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OPERADS, CONFIGURATION SPACES AND QUANTIZATION

S.A. MERKULOV

ABSTRACT. We review several well-known operads of compactified configuration spaces and construct several new
such operads, C, in the category of smooth manifolds with corners whose complexes of fundamental chains give
us (i) the 2-coloured operad of Ass-algebras and their homotopy morphisms, (ii) the 2-coloured operad of Leo-
algebras and their homotopy morphisms, and (iii) the 4-coloured operad of open-closed homotopy algebras and
their homotopy morphisms.

Two gadgets — a (coloured) operad of Feynman graphs and a de Rham field theory on C' — are introduced and
used to construct quantized representations of the (fundamental) chain operad of C which are given by Feynman
type sums over graphs and depend on choices of propagators.
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1. Introduction

1.1. Configuration spaces. This paper is inspired by Kontsevich’s proof [Ko2] of his celebrated formality
theorem. A central role in that proof is played by a 2-coloured operad of compactified configuration spaces,
C(H) = Co(C) || Ceo(H), whose associated operad of fundamental chains, FChains(C(H)), was termed in [KaSt]
an operad, OCq, of open-closed homotopy algebras.

We review in this paper the operad C(H), its lower and higher dimensional versions, and also construct several
new operads, C, of compactified configuration spaces in the category of smooth manifolds with corners (or in the
category of semialgebraic manifolds) whose complexes of fundamental chains, FChains(C), give us

(i) the 2-coloured operad of A.-algebras and their homotopy morphisms, Mor(Ax),

(ii) the 2-coloured operad of L.-algebras and their homotopy morphisms, Mor(L), and

(iii) the 4-coloured operad of open-closed homotopy algebras and their homotopy morphisms, Mor(OCy).

An upper-half space model for Mor(Ly) was studied earlier in [Me2]; in this paper we introduce several other
configuration space models for this important 2-coloured operad including the ones which use configurations of
points in the complex plane C.

1.2. Operads of Feynman graphs. Kontsevich formality map F' is given by a sum [Ko2],

F = ZCF(I)F

INS)

where the summation runs over a family of graphs & and, for each graph I' € & cr is a complex number given
by an integral over a fundamental chain in C, o(H) of a differential form Qr, and ®r is a certain polydifferential
operator. We show that the family & can be equipped with a natural structure of a 2-coloured operad of Feynman
graphs which admits a canonical representation

p: S — gnd{Tpozy(V),OV}
I — dr

into the two-coloured endomorphism operad generated by the vector space of smooth (formal) polyvector fields
Tpoiy(V) and the vector space, Oy, of smooth (formal) functions on an affine space V. This representation is given
precisely by the aforementioned polydifferential operators ®r.

One can construct natural analogues of & for any (coloured) operad of compactified configuration spaces, C, studied
in this paper. To distinguish these (coloured) operads of Feynman graphs from each other we use an appropriate
subscript, &4, to indicate which geometric operad C an operad of Feynman diagrams & is associated to (or,
speaking plainly, which space the graphs from & are drawn on).

1.3. De Rham field theories on C. The numbers cr = fé (H) Qr in the Kontsevich formula also have a clear
operadic meaning. To explain it we have to articulate a new concept (cf. [Ko3]).

For any operad, C = {C(n)}, in the category of smooth manifolds with corners, the associated S-module of de
Rham algebras, (0 = {Qﬁ(n)v dpr}, is a dg cooperad (if equipped with a completed tensor product, see 8| for

details). Let 6*6 be the dual cooperad of Feynman graphs, and let @5 - 6*6 be its sub-cooperad spanned by finite
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linear combinations of graphs. A de Rham field theory on C is, by definition, a morphism of dg cooperads,

Q: (650 — (zdpr)
r — QF

where @5 is equipped with the trivial differential (there exist variants of this definition in which @55 has a non-trivial
differential but we do not need such variants in this paper). Any such a theory defines an associated morphism of
dg operads,

Q*: Chains(C) —» &

X — Zreojg(fx Qp)l.

Therefore, any representation,
p: 65 — Endw

of the (coloured) operad of Feynman graphs in a (collection of) vector space(s) W can be quantized as follows
p?“emt . FChains(C) — Chains(C) =, s L5 Endy .

When one applies this general construction to Kontsevich’s configuration spaces, C = C(H), and uses his formulae
for Qr in terms of a propagator, then one obtains precisely his formality map as the quantization of the aforemen-
tioned standard representation & — End(r. . (v),0,}. Note that Kontsevich formulae admit a natural extension
from the suboperad of fundamental chains, FChains(C) to the full operad of chains in C(H); this extension plays
no role in our paper but we refer to a beautiful work of Johan Alm [A] who employed this observation to con-

struct another less obvious sub-operad of Chains(C(H)) and then used this new suboperad to extend explicitly
Duflo-Kontsevich algebra isomorphism [CaRol, [Dul, [Ko2, IMT), [PT]

H*(g,©%g) — H*(g,U(9)),

at the level of cohomologies to an A, quasi-isomorphism between the associated Chevalley-Eilenberg complexes
equipped with certain A..-structures. Here g stands for an arbitrary finite-dimensional graded Lie algebra, and
U(g) for its universal enveloping algebra.

Another useful output of this interpretation of Kontsevich’s deformation quantization is that one can apply this
technique to any operad of compactified configuration spaces and to any representation of the operad of Feynman
graphs, not necessarily to the standard representation in End¢r. , (v),0,}. We show several new explicit examples
below.

1.4. Content of the paper. Section [2] reminds a well-known interpretation of Stashefl’s associahedra (or, in
essence, of the operad of As-algebras) as compactified configuration spaces of points on the real line R. In §3]
we give a similar description of Stashefl’s multiplihedra (or the 2-coloured operad, Mor(Ax), of Ax-morphisms
of A-algebras). The main novelty here is a new compactification of configuration spaces of points on R whose
boundary strata involve not only collapsing points but also points going far away from each other in the standard
Euclidean metric on R; this construction is a 1-dimensional version of the 2-dimensional geometric model [Me2] for
the 2-coloured operad Mor(Ls). In fact we give in §3l two inequivalent configuration space models for Mor(Ax)
and discuss at length their similarities and differences as the same idea will be repeated several times later in higher
dimensions.

In §4] we remind Kontsevich’s compactification [Ko2] of configuration spaces of points on the closed upper half-plane
[Ko2] and the associated notion of open-closed homotopy algebra [KaSt]. In §5] we discuss several configuration
space models for the 2-coloured operad, Mor(L ), of Lo, morphisms; one of them was studied earlier in [Me2]. In
g6] we construct two configuration space models, /QE._’.(H), for the operad, Mor(OCy), of morphisms of open-closed
homotopy algebras.

Operads of Feynman graphs and their representations are studied in §71 De Rham field theories on operads of
configuration spaces are introduced in g8 a de Rham field theory on the Fulton-MacPherson compactification,
C(R4), of points in R — one of the simplest in the class — is studied there in full details.

In §9] we consider several concrete quantized representations of operads of Feynman diagrams including the one
which gives a strange non-flat A.-algebra structure on 7po1y (V') induced from the standard homogeneous volume
3



form on the circle S'. We also consider a version of the Kontsevich construction in the 3-dimensional hyper-
bolic space and use it to give explicit formulae for a 1-parameter (homotopy trivial) deformation of the standard
Gerstenhaber algebra structure in 7por, (V') which involves an infinite sequence of Bernoulli numbers.

In Sect. we discuss de Rham field theories on configuration space models for the 2-coloured operad Mor(Lo)
and on the 4-coloured operad, E.y.(H). This machinery is expected to produce morphisms of open-closed homotopy
algebras out of a propagator, w, on the following 3-dimensional version of the Kontsevich eye,

and give us explicit formulae for the homotopy action of the Grothendieck-Teichmueller group on deformation
quantizations, an open problem which we hope to address elsewhere and which was the main motivation for
writing this paper.

We assume that the reader knows the language of (coloured) operads. However in the Appendix we collected all
the information about this concept which is necessary to read our text. We paid special attention to the presence
and absence of units in operads as several operads of configuration spaces have no units so that some classical
definitions of operads become inequivalent to each other.

We tried not to be sketchy and attempted to show every important detail of all the constructions and illustrate
with examples every non-evident definition. Hence the size of this text.

1.5. Some notation. The set {1,2,...,n} is abbreviated to [n]; its group of automorphisms is denoted by S,,.
The cardinality of a finite set A is denoted by #A4. If V. = @;czV? is a graded vector space, then V[k] stands
for the graded vector space with V[k]’ := Vi*¥ and and s* for the associated isomorphism V — V[k]; for v € V*
we set |v| := i. For a pair of graded vector spaces Vi and Vs, the symbol Hom;(V;,V2) stands for the space of
homogeneous linear maps of degree i, and Hom(V1, V2) := @, ., Hom; (V1, V2); for example, s* € Hom_x(V, V[k]).
If wy and wy are differential forms on manifolds M; and, respectively, Mo, then the form pj(w1) Ap3(wa) on My x Mo,
where py : My X My — M and py : My X Ms — Mo are natural projections, is often abbreviated to wy A ws.

We work throughout in the category of smooth manifolds with corners. However, all the main theorems of this
paper hold true in the category of semialgebraic manifolds introduced in [KS] and further developed in [HLTV]
so that in applications one can employ not only ordinary smooth differential forms but also PA-forms, where PA
stands for “piecewise semi-algebraic” as defined in the above mentioned papers. We use this freedom to change
the category of geometric species we work in throughout the text.

2. Associahedra as compactified configuration spaces of points on the real line

2.1. Stasheff’s associahedra and configuration spaces. Here we remind a well-known construction [gc, Ko2]
identifying the operad of A.-algebras with the fundamental chain complexﬁof the topological operad, C(R) =
{Cn(R)},>2, of compactified configuration spaces of (equivalence classes of) points on the real line R. Let

Conf,(R) := {[n] = R},

be the space of all possible injections of the set [n] into the real line R. This space is a disjoint union of n! connected
components each of which is isomorphic to the space

Confy,(R) ={z1 <z2 <...<mp}

Ian operads C = {Cn },>1 of compactified configuration spaces considered in this paper are free as operads in the category of sets;
the topological closures of its generators are called faces or fundamental chains of C; moreover, the subspace of the chain operad of
the topological operad C generated by the fundamental chains is always a dg suboperad called the fundamental chain operad of C, or
its face complex.
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The set Conf, (R) has a natural structure of an oriented n-dimensional manifold with orientation on Conf’ (R)
given by the volume form dzi Adxs A ... Adx,; orientations of all other connected components are then fixed once
we assume that the natural smooth action of S,, on Conf, (R) is orientation preserving. In fact, we can (and often
do) label points by an arbitrary finite set I, that is, consider the space of injections of sets,

Conf ;(R) := {I — R}.
A 2-dimensional Lie group G2y = R* x R acts freely on Conf,, (R) by the law,

Conf, (R) X RtxR — Conf ,(R)
p=A{x1,...,zn} Nv) — ptvi={r1+v,..., z, + v}
The action is free so that the quotient space,
Cn(R) = Confn(R)/G(Q)u n > 2,

is naturally an (n — 2)-dimensional real oriented manifold equipped with a smooth orientation preserving action of
the group S,. In fact,
Cn(R) = CR(R) x Sy
with orientation, €2, defined on Cf}(R) := Conf, (R)/G 2y as follows: identify Cf(R) with the subspace of Conf?, (R)
consisting of points {0 = z1 < 22 < ... < 2z, = 1} and then set Q,, :=dza A ... Adzp_1.
The space C2(R) is closed as it is the disjoint union, C3(R) ~ S, of two points. The topological compactification,
Co(R), of C,(R) for higher n can be defined as C, (R) x S, where C,(R) is, by definition, the closure of an
embedding,
Cg (R) N (R]Pﬁ)n(nfl)(nfm
@irsosmi,) = Tl igi s, (Ti, = i | 2 @i, — @i, |2 g, — ]

Its codimension one strata are given by

362@@ = UUZ—#AJA(R) X UO#A(R%
A

where the union runs over connected proper subsets, A, of the set [1,2,...,n] with #A4 > 2. The fundamental
chain operad of C(R) is a dg free operad (in the category of linear spaces) generated by the S-module,

wir )

o(1) o(2) o€s,
with the differential given byE
(L n—2n—k

1 0 — -1 k+l(n—k—=1)+1
. T 220

i i3 in—1 in h=0 =2 i 1%\\ b idtee in
Tkl oo Lkl
Therefore, the operad of fundamental chains of C'(R) is nothing but the minimal resolution, Ass.,, of the operad
of associative algebras.

