select the C value using only the source data that maximizes

the accuracy on the target data. In the original Av97 and Hyp11 feature spaces, we

can see that the most accurate C values in the source domain do not correspond to

the most accurate C value for domain adaptation. Specifically, in the Av97 source

domain (cyan bars), C = 1000 is optimal, but C = 0.01 is optimal in the Av97⇒Hyp11

scenario. C = 1000 is also optimal in the Hyp11 source domain (red bars), but C = 1

is optimal in the Hyp11⇒Av97 (maroon bars) scenario. In the R-space, we observe
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Figure 6.5 : Classification accuracy vs. SVM slack parameter C in the original
Av97 and Hyp11 feature spaces (top) and in the R-space (bottom). Accuracies in
the Av97⇒Hyp11 and Hyp11⇒Av97 and corresponding R-space scenarios computed
based on the true target labels. R-space accuracies averaged over Qk ∈ {10, 25, 50,
75, 100 }. In the R-space, the C values maximizing the accuracy in the source domain
typically maximize the domain adaptation accuracy as well, which is not the case in
the original feature space.

that C = 1000 is optimal in both the Av97⇒Hyp11 and Hyp11⇒Av97 scenarios,

and also in the Av97 and Hyp11 source domains. Additionally, we observe that the

accuracies in the source domains and in the domain adaptation scenarios follow similar

trends in the R-space.

The results shown in Figure 6.5 suggest that we can perform more accurate model

selection in the R-space than in the original feature space. However, we stress that

while such techniques allow us to discriminate between acceptable vs. poor models,

for fine-grained model selection tasks – for instance, selecting the best Qk for a set of

R-space models – the source domain model parameters will often not be optimal for

the target domain. For instance, we can see from the accuracies given in Table 6.1

that selecting the value of Qk that maximizes the source domain (R-S) accuracy
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does not necessarily yield the best performance in domain-adaptation (R-ST*, R-ST).

Specifically, in the Av97⇒Hyp11 scenario, Qk ∈ {50, 75} give equal R-S accuracies, but

Qk = 100 yields the best R-ST* and R-ST performance. Similarly, in the Hyp11⇒Av97

scenario, Qk = 10 is optimal in the R-S and R-ST contexts, but gives the 2nd highest

accuracy (97.4%) in the R-ST* context. While, admittedly, the difference in accuracies

between the best Qk value selected from the R-S vs. R-ST*/R-ST contexts is often

not particularly large (e.g., 83.5% vs. 83.9% in the R-ST* context and 83.8% vs.

86.1% in the R-ST context in the Av97⇒Hyp11 scenario), these observations suggest

that good classification accuracy in the R-S context is a necessary, and not a sufficient,

condition for optimal R-ST*/R-ST accuracy. In such cases, we can apply our PredDiv

(Algorithm 5.3) or Pdiv (Algorithm 6.2) algorithms, or apply other recently-proposed

model selection techniques for domain adaptation (e.g.,[Bruzzone and Marconcini,

2010; Gretton et al., 2009; Zhong et al., 2010]), to select a good model for the target

domain.

6.7 Pivot Selection with Functional Measures

Until now, the distance measure we have used to map our source and target data to

the R-space via Equation (5.1) has been the Euclidean distance. However, our results

in Part II show that we can improve prediction accuracy using similarity measures

that exploit characteristics specific to spectral data. Here, we focus on applying the

Sobolev metric (Equation (3.12)) to the task of target pivot selection in the MCCL

algorithm.
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6.7.1 Methodology

We map a sample xD, D ∈ S, T , to a new feature space defined by distances between

the spectral derivates of xD and pivots pDi ∈ PD with respect to their wavelengths (we

hereafter refer to this feature space as the “Rκ-space”) via the following transformation

Rκ(xD, PD) =
1

κ+ 1

κ∑

l=0

(
d(l)(xD,pD1 )∑Q
i=1 d(l)(xD,pDi )

, . . . ,
d(l)(xD,pDQ)

∑Q
i=1 d(l)(xD,pDi )

)
, (6.11)

where d(l)(xi,xj) is the Euclidean distance between the lth derivatives of xi and xj

(Equation (3.13)). When κ = 0, Equation (6.11) is equivalent to Equation (5.1). The

ith entry in the resulting Q-dimensional vector produced by the Rκ function gives the

likelihood of distinguishing sample xD from pivot pDl with respect to the pivot set

PD, averaged over derivates {0, . . ., κ}. We can now update the MCCL target pivot

selection rule (Algorithm 6.1, Step 7) as follows

` = argmin
j
‖Rκ(pSi , P

S)− Rκ(xTj , P
S)‖, j ∈ {1, . . . , NT} (6.12)

to select target pivots pTi = xT` that best preserve the functional relationships between

the target pivots and source pivots pSi ∈ P S. For reasons that will be made clear

later, we stress that we only use Equation (6.12) during pivot selection, and not

for translating the source and target samples to the R-space during training (i.e.,

Algorithm 6.1, Step 12).

6.7.2 Evaluation on Cuprite Imagery

We evaluate the unsupervised domain adaptation performance using Equation (6.12)

in the MCCL algorithm to select target pivots for the Av97⇒Hyp11 and Hyp11⇒Av97
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scenarios described above. We note that we do not apply whitening filters to the source

and target spectra as described in Section 6.5, and thus we compute the mapping

between domains in the unwhitened, L2-normalized source and target feature spaces.

