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Abstract

Distributed Full-duplex via Wireless Side Channels: Bounds and Protocols

by

Jingwen Bai

In this thesis, we study a three-node full-duplex network, where the

infrastructure node has simultaneous up- and downlink communication

in the same frequency band with two half-duplex nodes. In addition to

self-interference at the full-duplex infrastructure node, the three-node net-

work has to contend with the inter-node interference between the two

half-duplex nodes. The two forms of interferences differ in one impor-

tant aspect that the self-interference is known at the interfered receiver.

Therefore, we propose to leverage a wireless side-channel to manage the

inter-node interference. We characterize the impact of inter-node interfer-

ence on the network achievable rate region with and without a side-channel

between the nodes. We present four distributed full-duplex inter-node in-

terference cancellation schemes, which leverage the device-to-device wire-

less side-channel for improved interference cancellation. Of the four, bin-

and-cancel is asymptotically optimal in high signal-to-noise ratio limit

which uses Han-Kobayashi common-private message splitting and achieves

within 1 bit/s/Hz of the capacity region for all values of channel parame-

ters. The other three schemes are simpler compared to bin-and-cancel but

achieve the near-optimal performance only in certain regimes of channel

values. Asymptotic multiplexing gains of all proposed schemes are derived



to show analytically that leveraging the side channel can be highly ben-

eficial in increasing the multiplexing gain of the system exactly in those

regimes where inter-node interference has the highest impact.
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Chapter 1

Introduction

1.1 Three-node Full-duplex Network

Full-duplex wireless communication has recently been shown [5, 8, 4, 9, 10, 17, 14,

13, 16] to promise higher spectral efficiency than the half-duplex paradigm for short

to medium range bi-directional communications when both mobile and infrastruc-

ture nodes are full-duplex, in which the transmission and reception are done in the

same time and frequency signaling dimensions. Most of the work till date on full-

duplex communications has focused on the bidirectional communications between two

nodes. An alternate use of full-duplex capability is a three-node network [14] shown

in Figure 1.1, where a full-duplex infrastructure node can communicate with two half-

duplex mobiles simultaneously to support one uplink and one downlink flow. Since

there is more flexibility in the design of infrastructure nodes, it is possible to suppress

self-interference much more in infrastructure nodes than space-constrained mobile

devices. In fact, well designed passive suppression techniques [13] can extend ranges

significantly in outdoor environments. Thus, we envision that the first adoption of

full-duplex will be at the infrastructure nodes, such as femto base stations and WiFi

access points, while space-constrained mobile devices will continue to be half-duplex.
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As shown in Fig. 1.1, the mobile node 1 (M1) is uploading data to the full-

duplex base station while mobile node 2 (M2) is downloading data from base station

simultaneously in the same band. Since wireless communication is broadcast by

nature, the three-node network shown in Figure 1.1 has to deal with two forms of

interferences: self-interference at the full-duplex infrastructure node, and inter-node

interference (INI) from uplink Mobile M1 to downlink Mobile M2.

BS

Rx Tx

M1 M2
Inter-node Interference

Figure 1.1: Three-node full-duplex network: inter-node interference becomes an im-
portant factor when the infrastructure node communicates with uplink and downlink
mobile nodes simultaneously.

1.2 Distributed-full-duplex

The two forms of interferences in the three-node network differ in one important as-

pect that the self-interference is known at the interfered receiver, since the transmitter

and receiver are co-located at BS while the inter-node interference is unknown to the

unintended receiver of M2 because the transmitter of M1 and interfered receiver of

M2 is distributed.

In this thesis, we study how a wireless side-channel between Nodes M1 and M2

can be leveraged to manage INI. Conceptually, one can model the co-location of

transmitter and receiver on a full-duplex node as an infinite capacity side channel.

Thus, our use of a wireless side channel between M1 and M2 mimics the inherent

full-duplex side channel but has finite bandwidth and signal-to-noise ratio (SNR) like
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any practical wireless channel. The wireless side-channel model is inspired by the fact

that most smartphones support simultaneous use of multiple standards, and can thus

access multiple orthogonal spectral bands. For example, the whole network could be

on a cellular band while the M1-M2 wireless side channel could be in the unlicensed

ISM band.

We label the protocols for communication in side-channel assisted three-node net-

work as distributed full-duplex. In this thesis, we assume that the self-interference has

been suppressed to the noise floor and hence focus on INI.

Note that although we propose distributed full-duplex via wireless side channels for

interference canellation in the three-node full-duplex network, the three-node network

topology is just a motivation example. Our proposed distributed full-duplex is a more

general concept: by leveraging the wireless side channel, we can enable simultaneously

transmission and reception in the same frequency band when the transmitter and

interfered receiver are distributed but within communication range, by analogy to

the self-interference cancellation mechanism used in bidirectional full-duplex (two-

way) communication where the transmitter and interfered receiver are co-located in

the same node.

1.3 Main Contributions

We make the following main technical contributions. First of all, we investigate the

baseline performance of the three-node network without any side channels. We model

the three-node network as a cognitive Z-channel to derive the inner and outer bound

on the capacity region. Asymptotic sum-capacity is established in the high SNR limit.

As expected, a multiplexing gain of two is achievable in the very weak and very strong

interference regimes, but the INI causes the multiplexing gain to reduce significantly

in all other regimes.
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Secondly, we propose four distributed full-duplex inter-node interference cancela-

tion schemes by leveraging a device-to-device wireless side channel for improved in-

terference cancellation. The four schemes are labeled bin-and-cancel (BC), compress-

and-cancel (CC), decode-and-cancel (DC) and estimate-and-cancel (EC). All schemes

rely on the side channel, to send information about the INI from Node M1 to Node M2.

Since the side-channel is an orthogonal channel, Node M1 uses the side channel signal

as side information while decoding its signal of interest from BS. As the names sug-

gest, all four schemes encode the M1 signal on the side channel in different ways. Of

the four, bin-and-cancel is the most sophisticated, uses Han-Kobayashi style common-

private message splitting and can achieve within 1 bit/s/Hz of the capacity region

for all values of channel parameters. The other three schemes are simpler compared

to bin-and-cancel but achieve the near-optimal (finite approximation) performance

only in certain regimes of channel values; we derive exact regions of approximate

optimality for decode- and estimate-and-cancel.

Second, we derive the asymptotic multiplexing gains of bin-, compress-, decode-,

estimate-and-cancel schemes. We show analytically that the side information can be

highly beneficial in increasing the multiplexing gain of the system exactly in those

regimes where INI has the highest impact. We provide exact characterization of how

the extra bandwidth of the side channel can be leveraged to achieve the multiplex-

ing gains. As expected, the multiplexing gain scales with the bandwidth of the side

channel and can reach the maximum value which no longer depends on additional

bandwidth of the side channel. Finally, we show numerically that significant multi-

plexing gains are available for finite SNRs of practical interest, and thus our analysis

make a case for using wireless spectrum in a more flexible manner (e.g unlicensed

bands in licensed spectrum).
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents system model and

the impact of inter-node interference in the three-node full-duplex network without

a side channel. In Chapter 3, we propose four distributed full-duplex interference

cancellation schemes for side-channel assisted three-node network and obtain infor-

mation theoretical results on their achievable rates. Chapter 4 gives the bounds on

the capacity region of the side-channel assisted three-node network. Chapter 5 char-

acterizes the performance of different schemes, including both finite SNR results as

well as high SNR capacity approximatons. Chapter 6 opens up the discussion with

respect to spectral efficiency of different systems with/without using the side channel.

Chapter 7 concludes the thesis.



Chapter 2

No Side Channel Bounds on Gaussian Three-node

Full-duplex Channel

2.1 System Model

In this section, we will describe the system model to be used for the rest of the thesis.

We assume the self-interference at the full-duplex base station is below the noise

floor, the resulting network is modeled as a as shown in Fig. 2.1. We have per-node

power constraint for each transmitter, let P1, P2 denote the total power constraint

for the transmitter of BS and Node M1, respectively. And let Wm,Ws denote the

bandwidth for the main channel and side channel, respectively. Parameter W = Ws

Wm

represents the bandwidth ratio of the side channel to that of the main channel, where

W ∈ [0,Wmax].

The following equations capture the input-output relationship between transmit-

ted and received signals:

Y1 =γ1X1 + γm21X2 + Z1

Y2 =γ2X2 + Z2

Y3 =γs21X3 + Z3,
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BS

BSM1

M2

X1 Y1

X2 Y2

X3

Y3

+

+

+

Z1

Z2

Z3

γm21

γ2

γ1

γs21

Figure 2.1: System model: Z-channel with side channel.

where for i = 1, 2, 3, Xi is the codeword with input power constraint E(|X1|2) ≤ P1,

E(|X2 + X3|2) ≤ P2. Let Zi be i.i.d. white Gaussian noise with zero mean and

variance of σ2. The coefficients γ1, γ2 are the channel gains of the direct link from

the transmitters to their intended receivers, γm21 is the channel gain of the interference

link from M1 to M2, and γs21 be the channel gain of the side channel from M1 to

M2. To simplify the notation, let SNR1 = |γ1|2P1

σ2 , SNR2 = |γ2|2P2

σ2 , INR =
|γm21|2P2

σ2 and

SNRside =
|γs21|2P2

σ2 .

There are two independent uniformly distributed index sets si ∈ [1 : 2nRi ], i = 1, 2,

which belong to base station and uplink M1, respectively. The encoding function

fi : [1 : 2nRi ] → Ck, k = 1, 2, 3 yields codewords Xk
n(si) for block length n. The

codewords satisfy

1

n

n∑
i=1

E(|X1i|2) ≤ P1,
1

n

n∑
i=1

E(|X2i +X3i|2) ≤ P2.