2.1.1. Example. C{(R) is an open interval,
I1:0 I3:1

CY(R) = (0,1) =~ “e"e"s

2

Its compactification Ug(R) is, by definition, the closure of the following embedding,
i CI(R) — RP?
(1 <z <zx3) — [|T1 — 22| : |22 — 23] : |21 — X3]]
so that
Ug(R) =i(CY(R)) = i(CIR)LO:1:1]U1:0:1]=(0,1) L (0) (1) = [0,1]

2This formula follows immediately from the above formula for the above formula for dC, (R) except for the sign factor which
compares the induced orientation on the boundary with the product orientation on the right hand side. We shall prove this sign factor
in §2.3] below.

5



Therefore,

1 2 3 1 2 2 3
where
—0 —0 x1=0 1 r2=0 x3=1
~CyxCy ~ —o—0 X —o—o
1
2 3
—0 —=0 r1=0 x2=1 0 r3=1
~ ~ ° ° . °
~(CyxCy o X
3
1 2

2.2. Smooth structure on C,(R). The codimension ! boundary strata of C\,(R) is a disjoint union,

TeTn,1 veV(T)

Cr(R)

running over the set, 7, , of all possible trees (built from the above corollas) with I + 1 vertices and n input legs
which are labeled by elements of [n]. Here V(T') stands for the set of vertices of a tree T' and In(v) for the set of
input legs of a vertex v (we also use below the symbol E(T') to denote the set of internal edges of T'). The resulting
stratification,

an(R) = H H Cr(R),

I>0T€Tn,1
can be used to make the compactified configuration space C,,(R) into a smooth manifold with corners. For that

purpose we need to construct a coordinate chart Ur near the boundary stratum Cr(R) C C,,(R) corresponding to
an arbitrary tree T', say to this one

|
AN
B VANV
AN

3 5
and then check that the gluing mappings at the intersections, Uy NU7:, of such charts are smooth. The construction
of Ur goes in four steps (cf. Sect. 5.2 in [Ko2]) which we discuss in some detail as it applies to all configuration
spaces we study in this paper:

(i) Associate to T a metric graph, Thetric, by assigning a small non-negative parameter € to each internal edge
of T, e.g.

AN

3 5

(ii) choose an S,-equivariant section, 7 : Cp,(R) — Conf,, (R), of the natural projection Conf, (R) — C,(R) as
well as an arbitrary smooth structure on its image, C3!(R) := 7(C,,(R)), which is often called the space of
configurations in the standard position; for example, C5*(R) can be chosen to be a subspace of Conf,,(R)
satisfying either the conditions > , #; =0 and ), |z;|* = 1, or the conditions that the leftmost point in
the configuration is at 0 and the rightmost point is at 1;

6

(3) Tretric = /J\ €1,€2,e3 € [0,¢) for some 0 < & <« 400;
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(ili) the required coordinate chart Uy C C,(R) is, by definition, isomorphic to the manifold with corners
[0,e)#EM x T1, ev(r) C#In(v) (R) and the isomorphism is given by a map,

ar : [0,e)*PD s [ C¥py®) — Ur
veV(T)

which one reads from the graph Tyt by interpreting it as a substitution scheme of e-magnified standard
configurations; for example, the map ar corresponding to the tree ([B]) is given by a continuous map,

(0,6 x C§H(R) x C34R) x C§HR) x C5HR) — C7(R)
(51752553) X (Il,I/,IN) X (IW,IG) X ($27$47$7) X (I35I7) — (ylay35y57y65y27y45y7)

Yy = 1 ya = &axo+ "
ys = ei(eszz+a") +a ys = eqx4+a”
ys = eilesws +a") +a yr = ey +a”
Y6 €16 + 2,

whose domain is formally extended to [0,€)% x C5¢(R) x C5t(R) x C§*(R) x C5!(R); the boundary stratum
Cr(R) is given in Up by the equations £1 = g9 = €3 = 0.

It is easy to check that the gluing mappings at every non-empty intersection Uy NUp: are smooth (cf. [Gal).
We have C,,(R) = A, x S, where A, := C, (R) is the n-th Stasheff’s associahedron [S], for example

/\
/"

2.3. Induced orientation on the boundary strata. Let us prove the formula for signs in (), that is, let us
compare the orientation, Qr, induced on a generic codimension 1 boundary stratum Cp(R) ~ C,,_;41(R) x C;(R) C
C,(R) corresponding to a tree,

A2 ) A3 = o—o, A

etc.

lc//\\ k4%

k+1 ---

from _the standard orientation, 2, on C,, (R) with the product, Ql x o, of the standard orientations on C',_;41 (R)
and C;(R). The upper corolla in T corresponds to the configuration space C,,_;+1(R) with the volume form in the
standard coordinates (in which the left most point is at 0 at the right most point at 1) given by

Q) =dro A.. . Ndrp Ndre NdTgqi41 Ao ANdTp—1.
The lower corolla corresponds to Cj(R) with the volume form given in the standard coordinates by
Oy = dZTpyo N .. . NdTpyi—1.

The inclusion C7(R) < C,,(R) is best described in the coordinate chart Ur corresponding to the metric tree,

1 ... k//\\ k+l+1

E+1 v+ ktl
i.e. in the coordinates
(€,Z2y .y Thy Tay Thtitly - s Tne1s T2, T3 vy Thpl—1) -
These coordinates are related to the standard coordinates 0 < ya < ... < yp,—1 < 1 on Cp,(R) as follows,

Y2 = X2, Y =3, ..., Yk = Tk,
Yktl = Toy Ykt2 = ETk42 + Tey -y Yktl-1 = ETk4I-1 + Tey Yktl = €+ To,
Ye+i+1 = TeHi+1, -5 Yn—1 = Tp—1,



so that the orientation form on C,,(R) is given in the “metric tree” coordinates as follows,
Q = dya ANdys A... Ndyn—1
= 7%z A ANdzg ANdxe NdTpio Ao A dTpgi—1 Ade AdTppigr A A dTg g
= (—HHHER (k=) =200 A Q)
(—1)HIHO—R=D =220 A Q.
As the boundary C7(R) < C,, is given by the equation ¢ = 0 and € > 0, the induced orientation on Cr(R) is given
by the form
Qp = —(—1)HHIHE=E=D O A Q, = (—1)kH—k=DQ A Q,

proving thereby the sign formula in ().

2.4. An equivalent definition of C(R). Let
Conf ,(B) = {In] - R}

be the space of all possible (not necessarily injective) maps of the set [n] into the real line R. For a configuration
p = (zi,,...2,) in Conf,(R) or in Conf,(R) we set

1 n n
ve(p) == Jwi, lplli= | Y I — we() 2.
k=1 k=1

Recall that each space C,,(R) can be identified with a subspace,
Co'(R) == {p € Conf,(R)| zc(p) =0, |lpl| =1}.

Define next a compact space,

Cr(R) = {p € Conf ,(R) | we(p) = 0, || = 1}

which contains C$!(R) as a subspace. For any subset A C [n] there is a natural map

TA: Cr(R) — Ca(R)

p={Titicm — pa:={Titica
which forgets all the points labeled by elements of the complement [n] \ A.
The compactification, C,,(R), can be defined as the closure of the embedding [AT],
Cu® 1 I aa® = ] ci® = [] i
]

AC([n] AC([n AC([n]

#A>2 H#A>2 #A>2
For example, consider the case n = 3,
-, -~ t ~ t —~ t
v C3(R) = C{53(R)  x Ci3(R) X C35(R)
_ P—Tc(p) Ti—wy _ma—xy | _ (_1 1 wo—w3 _®z—wp |\ _ (_1 1
p = (21,22, 23) > Mol (2\12—11\= wa—za1] ) — (—3.3) Awo—a1]’ 2wa—zxs] ) (-3.3)

It is clear that i(C3(R)) is the union of C3(R) = (0,1) with two limiting points, 0 corresponding to x1 — x2 — 0
and 1 corresponding to zo — 23 — 0, i.e. again C5(R) = [0, 1].

3. Multiplihedra as compactified configuration spaces of points on the real line

Here we construct two different compactifications of configuration spaces of distinct points on the real line both of
which come equipped with the structure of a two coloured operad in the category of smooth manifolds with corners
and share one and the same property: the associated face complex is precisely the 2-coloured operad, Mor(Ax),
whose representations are the same as a pair of Ay-algebras together with an A,, morphism between them. These
compactifications involve not only strata of collapsing points but also strata of points going far away from each
other with respect to the standard Euclidean metric on R.
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3.1. The first configuration space model. Let a 1-dimensional Lie group G(;) = R act on the configuration
space Conf, (R) by translations,

Conf,,(R) x R — Conf, (R)
(p:{xl,...,scn},l/) — p+V::{I1+V7"'aIn+V}
This action is free so that the quotient space,
(4) @n(R) = Confn(R)/G(l),

is a naturally oriented (n —1)-dimensional real manifold equipped with a smooth action of the group S,, (one defines
analogously €4 (R) := Conf 4(R)/G 1) for any non-empty set A). The space €;(R) is a point and hence closed. For
n > 2 we have an S, -equivariant isomorphism,

v, : ¢ (R) s CSH(R) x RF 2 Cy(R) x (0, +00)
= () — (B0 )
Note that the configuration 2 jf;clfp ) js R* x R-invariant and hence represents a uniquely defined point in Cn(R).
For any subset A C [n] there is a natural map

A : ¢, (R) — Ca (R)
p={Titicm] — pa:={Titica
which forgets all points labeled by elements of the complement [n] \ A (which can be empty). We have &, (R) =
¢)(R) x S, where €9 (R) := Conf; (R)/G ().

A topological compactification, @n(R), of €,(R) can be defined as EZ(R) x Sy, where EZ(R) is the closure of a
composition (cf. [Me2]),

(5) O (®) 12 T ea®) ™2 [ 3 (R) x (0.400) > [ CH(R) x [0, +0c].
AC[n] ACIn] AC[n]
here the product runs over connected nonempty subsets, A, of the set [1,2,...,n]. Thus all the limiting points

in this compactification come from configurations when a group or groups of points move too close to each other
within each group (as in the case of C',(R)) and/or a group or groups of points are moving too far (with respect
to the relative Euclidean distances inside each group) away from each other.

It is not hard to see from the above definition (we refer to §3.1.2 below for a detailed discussion of several explicit
examples) that the codimension 1 boundary strata in €,(R) are given by

(6) 06, R) = | Corpi®R)xCr(R) ) Cr(R) x &\ (R) x ... x &, (R)
n=p+q+r n=nji+...4+np
p,r>0,q>2 2<k<n

where

e the first summation runs over all possible partitions of the form

{,Til,...,l'in} = {xil,...,xip} (] {,Tip+1,...,5[:ip+q} ] {xip+q+1,...,xin}
with the corresponding stratum €,_,11(R) x C,(R) describing limit configurations in which the points
{@i,\1». .- 2i,,,} collapse into a single point in the real line R, and
e the second summation runs over all possible partitions of the form
{xi17 ce 7'rin} = {xi17 ) Iinl } U {xin1+l7 ) Iin1+n2 } u...u {Iinl+,“+nk71+l’ s 7'rin}
I Iz I,

with the corresponding stratum Ci(R) x €., (R) x ... x €, (R) describing limit configurations in which
the distances between different configurations I; and I; tend to +oo while the diameter of each such a
configuration stands finite.
By analogy to §2.1] the collection of spaces {C4(R) L ¢, (R)UC4(R)} is naturally a dg topological operad, but this
time a two coloured dg operad. Note that the faces of the type Ci(R) appear in the natural stratification of &, (R)

in two ways — as the strata of collapsing points and as the strata controlling groups of points at “infinity” — and
9



they never intersect i

in /€\ (R). For that reason we have to assign to these two groups of faces different colours and
represent collapsing C'(

)-strata by, say, solid white corollas

//\

qu Zq

and C4(R)-stratum at “infinity” by, say, dashed white corollas

i da s ipe1 ip
Finally, representing the faces e, (R) by the black corollas

//\

we can rewrite the boundary differential ([IJ) in the associated face complex in a more informative way

i . .
n—1 fin Gl * ot T4l

(7) + 3 (—)ERteame

PR . Te
k=2 [n]=ni1+...4+ny
ny>1,..., ng>1
01 e Gy dng 1o Gngdng e in

which takes into account signs coming from natural orientations of the faces. The next statement is now obvious.

3.1.1. Proposition. The face complex of the disjoint union Ce(R) LI e, (R) U Ce(R) has naturally a structure of
Mor(As) = Free < L

a dg free non-unital 2-coloured operad of transformation type,
1o

1p 1 ip 41 2 Zn 1 in 11 12 13 Yq—1 ¢ pg>2,n>1

whose representations in a pair of vector spaces V™ and Vo are in 1-1 correspondence with with the triples,

(uém, ul™, fo), consisting of an As-structure pi* on the space V", an As-structure u* on the space VU, and

of an Aso-morphisms, fe : (V7 pi*) — (Voul uou), of As-algebras.