The first three derivatives of the Av97 and Hyp11 class means are shown in Figure 6.6.

We use the methodology described in Section 6.3 to compute the baseline intra-image

(S) and domain adaptation (ST) classification accuracies for the first five derivatives

of the Av97 and Hyp11 spectra, and provide those results in Table 6.3. As κ increases,

the derivatives become more smooth and consequently, the intra-image accuracies tend

to decrease in both images, though more rapidly for the noisier Hyp11 image classes

than the better-separated Av97 image classes. We can also clearly see that, while the

differences between the class means appear visually more similar to one another as κ

increases, we also observe an inverse relationship between κ and the domain adaptation

classification accuracies. However, we observe one critical exception to this trend

between κ = 0 and κ = 1, where we observe a slight (≈ 1.5%) increase in accuracy on

the Hyp11 data and in the Av97⇒Hyp11 scenario, and a small decrease – relative to

the larger κ – of ≈ 3% in accuracy in the Hyp11⇒Av97 scenario. The intra-image

accuracies indicate that the first derivative features are equally or more robust than

the original κ = 0 features for classification, and the increase in ST accuracy in

the Av97⇒Hyp11 scenario can be attributed to the improved separability of the

first-derivative of the Hyp11 image classes, combined with the fact that the source

and target feature spaces are better reconciled (as we can see visually in Figure 6.6),

in the κ = 1 feature space. The reduction in accuracy in the Hyp11⇒Av97 scenario

is a consequence of using a classifier trained on the well-separated Av97 spectra to

classify the noisier Hyp11 spectra, as observed in previous sections.

Figure 6.7 gives our results using functional pivot selection in the Av97⇒Hyp11

and Hyp11⇒Av97 scenarios. We denote the classification accuracies using functional
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Figure 6.6 : Av97 and Hyp11 class means for derivates κ ∈ {0, . . ., 3}.

S ST
κ Av97 Hyp11 Av97⇒Hyp11 Hyp11⇒Av97
0 1.0000 0.9626 0.7441 0.9362
1 1.0000 0.9724 0.7635 0.9087
2 0.9997 0.9412 0.5443 0.6610
3 0.9961 0.9120 0.4770 0.4426
4 0.9992 0.8663 0.4340 0.4426
5 0.9971 0.8499 0.4332 0.4426

Table 6.3 : Baseline (S, ST) classification accuracies for derivates κ ∈ {0, . . ., 5}
for the Av97 and Hyp11 images. Accuracy typically decreases with κ, except in the
Av97⇒Hyp11 scenario between κ = 0 and κ = 1, where the first derivative features
are better reconciled than the original (i.e., κ = 0) features.

pivot selection in the unsupervised context as Rκ∗-ST, and use R-ST to denote the

accuracies in the supervised context. We acheive the highest Rκ∗-ST accuracy using

functional pivot selection in both the Av97⇒Hyp11 (0.8622 with Qk = 10, κ = 4)
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and Hyp11⇒Av97 (0.9868 with Qk = 50, κ = 3) scenarios, acheiving comparable

accuracies to the supervised (R-ST) context (0.8684 with Qk = 10 and 0.9914 with

Qk = 75 in the Av97⇒Hyp11 and Hyp11⇒Av97 scenarios, respectively). Several other

trends are also apparent. First, as the classification accuracy in the Hyp11⇒Av97

scenario is already reasonably high, we do not see as significant an improvement as

in the Av97⇒Hyp11 scenario. However, the classification accuracy in both scenarios

typically increases with κ, except in a few cases in the Hyp11⇒Av97 scenario where

small κ produce high classification accuracies (i.e., Qk ∈ { 10, 75 }). We also see that

the relative increase in accuracy between the Rκ∗-ST models

The results shown in Figure 6.7 are particularly interesting when we take into ac-

count the correlation between the intra-image d(l) distances in each domain (Table 6.4).

As we discussed in Section 3.3.2, the accuracy of the adaptive Sobolev metric tends to

decrease when the distances between the derivates become highly-correlated, because

each derivate f (j) captures the same information as the preceeding 0 < k < j < κ

derivatives. However, as Figure 6.7 shows, we see increased accuracy for increasing

κ. This redundancy across the derivates improves accuracy in the pivot selection,

allowing us to select a more representative pivot set than we select with our original

pivot selection rule (i.e., Algorithm 6.1, Step 7).

Av97 Hyp11

d(l) d0 d1 d2 d3 d4 d5 d0 d1 d2 d3 d4 d5
d0 1.0000 0.8485 0.8338 0.7901 0.7820 0.7641 1.0000 0.7330 0.4652 0.3986 0.3802 0.3774
d1 0.8485 1.0000 0.9579 0.8698 0.8428 0.8150 0.7330 1.0000 0.8604 0.7507 0.7030 0.6729
d2 0.8338 0.9579 1.0000 0.9596 0.9442 0.9258 0.4652 0.8604 1.0000 0.9166 0.8597 0.8203
d3 0.7901 0.8698 0.9596 1.0000 0.9965 0.9895 0.3986 0.7507 0.9166 1.0000 0.9828 0.9646
d4 0.7820 0.8428 0.9442 0.9965 1.0000 0.9978 0.3802 0.7030 0.8597 0.9828 1.0000 0.9927
d5 0.7641 0.8150 0.9258 0.9895 0.9978 1.0000 0.3774 0.6729 0.8203 0.9646 0.9927 1.0000