Receiver of downlink M2 uses decoding functions g1 : Ck →∈ [1 : 2nR1 ], k = 1, 3 to

map the received sequence ynk into a message ŝ1. And receiver of base station uses

a decoding function g2 : C2 →∈ [1 : 2nR2 ] to map the received sequence yn2 into a
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message ŝ2.

λ1
n=

1

S1S2

∑
s1,s2,

Prob (g1(Y1
n, Y3

n) 6= s1|S1 = s1) ,

λ2
n=

1

S1S2

∑
s1,s2,

Prob (g2(Y2
n)) 6= s2|S2 = s2) ,

λn=max (λi
n) , i = 1, 2.

(2.1)

A rate pair (R1, R2) is said to be achievable if there exists a sequence of
(
2nR1 , 2nR2 , n

)
codes such that the maximal probability of error λn goes to 0 as n goes to ∞. The

capacity region is the closure of the set of all achievable rate pairs.

2.2 No-side-channel Inner Bound

To start with, we study the inner bound and outer bound on the capacity region of

the Gaussian three-node full-duplex channel to understand the impact of INI. From

Fig. 2.1, let Y3 = 0 and W = 0, thus we can obtain the channel model without side

channel.

We notice that one of the transmitter and receiver pairs in Fig. 2.1 is co-located in

the base station, thus causal information of transmitter M1 is available at the trans-

mitter of base station. This model is similar to the causal cognitive Z-interference

channel [19]. In the cognitive Z-interference channel the transmitter of the secondary

user has access to causal knowledge of the primary user, and there is only one in-

terference link from the primary transmitter to the secondary receiver. Hence the

three-node full-duplex channel can be modeled as cognitive Z-interference channel.

When we do not use the causal information at BS, the resulting channel is classic

Z-channel. The rate region of classic Z-channel is the existing capacity inner bound

of cognitive Z-interference channel. The capacity region of classic Z-channel is estab-

lished in the strong and very strong interference regimes [3, 18] and Han-Kobayashi
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strategies [15] yields the best achievable rate region in the weak interference regime.

The sum-rate of classic Z-channel can be achieved by treating interference as noise in

the weak regime and joint decoding in the strong interference regime.

In the cognitive Z-interference channel, we assume that at time i, the encoder of

base station will have access to the information sequence sent by M1 up to time i−1.

The state-of-art approaches based on block markov codes [19, 2] do not seem to help

enhance the achievable rate region over the classic Z-channel (as far as is known to

the author). This might result from the two main reasons below. First of all, in the

two-user interference channel as described in [19], the causal information may help

increase the achievable rate region, since more information can be delivered through

the cross link from secondary user to the primary user by cooperative transmission.

While in our case, one of the cross link has already been removed. The uplink from

M1 to base station is interference-free, therefore uplink rate can not benefit from

the causal information available at base station. Secondly, at time i, the way that

the transmitter of base station can obtain the causal message of M1 is by decoding

the message through the direct link between M1 and base station before time i.

While using block markov codes, the decoding strategies at the receiver involve delay,

whether using backward decoding, successive decoding or sliding window decoding.

Hence we can not take advantage of the decoding schemes for block markov codes.

In [19, 2], the secondary user has access to the causal message of the primary user

through another link which has a different channel gain from the direct link. As

shown in [19], only when the channel gain of the other link is larger than that of the

direct link can the achievable rate region be increased. Otherwise, there would be no

improvement on the achievable rate region. Unlike system model in [19], in our case,

the channel link from which base station can acquire the causal information of M1 is

the same direct link. Hence we may conjecture that this causal information will not
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help improve the achievable sum-rate over Z-channel.

The inner bound on the capacity region for the Gaussian three-node full-duplex

channel is given as follows.

Proposition 1. [Weak Interference Regime [15]] When the channel parameters sat-

isfy INR ≤ SNR2,

R1 ≤C
(

SNR1

1 + βINR

)
R2 ≤min

{
C (SNR2) , C (βSNR2) + C

(
β̄INR

1 + βINR

)}
R1 +R2 ≤C (SNR2) + C

(
SNR1

1 + INR

)
,

(2.2)

where β ∈ [0, 1], β̄ + β = 1, and C(X) = Wmlog (1 +X).

[Strong Interference Regime [18]] When the channel parameters satisfy SNR2 ≤

INR ≤ SNR2 (1 + SNR1),

R1 ≤C (SNR1)

R2 ≤C (SNR2)

R1 +R2 ≤C (SNR1 + INR) .

(2.3)

[Very Strong Interference Regime [3]] When the channel parameters satisfy INR ≥

SNR2 (1 + SNR1) ,

R1 ≤C (SNR1)

R2 ≤C (SNR2) .

(2.4)
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2.3 No-side-channel Outer Bound

We also give the outer bound on the capacity of the Gaussian three-node full-duplex

channel. If the base station knows the information of M1 non-causally, which means

the BS not only knows the message of M1 in previous transmission blocks, but also

the message of M1 for future transmission, then the results are trivial. Because by

applying dirty paper coding [6], base station can encode its own message while treating

M1’s signal as known interference, thus the impact of the inter-node interference can

be eliminated at receiver M2.

Since the base station only has causal knowledge of M1, we can derive the following

theorem according to [11].

Theorem 1. In the weak interference regime defined by INR ≤ SNR2, the capacity

outer bound for the Gaussian three-node full-duplex channel is given by:

R1 ≤C (SNR1)

R2 ≤C (SNR2)

R1 +R2 ≤C(αSNR2) + C

(
ᾱINR + SNR1 + 2

√
ᾱSNR1INR

1 + αINR

)
,

(2.5)

where α ∈ [0, 1], α + ᾱ = 1.

In the strong interference regime defined by SNR2 ≤ INR ≤ INR∗, where

INR∗ = SNR2(1 + SNR1) + 2SNR1 − 2
√

SNR1(SNR1 + SNR2 + SNR1SNR2), (2.6)
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the capacity outer bound is given by

R1 ≤C (SNR1)

R2 ≤C (SNR2)

R+R2 ≤C
(

SNR1 + INR + 2
√

SNR1INR
)
.

(2.7)

In the very strong interference regime defined by INR ≥ INR∗,

R1 ≤C (SNR1)

R2 ≤C (SNR2) .

(2.8)

Proof. The bounds on R1 and R2 come from the point-to-point capacity of AWGN

channel. Messages S1 and S2 are chosen uniformly and independently at random.

X1i is a function of (S1, Y
i−1

2 ), and we define Ui = (S1, Y
i−1

2 , X i−1
1 ) for i ∈ [1, n]. Thus

by Fano’s inequality,

nR1 ≤ I(S1;Y1
n) + nε1 (2.9)

=
n∑
i=1

I(S1;Y1i|Y i−1
1 ) + nε1 (2.10)

≤
n∑
i=1

I(S1, Y
i−1

1 ;Y1i) + nε1 (2.11)

≤
n∑
i=1

I(S1, Y
i−1

2 , Y i−1
1 ;Y1i) + nε1 (2.12)

=
n∑
i=1

I(S1, Y
i−1

2 , X i
1, Y

i−1
1 ;Y1i) + nε1 (2.13)

=
n∑
i=1

I(S1, Y
i−1

2 , X i
1;Y1i) + nε1 (2.14)

=
n∑
i=1

I(Ui, X1i;Y1i) + nε1, (2.15)

where (4.10) and (4.12) follow because X1i is a function of (S1, Y
i−1

2 ); (4.11) follows
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because Y i−1
1 → (X i

1, Y
i−1

2 ) → Y1i forms a Markov chain. And for any codebook of

block length n, we have

nR2 = H(S2|S1) (2.16)

= I(S2;Y2
n|S1) +H(S2|Y n

2 , S1) (2.17)

≤ I(S2;Y2
n|S1) + nε2 (2.18)

=
n∑
i=1

I(S2;Y2i|Y i−1
2 , S1) + nε2 (2.19)

=
n∑
i=1

I(S2, Y2i|Y i−1
2 , S1, X

i
1) + nε2 (2.20)

≤
n∑
i=1

I(X2i, Y2i|Ui, X1i) + nε2, (2.21)

where (4.15) follows from Fano’s inequality; (4.17) follows because X1i is a function

of (S1, Y
i−1

2 ).

Now by applying the standard time sharing argument, we can obtain

R1 +R2 ≤ I(U,X1;Y1) + I(X2, Y2|U,X1), (2.22)

for product distribution p(u)p(x1x2|u)p(y1y2|x1x2).

Similarly, in the strong interference regime where I(X2;Y2|X1, U) ≤ I(X2;Y1|X1, U),

the sum-capacity upper bound is given by

R1 +R2 ≤ I(U,X1;Y1) + I(X2, Y2|U,X1) (2.23)

≤ I(U,X1;Y1) + I(X2, Y1|U,X1) (2.24)

= I(U,X1, X2;Y1) (2.25)

In the Gaussian channels, the capacity region is upper bounded by Gaussian
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inputs. The auxiliary random variable U captures the correlation between the code-

words X1 and X2. We define α = 1−ρ2, where ρ is the correlation coefficient between

X1 and X2 and α ∈ [0, 1]. Hence the capacity region outer bound can be expressed

in terms of the channel parameters and the power constraints.

2.3.1 Asymptotic Sum-capacity

As SNR1, SNR2, INR → ∞, with their ratios being kept constant, we obtain the

following theorem.