3.1.2. Examples. (i) €;(R) is already compact so that ¢ (R) = €1 (R).

(ii) €2(R) is isomorphic to (0, +o0c). Its compactification, €(R) is given as the closure of the embedding,

C,R) — C$Y(R)  x [0, +00]

{Jil <$2} — (—%,%) %|LL‘1—LL‘2|,
and hence is isomorphic to the closed interval [0, +00]. In terms of fundamental chains we get,
0 o =- I + o e
/N /N 1]
1 2 1 9 1 2

where the first term in the r.h.s. represents the limit configuration |z; — x| — 0 and the second one the limit
configuration |z — z3| — +o00.
10



(iii) the compactification €3(R) is defined as the closure of an embeddingf],

¢(R) — C3HR) x [0,400] x  Ci(R) x[0,400] x  C54(R) x [0,40d]
p={z1 <z2<a3} — (p]ﬁjfp)vﬂpﬂ) Ipiall = J5la1 — 22| |lp2sll = —5lz2 — @3-

The codimension 1 boundary strata of /€\3 (R) decomposes into strata determined by various limit values of the
parameters |[p||, |[p12|| and ||p3]| as follows:

(a)

the stratum, ~ ¢ (R) x C5'(R), is given by ||p|| = ||p12]] = ||p23]| = 0; it represents the limit

/ %\

1 23
configurations in which all three points collapse into a single point in €; in such a way that the ratio

P _prcﬁp ) gives in the limit a well-defined point in C5'(R); any point in this boundary stratum can be

obtained as the A — 0 limit of a configuration (Az1, Aza, Az3) € €3(R) for some fixed (21, x2,23) € C5'(R);

the stratum, o'e'e =~ C5'(R) x €1(R) x €;(R) x €1(R), is given by [[p|| = [|pi2|| = [|p2s|| = +o0; it

= —e.

o
“o'®
|
inzlitg configurations in which all three points go infinitely far away from each other in such
a way that the ratio 2 ]ﬁ‘ﬁp ) gives in the limit a well-defined point in C5'(R); any point in this boundary
stratum can be obtained as the A\ — 400 limit of a configuration (Az1, Ax2, Az3) € €3(R) for some fixed

(acl , L2, 1'3) S Cgt(R),

Ja—

represents the

o
the stratum, o

aN

1 3
represents the limit configurations in which the point 1 goes infinitely far away from the points 2 and 3 in

such a way that the ratio %;H(p) is well-defined; using translation freedom we can fix . = 0 so that

~ C5'(R) x €1(R) x €»(R), is given by ||p]| = [|p12l| = +00, 0 < |[|pasl| < +o00; it

p_ (@= A SO (@2 —33)), 5 (A (@3 — 22))) Ao (_@ 11
P /N 2O = (s = 22))2 + 3O+ (5 — 22))2 V3 V6 V6

).

Thus in the limit the images of the points z2 and x3 in Cs (R) collapse into a single point. Any point in this
boundary stratum can be obtained as the A — +oo limit of a configuration of the form (—A, A+ A, A—A) €
€3(R) for some A € R;

Q
st

the stratum, /.\ T ~ C5H(R) x €3(R) x €1 (R), is given, by analogy to (c), by the following values of

2 3
the parameters: ||p|| = ||p2s|| = +0o0, ||p12|| is finite; any point in this boundary stratum can be obtained
as the A — +oo limit of a configuration of the form (—A — A, =X+ A, ) € &3(R) for some A € R;

.
the stratum, />o\ ~ C5'(R) x €1 (R) x €, (R), is given by 0 < [|p|, |[p12]| < 400, ||p23|| = 0; it represents
1
2 3
the limit configurations in which all the points are at a finite distance from each other and the points 2 and
3 collapse into a single point in €2(R); any point in this boundary stratum can be obtained as the A — 0
limit of a configuration of the form (—z,x — A,z + ) € €3(R) for some z € R;

o
the stratum, /o<\ ~ €(R) x C5'(R), is given by 0 < ||p||, ||p2s]| < +00, ||p12]| = 0; any point in this
3

12
boundary stratum can be obtained as the A — 0 limit of a configuration of the form (—x — A\, —z 4+ X, z) €

¢3(R) for some = € R;

31t should be clear from the context that the subscript 12 in, say, éfé (R) refers to a subset of [3] rather than to a natural number.

11



Taking into account natural orientations we can finally summarize the above discussion in a single formula

0 e =-— + N = /N 4+ s — & et e e
/N VAN /N3 L /N 1] /N | /N
123 123 12 2 3 123 1 23 12 3
which is in agreement with (7).
A choice of a total ordering on the set [n] (say, the natural one, 1 < 2 < ... < n), gives an equivariant smooth

isomorphism €, (R) = J,, x S,, where 7, is the n-th Stasheff’s multiplihedron [St], for example

° [

N /\ [

J1 is a point ~ T , Jo =

T
. .
®) ’ I N ]
VRN VRN
/%\
o \ 7 o
/N /N

3.1.3. A smooth atlas on the compactification @.(R). Using metric graphs we can make /QE.(R) into a
smooth manifold with corners by constructing a coordinate chart, Uy, near the boundary stratum corresponding
to an arbitrary tree T € Mor(A) containing at least one black vertext] as follows:

(i) Associate to T' a metric graph, Tpetric, Dy assigning

[
(a) to every internal edge of T of the form l a small positive real number € < 400;

(b) to every (if any) white vertex of a dashed corolla in T" a large positive real number 7 > 0,
(9) OT ’

o
(c) to every (if any) two vertex subgraph of Ty,etric of the form an inequality 71 > 7o > 0. This can be
o T2
understood as a relation 7o = 1271 for some small parameter £15.

41f T does not contain black vertices, then the associated boundary stratum lies in Ce(R) and the construction of Uy goes as in
Subsection 211

12



o o

O T2

For example, if T = / ..o. /’\\\o , then Thnerric = / .. . /\\o
AVIN AV

with 71,72 = €127 € (I, +00) and £19,¢ € (0, s) for some real numbers I > 0 and s < +00.

(ii) Choose an equivariant section, s : €,(R) — Conf,, (R), of the natural projection Conf, (R) — &,(R) as well
as an arbitrary smooth structure on its image, €3/(R) := s(€,(R)), which is called the space of configurations in
the standard position; for example, €5/(R) can be chosen to be the subspace of Conf,,(R) satisfying the condition
Yo x; = 0; in particular, €§'(R) =0 € R.

(iii) the required coordinate chart Uy C €, (R ) is, by definition, isomorphic to the manifold with corners,
(l, +OO]#V ™ x [0, s) #E H O#In(v R) x H Q:#In(v)(R>
vEVL(T) vEV, (T)
where V,(T) is the set of white vertices of T, V4(T) C V,(T) a subset corresponding to dashed corollas, V4(T)
the set of black vertices, and E$(T') the set of internal edges of the type I The isomorphism ar between Ur and

the latter product of manifolds with corners can be read from the metric graph via a simple procedure which we
explain on the particular example. For the tree T shown above the map ar is defined by a formal extension of the
domain of the following continuous ma

(,+00)* x(0,8)x  C5'R) xE'R)x  C3'(R)  x €F(R) x G'(R) x €f'(R) x C5'(R)
(r1,72) x & x(a,2" 2")x(x1=0) x (t’:\_/—%,t”:%) X (@2, T4, u) X (x3,25) X (£6=0) X (I7:;—%,$8:%)

., &(R)
(Y1,---,Ys)

with

y1 = ma' +x yo = ma" +x

ys = mnx’ + 7t + a3 ye = mnx" + x4

ys = mx’ + ot + s yr = mnx’” +u+exs

yo = ma'+mnt"+txs, ys = ma" +utens
The boundary strata in Ur are given by allowing formally 71 = 400, 72 = +oo with 71/75 = 0 and € = 0.

Therefore, the main novelty comparing to the case of associahedra discussed in Sect. [2.3] comes from the dashed
corollas decorated by a large parameter 7.

3.2. Another configuration space model for Mor(A ). For a pair of subspaces B C A C [n] we consider

tan: Cu(R) —  CH(R) « (0, +0)
p — el lpasll = [lpall-lpsl)

and then define a compactiﬁcatiodﬁ e, (R) as the closure of the following composition of embeddings,

(10) ¢, (R) n Ixan CH(R) x (0, +00) I IC’ (0, +00) = C*H(R) % [0, +00] | |C x [0, +o0].
BCAC[n] BCAC(n]
#B>2 #B>2

This new compactification affects only configurations tending to infinity: if, for a pair B C A C [n], the parameter
[lpa]| tends to 400, then, for the parameter ||pa, || used in the above compactification to take a finite value a € R,
one must have ||pg|| = a/||pa|| = 0. Put another way, if in the previous compactification ([l the boundary stratum

5We ordered factors Curn(v)(R) and €y (o) (R) in the formula below in accordance with a natural “from top to the bottom” and
“from left to the right” ordering of the vertices v of the planar tree 7. .
6We use the same symbol [oR (R) to denote this new compactification as it has the same combinatoric of the boundary strata as the
model in the previous subsection; we define essentially here a different manifold structure on the same set theoretic operad ¢, (R).
13



at “infinity” was given by, say, k groups of points, {I;};c[, going far away from each other in such a way that each
group I; has a finite size a; € R, now that size should decrease as a;/||pal|| as points go to infinity, i.e. the points
in each group I; gradually collapse to a single point in the limit.

As an illustration of this “renormalized” embedding formula, let us consider in detail the case n = 3:
Cs(R) — C'R) x [0,400] x  ORBR)x[0,+00]  x  C55(R) x [0, +oc]
p={or<wz<ws} — (B pll) pzll = lpll - llpsall o asll = 1l p2sll

The codimension 1 boundary strata of /€\3 (R) decomposes into strata determined by various limit values of the
parameters ||p||, ||ps), 12/ and [|pjs),12]| in a close analogy to the case (&):

(a) the stratum, ~ €1 (R) x C§(R), is given by ||p|| = ||pjg),12|| = [|p[3),23]] = 0; it represents the limit

/ %\

1 23

configurations in which all three points collapse into a single point in €; in such a way that the ratio 2=2<(2)

ITpl]
gives in the limit a well-defined point in C§*(R); any point in this boundary stratum can be obtained as

the A — 0 limit of a configuration (Azy, Axg, Ax3) € €3(R) for some fixed (21, x2,23) € C5'(R);

(b) the stratum, T T
3

represents the limit configurations in which all three points go infinitely far away from each other in such a

way that the ratio pflﬁ;ﬁp)

stratum can be obtained as the A\ — 400 limit of a configuration (Az1, Ax2, Az3) € €3(R) for some fixed
(z1, 72, 23) € C3' (R);

~ C5'(R) x €1(R) x € (R) x €1(R), is given by ||p|| = ||pga),12]| = lIpjs),28]] = +o00; it

N —@-0-

is well-defined giving in the limit a point in C§'(R); any point in this boundary

o

(©) the stratum, s = C5'(R) x €4(R) x €(R), is given by |1 = g, 1all = +00, 0 < [l ] < +oc;
12 3
it represents the limit configurations in which the point 1 goes infinitely far away from the points 2 and

3 in such a way that the ratio %;H(p) and the product ||p|| - ||pas|| are well-defined elements of C5!(R)

and (0, +00) respectively; any point in this boundary stratum can be obtained as the A — +oo limit of a
configuration (—A, A — A7PA X+ A7A) € €3(R) for some A € R as

poaep) | (CEMACNIARAHANTA) aore V2 L1
[Ipll \/%)\24_(%)\_)\—IA)2+(%)\+A—1A)2 V3 V6 V6
P28l = [Ipl] - P8l = 1#96)\2 + (g)\ —A1A)2 + (%A +A71A)2 . V2ATTA
ot A ¢ (0, 400).

V3
Thus this stratum consists of limit configurations in which the point z; goes far away from the points x5

and z3, and simultaneously, the points x3 and z3 approach each other with the speed given by |[p||~! so
that the product ||p|| - [|p2a| is a well-defined finite number.

)
(d) the stratum, o ‘o =~ C35/(R) x €3(R) x €;(R), is given by the following values of the parameters:
/N
1 23
Il = llp),2sll = +00, |[pg),12l| is finite; any point in this boundary stratum can be obtained as the

A — 400 limit of a configuration (=X — A7'A, =X+ A"'A X)) € €5(R) for some A € R,
o
(e) the stratum, 1/>o\ ~ C5'(R) x €1(R) x €(R), is given by 0 < |[p|, [|p3),12l| < 400, ||pg),23]] = 0; it

2. 3
represents the limit configurations in which all the points are at finite distance from each other and the
14



points 2 and 3 collapse into a single point in €2(R); any point in this boundary stratum can be obtained
as the A — 0 limit of a configuration (—1,1 - AA, 1+ AA, 1) € €3(R) for some A € R

o
(f) the stratum, /o<\3 ~ & (R) x C5'(R), is given by 0 < ||p||, ||p23|| < +00, ||p12|] = 0; any point in this

12
boundary stratum can be obtained as the A — 0 limit of a configuration (=1 — AA, —1 4+ AA, 1) € €3(R)
for some A € R.