Table 6.4 : Correlation coefficients for d(l) distances between labeled samples and their
respective class means for derivates l ∈ {0, . . ., 5} in each of the Av97 and Hyp11
images.
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Figure 6.7 : Unsupervised domain adaptation accuracies using functional pivot selection
(Rκ∗-ST) with κ ∈{0, . . ., 5} vs. the supervised domain adaptation accuracy (R-ST)
in the Av97⇒Hyp11 (top) and Hyp11⇒Av97 (bottom) scenarios. Functional pivot
selection typically improves classification accuracy when the baseline (R0-ST) accuracy
is low (e.g., in the Av97⇒Hyp11 scenario), and produces comparable accuracies when
the baseline accuracy is already high (e.g., in the Hyp11⇒Av97 scenario).

Figure 6.8 demonstrates that classifying spectra in the Rκ-space typically produces

suboptimal results. The difference between the results shown in Figure 6.7 vs. those

shown in Figure 6.8 are the result of the fact that as κ increases, samples that represent

identical classes in the source and target domains become closer to one another, but

the inter-class distances also decrease as the derivatives become increasingly smooth.

The consequence of this is that, in the Rκ-space, we can be more confident that
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pivots that match well in both domains represent the same classes, at the cost of

reduced discrimination capabilities between spectra near the class decision boundaries.

Thus, when we classify spectra in the Rκ-space, we observe a similar phenomenon

as in Section 3.3.2, where accuracy decreases due to the combining redundant and

increasingly ambiguous derivates. While the classification accuracy remains stable

for small κ, accuracy rapidly decreases in a similar manner as seen in Table 6.3 for

the larger κ values. The stability for κ ∈ {0, 1, 2} is also explained by the relative

robustness of each of their respective per-derivate feature spaces (99-100% accuracy

in the Av97 image, and 94-96% accuracy in the Hyp11 image, as shown in Table 6.3),

combined with the relatively low correlation between their per-derivate d(l) distances –

ranging from 0.849-0.958 in the Av97 image, and from 0.465-0.860 in the Hyp11 image

(Table 6.4), whereas the higher order derivates show correllation coefficients of over

0.959 and 0.916 in the Av97 and Hyp11 images, respectively. Consequently, we classify

spectra in the R0-space, and use the Rκ function only for pivot selection, i.e., we do

not translate the source and target spectra to the Rκ-space (κ > 0) for classification.

6.8 Multiclass Manifold Alignment for Domain

Adaptation

We now present an extension to the RelTrans multiclass domain adaptation procedure

that computes band-weighted transformations from the source domain spectra to

the target domain. Our algorithm, dubbed MARTIAL (MAnifold Reconciliation

Through Iterative ALignment), incorporates an iterative manifold alignment approach

inspired by the TRIAL protein structure alignment algorithm of Venkateswaran et al.

[2011]. By learning rigid transformations between the source and target feature spaces

based upon the pivot samples, MARTIAL can reconcile class-specific differences more
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Figure 6.8 : Unsupervised domain-adaptation accuracies in the Rκ spaces (Rκ∗-ST)
with functional pivot selection for κ ∈{0, . . ., 5} vs. the supervised domain adaptation
accuracy (R-ST) in the Av97⇒Hyp11 (top) and Hyp11⇒Av97 (bottom) scenarios.
Classification accuracy decreases with κ in both scenarios due to decreased inter-class
distances in the Rκ-space. Thus, a better methodology is to select pivots in the
Rκ-space, and classify in the R0-space.

accurately than techniques that learn a single global transformation between domains.

Additionally, because our technique is not tied to a specific classifier, we can apply

any classifier in the transformed feature space to classify target data. We evaluate our

results on real-world hyperspectral images of Cuprite, NV, and provide a MATLAB

implementation‡ online.

‡Available at: http://www.ece.rice.edu/~bdb1/#code

http://www.ece.rice.edu/~bdb1/#code
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6.8.1 Methodology

As before, we assume we are givenNS source domain samples (XS, Y S) =
{

(xSi , y
S
i )
}NS

i=1
,

xSi ∈ Rn, ySi ∈ {1, . . . , K}, drawn from source distribution pS(X ,Y). We also assume

MS >> NS unlabeled samples are available in the source domain XSu =
{
xSui
}MS

i=1
.

Our goal is to find a transformation T : Rn → Rn that maps samples drawn from

pS(X ,Y) to the feature space of NT target samples XT =
{

(xTi )
}NT

i=1
, xTi ∈ Rn,

drawn from a similar distribution pT (X ,Y). We can subsequently train a predictor

h : X → Y to predict the class labels Y T using the transformed source samples XST

as training data. The MARTIAL algorithm uses several components of the TRIAL

algorithm to learn a transformation for each source class to the target domain. Before

we describe the MARTIAL algorithm, we provide a brief synopsis of the TRIAL

algorithm below.