Theorem 2. For the Gaussian three-node full-duplex channel, the asymptotic sum-

capacity is established

CNo side−channel
sum =


C(SNR2) + C

(
SNR1

1+INR

)
INR ≤ SNR2

C (SNR1 + INR) SNR2 ≤ INR ≤ SNR2(1 + SNR1)

C(SNR1) + C(SNR2) INR ≥ SNR2(1 + SNR1)

(2.26)

Proof. We only need to prove that the upper bound on the sum-capacity of Gaus-

sian three-node full-duplex channel is tight as SNR1, SNR2, INR → ∞. In the weak

interference regime where INR ≤ SNR2, when SNR1, SNR2, INR →∞,

lim
SNR1,SNR2,

INR→∞

C
No side−channel
sum

CNo side−channel
sum

=
log(SNR2) + log(INR + SNR1)− log(INR) + log(1 + 2

√
ᾱSNR1INR

INR+SNR1
)

log(SNR2) + log(INR + SNR1)− log(INR)

= 1.

The strong interference regime for the sum-capacity lower bound is defined as

SNR2 ≤ INR ≤ SNR2(1 + SNR1), and the sum-capacity upper bound is defined as
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SNR2 ≤ INR ≤ INR∗, where

INR∗ = 2SNR1 + SNR2(1 + SNR1)− 2
√

SNR1(SNR1 + SNR2 + SNR1SNR2)

. Using L’Hospital’s Rule, we can compute

lim
SNR1,SNR2,

INR→∞

INR∗

SNR2(1 + SNR1)
= lim

SNR1,SNR2,
INR→∞

2SNR1 + SNR2(1 + SNR1)− 2
√

SNR1(SNR1 + SNR2 + SNR1SNR2)

SNR2(1 + SNR1)

= 1.

Thus in the strong interference regime, according to L’Hospital’s Rule, we have

lim
SNR1,SNR2,INR→∞

C
No side−channel

sum

CNo side−channel
sum

= lim
SNR1,SNR2,INR→∞

C
(
SNR1 + INR + 2

√
SNR1INR

)
C (SNR1 + INR)

= 1.

Therefore, in the high SNR and INR limit, for the Gaussian three-node full-

duplex channel, treating interference as noise and joint decoding are asymptotically

sum-capacity achieving in weak and strong interference regimes, respectively.

For the ease of analysis, let us consider the symmetric channels where SNR1 =

SNR2. We define µ = log INR
log SNR

to capture the interference level. Hence we can derive

the asymptotic multiplexing gain of the sum-capacity over signal-user capacity in the

high SNR and INR limit, which is give by

MNo side−channel =
CNo side−channel

sum

Cawgn

=


2− µ 0 ≤ µ < 1

µ 1 ≤ µ < 2

2 µ ≥ 2

(2.27)

When µ = 0, there is no interference. And 0 ≤ µ < 1 corresponds to the weak

interference regime while µ ≥ 1 corresponds to the strong and very strong interference
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regimes.

In Fig. 2.2, we compute the asymptotic multiplexing gain of the sum-capacity for

the Gaussian three-node full-duplex channel. As delineated in Fig. 2.2, ideally without

interference, perfect full-duplex can achieve an multiplexing of 2 in all regimes. When

INI is very weak, i.e., µ is slightly greater than zero, the impact of INI is inappreciable

because the interference can just be treated as noise. On the other hand, when INI is

very strong, i.e., µ ≥ 2, the very strong interfering signal can always first be decoded

and then subtracted out. However, when INI is neither very weak nor very strong,

there exists an area where the full-duplex multiplexing gain vanishes quickly.

0 0.5 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2
Ideal

Figure 2.2: Asymptotic multiplexing gain of the sum-capacity for Gaussian three-node
full-duplex channel as a function of the interference level µ.



Chapter 3

Four Schemes for Side-channel Assisted

Three-node Network

In the previous section, we have demonstrated the impact of INI. Therefore, how to

alleviate INI is of great importance to increase the multiplexing gain of the three-

node full-duplex network. In the three-node network, the inter-node interference

is unknown to the unintended receiver of M2 because the transmitter of M1 and

interfered receiver of M2 is distributed compared to the known self-interference at

the interfered receiver due to co-location of transceiver at full-duplex node.

By extending the use of self-interference cancellation beyond the original co-

located transmitter-receiver full-duplex node for bidirectional communication, we

propose to leverage a device-to-device side channel for inter-node interference can-

cellation. The prevalence of multi-ratio interfaces on current mobile devices provides

such opportunity to deliver the interfering signal between the two mobile nodes to

manage the inter-node interference. We label the protocols for communication in

side-channel assisted three-node network as distributed full-duplex. In this section, we

will propose four distributed full-duplex inter-node interference canellation schemes

for improved interference cancellation.
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3.1 Bin-and-cancel

The first scheme we propose to leverage the side channel to manage INI is bin-and-

cancel, which uses Han-Kobayashi style common-private message splitting. The main

idea behind BC scheme is to divide the interfering message of Node M1 into two

parts: private message which can only be decoded at the intended receiver Node BS,

and common message which can be decoded at both receivers. Then partition the

common message of M1 into equal size bins, encode the bin indexes into codewords

and send through the side channel. The number of bin indexes is determined by the

rate of the side channel. At the interfered receiver M2, by decoding the common

message of the interfering signal from M1, part of the interference can be subtracted

out while treating the remaining private message of M1 as noise. B By using the

side channel, the bin index can first be decoded from the side channel. Then with

the help of bin index, the uncertainty of decoding the common message of M1 can be

resolved, allowing sending more common message of M1 and mitigating INI. Similar

approach is also adopted in [7, 22]. This binning strategy is also capacity-achieving

for multiple-access channel with side channel, which is given in the following Lemma.

Lemma 1. The capacity region of a multiple-access channel with side channel in

Fig. 3.1 is

R1 ≤ I(X1;Y1|X2)

R2 ≤ I(X2;Y1|X1) + I(X3;Y3)

R1 +R2 ≤ I(X1, X2;Y1) + I(X3;Y3),

for some p(x1)p(x2, x3).

Proof. We first give the outline of achievability.

1. Codebook generation: Fix p(x1) and p(x2, x3) that achieves the lower bound.
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Figure 3.1: Multiple access channel with side channel.

Randomly and independently generate 2nR1 sequence xn1 (m1), m1 ∈ [1 : 2nR1 ],

each i.i.d. according to distribution
∏n

i=1 pX1(x1i). Randomly and independently

generate 2nR3 sequence xn3 (l), l ∈ [1 : 2nR3 ], each i.i.d. according to distribution∏n
i=1 pX3(x3i). For each l, randomly and conditionally independently generate

2nR2 sequence xn2 (m2|l), m2 ∈ [1 : 2nR2 ], each i.i.d. according to distribu-

tion
∏n

i=1 pX2|X3(x2i|x3i). Partition the set [1 : 2nR2 ] into 2nR3 equal size bins,

B(l) = [(l − 1)2n(R2−R3) + 1 : l2n(R2−R3)], l ∈ [1 : 2nR3 ]. The codebook and bin

assignments are revealed to all parties.

2. Encoding: Upon observing m2 ∈ [1 : 2nR2 ], assign m2 to bin B(l). The encoders

send xn1 (m1), xn2 (m2|l) over the main channel, and xn3 (l) over the side channel

in n blocks.

3. Decoding: Upon receiving Y3, the receiver for the side channel declares that l̂ is

sent if it is the unique message such that (xn3 (l̂), Y n
3 ) ∈ Tnε ; otherwise, it declares

an error. Then upon receiving Y1, the receiver for the main channel declares that

(m̂1, m̂2) are sent if it is the unique pair such that (xn1 (m̂1), xn2 (m̂2|l̂), Y n
1 ) ∈ Tnε

and m̂2 ∈ B(l̂); otherwise, it declares an error.

Therefore, the following rate region is achievable

R1 ≤ I(X1;Y1|X2)

R2 ≤ I(X2;Y1|X1) + I(X3;Y3)

R1 +R2 ≤ I(X1, X2;Y1) + I(X3;Y3),
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for some p(x1)p(x2, x3).

The converse comes from cut-set upper bound.

n(R2) ≤ I(Xn
2 , X

n
3 ;Y n

1 , Y
n

3 |Xn
1 ) (3.1)

= I(Xn
2 ;Y n

1 , Y
n

3 |Xn
1 ) + I(Xn

3 ;Y n
1 , Y

n
3 |Xn

1 , X
n
2 ) (3.2)

= I(Xn
2 ;Y n

1 |Xn
1 ) + I(Xn

2 ;Y n
3 |Xn

1 , Y
n

1 ) +H(Xn
3 |Xn

1 , X
n
2 )−H(Xn

3 |Xn
1 , X

n
2 , Y

n
1 , Y

n
3 )(3.3)

= I(Xn
2 ;Y n

1 |Xn
1 ) + I(Xn

2 ;Y n
3 |Xn

1 , Y
n

1 ) (3.4)

≤ I(Xn
2 ;Y n

1 |Xn
1 ) + I(Xn

3 ;Y n
3 ), (3.5)

where (3.4) follows that Xn
3 is a function of Xn

2 , thus

H(Xn
3 |Xn

1 , X
n
2 ) = H(Xn

3 |Xn
1 , X

n
2 , Y

n
1 , Y

n
3 ),

and (3.5) follows that

I(Xn
2 ;Y n

3 |Xn
1 , Y

n
1 ) = H(Y n

3 |Xn
1 , Y

n
1 )−H(Y n

3 |Xn
1 , X

n
2 , Y

n
1 )

≤ H(Y n
3 )−H(Y n

3 |Xn
3 )

≤ I(Xn
3 |Y n

3 ).

(3.6)

Similarly, we can also prove that

R1 ≤ I(X1;Y1|X2)

R1 +R2 ≤ I(X1, X2;Y1) + I(X3;Y3).

For Gaussian MAC with side channel, the above constraints on R1, R2 and R1 +R2

will be simultaneously maximized by Gaussian inputs.