It is important to notice the following difference between the compactification formulae (&) and ([IQ):

- consider limit configurations in which the points z2 and x3 go far away from the point x; while keeping a
finite distance, [[pa3||, between themselves; in the first compactification formula such limit configurations

1l in the stratum .__.--'o'--.__. as ||pll, ||p12|| = +oc while ||pes|| stays finite; in the second compactification

formula all such configurations tend to one and the same point in the boundary represented by the graph

o as in this case all three parameters, ||p|[, [|p[| - |[p2s|| and [|p|| - [[p12]|, tend to +oco and the limit
K
point p/||p|| in C~'§t consists of only two different points (rather than of three ones as in the case of a generic

point in the stratum % );
T

- consider now limit configurations in which the point z; goes far away from the points z2 and 3, and
simultaneously, the points 2o and w3 approach each other with the speed ~ ||p||~! so that the product

[[pl| - ||p23|| is a well-defined finite number; in the second compactification such limit configurations fill in

the stratum ._.--"o"--._. but in the first compactification all such configurations tend to one and the same
| /N :
point in the boundary given by the graph o | see picture (8.
e

Tl

VRN

Using metric graphs we can make the second topological compactification, e, (R), into a smooth manifold with

corners by constructing a coordinate chart, U, near the boundary stratum corresponding to an arbitrary tree
T € Mor(Ay) as follows:

(i) Associate to T' a metric graph, Tretric, Dy assigning

[
(a) to every internal edge of T of the form l a small positive real number € < 400;

(b) to every (if any) white vertex of a dashed corolla in T a large positive real number 7> 0, and to its every

incoming edge a small parameter 771,

jors
S

Sl
="
A=

0Tl

(c) to every (if any) two vertex subgraph of Ty,etric of the form T{ ' an inequality 7 > 75 > 0. This can be

o T2
understood as a relation 7o = 1271 for some small parameter &15.

o. om

1T 1
B L i T
. o)

For example, if T = / /’R\ , then T e0tric = / Pt /’\\E
N N o . o o

AVCN ANV

3 5 6
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with 71,72 = €127 € (I, +00) and £19,¢ € (0, s) for some large [ > 0 and small s < 400 real numbers.

(ii) Choose an equivariant section, s : €,(R) — Conf,, (R), of the natural projection Conf, (R) — &,(R) as well
as an arbitrary smooth structure on its image, €/(R) := s(€,(R)), which is called the space of configurations in
the standard position; for example, €5/(R) can be chosen to be the subspace of Conf,,(R) satisfying the condition
o x; = 0; in particular, €§*(R) =0 € R.

(iii) the required coordinate chart Uy C &, (R ) is, by definition, isomorphic to the manifold with corners,
(1405 5 (0,55 s T Chrnmy@®) x [ Chrni(®)
VeV (T) veVe(T)
where V,(T) is the set of white vertices of T, V4(T) C V,(T) a subset corresponding to dashed corollas, V4(T)
the set of black vertices, and E$(T') the set of internal edges of the type I The isomorphism ar between Ur and

the latter product of manifolds with corners can be read from the metric graph via a simple procedure which we
explain on the particular example. For the tree T shown above the map ar is defined by a formal extension of the
domain of the following continuous ma

(I, +00)2 x (0,8)x Ci'(R) xEfR)x  C3'R) x €F(R) x G'(R) x G'R) x  C5(R)

(r1,72) x & x(2/,2",2") x (21=0) x (=5, 1"=—5) x (22,24, u) X (x3,25) % (26=0) x (27="5,2s=75)
¢s(R)
(ylu"'uyg)
with
Y= Tlx’—i—ill:vl Yo = T:C’”—i—ﬁ 2
ys = 135”4- (1ot + L x3) yo = ma+ L o
ys = miz”’ + 1(Tglf’—i-T:C5) yr = mx'"+ 1(u+5:v7)
yo = ma’+ = (nt"+2we), ys = T’ + (u+texs)

The boundary strata in Up are given by allowing formally 74 = +o00, 72 = +oo with 71 /72 = 0 and/or € = 0.
Therefore, the only novelty comparing to the case of associahedra discussed in Sect. [2.1] comes from the dashed
corollas decorated by a large parameter 7; such a corolla tacitly assumes two rescaling operations: the first one is
a magnification of the standard configuration used to decorate its vertex by the parameter 7, and the second is a
compression by the factor 77! of the standard configurations which correspond to all the corollas attached to its
legs.

It is this second smooth structure on €,(R) (and its higher dimensional analogs, €,(R%) and €, (H), see below)
which we shall be interested in applications. We have no interesting propagators to show in the case of smooth
structures of the first type at present.

3.3. One more configuration space model for Mor(Ay). Let RT := {z € R | z > 0} and, for a finite set A,
consider a configuration space,
Conf ,(RT) = {A— R"}

of all injections of A into RT. The 1-dimensional Lie group R™ acts on Conf 4(R) by dilations,

Conf ,(RT) x RT —  Conf,(R™)

(p={zitica,\) — I :={\zi}ica
This action is free so that the quotient space (cf. ),
(12) CA(RY) := Conf ,(RT)/RT,

is a naturally oriented (#A — 1)-dimensional real manifold equipped with a smooth action of the permutation group
Aut(A). The space €1(R") is a point and hence closed. For any p € Conf ,(RT) we set Zyin(p) = infica z;.
Define the following section,

CY(RY) == {p € Conf ,(RY) | Zpmin(p) = 1 and [p — Zmin(p)| = 1}

"We ordered factors Curn(v)(R) and €upp (o) (R) in the formula below in accordance with a natural “from top to the bottom” and
“from left to the right” ordering of the vertices v of the planar tree T. We have also thrown away factors €5¢(R) as they are just single
points identified with 0 € R .
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of the natural projection Conf ,(R*) — C4(R). Then, for any finite set A with #A > 2, we have an equivariant
isomorphism,

Pa: GaRT) — 3 (RY) x R ~ Ca(R) x (0, +0)
P (el L~ T (0)).

Next one can define a compactification, EMR*), of the space €, (R") using either formulae analogous to (B]) or to
(0); the face complex of €, (R™) is precisely the operad Mor(Ax).

3.4. Metric graphs and smooth structures on compactified configuration spaces. To save space-time
below in this paper we devote this subsection to a formalization of the Kontsevich type construction of a smooth
atlas on a compactified configuration space with the help of metric trees which was used in Sections and
This subsection can be skipped as its only purpose is to give a rigorous (and obvious) definition of the words “by
analogy to §2.2] or to B.2" which we use several times below.

All compactified configurations spaces we work with in this paper come equipped with a structure of topological
(coloured) operad, C' = {Cy},>1 which, as an operad in the category of sets, is free, C = Free(C), and generated
by an S-space,

C ={Cp := Conf ,(V)/G}p>1,

such that each C)}, is the quotient of the configuration space of p pairwise distinct numbered points in a subsetf]
V C R? with respect to an action of a subgroup G of the group R* x R? (with RT acting on R? by dilations) which
preserves V and commutes with the natural action of S, on Confp(Rd). As C = Free(C), each topological space
C,, is canonically stratified,
C, = H Cr  (Cr < C, is continous),
TeTn
into a disjoint union of cartesian products,

Cr = H C#In(v)'

veV(T)

Here T, stands for the family of trees whose input legs are in a fixed bijection with [n], V(T') stands for the set
of vertices of a tree T' € T,,, and, for a v € V(T'), In(v) stands for its set of input half-edges. For example if T is
given by (@), then Or ~ C;* x C52.

In all cases of interest in this paper the structure of a smooth manifold with corners on C,, will be defined via
an explicit construction of a coordinate chart Uy at each stratum Cp with the help of an associated metric tree,
Tonetric, obtained from T

(i) by assigning to all vertices, v, of some fixed colour a large parameter 7 € R* and simultaneously to all
input legs of v the small parameterﬁ 771, see (), and
(ii) by assigning to all other internal edges a small parameter ¢, see [B)) for an example.

As a result every internal edge of Tyeiric gets assigned a small parameter € or 7—!. To read the coordinate chart
Ur from such a metric tree one has to choose a suitable S,-equivariant section,

s:Cp — Conf, (V) C Conf, (RY),

of the natural projection Conf, (V) — C,. The subspace s(Cs) C Conf,(R) is denoted by C5* and called the
space of standard configurations. Then one can use a natural action of RT x V on Conf,, (R?) to define a suitable
translation map,

T: VxCst —  Conf,(V)

(z0,0)  —  T:(p)

and a rescaling map,

o Rt x Ot — Conf, (V)

(A, p) — A.p.

8Say7 V can be the “upper half” of R% with respect to the coordinate z¢.

9A smooth structure on the compactification () should be described with the help of metric corollas ([@) without assigning to its
input legs the small paramter 7—1; however, we never use such a smooth structure in applications and, therefore, exclude it from now
on from the consideration in this paper.
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Having made choices for C5* and the maps T,, and ., one constructs out of a metric tree an open subset, Ur,
containing the boundary stratum 7' together with a homeomorphism,

(13) ¢r U — [0,0)" x [ Cirnw)
veV(T)

for some sufficiently small positive real number § and natural number m. This homeomorphism together with
a suitable choice of an S,-equivariant structure of a smooth manifold with corners on each C§! makes Uy itself
into a smooth manifold with corners; the final step in the construction of a smooth atlas {Ur} on C, is to check
smoothness of the transition functions at the non-empty intersections Uy NUp+ of the coordinate charts (which is
often straighforward).

The construction of (3] is universal and is best explained in a particular example: if

o

l

Tretric = /\ /\\ , 70,6 < +00
AN

then Up N Cg is given, by definition, by the image under projection Conf4(V) — Cg of a subset consisting of all
possible configurations, {z1,...,2¢} € Confg(V), which can be obtained as follows

\»—A

Step 1: Take an arbitrary standardly positioned configuration, p(*) = (2',2") € Cst and apply T-rescaling, p) —
TopM = (7.2, 7. 2");

Step 2: Take arbitrary standard configurations, p(® = (25, 25%) € C5t and p® = (25t, 25, 2"") € C§t, 7~ -rescale
them,

77 p® = (21, 23),

77 p® = (29,24, 2

(2) = (thvzgt)

—
p(S) (25t722t72///) N ////),

and then place the results at the points 7.z and 7.2’ respectively, i.e. consider a configuration

T, .. (T_l .p(2)> HTr.z” (T_l -p(3)) =: (1, 23, 22, 24, Z”m) € Conf5(V);

Step 3: Finally, take an arbitrary standardly positioned configuration, p®* = (25, z8) € C2 , apply e7~ !-rescaling,
p™® — er=1 . p® and place the result into the point 2. i.e. consider T, (e~ 1. p®)) =: (25, 26).

If the constructed continuous map,
o1 1 (0,6)% x (C51)*3 x C5F — Conf (V)

is an injection for a sufficiently small § € R (and this will be the case in all cases of interest in this paper), then its
image gives us the desired smooth coordinate chart Uy; the boundary stratum Cp is given in this chart by setting
formally the small parameters ¢, 77! € (0,4) to zero.

The above construction is applicable to all operads, C, of compactified configuration spaces studied in this paper.
In each concrete case we have to specify only three things,

(i) an association T — Tietrics
(ii) a definition of the space, C:* C Conf,,(V), of standard positions, and
(iii) a rescaling map, .: Rt x C5t — Conf,,(V), and a translation map T : V x C5t — Conf, (V).

the rest of the construction of a smooth atlas goes along the lines formalized in this subsection.
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4. Kontsevich configuration spaces and open-closed homotopy algebras

4.1. Fulton-MacPherson compactification of points on the complex plane [Ko2]. Let
Conf,(C):={z1,...,2n € C|2; # z; for i # j}

be the configuration space of n pairwise distinct points on the complex plane C. The space C,(C) is a smooth
(2n — 3)-dimensional real manifold defined as the orbit space [Ko2],

Cn(C) := Conf,,(C)/G3),
with respect to the following action of a real 3-dimensional Lie group,
Gz ={z—az+blacR" beC}

The space C2(C) is homeomorphic to the circle S! and hence is compact. The compactification, C,,(C), of C,(C)
for n > 3 can be defined [Ko2| [Gal) as the closure of an embedding,

Cn(C) —  (R/27Z)™»D)  x (RP2)n(n—1)(n—2)
(215--y20)  — iy Arg(zi —25) X Tligjens 12 — 2l 112 — @kl |z — 2]

The space C,(C) is a smooth (naturally oriented) manifold with corners. Its codimension 1 strata is given by

ICH(C) = | | Cnpar1(C) x Ca(C)

AcC[n]
#A>2

where the summation runs over all possible proper subsets of [n] with cardinality > 2. Geometrically, each such
stratum corresponds to the A-labeled elements of the set {z1,...,2,} moving very close to each other. If we
represent C,(C) by the symmetric n-corolla of degree@ 3—2n

(14) i i , YoeS,, n>2

S N

o(n)

then the boundary operator in the associated face complex of C(C) takes a familiar form

|
_ O//T\
(15) a//l\ - A%; //\\_v_/

H#AZ2 e !
A

implying the following useful observation.