The TRIAL Algorithm : Given a pair of proteins A = {ai}N
A

i=1 and B = {bj}N
B

j=1,

each consisting of Cα atoms ai,bj ∈ R3, The TRIAL algorithm aligns the manifolds

defined by A and B such that their alignment length – the number of paired Cα atoms

(ai,Tbj) nearby one another after applying a (3 × 3) transformation matrix T to

each bj ∈ B – is maximized. This allows TRIAL to identify structural commonalities

between A and B, which may be arbitrarily rotated with respect to one another.

The algorithm consists of three main steps: (1) triplet (seed) alignment (denoted

Seed) (2) initial alignment (Align), and (3) iterative improvement (Improve). In step

(1), TRIAL searches for pairs of triplet (or seed) Cα atoms PA =
{
pA1 , . . . ,p

A
3

}
⊂ A,

PB =
{
pB1 , . . . ,p

B
3

}
⊂ B that are structurally similar to one another in terms of

the Euclidean distances between their constituent atoms. TRIAL uses each of these

pairs to find a preliminary, minimum root mean square deviation (RMSD) alignment
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between A and B using the Kabsch algorithm [Kabsch, 1978]. After removing any seed

pairs producing degenerate (i.e., high RMSD) alignments, TRIAL reduces the distance

between the two proteins while increasing the number of atoms in alignment (step

(2)). It achieves this by iteratively recomputing T after adding any pairs (ai,Tbj)

whose Euclidean distances are less than a user-defined distance threshold ε to the PA,

PB sets, repeating the process until no more such pairs within the distance threshold

can be added. During the final, iterative improvement step (3), TRIAL ensures that

the maximum number of Cα atoms in A and B are aligned without increasing the

RMSD of the aligned solution. Similarly to step (2), this involves iteratively adding

any (ai,bj) with distance less than an upper bound εmax, based upon the current

(PA,PB,T) solution. After processing all of the candidate triplet pairs, TRIAL returns

the (PA,PB,T) solution maximizing the alignment length between A and B.

Domain Adaptation with the MARTIAL Algorithm : The TRIAL algorithm

has several attractive properties that lend themselves favorably to domain adaptation

problems. Whereas several existing manifold alignment techniques assume a substantial

quantity of (labeled) pairwise correspondences between domains are available at

initialization (e.g. [Wang and Mahadevan, 2008; Yang and Crawford, 2011]), TRIAL

is capable of adapting to the properties of the source and target manifolds with a

relatively small number of labeled correspondences between domains (≈ 10 − 100

per-class) by iteratively incorporating informative unlabeled samples to refine the

mapping between the domains. Additionally, the rigid transformations computed by

TRIAL preserve functional relationships between adjacent spectral bands, which are

crucial for accurate classification of hyperspectral signatures [Villmann et al., 2003].

However, several issues arise which prevent us from applying TRIAL directly in

domain adaptation scenarios. Specifically, in domain adaptation, our objective is to
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minimize misclassifications, rather than maximizing the number of aligned samples

between the source and target domains. Additionally, while we can assume that the

Cα atoms in A and B each lie on single submanifold of R3, samples representing

different classes in the source and target data can be viewed as lying on their own

submanifolds of Rn, and the submanifold of a particular class in the target domain

may be arbitrarily transformed with respect to the submanifold of the same class

in the source domain. Finally, in domain adaptation, we must consider problems

involving hundreds to thousands of samples of high dimensionality, which involves

significantly greater computational costs than those involved in protein alignment

problems.

We account for the challenges involved in multiclass domain adaptation by making

the following modifications the TRIAL algorithm: (1) we perform an initial filtering

step where we select a pool of candidate pivot samples that are structurally similar

to the source domain classes in both the source and target domains; (2) rather than

learning a single global transformation between the domains, we learn a transformation

for each source class using the pivot samples. This allows us to resolve domain-specific

differences relative to each class, while also constraining the number of samples

necessary to consider during alignment; and (3) we automatically compute the RMSD

threshold ε for each class by randomly selecting a set of initial seed pairs of fixed size

from the set of candidate pivots. While this is not guaranteed to produce an optimal

RMSD transformation, we found that selecting the lowest RMSD transformation over

25-50 randomly selected seed pairs works well in practice to filter out degenerate

solutions.
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Algorithm 6.3 MARTIAL

Input: NS labeled source samples (XS, Y S), MS unlabeled source samples XSu, NT

unlabeled target samples XT , number of candidate pivots NP
i per class, number

of seed samples per class Qk, number of random inits Nrand.
Output: Target-transformed source samples XST

1: Use MCCL to select NP candidate pivots P = (PS,PT , Y P ), PS ⊂ (XS ∪XSu),
PT ⊂ XT , consisting of NP

i samples per-class.
2: XST = ∅
3: for i = 1 to K do
4: XS

i =
{
xSj ∈ XS|ySj = i

}

5: Pi =
{

(pSj ,p
T
j , y

P
j ) ∈ P|yPj = i

}

6: (P0,T0, ε0) = RANDINIT(Pi, Qk, Nrand)
7: TS

i = TRIAL(Pi,P0,T0, ε0)
8: XST =

{
XST ∪TS

i XS
i

}

9: end for

Algorithm 6.3 describes the MARTIAL algorithm, which maps a set of labeled

source samples (XS, Y S) to the target domain feature space. The algorithm begins

by using the Multiclass Continuous Correspondence Learning (MCCL) algorithm

Algorithm 6.1 to select a pool P = (PS,PT , Y P ) of NP candidate pivot samples,

consisting of NP
i paired samples representing each of the K source classes. We denote

the set of NP
i pivots representing the ith class as Pi =

{
(pSj ,p

T
j , y

P
j )
}NP

i

j=1
, where yPj = i.