In the Gaussian channels, assuming all inputs are i.i.d. Gaussian distributed

satisfying X1 ∼ N(0, P1), X20 ∼ N(0, β̄λ̄P2), X22 ∼ N(0, βλ̄P2), and X3 ∼ N(0, λP2),

respectively, where β, λ ∈ [0, 1], β̄ + β = 1, λ̄ + λ = 1. The parameter λ denotes
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the power allocated to the side channel and β denotes the power being split for the

private message of M1. We have the following achievability result.



Figure 3.2: Depiction for bin-and-cancel.

Proposition 2. For Gaussian side-channel assisted three-node network, in the weak

interference regime defined by INR ≤ SNR2, the following rate region is achievable

for bin-and-cancel,

R1 ≤C
(

SNR1

1 + βλ̄INR

)
R2 ≤min

{
C
(
λ̄SNR2

)
, C
(
βλ̄SNR2

)
+ C

(
β̄λ̄INR

1 + βλ̄INR

)
+WC

(
λSNRside

W

)}
R1 +R2 ≤C

(
βλ̄SNR2

)
+ C

(
SNR1 + β̄λ̄INR

1 + βλ̄INR

)
+WC

(
λSNRside

W

)
,

(3.7)

where β, λ ∈ [0, 1], β + β̄ = 1, λ+ λ̄ = 1 and C(X) = Wmlog (1 +X).

In the strong interference regime defined by SNR2 ≤ INR ≤ SNR2 (1 + SNR1), the

achievable rate region is

R1 ≤C (SNR1)

R2 ≤C
(
λ̄SNR2

)
R1 +R2 ≤C

(
SNR1 + λ̄INR

)
+WC

(
λSNRside

W

)
.

(3.8)

In the very strong interference regime defined by INR ≥ SNR2 (1 + SNR1), the
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capacity region is

R1 ≤C (SNR1)

R2 ≤C (SNR2)

(3.9)

Proof. The encoding procedure is depicted in Figure 3.2. Using the Han-Kobayashi

common-private message splitting strategy, the common message can be decoded at

both receivers, while private message can only be decoded at the intended receiver.

Message S1 is of size 2nR1 , and X1 is intended to be decoded at Y1 only. Message

S2 is divided into common part S20 of size 2nR20 , and private part S22 of size 2nR22 .

Superpose the codewords of both S22 and S20 such that X2 = X20 + X22. Then

partition the set [1 : 2nR20 ] into 2nR3 equal size bins, B(l) = [(l − 1)2n(R20−R3) + 1 :

l2n(R20−R3)], l ∈ [1 : 2nR3 ], and X3(l) is sent through the side channel.

Decoding occurs in two steps. Upon receiving Y2, (X20, X22) are first decoded. The

set of achievable rates (R20, R22) is the capacity region of a multiple-access channel

denoted as C1, where

R20 ≤ I(X20;Y2|X22)

R22 ≤ I(X22;Y2|X20)

R20 +R22 ≤ I(X20, X22;Y2),

(3.10)

for some distribution product p(x20)p(x22).

Then upon receiving Y1, Y3, with the help of the side channel (X1, X20) are decoded

treating X22 as noise. This is a multiple-access channel with side channel. The

capacity region of such channel denoted as C2 is established, which is proved in
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Lemma 1. Thus we have

R1 ≤ I(X1;Y1|X20)

R20 ≤ I(X20;Y1|X1) + I(X3;Y3)

R1 +R20 ≤ I(X1, X20;Y1) + I(X3;Y3),

(3.11)

for some distribution product p(x1)p(x20, x3).

In the Gaussian channels, we first split the total transmit power of Node M1

between side channel and main channel, then split the power allocated to the main

channel between the common and private message. Thus when the inputs are i.i.d.

Gaussian distributed satisfying X1 ∼ N(0, P1), X20 ∼ N(0, β̄λ̄P2), X22 ∼ N(0, βλ̄P2),

and X3 ∼ N(0, λP2), respectively, where β, λ ∈ [0, 1], β̄ + β = 1, λ̄ + λ = 1, we

can obtain the achievable rate region by substituting channels parameters and power

constraints into (3.10) and (3.11).

Remark 1. In the weak interference regime, BC scheme contributes to improving the

downlink rate R1 which is limited by the interference from M1. While in the strong

interference regime where INR ≥ SNR2, M1 sends all common message, and there is

no interference at the receiver of M2. In this case, BC scheme enables M1 to deliver

more common message which is restricted by the interference link, thus increasing the

uplink rate R2.

BC scheme adopts Han-Kobayashi strategy which allows arbitrary splits of total

transmit power between common message and private message in the weak interfer-

ence regime in addition to the power split between the side channel and main channel.

Therefore, the optimization among such myriads of possibilities is hard in general.

We can simplify BC scheme by setting power splitting of private message of M1 at

the level of Gaussian noise at the receiver of M2 in the weak interference regime.

Namely, let the power for the private message S22 of M1 satisfy INRp = βλ̄INR = 1.
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This particular simple common-private power splitting is used in [12] and is shown to

achieve to within one bit of the capacity region of the general two-user interference

channel. We will use this simplified BC scheme for the capacity analysis.

3.2 Three Simpler Schemes

We propose three simpler schemes compared to BC scheme for encoding X3 and se-

quentially post-processing (Y1, Y3) at Receiver M2. The first is compress-and-cancel,

which simplifies the transmitter design of Node M1. Then we give another two

schemes: decode-and-cancel and estimate-and-cancel, both of which not only sim-

plify the transmitter design of M1, but also the receiver design of M2.

3.2.1 Compress-and-cancel

As shown in Fig. 3.3, for compress-and-cancel scheme, the transmitter design of M1

is simplified compared to BC scheme. Node M1 just sends a compressed version of

the interfering message over the side channel using source coding. Noticing that the

correlated information with the interfering message can be observed at receiver M2,

Wyner-Ziv strategy [21] can be adopted for compression. We first compress X2 into

X̂2, then encode X̂2 as X3 and transmit over the side channel. At the receiver M2,

with the knowledge of the distribution of Y1, we can recover the interference under

certain distortion and subtract it from the main channel. The capacity of the side

channel should allow reliable transmission of the compressed signal X̂2.

In the Gaussian channels, all inputs are assumed to be i.i.d. Gaussian distributed,

satisfying X1 ∼ N(0, P1), X2 ∼ N(0, λ̄P2) and X3 ∼ N(0, λP2), respectively, where

λ ∈ [0, 1], λ̄ + λ = 1. For the ease of analysis, we also assume X̂2 to be a Gaussian
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Figure 3.3: Depiction of compress-and-cancel.

quantized version of X2:

X̂2 = X2 + Zq, (3.12)

where Zq is the quantization noise with Gaussian distribution N(0, σ2
q ). We can obtain

the following inner bound,

Proposition 3. For Gaussian side-channel assisted three-node network, the following

rate region is achievable for compress-and-cancel

R1 ≤ C

(
SNR1

(
1 + SNR1 + (1 + SNR1 + λ̄INR)[(1 + λSNRside

W
)W − 1]

)
(1 + SNR1 + λ̄INR)[(1 + λSNRside

W
)W − 1] + (1 + SNR1)(1 + λ̄INR))

)

R2 ≤ C
(
λ̄SNR2

)
.

(3.13)

Proof. For compress-and-cancel scheme, the achievable rate region is given by

R1 ≤I(X1;Y1, X̂2)

R2 ≤I(X2;Y2)

S.t. I(X2; X̂2|Y1) ≤ I(X3;Y3),

(3.14)

for distribution product p(x1)p(x2)p(x3)p(x̂2|x2, y1).
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We have

RX̂2|Y1
= I(X2; X̂2|Y1) ≤ I(X3;Y3)

= h(X̂2|Y1)− h(X̂2|Y1, X2) ≤ I(X3;Y3)

= Wmlog

(
1 +

λ̄P2(γ1P1 + σ2)

(γ1P1 + γ21λ̄P2 + σ2)σ2
q

)
≤ Wslog

(
1 +

γ3λP2

Wσ2

)
,

(3.15)

thus we can obtain

σ2
q ≥

λ̄P2(γ1P1 + σ2)

(γ1P1 + γ21λ̄P2 + σ2)[(1 + γ3λP2

Wσ2 )W − 1]
. (3.16)

And

R1 ≤ I(X1;Y1, X̂2)

= Wmlog

(
1 +

γ1P1(λ̄P2 + σ2
q )

γ21λ̄P2σ2
q + σ2(λ̄P2 + σ2

q )

)
.

(3.17)

Since R1 is a decreasing function of σ2
q , now we can calculate R1 by substituting (3.16)

into (3.17). And R2 is given by

R2 ≤I(X2;Y2)

=C
(
λ̄SNR2

)
.

(3.18)

3.2.2 Decode-and-cancel

Decode-and-cancel can lead to a simpler transceiver design for M1 compared to BC

scheme where no common-private message splitting is adopted at the transmitter of

M1, and only single-user decoders are involved at the receiver of M2. In DC scheme,
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the interfering message S2 of Node M1 is encoded into two codewords using two

independent Gaussian codebooks. Then the two codewords are sent, one through the

main channel and the other through the side channel. The message S2 is required to

be decoded at both the intended receiver of BS and the side-channel receiver of M2.

After decoding S2 from the side channel, the interference can be cancelled out at the

main-channel receiver of M2.

In the Gaussian channels, all inputs are assumed to be i.i.d. Gaussian distributed,

satisfying X1 ∼ N(0, P1), X2 ∼ N(0, λ̄P2) and X3 ∼ N(0, λP2), respectively, where

λ ∈ [0, 1], λ̄+λ = 1. The parameter λ denotes the power allocated to the side channel.

We obtain the following inner bound achieved by DC.

Proposition 4. (from [1]) For Gaussian side-channel assisted three-node network,

the following rate region is achievable for decode-and-cancel

R1 ≤C1

R2 ≤min

{
WC

(
λSNRside

W

)
, C
(
λ̄SNR2

)}
.