4.1.1. Proposition [GJ]. The face complex of the family of compactified configurations spaces, {Cpn(C)},>2, has
a structure of a dg free non-unital pseudo-operad canonically isomorphic to the operad, Lo{1}, of strong homotopy
Lie algebras with degree shifted by ond4.

4.1.2. Smooth atlas on C,(C). The coordinate chart Uy near the boundary stratum in C(C) corresponding
to an arbitrary tree T built from corollas ([I4) is constructed as in Section by associating to 7" a metric tree
Tmetric Whose every internal edge is assigned a small positive real number and whose every vertex, v, is decorated
with an element of C#ln ) (€) which is defined as the subset of Confp,(,)(C) consisting of all configurations

(21,..., Zg1n(v)) satisfying two conditions, E#I" ) 2 =0 and Zfilln(”) |zi|? = 1. The rescaling (resp. translation)
map on C5'(C) is defined to be the ordinary dilation (resp. translation) map, see Remark [3.41

10we prefer working with cochain complexes, and hence always adopt gradings accordingly.

HDenote the endomorphism operad, Endy|m), of the one 1-dimensional graded vector space K[m] by {m}. Then for any dg operad
P the tensor product P ® {m} =: P{m} is again an operad whose representations in a graded vector space V are in one-to-one
correspondence with representations of the operad P in V[m]. Therefore, the association P — P{m} is a kind of degree shifting in the
world of operads
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4.1.3. An equivalent construction of the compactification C,(C) [AT]. Let Conf 4(C) stand for the space

of immersions, A — C, of a finite non-empty set A into the complex plane and Conf 4(C) for the space of all
possible maps. We define C4(C) = COan((C)/G(g) and, for a configuration p = {z;}ica € Conf 4(C), we set,

Z ziy p =z = D |z — ze(p)>

ZGA €A
Recall that C4(C) can be equivariantly identified with
CH(C) = {p € Conf,,(C) | z(p) =0, |p — z(p)| =1}
Let us also consider a space,
C3(C) = {p € Conf 4(C) | 2e(p) =0, Ip — 2e(p)| =1},
which is a compact (2# A — 3)-dimensional manifold with boundary. The compactification C(C) can be defined

as the closure of an embedding,
YU T ca© = ] ci© = [] ¢4

AC[n] AC[n] AC[n]
#A>2 #A>2 #A>2

where the product runs over all possible subsets A of [n] with #A > 2, and
A Cn(C) — C4(C)
p={ziticny — pa:={zi}ica

is the natural forgetful map.

4.1.4. Higher dimensional version. One sets, for d > 2,

O(Rd)':{pl7apn€R |pz¢pjf0rl$£]}
Glrt)
where G411y == {p = Ap+v | A € R*,v € RY}. The map
Co(RY) — 5O

prm) — B

is an isomorphism so that Co(R?) is compact. For n > 3 the compactified configuration space C,,(R?) is defined
as the closure of an embedding

Cn(Rd) — (Sd—l)n(n—l) % (R]Pﬂ)n(n—l)(n—Z)
(p1,--opn) — Ly \z%% X Tlizjenei lpi = il = oy — pul = Ipi — pil]
The face complex of {C,,(R?)},>2 has a structure of a dg free operad canonically isomorphic to the operad of
Aso-algebras for d = 1, and, for d > 2, to the operad, Lo.{d — 1}, of strong homotopy Lie algebras with degree
shifted by d — 1 [GJ]. If d is odd, then the action of an element o € S,, on C,,(R?) preserves its natural orientation

if the permutation o is even and reverses the orientation if o is odd. Therefore, the generating corollas (I4)) of the
operad C,(R?) are symmetric for d even, and skewsymmetric for d odd.

2. Kontsevich’s compactification of points in the upper half plane [Ko2|. Let
Conf , py(H) :={21,...,2n € H,21,...,2m € R COH | 2; # zj,3; # a5 for i # j}

be the configuration space of n 4+ m pairwise distinct points on the closed upper half plane H. For future reference
we also define,

Conf (M) := {21,...,20 € H,21,..., 75 € R C 9H},
where the condition on the points being distinct is dropped.

For any configuration p = (21,...,%n, 1, ..., 2m) € Conf, ., (H) we set

re(p) :=n+m(2%zz +sz>, and Jp—ze(p)| = \| 3 |5 — 202+ 3 fos = welp) 2
i=1 =1

i=1
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The Lie group G(z) acts freely on Conf,, . (H) with the space of orbits,
Cn)m(H) = Confmm(H)/G(g), 2n+m > 2,

being a (2n + m — 2)-dimensional naturally oriented manifold. A compactification, C,, ,,,(H), of Cy,. ., (H) has been
defined in [Ko2| as the closure of an embedding

Corn (D) — Contm(C) = Conpm(C)

(21, ooy 20y X1y oo s Tim)  —> (215 ey Zny 2l e oy Zry LTy e -y Tyt
The face complex of a disjoint union,
(16) C(H) := Co(C)| |Cu o)

has a natural structure of a dg free 2-colored operad [KaSt] generated by degree 3 — 2n corollas (4] representing
C,(C), n > 2, and degree 2 — 2n — m corollas,

(17) %v

1 2 n

, 2n+m>2,Vo €S,

S

.. m o(1) o(2) U(n

representing C, ,,,(H). The boundary differential in the associated face complex is given on the generators by (I5])
and the following formula [Ko2l [KaSt]

- :
m #% %
A
Z k+l(n—k—1 %’
k,l,[n]=I1UIy I
241 +m>1+1
24 I +1>2

This operad was denoted in [KaSt] b OCs and its representations in a pair of dg vector spaces (X., X,) were
called open-closed homotopy algebras or OCHA for short.

It was shown in [Ho| that representations of OC are in one-to-one correspondence with degree one codifferentials
in the tensor product, ©°*(X.[2]) ® ®°*(X,[1]), of the free graded cocommutative coalgebra cogenerated by X.[2]
and the free coalgebra cogenerated by X,[1]. As OC is a free operad, its arbitrary representation, p, is uniquely
determined by the values on the generators,

i € Hom(0"X,, X3 —2n]), n>2,

Up = p
1 2 3 n— n

€ Hom(0" X, ®®mXO,XO[2 —2n—m)), 2n+m > 2,

2 m

which satisfy quadratic relations given by the formulae for the differential 0. One often denotes in this context the
given differential in the dg space X. by v, and the one in X, by po,1.

12This notation may be misleading as this operad is neither a minimal resolution of some operad OC nor a cobar construction of
some cooperad which is Koszul dual to a quadratic operad OC.
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4.2.1. An interpretation of OCHA. Let Coder(®°*(X,[1]),[, ]) be the Lie algebra of coderivations of the free
coalgebra, ®°*(X,[1]), cogenerated by X,[1]. We do not assume that coderivations preserve the co-unit so that MC
elements, ~, in this Lie algebra describe, in general, non-flat A -structures on X,. We have an isomorphism of
vector spaces,
Coder(®°*(X,[1])) = ®m>oHom(®™X,, X,[1 — m]).
It is not hard to check that a representation, p, of the dg operad OC in a pair of dg vector spaces (X., X,) is
equivalent to the following data
(i) a Loo{1}-algebra structure, v = {v, : ©" X, — X.[3 — 2n]}n>1, in X, i.e. an ordinary Loo-structure in
Xc[t];
(i) a Aso-algebra structure, u = {pom : "X, = X¢[2—m]}m>1, in X,; the associated MC element, p, of the
Lie algebra Coder(®°*(X,[1])),[, ]) makes the latter into a dg Lie algebra with the differential d,, := [y, |;
(ili) a Loo-morphism, F, from the Loo-algebra (X [1],v) to the dg Lie algebra (Coder(®*(X,[1])),[, ].du),

F={F,:0"X. — Coder(®*(X,[1]))[1 — 2n]}, 5,
such that the composition
O"X, 2 Coder(®®(X,[1])[1 — 2n] % Hom(®™ X,, Xo[2 — 2n — m])
coincides precisely with pp, ., for any n > 1, m > 0.

If p is an arbitrary representation of OC, and v € X, is an arbitrary Maurer-Cartan elemen,

1 n
E mVnW@ )=0, |y=2,
n>0

of the associated Loo-algebra (X.,v), then the maps

hn n m
fom, 1= Z Wﬂmm(V@ ®...): "X, — X,[[A]][2—m], m >0,

n>1

make the topological (with respect to the adic topology) vector space X,[[A]] into a continuous and, in general,
non-flat A-algebra. Here £ is a formal parameter, and X [[A] := X, ® K[[A]].

4.2.2. Example. Kontsevich’s formality construction [Ko2| gives a non-trivial representation of OCo, in the pair
(Xe = Tpoty (RY), X, := C>°(R?)), consisting of the space of polyvector fields and the space of smooth functions
on R? for any d.

4.2.3. Smooth atlas on C(C,H). A generic boundary stratum in C(H) = C¢(C) [ Cs«(H) is given by a tree
T constructed from corollas (I4)) and (IT). A smooth coordinate chart, Uy, containing that boundary stratum is
constructed as in Section [3.4] by associating to T' a metric tree Tpesric Whose every (of any colour) internal edge
is assigned a small positive real number € (i.e. there are no metric corollas type ([Il)). The spaces of standard
configurations associated with o-vertices are set to be C5*(C) and with ¥-vertices are set to be C’,(H) which are,
by definition, the subsets of Conf, ,(H) consisting of all configurations p satisfying two conditions, x.(p) = 0 and
[Ip]] = 1. The rescaling and translation maps are defined to be the ordinary dilation, z — Az, and translation,
T., : z = z+ 2o, maps on both C§*(C) and CJ', (H). The latter two groups of spaces can be equipped with arbitrary
S-equivariant smooth structures.

4.2.4. Example: Kontsevich eye.

a20 =

)

The codimension 1 boundary splits into the union of three strata: the inner circle C2(C) (“pupil”) represents limit
configurations when two points 21,22 € H collapse into a single point in H, the upper (resp. lower) lid Cy 1(C)
represents limit configurations of the form (z; € R,z € H) (resp. (21 € H, z2 € R)).

LBwe tacitly assume here that the Loo-algebra (X¢,ve) is appropriately filtered so that the MC equation makes sense. In our
applications below v, >3 = 0 so that one has no problems with convergence of the infinite sum.
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4.3. Higher dimensional version of C, ,,(H) and open-closed homotopy Lie algebras. Let H¢ stand for
a subspace of R = {x1,..., 241,74} such that z4 > 0, d > 2. The space H? is just another notation for the the
upper-half-plane H. In a full analogy to the case C, o(H?) one defines a compactification C o(H?) for any d > 3
and observes that the disjoint union,

C(H) :=Co(R") [] Co o (H)

has a natural structure of a 2-coloured operad in the category of semialgebraic sets. Representations of the
associated dg operad of fundamental chains, FChains(C(H?), are called open-closed homotopy Lie algebras or,
shortly, OCHLA. One can describe this operad in terms of generators of degree d(1 —n) — (d — 1)m,

_ (_1)dsgn(0)+(d—l)sgn(‘r) %

, dn+(d—1)m >d,Vo €S,,7 € S,

1 2 71 .1 .Q'” i m o(1) o(2) cr(n) T(i)r(?) T(m)

or, equivalently, in terms of its representations in an arbitrary pair, (X,, X.), of dg vector spaces. We choose here
a second more compact option.

As FChains(C(H?) is a free operad, its arbitrary representation, p, in (X,, X.) is uniquely determined by the
values on the generators,

l € Hom (0" (X [d]), X [d+1]), n>2,

Up = p
1 2 3 n— n

MHnm = P

1 2 n 1

2 m

which satisfy quadratic relations which we explain in the definition of OCHLA. Let us denote the given differential
in the dg space X, by v and the one in X, by uo 1.

A structure of an open-closed homotopy Lie d-algebra in a pair of dg vector spaces (X, X,) is, for d > 3, the data,

(i) a Loo{d— 1}-algebra structure, v = {v,, : ©"(X([d]) = Xc[d+1]}n>1, on X, i.e. an ordinary L-structure
on X.[d— 1]

(ii) a Loo{d—2}-algebra structure, p = {uon : O™ (Xo[d—1]) = Xo[d]}n>1, on X,; the associated MC element,
u, of the Lie algebra (Coder(®®*(X,[d—1])),[, ]) makes the latter into a dg Lie algebra with the differential

du = [/1*7 ];
(ili) a Loo-morphism, F', from the L o-algebra (X.[d—1],v) to the dg Lie algebra (Coder(®©®*(X,[d—1])),[, ], du),

F = {Fy : 0"(X.[d]) — Coder (0*(X,[d — 1)[1])},s1
such that the composition
O™(X.[d]) RN Coder(0*(X,[d — 1]))[1] brog Hom(0™(X,[d — 1]), X,[d — 1])[1]
coincides precisely with i, ., for any n > 1, m > 0.