The set of NP source pivots pSj ∈ PS consist of the top NP
i samples in (XS ∪XSu)

nearest to the mean of each source class. For each source pivot pSj ∈ PS, MCCL

selects the target pivot pTj = xT` ∈ XT that is most likely to belong to the same class

as pSj according to

` = argmin
i
‖R(pSj ,P

S)− R(xTi ,P
S)‖, i ∈ {1, . . . , NT}, (6.13)

By selecting the candidate pivots in this “R-space,” MCCL finds target samples

that approximately preserve the relative distances between the source classes, as

characterized by the source pivots. When the source and target feature spaces are
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similar, these target pivots typically represent the same classes as their corresponding

source pivots.

After the candidate pivots are selected, the MARTIAL algorithm uses the pivots

from the ith class, Pi, to compute the Seed alignment transformation T0 for samples in

that class . This is achieved by sampling Nrand seed pairs from Pi, each consisting of

Qk < NP
i samples of the form P0 = (PS

0 ,P
T
0 ) =

{
(pSj ,p

T
j )
}Qk
j=1

, applying the Kabsch

algorithm to each seed pair, and returning the (T0,P0) producing the smallest value

of ε0 = RMSD(T0P
S
0 ,P

T
0 ) (Step 6).

We then pass this filtered set of pivots to the TRIAL function for refinement (Step 7).

The TRIAL function performs the initial alignment and iterative improvement steps

of the TRIAL algorithm as described in ([Venkateswaran et al., 2011], Figures 2 and

4), returning the n× n transformation matrix TS
i that maps samples from class i to

the target feature space. We apply TS
i to the source samples XS

i , and add them to

the set of transformed source samples XST (Step 8), and can subsequently train a

multiclass classifier using (XST , Y S) to classify target samples XT .

6.8.2 Evaluation on Cuprite Imagery

We now evaluate the performance of the MARTIAL algorithm on the Av97⇒Hyp11

and Hyp11⇒Av97 scenarios described in Section 6.5. As in Section 6.7.2, we consider

the unwhitened, L2 normalized Av97 and Hyp11 spectra. In each scenario, we measure

the source-to-target (ST) classification accuracy without domain adaptation, which

provides a baseline accuracy we seek to improve. We then measure the classification

accuracy using the transformations produced by the MARTIAL Seed (Algorithm 6.3,

Step 6), Align and Improve (Imp., Algorithm 6.3, Step 7) steps. We select NP
i = 250

candidate pivots from each class, and evaluate classification accuracy for seed sizes
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Qk ∈ {10, 12, 15, 20, 24, 30, 36, 40, 42,50, 75, 100}. We compare our results to those

produced using the Procrustes alignment technique (abbreviated Proc.) described

in Section 6.5.2. In fact, the MARTIAL seed alignment step can be interpreted as

applying the Procrustes alignment algorithm to the pivots representing each class. We

also provide results after mapping the source and target spectra to the R-space using

source samples in their original feature space (RS) and the source samples produced

after applying the MARTIAL Seed (RSeed), Align (RAlign) and Improve (RImp.) steps.

We use the same Qk pivots from each class used in the MARTIAL Seed alignment

step for the Procrustes and the R-space mappings. Our classifier is the multiclass

linear Support Vector Machine (SVM) implemented in the LIBSVM package [Chang

and Lin, 2011], evaluated using five-fold cross-validation. We select the SVM slack

parameter C ∈ {10−3, . . . , 103} that yields the highest accuracy on the training data.

Figure 6.9 shows the classification accuracy vs. the number of seed samples Qk for

each algorithm in the Av97⇒Hyp11 (left) and Hyp11⇒Av97 (right) scenarios. In the

Av97⇒Hyp11 scenario, we observe that classifying source samples after each of the

MARTIAL Seed, Align and Improve steps produces accuracies significantly better than

the baseline (8-11%). The poor performance by the Procrustes alignment algorithm

for most Qk values implies that the single global transformation computed using the

pivot samples does not adequately resolve the class-specific differences between the

images. We also observe dramatic improvements over the Procrustes alignment using

MARTIAL in the Hyp11⇒Av97 scenario. However, as noted in [Bue and Thompson,

2011], because the classes are better separated in the Av97 image than in the Hyp11

image, we achieve high classification accuracy (≈ 94%) in the Hyp11⇒Av97 scenario

with the baseline classifier. The remaining classes are challenging to separate, as

indicated by the roughly comparable performance to the baseline using each of the

domain adaptation algorithms. On average, however (as shown in Table 6.5 below),
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classifying source samples transformed by MARTIAL yields slightly better accuracies

than the baseline.
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Figure 3 gives the accuracy vs. the number of seed samples Qi

for the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios for
the MCCL algorithm applied in the original source feature space
(MCCL) vs. the MARTIAL seed (MCCLseed) and align (MCCLalign)
features.
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Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.
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Figure 6.9 : Classification accuracy vs. number of seed samples Qk for the
Av97⇒Hyp11 (left) and Hyp11⇒Av97 (right) scenarios with the baseline (ST, black
�), Procrustes alignment (red �), and MARTIAL Seed (purple ×), Align (turquoise
∗), and Improve (orange ◦). The feature spaces produced using MARTIAL are better
reconciled than the original (ST) and Procrustes-aligned feature spaces, as evidenced
by the increase in classification accuracy.