(3.19)

The decode-and-cancel scheme can also be improved by adopting Han-Koybayashi

common-private message splitting. The private message of M1 is encoded into two

independent codewords and sent over main channel and side channel. The private

message of M1 is required to be decoded from the side channel in addition to its own

intended receiver. After decoding the private message of M1 from the side channel,

the interference from the private part of M1 is cancelled out from the main channel.

When the inputs are i.i.d. Gaussian distributed satisfying X1 ∼ N(0, P1), X20 ∼

N(0, β̄λ̄P2), X22 ∼ N(0, βλ̄P2), and X3 ∼ N(0, λP2), respectively, we have the results

below.

Proposition 5. For Gaussian three-node full-duplex with side channel, the following

rate region is achievable for decode-and-cancel with Han-Koybayashi common-private
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message splitting

R1 ≤C (SNR1)

R2 ≤min

{
C
(
βλ̄SNR2

)
,WC

(
λSNRside

W

)}
+

min

{
C

(
β̄λ̄INR

1 + SNR1

)
, C

(
β̄λ̄INR

1 + βλ̄SNR2

)}
.

(3.20)

where β + β̄ = 1, β ∈ [0, 1].

When β = 1, i.e., M1 sends all private message, (3.20) will reduce to (3.19).

3.2.3 Estimate-and-cancel

We also propose an estimate-and-cancel scheme which is even simpler than DC

scheme. In estimate-and-cancel, Node M1 will send a scaled version of the waveform

of the interfering signal over the side channel. We estimate the received waveform

Y3 from side channel, rescale it according to X2 and cancel it out from Y1. Then the

signal-of-interest can be decoded from its single-user decoder. But in EC scheme, we

have less flexibility in using the side channel since the bandwidth of the side channel is

required to be equal or larger than that of the main channel. Let X3 = KX2, where K

is a scalar (K ≥ 0) satisfying the per-node power constraint, i.e., E(|X2 +X3|2) ≤ P2.

Thus E(|X2|2) ≤ P2

(1+K)2 .

We adopt independently Gaussian codebooks forX1 andX2 withX1 ∼ N(0, P1), X2 ∼

N
(

0, P2

(1+K)2

)
. Side-channel signal X3 is correlated with X2 with X3 ∼ N

(
0, K2P2

(1+K)2

)
,

and correlation coefficient ρ = 1, where K ≥ 0. The resulting rate of EC is given as

follows,

Proposition 6. For Gaussian side-channel assisted three-node network, the following
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rate region is achievable for estimate-and-cancel

R1 ≤C

SNR1

(
1 + K2SNRside

(1+K)2

)
1 + K2SNRside

(1+K)2 + INR
(1+K)2


R2 ≤C

(
SNR2

(1 +K)2

)
,

(3.21)

where K ≥ 0.

Proof. For Gaussian channels, by substituting the channel parameters and power

constraint, the achievable rate region can be calculated

R1 ≤I(X1;Y1, Y3)

=h(Y1, Y3)− h(Y1, Y3|X1)

=C

SNR1

(
1 + K2SNRside

(1+K)2

)
1 + K2SNRside

(1+K)2 + INR
(1+K)2


R2 ≤I(X2;Y2)

=C

(
SNR2

(1 +K)2

)
.

(3.22)

Remark 2. The achievable rate region of EC can be improved by optimizing the

correlation coefficient between X2 and X3. If the correlation between X2 and X3 is

higher, then less power can be allocated for the side channel due to the per-node power

constraint. Since there is a tradeoff between finding the the correlation coefficient

and the power splitting for the side channel signal, the optimization problem becomes

harder to find the all possible solutions.



Chapter 4

Bounds on Capacity Region of Side-channel

Assisted Three-node Network

4.1 New Outer Bound

In this section, we derive a new outer bound to characterize the performance of the

four schemes discussed in Sections 3.1 and 3.2. When there is no INI in the side-

channel assisted three-node full-duplex network, we can obtain the no-interference

outer bound,

R1 ≤C (SNR1)

R2 ≤C (SNR2) .

(4.1)

However, the no-interference outer bound can be arbitrarily loose. We notice that

one of the transmitter and receiver pairs in Figure 2.1 is co-located at the base station,

thus causal information of M1 is available at the transmitter of BS. Hence we derive a

new outer bound on the capacity region of Gaussian side-channel assisted three-node

network as follows.

Theorem 3. For Gaussian side-channel assisted three-node network under per-node
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power constraint, the capacity outer bound in the weak interference regime, i.e., INR ≤

SNR2 is given by

R1 ≤C (SNR1)

R2 ≤C
(
λ̄SNR2

)
R1 +R2 ≤C

(
ᾱλ̄INR + SNR1 + 2

√
ᾱλ̄SNR1INR

1 + αλ̄INR

)
+ C

(
αλ̄SNR2

)
+WC

(
λSNRside

W

)
.

(4.2)

The capacity outer bound in the strong interference regime, i.e., INR ≥ SNR2 is given

by

R1 ≤C (SNR1)

R2 ≤C
(
λ̄SNR2

)
R1 +R2 ≤C

(
SNR1 + λ̄INR + 2

√
λ̄SNR1INR

)
+WC

(
λSNRside

W

)
,

(4.3)

where α, λ ∈ [0, 1], α + ᾱ = 1, λ+ λ̄ = 1.

Proof. The bounds on R1 and R2 come from the point-to-point capacity of AWGN

channel. The bound on R1 + R2 is the sum-rate of Gaussian side-channel assisted

Z channel. Messages S1 and S2 are chosen uniformly and independently at random,

and X1i is a function of (S1, Y
i−1

2 ). We define Ui = (S1, Y
i−1

2 , X i−1
1 ) for i ∈ [1, n].

From Fano’s inequality, we have H(Si|Yin) ≤ εn for i = 1, 2, where n goes to infinity
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as εn goes to zero. By Fano’s inequality, for any codebook of block length n,

nR1 ≤ I(S1;Y n
1 , Y

n
3 ) + nε1 (4.4)

= I(S1;Y1
n) + I(S1;Y n

3 |Y n
1 ) + nε1 (4.5)

= I(S1;Y n
1 ) +H(Y n

3 |Y n
1 )−H(Y n

3 |Y n
1 , S1) + nε1 (4.6)

≤ I(S1;Y n
1 ) + I(Xn

3 ;Y n
3 ) + nε1 (4.7)

≤
n∑
i=1

I(S1, Y
i−1

1 ;Y1i) +
n∑
i=1

I(X3i;Y3i) + nε1 (4.8)

≤
n∑
i=1

I(S1, Y
i−1

2 , Y i−1
1 ;Y1i) +

n∑
i=1

I(X3i;Y3i) + nε1 (4.9)

=
n∑
i=1

I(S1, Y
i−1

2 , X i
1, Y

i−1
1 ;Y1i) +

n∑
i=1

I(X3i;Y3i) + nε1 (4.10)

=
n∑
i=1

I(S1, Y
i−1

2 , X i
1;Y1i) +

n∑
i=1

I(X3i;Y3i) + nε1 (4.11)

=
n∑
i=1

I(Ui, X1i;Y1i) +
n∑
i=1

I(X3i;Y3i) + nε1, (4.12)

where (4.7) follows from H(Y n
3 |Y n

1 ) ≤ H(Y n
3 ) and −H(Y n

3 |Y n
1 , S1) ≤ −H(Y n

3 |Xn
3 );

(4.10) and (4.12) follow because X1i is a function of (S1, Y
i−1

2 ); (4.11) follows because

Y i−1
1 → (X i

1, Y
i−1

2 ) → Y1i forms a Markov chain. And for any codebook of block
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length n , we have

nR2 = H(S2|S1) (4.13)

= I(S2;Y2
n|S1) +H(S2|Y n

2 , S1) (4.14)

≤ I(S2;Y2
n|S1) + nε2 (4.15)

=
n∑
i=1

I(S2;Y2i|Y i−1
2 , S1) + nε2 (4.16)

=
n∑
i=1

I(S2, Y2i|Y i−1
2 , S1, X

i
1) + nε2 (4.17)

≤
n∑
i=1

I(X2i, Y2i|Ui, X1i) + nε2, (4.18)

where (4.15) follows from Fano’s inequality; (4.17) follows because X1i is a function

of (S1, Y
i−1

2 ).

Now by applying the standard time sharing argument, we can obtain

R1 +R2 ≤ I(U,X1;Y1) + I(X2, Y2|U,X1) + I(X3;Y3), (4.19)

for product distribution p(u)p(x1x2x3|u)p(y1y2|x1x2x3).

Similarly, in the strong interference regime where I(X2;Y2|X1, U) ≤ I(X2;Y1|X1, U),

the sum-capacity upper bound is given by

R1 +R2 ≤ I(U,X1;Y1) + I(X2, Y2|U,X1) + I(X3;Y3) (4.20)

≤ I(U,X1;Y1) + I(X2, Y1|U,X1) + I(X3;Y3)

= I(U,X1, X2;Y1) + I(X3;Y3).

In the Gaussian channels, the capacity region is upper bounded by Gaussian

inputs. The auxiliary random variable U captures the correlation between the code-
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words X1 and X2. We define α = 1 − ρ2, where ρ is the correlation coefficient be-

tween X1 and X2 and α ∈ [0, 1]. With per-node power constraint, i.e., E(|X1|2) ≤ P1,

E(|X2 +X3|2) ≤ P2, let power allocated to the side channel be E(|X3|2) = λP2, thus

we have E(|X2|2) ≤ λ̄P2, where λ ∈ [0, 1], λ̄+ λ = 1. Hence the capacity region outer

bound can be expressed in terms of parameters α, λ, channel coefficient and per-node

power constraints.