If p is an arbitrary representation of FChains(C(H?) for d > 3 and y € X.. is an arbitrary Maurer-Cartan element,
1 n
> (¥ =0, =4,
of the associated Loo-algebra (X, v, ), then the element

P) = 2 R (7)€ Coder(@* (X} [d — 1)1,

n>1

make the topological vector space X := X,[[h]] into a continuous (in general, non-flat) Loo{d — 2}-algebra. We
show an explicit and non-trivial example of such an open-closed homotopy Lie algebra below in Corollary [9.5.1]
below.
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5. Configuration space models for the 2-coloured operad of L.-morphisms

5.1. The complex plane models. The 2-dimensional Lie group, G22)’ of complex translations, z — z4v, v € C,
acts freely on Conf 4(C) (see §4.1.3] for notations used in this subsection),

Conf 4,(C)xC —» Conf 4(C)
(p={zi}ica,v) — p+vi={z+v}ica

so that the quotient
QA ((C) = COan((C)/GI(Q)

is a (2#A — 2)-dimensional manifold; as usual, we abbreviate €f,)(C) to €,(C). There is a diffeomorphism,

Uyt €u(C) — CF HC) x (0, 400)

p — \1; zcE g\ Ip — ze(p)]

Note that the configuration & :zcg ;I is invariant under R* x C and hence gives a well-defined point in C§(C) ~

C4(C). For any non-empty subset A C [n] there is a natural map

TA ¢, (C) — €4(C)
p={ziticny — pa:={zi}ica

which forgets all the points labeled by elements of the complement [n] \ A.
A topological compactification, €, (C), of €,(C) can be defined as the closure of a composition (cf. [Me2]),

(19) Y I T ea) ™2 T o (0,400) = [ CH(C) x [0, +00].

AC[n) AC[n] AC[n]

#A>2 H#A>2 #A>2
Thus all the limiting points in this compactification come from configurations when a group or groups of points
move too close to each other within each group (as in the case of C,(R)) and/or a group or groups of points are
moving too far (with respect to the relative Euclidean distances inside each group) away from each other (cf. §3]).
The boundary strata in €, (C) are given by the limit values 0 or +occ of the parameters |ps — ze(pa)|, A C [n], and
it is an easy (and fully analogous to §3]) exercise to find all the codimension 1 boundary strata,

(20) 980 = || (Capan(©xTha©) || (Ck(©) x Typyo(C€) x .. x Ty, 0(C))
AC[n] [n]=B1 U...UBy
#A>2 2<k<n

where the first summation runs over all possible subsets, A, of [n] with cardinality at least two, and the second
summation runs over all possible decompositions of [n] into (at least two) disjoint non-empty subsets By, ..., B.
Geometrically, a stratum in the first group of summands corresponds to A-labeled elements of the set {z1,...,2,}
moving close to each other, while a stratum in the second group of summands corresponds to k clusters of points
(labeled, respectively, by disjoint ordered subsets Bi,...By of [n]) moving far from each other while keeping
relative distances within each group B; finite.

Note that the faces of the type Co(C) appear in the natural stratification of @n (C) in two ways — as the strata

describing collapsing points and as the strata controlling groups of points at “infinity” — and they never intersect

in En((C) (cf. §3). For that reason we have to assign to these two groups of faces different colours and represent

collapsing C,, (C)-stratum by, say, white corolla with straight legs as in ([[4), the C,(R)-stratum at imﬁmi‘cy77 by,
|

say, a version of (I4)) with “broken” legs, ¢/<5§ - , and the face €, (C) by the black corolla
B AN // S

i1 i2 i3 ig—1 fq in—1 in

of degree 2 — 2n.
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5.1.1. Proposition (cf. [Me2]). The face complex of the disjoint union
(21) ¢(C) := Cu(C) U &4 (C) LUT4(CT)

has naturally a structure of a dg free non-unital 2-coloured opemd of transformation type,

(A A k)

—
- /... N
p—1 p n—1 n 1 2 —

3 1 9 pg>2n>1

equipped with a differential which is given on white corollas of both colours by formula (I3) and on black corollas

by the following formula
|

‘ -
8//...\ A;‘] &W

1 2 3 n—1 n #A22
A

b
n - 7 h
(22) - Z Z f T
//\ AN
32 By

Representations of this operad in a pair of dg vector spaces, Vi, and Viout, is the same as a triple, (thin, touts F),
consisting of Loo{1} structures, pin on Vin and powr on Vour, and of a Loo{1} morphism, F : (Vin, tin) —
(Vout, tout), between them.

5.1.2. Example. As C5'(C) = C5(C) = S, the space EQ(C) is the closure of the embedding

&(C) — St x  (0,400) < S x[0,+00]
(21,22) — Arg(z1 — 22) |21 — 29|

and hence can be identified with the closed cylinder

(23) € (C) =

5.1.3. Smooth (or semialgebraic) structure. The embedding formula (I9) makes E((C) into an operad in the
category of semialgebraic manifolds. We can make it also into an operad in the category of smooth manifolds with
corners using metric trees in almost exactly the same way as in §2.2

5.1.4. A second complex space model for Mor(Ly). In a full analogy to §3.2] we can introduce on E(C)
a different smooth structure using a different compactification formula. For a pair of subspaces B C A C [n] we
consider

map: €,(C) —  C¥(C) X (0, +00)
p o i pa = 2e(pB)| - [P — 2e(pB)|

and then define a topological compactification E.((C) as the closure of the following composition of embeddings,

24) €. (C) T IEAE st () x (0, +00) HC (0,400) = C3(C) x [0, +00] [[CH(T) x [0, +00).
BCAC[n BCAC[n]
7 #B>2

The boundary strata in En((C) are given by the limit values 0 or +oc of the parameters |pp,) — z.(pp))| and
pa — z.(pB)| - IpB — 2:(PB)|, and the combinatorics of its face complex is again described by Proposition [5.1.7]
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However, this compactification has a different geometric meaning from the one given by the embedding formula
([@3); we refer to §3.2l for detailed discussion of the 1-dimensional version of this phenomenon. Smooth structure
on this compactification can be introduced in a complete analogy to §3.2

5.2. Upper half space models for Mor(L) [Me2]. Let Conf 4 ((H) stand for the space of injections, A — H,
of a finite set A into the upper half-plane, and C/'_o\;f A,0(H) for the space of maps, A — H. In this section we

remind a compactification, C '4,0(H), of Kontsevich’s configuration space,

Cao(H) = Conf 4 o(H)/G(2), #A>1,
which is different from Kontsevich’s one and which gives us an upper half space model for the 2-coloured operad of
homotopy morphisms of L,-algebras. It is worth noting that the group G’(Q) used earlier to construct a complex

space model, /Q\.((C), for Mor(Ls) is obtained from the group G(3 = R x C (which was used to construct a
configuration space model for the operad of Ls-algebras) by taking away dilations RT, while this time we use
points in the upper half plane together with the group G(s) obtained from G(3) by taking away the semigroup of
vertical translations RT.

Define a section,
s: Ca0(H) — Conf 4 o(H)

p={z=xi+iyi € Hlica — p* = ]lc(p)
infieay;

where z.(p) := Ei‘? #xi, and set C%(H) := Ims. Note that every point in the configuration p* lies in the

subspace $z > 1 C H and at least one point lies on the line Sz = 1. Thus

C3t0(8) = {p = sadiea € Confaof®D) | 2ep) =0, i i =1}
It is an elementary exercise to check that the subspace C¥(H) C Cj{O(H) consisting of elements p** with
p* =i =1

gives a global section of the surjective forgetful map Conf 4 o(H) — Ca(C) and hence is homeomorphic to C'4(C).
Note that both spaces Cy'(H) and C;(H) have natural structures of smooth manifolds with corners (and also of

semialgebraic sets); for example,
i) =< >

rather than an ordinary smooth circle S'. Thus

Ci(H) = {p ={zi}ica € Coanﬁo(]HI) | z.(p) =0, Zlélgyl =1, |p—il= 1} .
We also define

Ca(8) = {p = (siea € ConfaglED) | (o) =0, inf v =1, Ip=i| =1.
which is a compact manifold with corners. There is a homeomorphism,

En: Cpo(H) — CY(H) ~Ch(C) x (0,400)

25 st_i . .
(25) p — e +i X |p¥t—il.

Let, for a subset A C [n],
A - Cn70 (H) — OA,O (H)
p={%i}icny — pPa={%i}tica

stand for the natural forgetful map. For a pair of subspaces B C A C [n] we consider a map

Eap: Cho() — C3(H) X (0, +00)
D _y  PB—Zmin(PB) +i lpa.sl| == [pB—2min(pB)|

IpB_Zmin(pB)I ywnin(pA)
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Depending on application needs, a topological compactification, an,o(H), of C),o(H) can be defined either as the
closure of a composition (cf. (B) and (E[Ql))

(26) Cro () 12 T caoen 50 T o (0,400) — [ C3(H) x [0, +00].
AC[n) AC[n] AC[n]
AHD AHD AA£D

or as the closure on the following embedding,

@7)  CaoE) U5 02t () x (0, 400) [[C3(H) x (0, +00) = C3*(EL) x [0, +00] [[C3 (H) x [0, 4+00].
BCAC([n] BCAC([n]
#B>2 #B>2

The boundary strata in both cases are given by the limit values 0 or 400 of the parameters [p** — i| and [p% — i
(respectively, [p** —i| and ||pa,g||). It is not hard to see that the combinatorics of the face complex of C, o(H) is the

same as in the case of €4(C) so that 6’.70(H) gives us a configuration space model for the 2-coloured operad of Lo
algebras and their homotopy morphisms [Me2]. However, the geometric meaning and the natural smooth structure

on €, (H) are not equivalent to the ones studied above. Note that contrary to the Kontsevich compactification,
Cho(H), of Cpo(H) limit configurations in C,, o(H) never approach the real line in H. From now on we use the
symbol C,, o(H) to denote the closure of the embedding (27]).

5.2.1. Smooth atlas on 6’.70(H). An atlas on the topological operad
C(H) := Co(C) U Cyo(H) L C4(C)

can be constructed with the help of exactly the same kind of metric trees as the ones used in Section (see also
§3.4):
e the spaces of standard positions associated with white n-corollas of both colours are set to be C5!(H), and
the space of standard positions associated with the black n-corolla is Cflfo (H);
e the rescaling operation is defined on C;'(H) and C;'o(H) by the map, z — Az — i) + i;
e for a point zp = xo + iyo the associated translation map T, : Conf,, o(H) — Conf,, ,(H) is defined to be
p— p+ 20.
This atlas makes CA'(]HI) into an operad in the category of smooth manifolds with corners. For example, the space
5270(}1-]1) is the closure of an embedding,

CQ)Q(H) — CQSt(H) X [O,+OO]

and hence is diffeomorphic to the following manifold with corners

whose inner topological circle represents the boundary component, C o(H) x Cs?(H), describing two point moving
very close to each other while the outer topological circle describes the boundary component describing two points
moving very far — in the Euclidean or Poincaré metric — from each other.

5.2.2. Remark. We can define a slightly different smooth structure on C(H (H) by associating C2*(C') to white
corollas with solid legs and C2¢(H) to white corollas with broken legs. Then the rescaling operation on C#t(C) has

to be defined as an ordmary dilation, z — Az. In this smooth structure on €, (H) the space 02,0( ) is precisely
the “Kontsevich eye”,

Cao(H) =

There is no big difference between these two smooth structures as in both cases the Kontsevich propagator wx =
dArgZ=2* is a smooth differential 1-form on Cs,o(H).
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5.2.3. Higher dimensional versions. In a full analogy one can define a compactification, 6,170(}1-]1’“), of the orbit
space Cy, o(HF) for any k > 2 and check that the face complex of the disjoint union

CH?) := Co(RY) U C, o(HY) L T4 (RY)

is a dg free 2-coloured operad of morphisms of £ {k}-algebras. In fact, we can talk about this family of operads
in the range k > 1: the case k = 1 gives us the 2-coloured operad of A..-morphisms, and all the other cases give
us the (degree shifted) 2-coloured operad of £..-morphisms; the topological reason for this phenomenon is clear.