We observe more substantial improvements in classification accuracy when we

classify our data in the R-space (Equation (5.1)) after applying MARTIAL. These

results are shown in Figure 6.10. In the Av97⇒Hyp11 scenario, classifying the target

samples in the R-space using the source data transformed by MARTIAL produces

uniformly better results for all Qk than in the R-space with the original source features

(RS), indicating that the domains are better reconciled after applying the MARTIAL

transformations. The R-space classification results using MARTIAL are also better

than those given in Figure 6.9 for all Qk 6= 100. Not surprisingly, as the classification

accuracies in the Hyp11⇒Av97 scenario are already high, the RS and the MARTIAL
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RAlign and RImp. cases produce comparable, but not significantly better accuracies

(±1%). We also observe that the most-accurate MARTIAL results shown in Figure 6.10

approach the supervised domain adaptation (R-ST) results reported in Table 6.1, with

MARTIAL yielding 85.10% vs. 86.10% R-ST accuracy in the Av97⇒Hyp11 scenario,

and 97.61% vs. 99.18% R-ST in the Hyp11⇒Av97 scenario.
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Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.
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Figure 3 gives the accuracy vs. the number of seed samples Qi

for the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios for
the MCCL algorithm applied in the original source feature space
(MCCL) vs. the MARTIAL seed (MCCLseed) and align (MCCLalign)
features.
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Figure 6.10 : R-space classification accuracy vs. number of seed samples Qk for the
Av97⇒Hyp11 (left) and Hyp11⇒Av97 (right) scenarios using source samples from the
original source feature space (RS, green 4) vs. the MARTIAL seed (RSeed, purple ×),
align (RAlign, turquoise ∗) and improve (RImp., orange ◦) feature spaces. We observe
comparable or better performance in the R-space using the feature spaces produced
by MARTIAL over the original feature space.

Table 6.5 provides a summary of the classification accuracies of each method,

averaged over the range of Qk values. We see that the MARTIAL feature space

produced by the Align step yield the most accurate results in the Av97⇒Hyp11

scenario, and perform comparably to MCCL in the Hyp11⇒Av97 scenario. We also

note that the accuracies produced after applying the Align step are typically equal

or slightly better than those produced after the subsequent Improve step. This may
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be somewhat surprising, as one may expect that incorporating additional samples

in the Improve step would produce a more robust alignment between the domains.

However, since the pivots from each class are highly-correlated, using a large number of

redundant pivots often produces worse results than using a smaller set of less-redundant

pivots.

ST Proc. Seed Align Imp. RS RSeed RAlign RImp.

Av97⇒Hyp11 71.49 73.29 81.69 82.35 81.67 80.27 83.10 83.20 83.08
Hyp11⇒Av97 93.99 82.75 93.43 94.28 94.05 95.82 92.69 95.11 94.36

Table 6.5 : Average accuracy over the range of selected Qk values for each technique.
The first and second most accurate results are given in red and blue italics, respectively.



Chapter 7

Conclusion

This thesis has advocated an adaptive approach to measuring similarity between

spectral signatures for material identification tasks. By considering characteristics of

spectral data, and accounting for the class-specific relationships most relevant to the

given task, adaptive similarity measures can improve material identification accuracy

over task-agnostic similarity measures and classification techniques that consider all

spectral features equally relevant.

7.1 Contributions

We have made significant contributions to the field of automated spectral material

identification. In Chapter 2, we demonstrated the feasibility of automated material

identification using hyperspectral imagery by matching L2-normalized spectra rep-

resenting a diverse set of material classes to lab-measured material signatures using

several distinct spectral similarity measures. Labels derived by our proposed material

identification approach are determined by the contents of the library, the quality of

the segmentation, and the similarity measure used to compare spectral signatures.

We showed that spectral similarity measures that emphasize diagnostic absorption fea-

tures can greatly improve material identification accuracy over baseline, task-agnostic

similarity measures. Based upon these results, we proposed a new, hybrid similarity

measure that accounts for both Continuum-Intact (CI) spectral shape and the posi-

tions/widths of diagnostic absorption features captured by Continuum-Removed (CR)

signatures. We demonstrate that our novel measure, CICR, produces more accurate
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material identification results than the task-agnostic Euclidean Distance and Spectral

Information Divergence similarity measures, both in terms of information-theoretic

criteria, and visual inspection of the resulting library matches (Section 2.4.4).

We subsequently developed a technique to automatically determine a weighting

between CI vs. CR distances for our CICR similarity measure using small amounts

of labeled data (Section 3.1). We show that our technique yields improved classifi-

cation accuracy in comparison to classification using CI or CR Euclidean distance

measurements alone, and yields competitive performance to brute-force computation

of the CI vs. CR weight parameter, at much reduced computational cost. We also

demonstrate competitive classification performance using the adaptive CICR measure

to several canonical feature selection techniques. We then generalized our technique to

exploit the functional nature of spectral data by calculating the weighted relevances of

spectral derivates using an adaptive form of the Sobolev distance (Section 3.3). Our

analysis showed that the adaptive Sobolev metric produces more accurate results than

the Euclidean baseline when distances between higher-order derivatives of spectral

signatures are uncorrelated.