4.2 Within One Bit of the Capacity Region

So far, we have explained how to leverage the side channel with four distributed full-

duplex interference cancellation schemes, and in this section we will show how close

can our proposed schemes get to the capacity region.

Let RBC =
⋃
β,λRBC(β, λ) denote the achievable rate region for bin-and-cancel

including all possible power split at Node M1, where RBC(β, λ) denote the achievable

rate region for a fixed power split between common and private information of M1,

as well as side channel and main channel at M1. The main result is given in the

following theorem.

Theorem 4. The achievable region RBC is within 1 bit/s/Hz of the capacity region of

Gaussian side-channel assisted three-node network, for all values of channel parame-

ters and bandwidth ratio.

Proof. Let δBC
R1

denote the difference between the upper bound on R1 and achievable

rate R1 in RBC. Likewise, we have δBC
R2

and δBC
R1+R2

, where all rates are divided by the

total bandwidth Wm +Ws. In order to prove the rate pair (R1 − 1, R2 − 1) in RBC is

achievable for any (R1, R2) in the capacity region of Gaussian three-node full-duplex
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with side channel, we just need to show that

δBC
R1

<1

δBC
R2

<1

δBC
R1+R2

<2.

(4.21)

Since the upper bound in the weak interference regime is different from that in the

strong interference regime. We will prove (4.21) for two different cases.

1. In the weak interference regime where INR ≤ SNR2, we use the simplified BC

scheme for comparison when the power splitting of private message of M1 is

set at the level of Gaussian noise at the receiver of M2, i.e., INRp = βλ̄INR =

1. Thus RBC(β = 1
λ̄INR

) ⊂ RBC. We can compute RBC(β = 1
λ̄INR

) directly

from Proposition 2, by comparing with the new outer bound in (4.2), it is

straightforward to show that

δBC
R1
≤ Wm

Wm +Ws
log

(
1 +

SNR1

2 + SNR1

)
<

1

1 +W
≤ 1

δBC
R2
≤ Wm

Wm +Ws
max

{
0, 1 + log

(
1 + λ̄SNR2

1 + λ̄INR

INR

INR + SNR2

)
− W log

(
1 +

λSNRside

W

)}
<

1

1 +W
≤ 1

δBC
R1+R2

≤ Wm

Wm +Ws

(
1 + log

(
1 +

2
√
αλ̄SNR1INR

1 + SNR1 + λ̄INR

)

+ log

(
1 + αλ̄SNR2

1 + αλ̄INR

INR

INR + SNR2

))
<

2

1 +W
≤ 2.

(4.22)

2. In the strong interference regime where INR ≥ SNR2, by substituting the outer
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bound in (4.3) and inner bound achieved by BC in (3.8), we have

δBC
R1

= 0

δBC
R2

= 0

δBC
R1+R2

≤ Wm

Wm +Ws

log

(
1 +

2
√
λ̄SNR1INR

1 + SNR1 + λ̄INR

)
≤ 1

1 +W
≤ 1.

(4.23)

In the strong interference regime, BC can achieve within half bit of the capacity

region.

We also characterize the capacity gap for two simpler schemes, DC and EC, and

the following theorem quantifies the conditions where DC and EC can achieve within

half bit of the capacity region, respectively.

Theorem 5. 1. For decode-and-cancel, the achievable region RDC is within 1
2

bits/s/Hz

of the capacity region of Gaussian side-channel assisted three-node network when

W ≥ 1, SNRside ≥ SNR2.

2. For estimate-and-cancel, the achievable region REC is within 1
2

bits/s/Hz of

the capacity region of Gaussian side-channel assisted three-node network when

W ∈ N+ and SNRside ≥
(

1 + 2√
2−1

)
INR.

Proof. 1. We first prove the condition on half bit capacity gap for DC scheme. It

is not difficult to find that the achievable rate of DC is an increasing function

of W . When W ≥ 1, according to [1], R2 ≥ C
(

SNR2SNRside

SNR2+SNRside

)
. Hence when

W ≥ 1, SNRside ≥ SNR2, comparing with the no-interference outer bound in
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(4.1) we can prove that

δDC
R1

= 0

δDC
R2
≤ Wm

Wm +Ws

log (1 + SNR2)− Wm

Wm +Ws

log

(
SNR2SNRside

SNR2 + SNRside

)
=

Wm

Wm +Ws

log

(
1 +

SNR2
2

SNR2 + SNRside + SNR2SNRside

)
≤ 1

1 +W
≤ 1

2

(4.24)

2. For EC scheme, the bandwidth ratio between side channel and main channel is

required to be greater than 1, i.e., W ≥ 1. Comparing rates of EC in Propos-

tion 6 with the no-interference outer bound we have

δEC
R1
≤ Wm

Wm +Ws

log (1 + SNR1)− Wm

Wm +Ws

log

1 +
SNR1

(
1 + K2SNRside

(1+K)2

)
1 + K2SNRside

(1+K)2 + INR
(1+K)2


=

Wm

Wm +Ws

log

(
1 +

SNR1INR
(1+K)2

1 + K2SNRside

(1+K)2 + INR
(1+K)2 + SNR1(1 + K2SNRside

(1+K)2 )

)

δEC
R2
≤ Wm

Wm +Ws

log (1 + SNR2)− Wm

Wm +Ws

log

(
1 +

SNR2

(1 +K)2

)
=

Wm

Wm +Ws

log

(
1 +

K(K+2)SNR2

(1+K)2

1 + SNR2

(1+K)2

)
.

(4.25)

The achievable rate region of EC is the union of rate pairs for all possible values

of K, where K ≥ 0. Therefore, when SNRside ≥
(

1 + 2√
2−1

)
INR, and we chose

K =
√

2− 1, the following inequalities will hold simultaneously

δEC
R1
≤ 1

1 +W
≤ 1

2

δEC
R2
≤ 1

1 +W
≤ 1

2
.

(4.26)
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4.3 Discussion of capacity analysis results

Practical communication systems usually operate in the inference-limited regime, so

the strength of the signal and interference are much larger than the thermal noise. Our

one-bit capacity gap result shows that for all channel parameters and bandwidth ratio,

BC scheme is asymptotic optimal in high SNR, INR limit, because one bit is relatively

small compared to the rate of the users. And in high SNR, the achievable rate region

of BC is a good approximation of the capacity for Gaussian side-channel assisted

three-node network. For the two simple schemes, DC and EC can achieve the near-

optimal (half-bit gap) performance only in certain regimes of channel values. From

the capacity analysis in previous section, we can also find out that the capacity gap for

each scheme is inversely proportional to the bandwidth ratio W , where W ∈ [0,Wmax].

Often, in practical wireless communication, the bandwidth of side channel is different

from the main channel. For example, ISM band radio can operate on a bandwidth up

to 80 MHz in 2.4 GHz. In contrast, generally the bandwidth of current 3G/4G radio

is 20 MHz. Motivated by the application of leveraging ISM band as the side channel

in a cellular network, the bandwidth of side channel usually is much larger than that

of main channel. If W = Wmax, for all values of SNR and INR, BC is near-optimal

which achieves within 1
1+Wmax

bits/s/Hz of the capacity region.



Chapter 5

Performance Comparisons of Proposed Schemes

by Leveraging a Device-to-Device Side Channel

5.1 Finite SNR Multiplexing Gain and Optimal

Power Allocation

For simplicity, we assume SNR1 = SNR2 = SNR and we define µ = log INR
log SNR

, ν =

log SNRside

log SNR
. Parameter µ captures the interference level, parameters ν and ν

µ
capture

the side channel level compared with main channel. In this paper, we use multiplexing

gain as the metric to characterize the rate improvement by leveraging the side channel

which is given as

M =
Rsum(SNR, INR)

Csingle−user(SNR)
, (5.1)

where Csingle−user = Wmlog (1 + SNR) . The single-user capacity is the maximum

uplink/downlink rate in the three-node network. Ideally, a perfect full-duplex can

achieve the maximum multiplexing gain of 2 when there is no interference.

In this section, we will characterize the performance of the schemes proposed in
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Chapter 3 for finite SNR values. Fig. 5.1 depicts the multiplexing gain of each scheme

when SNR=15 dB, W = 1 and ν = µ. Fig. 5.2 shows the corresponding optimal power

allocated to the side channel which maximizes achievable sum-rate of each proposed

schemes. In Fig. 5.1, BC, DC, CC and EC are shown to achieve peak improvement

over no-side-channel one of 1.57, 1.51, 1.41 and 1.22, respectively. The percentage of

optimal power allocated to the side channel is only a small portion of transmit power

in the regime where the proposed schemes offer better performance.
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Figure 5.1: Multiplexing gain of proposed schemes versus no-side-channel achievable
schemes for finite SNR when W = 1 and ν = µ.
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Figure 5.2: Optimal power allocated to the side channel which maximizes achievable
sum-rates of proposed schemes for finite SNR when W = 1 and ν = µ
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The explanation for the behavior of proposed schemes observed in Fig. 5.2 requires

an understanding of the tradeoff for the power allocation between the side channel

and main channel. The optimal power allocated to the side channel of both CC and

BC schemes is a convex function of the interference channel gain according to Fig. 5.2.

Specifically, for CC, when µ, the interference level, is low, as the interference level

increases, more power needs to be allocated to the side channel to help cancel the

interference and increase downlink rate R1, which in turn decreases the uplink rate

R2. When moving to point A, as the interference level increases, both the interference

channel gain and the side channel gain scale as ν = µ. The optimal power allocated

to the side channel then declines, thus increasing the achievable sum-rate.

For BC, the achievable sum-rate can be expressed as

RBC
sum ≤ max

0≤λ≤1
0≤β≤1

C

(
SNR1

βλ̄INR + 1

)
+ min

{
C
(
λ̄SNR2

)
, C
(
βλ̄SNR2

)
+

C

(
β̄λ̄INR

SNR1 + βλ̄INR + 1

)
+WC

(
λSNRside

W

)}
.