6. Configuration space model for the 4-coloured operad of OCHA morphsisms

6.1. New compactified configuration spaces Enﬂn(H). Let us define, for 2n +m > 1,
Cpom(H) = C’onfnym(H)/G(l),
where the Lie group G(;) = R acts on H by translations,
Guy={z—z+v|veR}L

This is a (2n + m — 1)-dimensional naturally oriented manifold which is isomorphic to Cj, ., (H) x RT via the
following map,

(I)n,m : Q:n,m(H) — Onﬁm(H) X RJF
P B X - we))

Note that the fraction (p — 2.(p))/[p — zc(p)| is G (2)-invariant and hence gives a well-defined element in C;, ,,, (H).
Recall that

Crim(H) = {p € Conf,, ,,(H) | z(p) =0, [p| =1}
gives a section of the natural projection Conf,, ,,(H) — C, ,(H). We also consider

Cit, () = {p € Conf ., (HD) | 2c(p) =0, |p| =1}
which is a compact manifold with boundary.
For a pair of subsets A C [n] and B C [m], let
TAB: Q:nym(H) — Q:AyB(H)
p= {Ziaxj}ie[n],je[m] — DPA,B = {Zi,Ij}ieA,jeB

be the forgetful map. We also consider a map

Ea0: ¢,p(H) Y Cue(H) — C4(C) x (04 o)
e oV Y pa — 2c(pa) B
p=Cohemsen — pa=lahes — (P2 )

where z.(p) := ﬁ > ica %i- Note that the fraction (pa — z.(pa))/|pa — zc(pa)l| is G 3)-invariant and hence gives a
well-defined element in C(C) ~ C4(C).

6.1.1. Definition. A topological compactification, @nym(H), of €, m(H) can be defined as the closure of a com-

position (cf. (&) and ([I9))

(28)
[I7aB [I®a,BxI]E4,0 st + st +
Com(d) L2220 T eapem L2220 TT o L) < RY) x [ (CH(C) x RY)
AC[n), BC[m] AC[n), BC[m] ACn]
#2A+#B>1 #2A+#B=>1 #AZ2

I1 (ég{B(H)xW) < 1 (égt(C)xRT)
AC[n],BC[m] AC([n]
#2A+#B>1 H#A>2

The boundary strata in both definitions are given by the limit values, 0 or 4oco, of the parameters,

{lpa.s —zc(paB)l; 1A = 2c(PA)l} Ac(n), Bc(m) SO that all the limiting points in this compactification come from

configurations when a group or groups of points move too close to each other within each group and/or a group

or groups of points are moving too far (with respect to the relative Euclidean distances inside each group) away
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from each other. It is obvious that the family @07.(]}]1) is precisely the family of compactified configuration spaces
defined in §3] and hence describes the 2-coloured operad of As.-morphisms. We claim that E.,(H) unifies this
2-coloured operad with the 2-coloured operad é.ﬁo(H) describing Mor(Ls) into a 4-coloured operad with an ex-
pected meaning — it gives a geometric model for the operad, Mor(OCs ), of homotopy morphisms of OCHA
algebras introduced in the analytic form in [KaSt]. Let us first give a precise definition of Mor(OCs) and then
prove the claim.

6.1.2. Morphisms of OCHA algebras [KaSt]. The 4-coloured operad, Mor(OC), is a dg free operad gener-
ated by two copies,

{

|
i L
>’< PARES PR e >
m - n m

// \\\ 1 2 "
2 -1 n

1 2

/..
1 3 n

of the operad OC,,, one copy, < > of the generators of Mor(L+ ), and the following family of

Sy-modules, N > 1,

@ K[SN] ®s,,xs,, (1, @ K[Sy,]) [2n + m — 1] =: span < %é

N=n+m . . .
2n4+m>1 1 2 in

where 1,, stands for the trivial representation of S, (implying that the solid input legs of the #-corolla are “sym-
metric” as in (7). The differential 9 is given on o-, ¥- and e-corollas by formulae (I3, (I8)), and, respectively,
[22), and on #-corollas by the following formula,

- [n];uIz //\ I 12 m
#I122,#13>1 =~~~
Iy

)_.
N
3
ol
3

k+l(n—k—1
o z : (_1) { ) e U A e
ko1, [n]=I1 Ul I //
2411 +m>1 VRIS

Blatiz2 R R

- "/
(29) + (_1)25:10—1’)(”%—1) o .. o \%\'\I\I\MQ
> oty T\I:/Timl\{/

Representations of this 4-coloured operad in a 4-tuple of dg vector spaces, V", V" Vou and V2% is the same as a

pair, (V" V™) and (V.2 VUt), of homotopy open-closed algebras, and a homotopy morphism, F : (V" V") —
(Veut vout)  hetween them as defined in [KaSt].

6.2. Theorem on the face complex of /Q\.,.. The face complez of the disjoint union,

(30) C(H) = Co(C) | | Caa(@)|_|€au(H)| |€a(T)| |Tu(C)| | T a(m)

in out
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has a natural structure of a dg free 4-coloured operad canonically isomorphic to the operad Mor(OCx). The
canonical isomorphism is given by the following identifications,

Proof. The codimension 1 boundary strata in Enﬁm(H) are given by the limit values, 0 and +o0, of the parameters

{llpa.Bll = lpa,s —xc(pap)l,  llpallo :=Ipa = 2P} acin) Bcpm) -

(i) The limit configurations, p € /Q\mm(H), filling in the boundary stratum are given by

llpr,llo = 0, ||p|| is a finite number.

(ii) The limit configurations, p € /Q\mm(H), filling in the boundary stratum // m o are
. gl ==l =x;

given by the equation |[p;, =7 75|l =0, [|pl| is a finite number.

(iii) The limit configurations, p € /Q\nm( H), filling in the boundary stratum //0’\ //\ m are

Iy Ik J1 ml
characterized by the following data: ||p, [m]|| = 409, ||p1,|lo is finite for all i € [k ] [[pg; m, || is finite for all j e [,
and the image of p under the projection @mm( ) — CSt m(H) consists of k different points in the upper-half-plane
and [ different points on the real line. This is the case when & groups of points in H parameterized by sets I, ..., I,
and [-groups of points in H parameterized by sets J; Limyq, ..., J; Um; are moving far away from each other in such
a way that their sizes (measured by the parameters ||) stay finite.

Finally, it is an elementary calculation to check that all the boundary strata defined above have codimension 1,
and these are the only boundary strata satisfying this condition. O

Let us illustrate the above theorem with several explicit examples.

6.2.1. The case @07.(H). The configuration spaces {Eg_’m(H)}mzl are precisely Stasheft’s multiplihedra (see §3)),
and the formula ([29) indeed reduces in this case to ().
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6.2.2. The case @170(]}]1). In the case n = 1, m = 0 formula (29)) gives,

bbby
SRR

On the other hand, &; o(H) is isomorphic to (0, +00), the y-axis in H, and ELO(H) is the closure of the embedding

(0, 4+00) < [0, +00]. Hence @1,0(]1-]1) is the closed interval [0, +occ] with the boundary operator @ coinciding precisely
with the above formula if we use the identifications of configuration spaces with graphs given in Theorem

6.2.3. The case @171(]}]1). In the case n =1, m = 1 formula ([29) gives,

(31) 9 i %

b d

On the other hand, the compactifying embedding takes the following explicit form

CLu(H) — (Cra x [0, +00]) % (Cro x [0, +00))
1 : 1
. — T 51 —x2) W1, —5(x1 — 2 .
p= (ot o) — | Dol - A T (i)
M P \/y1 3(21 —x2)?

In this approach

the boundary stratum a = C 1 (H) is given by the limit configurations with |[p|| — 0;

the boundary stratum b = C 1 (H) is given by the limit configurations with ||y;|| — +oo,

the boundary stratum ¢ and d are given by the limit configurations with ||p|| — 400 and y; finite, i.e. as
the limit configurations (3 (21 — 22) + iy1, —3(x1 — z2)) when [A| — 400; the case A — 400 corresponds
to ¢ and the case A - —oo to d.

Each term on the r.h.s. of (3I]) stands therefore for a closed interval. We finally get the following picture,

Cia= a ~ ch
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6.2.4. The case @270(}1-]1). In the case n = 2, m = 0 formula ([29) gives (see picture ([B2) below which visualizes
each summand’s contribution into the boundary of €, o(H)) ,

+ / + / —+ /
A TT I
1 2 1 2 12

On the other hand the compactification formula (28] takes in this case the form,

Cop(H)  — Cs%(H) x [0, +00] x C51(H) x [0, +00] x Cfy(H) x [0, +00]  x C5t(C) x [0, 4]
p = (21, 22) (”jﬁ,ﬁp’,Ilpll) (i,91) (i, 92) (%,Ilpﬂo = |p—2(p)|)

so that each codimension 1 boundary stratum can be described explicitly as follows:

(i) The boundary stratum / is given by the limit configurations, p, with ||p|| = 0; a generic point in this
12

boundary stratum can be obtained as the A — 0 limit of a configuration (xg + Az1,z¢ + A22), 29 € R, 21, 22 € H.

(ii) The boundary stratum is given by the limit configurations, p, with ||p|lo = 0, ||p||, y1, y= finite and

12
non-zero; their image under the projection €5 o(H) — ngo (H) counsists of a single point in H; a generic point in this
boundary stratum can be obtained as the A — 0 limit of a configuration (zo + Az1, 20 + Az2) with 2, 21, 20 € H.

(iii) The boundary stratum /2 /' is given by the limit configurations, p, with ||p||, y1 and ||p||o finite and non-
1

2
zero while yo = 0; a generic point in this boundary stratum can be obtained as the A — 0 limit of a configuration
(21,22 + iAy2) with 21, 20 = xo + iy € H.
v
(iv) The boundary stratum /\/ is given by the limit configurations, p, with ||p|| = +oco0 and ||p||o a finite
12 R _
number; their image under the projection €59 — C’sto (H) consists of a single point in H; a generic point in this
boundary stratum can be obtained as the A — 400 limit of a configuration (Azg + 21, Az + 22), 20, 21, 22 € H.
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/

~

(v) The boundary stratum T is given by the limit configurations, p, with ||p||lo = +oc and such that their

o —e

1
image under the projection €5 — C2S,t0 (H) consists of two different points in H; a generic point in this boundary
stratum can be obtained as the A — 400 limit of a configuration (Az1, A22), 21, 22 € H.

(vi) The boundary stratum ¢ is given by the limit configurations, p, with y; = +00, yo finite; their image

I

12

under the projection €39 — C3f)(H) consists of two different points in H the first of which lies in H and the second
in R; a generic point in this boundary stratum can be obtained as the A — +oo limit of a configuration (Az1, 22),
21,29 € H.

(vii) The boundary stratum f\f is given by the limit configurations, p, with ||p|| = 400, y1 and yo finite

)

numbers; their image under the projection €3 o — ngo (H) counsists of two different points on the real line; a generic
point in this boundary stratum can be obtained as the A — +oco limit of a configuration (—Az + iy1, \x + y2),
S Rv Y1,Y2 € R+-

A straightforward but tedious inspection of higher codimension strata in Egﬂo(H) tells us that the above classified
codimension 1 strata (i)-(vii) are glued together into the following 3-dimensional compact manifold with corners,

6.3. Semialgebraic structure on @nym. The right hand side of the embedding ([28)) is a product of compact
semialgebraic sets. Therefore €, ,, comes naturally equipped with the structure of a compact semialgebraic set so

that we can employ, if necessary, the de Rham algebra of PA differential forms on @nym. In fact, /anym is a compact
semialgebraic manifold: its smooth semialgebraic atlas can be given by metric trees in a full analogy to §4.2.3l and

§5.2.11

6.4. Higher dimensional version. The operad of compactified configuration space ¢ (H) has an obvious higher

dimensional version, ¢ (Hd), d > 3, which describes the 4-coloured operad of morphisms of open-closed homotopy
Lie algebras.

7. Operads of Feynman graphs and their representations

7.1. An operad of Feynman graphs &. For a finite set I we denote by G a set of graph, {T'}, with #I
vertices such that

e the edges of I' are directed, beginning and ending at different vertices;
e the vertices of I" are labelled by elements of I, i.e. a bijection V(I") — I is fixed;
e the set of edges, E(T'), is totally ordered.

14 A graph T is, by definition, a 1-dimensional C'W-complex whose 0-cells are called vertices and 1-dimensional cells are called
edges. Its automorphism group as a CW-complex is denoted by Aut(T).
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We identify two total orderings on the set E(I") (that is, isomorphisms E(I") ~ [#E(I")]), if they differ by an even
permutation of [#F(T")]. Thus there are precisely two possible orderingd'] on the set E(T') and the group Z» acts
freely on G by ordering changes; its orbit is denoted by {I',T'opp}. If I = [n], we write G,, for G;. The subset of
G, consisting of graphs with precisely ! edges is denoted by G, ;.

For any fixed integer d € Z we first set K(G,1) to be the vector space spanned by isomorphism classes, [I'] of
graphs I' € G,,; modulo the relation [[,p,] = (—1)?71[[], and then define a Z-graded S,,-module,

6(n) :== PK(Gn)[(1 — )]
=0

Note that if d is even, then any graph I' € G, ; which has a pair of vertices connected by two or more edges with
the same orientation vanishes in &(n); for example, e =0 in &(2) for d even. If I’ does not vanish, then its
degree in &(n) is equal to (d — 1)#E(T), i.e. every edge contributes d — 1 to the total degree.