We evaluated similarity measures that assigned weights to individual spectral

features in Chapter 4. We focused on the problem of learning low-rank Mahalanobis

metrics from data, and provided a comprehensive evaluation of state-of-the-art Maha-

lanobis metric learning algorithms. We considered a diverse set of hyperspectral image

classification problems, and our results indicated that, when properly regularized, mul-

ticlass LDA produced competitive or better classification performance, at significantly

lower computational cost, than current algorithms. We also demonstrated that we

can improve hyperspectral image segmentation results by augmenting a segmentation

algorithm with a Mahalanobis measure learned from a small amount of labeled data

(Section 4.3). We showed that the fidelity of the resulting image segments with respect
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to the labeled classes is improved, while we also observed a reduction in the number

of spurious segments produced by noise or by features irrelevant to the labeled data.

Our results also provided further evidence of the superiority of regularized LDA as a

technique for low-rank Mahalanobis metric learning, in comparison to the Euclidean

baseline, and the state-of-the-art Information Theoretic Metric Learning (ITML)

algorithm.

In Part III, we broadened the scope of the material identification problem to inter-

domain problems, where training (or source) and test (target) spectra are captured

under different conditions – e.g., by different sensors, at different spatial locations or

at different capture times. We proposed a novel, similarity-based domain adaptation

framework, RelTrans, which calculates a mapping between a set of source domain

spectra to a set of target domain spectra captured under similar, but not identical,

conditions (Section 5.3). RelTrans captures structured, relative relationships between

classes that are present in both the source and target domains by mapping them to a

common feature space defined by relative distances to a set of canonical pivot samples

representing identical classes in both domains. This mapping, applied as a similarity

measure, allows us to classify samples from the target domain using a classifier trained

using labeled source domain samples.

We considered the supervised domain adaptation setting in Chapter 5, where a small

quantity of labeled target samples are available define the pivot sample-based mapping

between the source and target domains. We provided a proof-of-concept of our RelTrans

framework, RelSim, which adapted the MinDist classifier to the domain adaptation

setting (Section 5.5.1). We applied RelSim to a multisensor domain adaptation task

using a classifier trained on a set of synthetic hyperspectral image to classify materials

from a spatially-overlapping multispectral image, and demonstrated improvements in

classification accuracy ranging from 10-15% using the RelSim classifier over MinDist
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(Section 5.6.2). We presented an extension to RelSim that automatically computed

a threshold for its decision function based upon the set of source and target pivot

samples, and illustrated effective outlier detection capabilites in the aforementioned

synthetic multisensor domain adaptation problem, and on a hyperspectral domain

adaptation problem involving synthetic imagery captured under varying atmospheric

conditions (Section 5.7). We showed that our methodology enabled a classifier trained

using synthetic spectra to classify similar materials in real hyperspectral imagery

(Section 5.8). Additionally, we demonstrated the generality of the RelTrans framework

by using several different classifiers trained using atmospherically-calibrated spectral

reflectance signatures to classify uncalibrated spectra in radiance units (and vice-versa,

Section 5.9.1). Our results showed competitive or better performance than several

related multi-task learning algorithms.

We extended RelTrans to unsupervised domain adaptation settings in Chapter 6.

We proposed the Multiclass Continuous Correspondence Learning (MCCL) algorithm

in Section 6.2, which automatically selects pivot samples from the unlabeled target

domain data that reflect the relative inter-class distances of the source pivots. When

the source and target feature spaces are similar, in terms of the relative distances

between classes, these target pivots typically represent the same classes as their

corresponding source pivots. We also proposed a model-selection algorithm, Pdiv,

which allows us to choose how many pivot samples are necessary to best reconcile

the source and target domains. We applied MCCL and Pdiv to a synthetic four-

class domain adaptation problem, and to a challenging multisource/multitemporal

hyperspectral class knowledge transfer problem, and demonstrated comparable results

to the supervised domain adaptation setting. In Section 6.5.2, we compared RelTrans

to several baseline and related techniques on the aforementioned hyperspectral class

knowledge transfer problem. Our results indicated that RelTrans outperforms each of
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the considered techniques in the unsupervised setting. In the supervised setting, we

observed slightly improved accuracies over the baseline techniques when the target

classes are better separated than the source classes, but slightly decreased accuracy

when the target classes are less separable than the source classes. We showed in

Section 6.7 that we can potentially improve our domain adaptation results by using

a pivot selection strategy that leverages the functional nature of spectral signatures.

Finally, we applied a manifold alignment approach based upon the TRIAL protein

structure alignment algorithm to learn rigid transformations on a per-class basis to

reconcile the source and target domains (Section 6.8).

7.2 Future Work

We can envision a number of directions for future research. In both intra-domain

and inter-domain settings, to ensure the robustness of the material identification

techniques we have developed, additional validation is essential on real spectral image

data sets captured by different sensors, under varying enviornmental conditions,

and containing diverse sets of material classes. Methods to incorporate additional

contextual information in measuring spectral similarity, such as spatial relationships,

can potentially improve material identification results [Hsieh and Landgrebe, 1999;

Kim et al., 2008; Tarabalka, 2010], and recent work has demonstrated how such context

can be incorporated into a similarity measure (e.g., [Lunga and Ersoy, 2012; Yang

and Crawford, 2012]).