(5.2)

The optimal β can be expressed as

β∗(a) =


(1+λ̄SNR2)(1+SNR1)−a(1+SNR1+λ̄INR)

aλ̄SNR2(1+SNR1+λ̄INR)−λ̄INR(1+λ̄SNR2)
µ ≤ 1

0 µ ≥ 1,

(5.3)

where a =
(
1 + λSNRside

W

)W
.

In the weak interference regime, from (5.3), we can find out that β∗ is a non-

increasing function of both µ and λ, implying that as INI becomes stronger, more

information of M1 will be converted to common message. When INI is small, the

optimal power allocated to the side channel (λ∗)rises as the interference level (µ)

increases. Consequently, the interference from the private message of M1 at M2 is

reduced as more information of M1 is converted into common message. However,
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due to the increase of the amount of power allocated to the side channel, uplink rate

R2 suffers rate loss as less power is available for the main channel. After passing

the point A′, the increment of R1 will surpass the decrement of R2, resulting in an

improvement of the sum-rate. At point B′, β∗ drops to zero, indicating that downlink

is interference-free as no private message of M1 will interfere with M2. After reaching

B′, optimal power for the side channel decreases rapidly as the interference level (µ)

increases in Fig. 5.2. Thus the uplink rate R2 begin to rise. In the strong interference

regime (µ ≥ 1), since all information of M1 is converted int common message, node M2

can decode all interference. However, the uplink rate R2 is limited by the interference

link. With the binning strategy through the side channel, we can also enhance R2.

For DC, when W=1, the optimal percentage of power allocated to the side channel

is

λ∗DC = arg max
λ

RDC
sum

=
1

1 + ν
.

The corresponding maximized achievable sum-rate is

RDC ∗
sum = C(SNR) + C

(
SNRside

1 + ν

)
.

When µ → 0, DC will have the worst performance. This is because when ν
µ

is

fixed, the optimal power allocated to the side channel is inversely proportional to the

interference level µ. Therefore, uplink node M1 needs to allocate most of its power to

the side channel to decode the interfering signal in the very weak interference regime,

with little power left to send its own data to the base station through the main

channel. However, as the interference level increases, the optimal power allocated to

the side channel drops rapidly, thus improving the performance of DC.
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Comparing EC and DC, we can find out that EC performs better in the weak

interference regimes while DC dominates in the strong interference regimes. The

intuition behind this result is that when two mobile nodes are very close to each

other which leads to strong INI, M2 can better decode the information from M1 by

the side-channel. However, when the two mobile nodes are not so close resulting in

weak INI, a statistical estimate of the interfering signal by the side-channel is better

than decoding the signal to help cancel INI.

5.2 Asymptotic Multiplexing Gain

Assuming SNR � 1, INR � 1 and SNRside � W , we compute the asymptotic

multiplexing gain of our proposed schemes as SNR, SNRside, INR → ∞ and µ ≥

0, ν ≥ 0,W ≥ 0.

As SNR, SNRside, INR →∞, in the weak interference regime (i.e., 0 ≤ µ < 1),set

the power for the private message of M1 at the level of Gaussian noise at the receiver

of M2, namely, let β = 1
λ̄INR

. Thus for a fixed λ (λ 6= 0), we have

RBC
sum

Csingle−user

=
Wm min

{
log
(
1 + SNR

2

)
+ log(1 + λ̄SNR), log

(
1 + SNR+λ̄INR−1

2

)
+ log

(
1 + SNR

INR

)
+ Wlog

(
1 + λ

SNRside
W

)}
Wmlog(1 + SNR)

≈
min {2log (SNR) , 2log (SNR)− log(INR) + Wlog (SNRside)}

log(SNR)

≈ min{2, 2 +Wν − µ}.

(5.4)

In the strong interference regime where µ ≥ 1, β = 0. As SNR, SNRside, INR →∞,

we have

RBC
sum

Csingle−user

≈ min {2log (SNR) , log(INR) + Wlog (SNRside)}
log(SNR)

≈ min{2, µ+Wν}.
(5.5)

From Theorem 4, we have proved that the inner bound achieved by BC is within



44

one bit of the outer bound by a simple common-private power split when the power

splitting of private message of M1 is set at the level of Gaussian noise at the receiver

of M2, i.e., β = 1
λ̄INR

. Hence in the high SNR and INR limit, BC scheme is asymptotic

optimal in that it is capacity-achieving for the Gaussian side-channel assisted three-

node network. Therefore, the asymptotic multiplexing gain of the sum-capacity of

Gaussian three-node full-duplex with side channel over signal-user capacity is

M side−channel =
Cside channel

sum

Csingle−user

= MBC =


min {2, 2 +Wν − µ} 0 ≤ µ < 1

min{2, µ+Wν} µ ≥ 1.

(5.6)

By comparing (5.6) to (2.27), we can derive the multiplexing gain improvement of

side-channel sum-capacity over no-side-channel sum-capacity,

M side−channel

MNo side−channel
=


min

{
2

2−µ , 1 + Wν
2−µ

}
0 ≤ µ < 1

min{ 2
µ
, 1 + Wν

µ
} 1 ≤ µ < 2.

(5.7)

When Wν = 0, namely, there is no side channel available, (5.6) will degenerate into

(2.27), and there is no improvement. From (5.7), we can see that the improvement

depends on the interference level (i.e., µ), as well as the side channel condition (i.e.,

Wν). In the weak interference regime where µ ∈ [0, 1), the improvement is an increas-

ing function of the interference level, while in the strong interference regime where

µ ≥ 1, the improvement will decrease as µ increases. Therefore, we can obtain the

maximum multiplexing gain improvement when µ = 1. The improvement rises as Wν

increases till reaching the maximum multiplexing gain of 2. If Wν ≥ 1 and µ = 1,

then leveraging the side channel can double the asymptotic multiplexing gain.
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Similarly, we can derive the asymptotic multiplexing of the suboptimal schemes,

MCC =
RCC

sum

Csingle−user

=


min {2, 2 +Wν − µ} 0 ≤ µ < 1

min {2, 1 +Wν} µ ≥ 1,

(5.8)

MDC =
RDC

sum

Csingle−user

= min{2, 1 +Wν} µ ≥ 0, (5.9)

MEC =
REC

sum

Csingle−user

=


min{2, 2 + ν − µ} 0 ≤ µ < ν + 1,W ∈ N+

1 µ ≥ ν + 1,W ∈ N+.

(5.10)

Comparing (5.6) and (5.8)-(5.10), we can find out that for all channel parameters

and bandwidth ratio CC scheme is asymptotic sum-capacity achieving in the weak

interference regime, while in the strong interference regime, the performance of CC

agrees with DC scheme. The asymptotic multiplexing gain of CC is larger than that

of DC and EC in the weak interference regime.

Now let us look at the effect of the side channel on the multiplexing gain of our

proposed schemes. When W = 1, EC is also asymptotic sum-capacity achieving in

the weak interference regime. Specifically, for EC scheme, when W ≥ 1 and ν ≥ µ,

EC can achieve a asymptotic multiplexing gain of 2 for all interference level. And

DC can achieve a asymptotic multiplexing gain of 2 for all interference level when

Wν ≥ 1. When Wν ≥ µ for µ ∈ [0, 1), and Wν ≥ 1 for µ ≥ 1, BC and CC can

achieve a asymptotic multiplexing gain of 2 for all interference level.

The asymptotic multiplexing gains of each scheme is plotted in Fig. 5.3. When

ν < µ, the multiplexing gain of EC is a decreasing function of µ. This is because

the side channel can not provide a better estimate of the interfering signal when the
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side channel is worse than the interference link (i.e., main channel between M1 and

M2). While for DC, when ν
µ

is fixed, the multiplexing gain of DC will scale with

interference level. However, DC has poor performance when the interference level is

very low.
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Figure 5.3: Asymptotic multiplexing gain for optimal scheme and suboptimal schemes
versus no-side-channel sum-capacity. The suboptimal schemes are compress-and-
cancel, decode-and-cancel and estimate-and-cancel.
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5.3 Achievable Rate Region

Fig. 5.4 shows achievable rate regions of all proposed schemes by fixing channel pa-

rameters and bandwidth ratio. No-side-channel achievable region is encompassed by

BC region, it is a special case of BC region when W = 0. Each of the suboptimal

scheme has different achievable rate region. Specifically, for BC scheme, point Q cor-

responds to β = 1 when M1 sends all private message. This point coincides with the

corner point of no-side-channel one when no power is allocated to the side channel. As

β decreases, R1 becomes larger owing to less interference. When moving to the point

T which corresponds to β = 0, the downlink is not impaired by the interference any

more as all information of M1 is converted to common message. By means of binning,

the side channel will improve the common message rate of M1 that is restricted by

the interference link of the main channel.
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Figure 5.4: Achievable rate region of each proposed schemes versus no-side-channel
achievable rate region when SNR=10 dB, W = 1 and ν = µ = 1.
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5.4 Area gains

In order to have a better understanding of the performance of the simpler schemes

for different distance regions of practical interest, we take the path loss model into

consideration, and set the pathloss parameter as 3. We assume all transmitters have

the same per-node power constraint, and the bandwidth ratio equals to 1.

We characterize the topological regimes where two simpler schemes DC and EC

help leverage full-duplex gains. We consider an adaptive system that can choose be-

tween four schemes for managing inter-node interference: the two previous schemes

when no side channel is utilized, treating interference as noise (TIN) and joint decod-

ing (JD), and our proposed DC and EC schemes with optimal power allocation.

In Fig. 5.5(a), we show the percentage sum-rate gains of full-duplex over half-

duplex counterpart for the adaptive system when transmit power is 0 dBm and noise

floor is -100 dBm. We assume that the uplink mobile node M1 is fixed at a given

distance from the BS, while the downlink mobile node M2 is located within a circular

region of radius 200 meters from BS. The overall area gains of full-duplex by adopting

the best scheme among the four range from 29.3% to 90.6%. In Table 5.1, we give

the percentage rate improvement of each scheme.

Schemes Avg. Rate Improvement Maximum Minimum
over HD

JD and TIN 22.1% 90.6% 0.2%
Decode-and-cancel 49.4% 90.5% 23.8%

Estimate-and-cancel 19.8% 32% -4.7%

Table 5.1: Rate improvement of each scheme over half-duplex counterpart.

Fig. 5.5(b) illustrates the area regions where each scheme offers the best perfor-

mance among the four. The red color represents the area where JD scheme outper-

forms the other schemes. And the blue one represents the area where EC and TIN

outperforms DC. The magenta color shows the areas where DC achieves more gains
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than the rest of the three.

Under propagation model, we also compute the probability distribution of the

usage of the side channel for improved interference cancellation. We assume the

device-to-device side channel is not needed if the SINR of the interfered receiver is

above a given capture threshold ξ which allows for successful transmission by satis-

fying a given bit/packet error probability. The probability when the side channel is

not needed is given as

Pside not needed = Prob[SINR > ξ]. (5.11)

Similarly, the probability of the usage of the side channel is defined if the SINR

of the interfered receiver drops below a given threshold ξ and transmission is defined

as failure. Hence the probability of the usage of side channel is:

Pside usage = Prob[SINR ≤ ξ]

= 1− Prob[SINR > ξ]. (5.12)

Taking into account both path loss due to distance and Rayleigh fading owing

to multipath propagation. The received power from a mobile at distance d can be

written as:

PR = R2d−ηPT , (5.13)

where R is an independent and identically distributed (i.i.d.) random variable accord-

ing to Rayleigh distribution with parameter σ, PT is the transmission power and η is

the pathloss parameter. The signal-to-interference-noise Ratio (SINR) at the receiver
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Figure 5.5: An adaptive system that can choose the best scheme to manage inter-node
interference. Downlink mobile node M2 is located within a circular region of radius
200 meters from BS.
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of M2 is defined as:

SINR =
PRS

PN + PRI

=
R2
Sd
−η
S PS

PN +R2
Id
−η
I PI

=
R2
S

W +R2
I
PI
PS

σ2
I

σ2
S

(
dI
dS

)−η , (5.14)

where PN is the Gaussian noise with unit power, W is implicitly defined by (5.14).

The subscript S denotes the intended receiver. Since
σ2
I

σ2
S

= PI
PS

(
dI
dS

)−η
, hence we have

SINR =
R2
S

W +R2
I

(
PI
PS

(
dI
dS

)−η)2 . (5.15)

From (5.14), we have

Pside needed = 1− Prob[SINR > ξ]

= 1− Prob[PRS > ξPRI ]

= 1− Prob[R2
S > ξR2

I

(
PI
PS

(
dI
dS

)−η)2

]

= 1−
∫ ∞

0

1

2σ2
I

e
− xI

2σ2
I dxI

∫ ∞
ξxI

(
PI
PS

(
dI
dS

)−η)2

1

2σ2
S

e
− xS

2σ2
S dxS

=

ξ

(
PI
PS

(
dI
dS

)−η)2

1 + ξ

(
PI
PS

(
dI
dS

)−η)2 . (5.16)

We use practical link budget number to plot the probability of the usage of the side

channel in Fig. 5.6, Fig. 5.7 and Fig. 5.8. And the link budget is listed in Table 5.2.

In Fig. 5.6, we can see that for higher data rate (larger capture threshold ξ) and

larger transmit power ratio between mobile user and base station such as femtocell,
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Maximum Minimum

Base station PI 40 W 2 W
Mobile user PS 2 W 1 W

Capture threshold ξ 20 dB (for high data rate) 0 dB (for low data rate)

Distance ratio dI
dS

2 0.1

Table 5.2: Link budget for propagation model with pathloss and rayleigh fading.

the probability of the usage of side channel is very high. And in Fig. 5.7 and Fig. 5.8,

the probability of the usage of the side channel increases rapidly as the distance

between the two mobile nodes and downlink decreases.
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Figure 5.6: Probability of the usage of side channel versus transmit power ratio when
the distance ratio dI/dS = 1.
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Figure 5.7: Probability of the usage of side channel versus distance ratio when the
transmit power ration PI/PS = 0.2.
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threshold ξ = 10 dB.



Chapter 6

Spectral Efficiency Discussion

The use of available side channel brings up an open question for spectral efficiency

comparison between different systems. There are two systems for comparison in this

thesis shown in Fig.6.1. The first one only uses the main channel in the three-node

full-duplex network which is labeled as system 1, while the second one leverages the

available side channel which is labeled as system 2.

Main channel

System 1

Side channel

Main channel

System 2

Figure 6.1: There are two systems for comparison with respect to spectral efficiency:
one only uses the main channel, and the other one leverages the available side channel.

The spectral efficiency can be defined in two different ways, which is given as

follows.

definition 1. Spectral efficiency (bits/s/Hz) is the ratio of achievable sum-rate and

the total available bandwidth.

definition 2. spectral efficiency (bits/s/Hz) is the ratio of achievable sum-rate and

the bandwidth that each system has used.
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If the spectral efficiency (bits/s/Hz) is defined according to def. 1, then utilizing

the available side channel will lead to higher spectral efficiency. However, if the

spectral efficiency (bits/s/Hz) is defined according to def. 2, then for system 1,

spectral efficiency1 ,
RNo−side−channel

sum

Wm

,

while for system 2,

spectral efficiency2 ,
Rside−channel

sum

Wm +Ws

.

In wideband power-limited regime, according to [20], we use spectral efficiency versus

energy-per-information bit as the criterion to compare the spectral efficiency of these

two systems. For simplicity, assuming the symmetric case where the transmit power

of each sender is equal to P , and γ1 = γ2 = 1. Let Eb denote the transmitted

energy per information bit, which can be Joules. When communication at sum-rate

Rsum (bits/s), the following relationship is satisfied

Ei
b

N0

=
2P

N0Ri
sum

, i = 1, 2. (6.1)

let xi denote
Eib
N0

and yi denote the spectral efficiency of each system. Thus for system

1, y1 = R1
sum

Wm
while for system 2, y2 = R2

sum

Wm+Ws
. First we derive the relationship between

x1 and y1,

y1 =


log
(

1 + x1y1

2+γ21x1y1

)
+ log

(
1 + x1y1

2

)
γ21 < 1

log
(

1 + (1+γ21)x1y1

2

)
1 ≤ γ21 < 1 + x1y1

2

2log
(
1 + x1y1

2

)
γ21 ≥ 1 + x1y1

2
.

(6.2)

For system 2 when using the side channel, we can obtain y2 as a function of x2 by
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BC scheme,

y2 =



1
1+W log

(
1 + x2y2

2/(1+W )+βλ̄γ21x2y2

)
+ min

{
1

1+W log
(

1 + λ̄(1+W )x2y2

2

)
,

1
1+W log

(
1 + βλ̄(1+W )x2y2

2

)
+ 1

1+W log
(

1 + β̄λ̄γ21x2y2

2/(1+W )+βλ̄γ21x2y2+x2y2

)
+ W

1+W log
(

1 + λγ3(1+W )x2y2

2W

)}
, γ21 < 1

1
1+W log

(
1 + (1+W )x2y2

2

)
+ min

{
log
(

1 + λ̄(1+W )x2y2

2

)
,

1
1+W log

(
1 + λ̄γ21x2y2

2/(1+W )+x2y2

)
+ W

1+W log
(

1 + λγ3(1+W )x2y2

2W

)}
. γ21 ≥ 1

(6.3)

From (6.3), we can find out that the spectral efficiency of system 2 achieved by BC

scheme will improve as bandwidth ratio W = Ws

Wm
decreases. And increasing the ratio

between γ3 and γ21 will enhance the spectral efficiency of system 2. We can find a

combination of small W and large γ3 that allows system 2 to have higher spectral

efficiency than system 1. Therefore for certain values of the two parameters of the side

channel, i.e., W and γ3, the resulting system 2 can not only yield higher achievable

sum-rate, but also higher spectral efficiency.

As shown in Fig. 6.2, for certain channel parameters and bandwidth ratio, sys-

tem 2 has higher spectral efficiency than system 1 with the same transmit energy

per information bit. This implies that there exists some regimes of certain system

parameters combination where leveraging the side channel can also lead to a higher

spectral efficiency in addition to the achievable rate improvement.
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Figure 6.2: Spectral efficiencies of system 1 and system 2 when W < 1, γ3 > γ21 = 1.



Chapter 7

Conclusions

In a three-node full-duplex network where an infrastructure node communicates with

half-duplex mobile nodes for both uplink and downlink simultaneously in the same

band, one problem of paramount importance that needs to be resolved is the inter-

node interference. We identify the availability of multi-radio interfaces on current

mobile devices to create a side channel that allows for new approaches to mitigate

inter-node interference. Therefore we propose distributed full-duplex architecture via

wireless side channels for interference management.

In this thesis, we present four distributed full-duplex inter-node interference can-

cellation schemes by leveraging a device-to-device side channel for improved interfer-

ence cancellation. We characterize the bounds on the capacity region of side-channel

assisted three-node network and show that bin-and-cancel scheme can achieve within

one bit of the capacity region for all values of channel parameters and is asymptoti-

cally optimal. The other three schemes are simpler but perform close to optimality

only in certain regimes. Both analytical and numerical results demonstrate the fac-

tors that dominate the performance of the proposed schemes, which contributes to

guiding the design of transceiver architecture.
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