To conclude, we now reflect on several important open problems, and discuss

potential directions for future research.
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Theoretical Foundations of Similarity-based Domain Adaptation: Our ex-

perimental results from Part III suggest that, in the case when between-class distances

are relatively preserved across domains, we can define a mapping from the source to the

target domains based on distances between samples representing similar classes in both

domains. Furthermore, as we demonstrated in Chapter 6, we can evaluate the quality

of this mapping by measuring the H-divergence [Ben-David et al., 2010a] between

the source and target pivots in the R-space (Algorithm 6.2). Our motivation for this

approach was the generalization bound for domain adaptation problems proposed

by Ben-David et al. [2010a, 2007], which gave a generalization bound on target do-

main accuracy for inter-domain classification problems based upon the generalization

performance in the source domain, the H-divergence between the domains, and the

complexity of the classification problem. Their bound could potentially be combined

with the classification bounds proposed by Balcan et al. [Balcan et al., 2006; Balcan

et al., 2008a,b] for distance and kernel-based transformations, such as our R-transform

Equation (5.1). However, the bounds proposed by Balcan et al. do not extend directly

to the inter-domain problems described in Section 5.2. Moreover, their applicability

to multiclass domain adaptation settings remains an open question, as the bounds

derived in [Ben-David et al., 2010a] and [Balcan et al., 2008b] assume the classification

problem is binary. While it is possible to decompose the multiclass problem into

multiple binary classification problems, as we showed empirically in Section 5.9.2, such

decompositions may not yield good performance in domain adaptation settings, and

suggest that generalization bounds using binary decompositions would be particularly

loose. However, even if such bounds are not directly applicable in practical settings, as

we discussed in Section 5.9.3, they often provide valuable insight into the conditions

where domain adaptation is possible.
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Feature-weighted Metrics for Domain Adaptation: The connections between

Mahalanobis metric learning and domain adaptation could be further explored. One

avenue of particular interest is exploring the relationship between the rigid transforma-

tions computed using the MARTIAL algorithm, and the corresponding intra-domain

and inter-domain Mahalanobis metrics induced by these transformations. Specifically,

the Euclidean distance between source samples xSi and xSj from the same class k

after applying MARTIAL transformation matrix Tk is equivalent to the Mahalanobis

distance parameterized by M = TT
kTk. More interestingly, the Euclidean distance

between transformed source sample Tkx
S
i and target sample xTj from class k roughly

approximates the Euclidean distance between target samples in the same class, by

virtue of the fact that Tk maps the source samples from class k to the target domain

feature space. This relationship largely explains the improvement in the R-space

classification accuracy shown in Figure 6.10, as the relative distances between the

source and target classes are better resolved in the MARTIAL feature spaces. However,

we could potentially improve our results by incorporating constraints to make the Tk

reflect the relative distances between the source classes.

Another possible direction is to apply feature-weighted metric learning/feature

selection techniques to emphasize the most relevant dimensions of the R-space. By

learning the most relevant dimensions of the R-space, we can eliminate uninformative

pivot samples and reduce the dimensionality of the R-space, which can potentially

improve classification performance in cases when the number of pivots is large. Recent

work by Quattoni et al. [2008] has demonstrated similar approaches can improve

multitask image classification results, but additional work is necessary to determine

how well such techniques generalize to multiclass domain adaptation settings.
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Object-level Material Identification: In this work, we concentrated on identifi-

cation of materials of unlabeled spectra according to their relationships to spectra

with known material labels. However, as mentioned in Section 2.4.5, spectra are often

labeled according to the objects to which they belong, rather than their material

composition, and require manual inspection to translate object to material labels.

We can potentially infer the material composition of spectra with object labels by

cross-referencing them with spectral libraries, while constraining the set of candidate

materials for each object using Natural Language Processing (NLP) techniques to

measure the semantic similarity between labels.

Autonomous Material Identification Onboard Spacecraft: A more long-term

objective of this work is to deploy our material identification techniques directly

onboard spacecraft. However, spacecraft platforms present unique challenges due

to limited communication bandwidth and computational capacity [McGovern and

Wagstaff, 2011], and are subject to extreme conditions that can potentially cause

measurement errors [Wagstaff and Bornstein, 2009]. Consequently, algorithms deployed

onboard spacecraft must be capable of robust anomaly detection, while also operating

efficiently in terms of CPU and memory resources. We have demonstrated that the

algorithms developed in this thesis meet the efficiency requirements, and future efforts

will incorporate our algorithms into ongoing automated onboard material identification

efforts, such as those described by Bornstein et al. [2011]; Thompson et al. [2012].
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E Merényi. “”Precision Mining” of High-Dimensional Patterns with Self-Organizing
Maps: Interpetation of Hyperspectral Images”. Quo Vadis Computational Intel-
ligence: New Trends and Approaches in Computational Intelligence (Studies in
Fuzziness and Soft Computing). 54 (2000), pp. 1–15 (cit. on pp. 15, 90).

— “Self-organizing ANNs for planetary surface composition research”. Proc. 6th
European Symposium on Artificial Neural Networks, ESANN 98 (1998), pp. 22–24
(cit. on pp. 4, 15, 21).
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