The resulting S-module,
& = {&(n)}n>1,

has a natural operad structure defined as follows: let [n] — [p] be an arbitrary surjection, and let [n] = UL U. ..U,
be the associated partition of [n], then the map

(33) o: B(p)R6(L)®..06(, — &(n)
(I‘O,Fl,...,Fp) e I‘Oo(F1®®Fp)
is given, by definition, by
(34) oo ®...0T,) =Y (=1)7T,
reGr,..., Ip

where the summation runs over a subset G, ..., 1, C G, consisting of all graphs I' satisfying the following condition:
the subgraph@ Iy, Ty, ..., T, of I spanned by the vertices labelled, respectively, by the subsets I, Ia, ..., I, C
[n] are isomorphic, respectively, to I',I's,...,I',, and the quotient graph, I'/{I'7,,I'r,,...,T'1,} is isomorphic to
T'g. The sign is determined by the equality €r/{T's, T1y,...Tr, )€1, €Ty, " €Ty, = (—1)°Ter (see footnote [I3)), i.e. by
comparing the orderings on the sets of edges. The unique element in G serves as a unit in this operad. For

example,
[ ]

where orientations of graphs on the r.h.s. are chosen implicitly in a such a way that they contribute with coefficient
+1. Thus the operadic composition, I'g o (I'y ® ... ® I'p) is given simply by substitutions of the graphs I'y,..., I,
into the vertices of the graph I'y and redistributing the edges in all possible ways.

The number d — 1 is called the propagator degree of the operad &. Perhaps we should have imprinted d somehow
into the notation, say use the symbol &[d] to indicate its dependence on d, but we do not bother doing it as in
applications the propagator degree will be always clear from the context.

7.1.1. Coloured variants of ®. Let a Z-graded S,-module @ n=ny+n, G™¥(n1,n2) be defined as &(n) above

2n1+ng>2
except that the vertices of graphs I' from G™(n1,ns) are coloured in one of two possible colours, say white and
black, i.e. V(I') comes equipped with a splitting into a disjoint union V(I") = V,,(T") U V3 (T"), #V4,(T') = ny and
#V4(T') = na, satisfying the condition 2n; 4+ ny > 2. It is useful to visualize such a graph as drawn on the closed

151t is useful sometimes to identify an orientation of I' € Gy with a vector er := Ac g(r)e in the real one dimensional vector space
A'R[E(I")], where R[E(T)] is the I-dimensional vector space spanned over R by the set E(I).

16 For any subset A C [n] and any graph I' in G, there is an associated subgraph I'4 of I" whose vertices are, by definition, those
vertices of I" which are labelled by elements of A, and whose edges are all the edges of I' which connect these A-labelled vertices. If we
compress all the A-labelled vertices of I' (together with all the edges connecting these A-labelled vertices) into a single vertex, then we
obtain from I" a new graph which we denote by I'/T" 4. Analogously one defines the quotient graph I'/{I'y,, ..., Ffp} for any partition
V) =LU...Ul,.
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upper half plane H with white vertices placed in H and black vertices on the boundary R in the order which is
consistent with their numbering, e.g.

O,

The S-bimodule
6™ = {&(n) & @ G (n1,n2) bn>2.2n 4ns>2
n=ni+nz
is naturally a 2-coloured operad with respect to substitutions of

(i) graphs from &(n) into the vertices of &(m) and into the white vertices of G™¥(my, m2),
(i) graphs from G™(n1,n2) into the black vertices of G (my, ma).

One can consider versions, G+ and G', of the 2-coloured operad G spanned by graphs I" such that all edges incident
to any black vertex are oriented towards (respectively, outwards) that black vertex. For example

o\é}/o c g¢(372), o@o c gT(3, 2)

More generally, with any compactified configuration space, C = {C,,}, considered in §2-4 of this paper one can
associate a coloured operad of Feynman graphs, &z = {&x(n)}, whose elements are, by definition, linear combina-
tions of graphs from &(n) (or from an appropriate subset of &(n)) whose vertices are identified with configuration
of points in C,, and hence are coloured correspondingly. For example, the above operad & with propagator degree
d—1 can be re-denoted as 66(]1@) while any of the operads &™, &+ and &' can be associated with the configuration

spaces C(H?) and hence can be re-denoted by Gélg(Hd) , 6%(]}]1‘1) and 6%(]}]1‘1) %(Hd)

which Kontsevich used in his paper [Ko2] on the formality theorem; we shall consider below other two operads as
well.

respectively. It is the operad &

7.1.2. Dual cooperads of Feynman graphs. As the vector space K(G,, ;) is finite-dimensional for each n and
[, the dual S-modules,
& := {Hom(6(n),K)},~,, (&™) := {Hom(6™(n),K)} ete.

n>1"

have induced structures of (coloured) cooperads in the category of graded vector spaces. these spaces come equipped
canonically with distinguished bases which we can identify with graphs. We denote by &, &™ etc. their sub-
cooperads spanned by finite linear combinations of such graphs.

For example, the dualization of the operadic composition ([B3)) in & gives the following formula for the co-composition
in the cooperad &,

A: &n) — P spedl)edh) .. 061

[n]=T1u...uIp
1<p<n

(35) n—1
I — AD):=> >  (-DTHIL,....T,}@T,eT,e...0Ty,.
p=0

=0 [n]=IU...UI,

where the summation runs over all possible partitions of [n]. As & is unital, we can equivalently describe cooperad
structure in B4 in terms of the reduced co-composition, Vi € [n],

Ared s B(n) — P dn-#4+1)26(4)
1€AC[n]
(36)
I — AD):= ) (-1)T/TyaeTla
1€ AC([n]
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Setting &(1) = 0, we make the data ({&4(n)},>2 into a non-unital pseudo-cooperad which we denote by the
same symbol & but call the non-unital pseudo-cooperad of Feynman graphs. Analogously one defines non-unital
pseudo-cooperads & etc.

7.2. A class of representations of . Note that operads of Feynman graphs depend on the choice of a parameter
d which we do not show in the notations. Any representation of & in a graded vector space X,

p:® — Endx

is uniquely determined by its values on the generators, I' € G, i.e. by a collection of operators,

{(I)F = p(T) € Homg 1) pry (X E#V D), X)}
which, in accordance with ([34)), satisfy the equations

(37) (_1)K(I)Fo ((I)Fl (‘Tlv s 756711)7 (I)Fz (xm-‘rlv s 7xn1+n2)7 SRR (I)Fp (xn1+...+np71+17 e 7xn1+...+np)) =

Z (_1)G(F)(I)F(xl7x2u'"7:En1+...+np)
Fe@d(’ﬂl,...,’ﬂp)

for any I'; € G, 1,, 0 =0,1,...,p, and any 1,2, ..., T, +...+n, € A. Here (—1)% stands for the usual Koszul sign
arising under a composition of homogeneous maps and &(ny,...,n,) C &(ny + ...+ n,) is a subset consisting of
all graphs I' whose subgraphs, I'r,,I'r,, ..., s, spanned by vertices labelled, respectively, by

L={l,....om}, hi={ni+1,....n0+n2}, ..., Ip={mi+...+np1+1,...,01+... +np}

are isomorphic to I'1, ', ..., T',, and the quotient graph, I'/{I'1,T'2,...,T',}, is isomorphic to T'y.

Let W be a Z-graded vector space and 7 € W* ® W* a non zero element of degree d — 1. Any element w € W*
defines a map W — K which can be uniquely extended to a derivation of the symmetric tensor algebra (O°® W.
Therefore, the element 7 gives naturally rise to a biderivation on ()® W ®(©® W which we denote by AT. Moreover,
for any n > 2 and any ordered pair of different integers i,j € [n], T gives rise to an automorphism,

T . . ®n . ®Rn
AL ()P — (0°W)

which acts as A" on i-th and j-th tensor factors and as the identity on all other tensor factors. Next, for any graph
I' € G,,1, we define

Or : (O°W)®" — W
as the composition,
(38) Pr = /J’(n) ° H A?n(e),Out(e)’

eeE(V)

T

where, for an edge e connecting a vertex labelled by i € [n] to a vertex labelled by j, we set ATne),0ut(e) = Al

and (") stands for the natural multiplication,

pulm (O*W)®n — o'W
(flvaa"-vfn) — flf?fn

7.2.1. Proposition. For any graded vector space W and any element 7 € W* @ W* of degree k the operators
(38) define a representation of the operad of Feynman graphs in the vector space X := @°*W.

Proof. One has only to check equations ([B7) but this is straightforward due to the Leibniz rule. O
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7.2.2. Poisson-Schouten algebras. Let V be an arbitrary Z-graded vector space V' and let

Wy = V*[2—d @ V[-1].

Then W} ® W} contains a distinguished element 7 := s'~Idy such that

0 0
A _;awa(@@

% = sQideo‘, Yo =5 leg.

This operator makes the completed graded commutative algebra @*Wy ~ K[[z*,14]] into a d-algebra (in the
terminology of [Ko3|) with the degree 1 — d Lie brackets given by,

(39)

Y —
- fo 5)9 | Fllgl+(d=1)(f+9)+d 9 O 3f
{f°g}1fd—;%% —|—(—1) %@.

We call this particular class of d-algebras,

gd(v) = (é\.Wda{ ) }17(1),

the Poisson-Schouten algebras. Note that

92(V) = Tpory (V)

can be identified with the Schouten algebra of polyvector fields on V' viewed as an affine or formal manifold.

By Proposition [7.2.7] every such an algebra comes equipped with a representation of the operad & (which, as we
shall see below, can be quantized). Let us have a brief look at the set of Maurer-Cartan elements of g4(V),

MC(V) :={y € ga(V) {yer}1-a=0and |y[=d},

for the case V =R% and d > 2:

d=2:

d=3
d=4:
d>5

the set MC3(V') consists of formal Poisson structures on V, that is, MCz(V) is the set of formal bi-vector
fields v € A2y satisfying the equation {ye~y}_1 = 0; the 2-algebra go(R?) is precisely the Schouten algebra
of formal polyvector fields on R%;

: a generic element of degree 3 has the form,

y=3_ Capy a®2%27 + > Cl, a% i+ > C patpa’ + Y C Yhathpi)y.

~—~— N~
@, B, @, B, a,p, a,3, 3
B sy K B Lt By ey BAK—A3YV

It is easy to check that such an element satisfies the equation {y e y}_o = 0 if and only if the associated
set of degree 0 maps,

K — AV, V= A2V, A2V 5V, A3V 5K,
make V into a Lie quasi-bialgebra. This notion was introduced by Drinfeld in order ro describe infinitesimal
breaking of the (co)associativity of basic bialgebra operations due to associators.

the set MCy (V') describes triples, ([, |, g, ®), consisting of a Lie algebra structure on V*, and Lie invariant
elements g € ©?V* and ® € ATV,

1=30 G @4 Y O a4 D OO et

k) k) bl k) bl 7€ 4
P o2V K @By, oy B E KAtV

: the set MCy(V') describes pairs, ([, |, ), consisting of a Lie algebra structure on V* and a Lie invariant

element ® € A%V
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7.3. A class of representations of the 2-coloured operads &'+, &' and ®*. Formulae (B8) for 7 := s!~?Idy
give a representation of the 2-coloured operad

p: QﬁT\L — 5nd{X17X2}

in X7 = X5 = gq(V). We shall quantize this representation in §9.3 using the standard homogeneous volume form
on the sphere S%~1 as a propagator.
The Poisson-Schouten algebra g4(V') contains two graded commutative subalgebras, @®(V*[2 —d]) and ©°*(V[-1]),
which are also Abelian Lie subalgebras. There are natural projections,

m:ga(V) = 0% (V*2—d]), and my:ga(V) — ©*(V[-1]).

If T' € G¥ has n white vertices and m black vertices, then we set,

Cp: (O(V2—d e V-1 Q@ (V2 -d)*" — O (V*2 - d])
N .OM®f1®...8 fm — Oy Yo f1 s fin)
where
(40) (v frs fn) = o pT o [T AL w1 @ @ W © [ @ @ fin).
eeE(V)

It is easy to check that for any graded vector space V the operators [B8) and ([@0) define a representation of the 2-
coloured operad of Feynman graphs &+ in the vector spaces X, := @*(V*[2—d] @ V[-1]) and X, = @*(V*[2—d)).
Quantization of this representation in the case d = 2 with the help of the Kontsevich propagator gives us his
formality map (see below).

Replacing in the above construction ©*(V*[2—d]) by ®*(V[—1]) and 7| by m+ one obtains a canonical representation
of &7 in the vector spaces X, := @*(V*[2 —d] @ V[-1]) and X, = ©*(V[-1]).

8. De Rham field theories on configuration spaces and quantization

8.1. Completed tensor product of de Rham algebras. Let Man be the category of smooth manifolds with
corners (or semialgebraic manifolds) and let Quqqn be the associated categoryl] of de Rham algebras of (PA)
differential forms. The category Man is symmetric monoidal with respect to the ordinary Cartesian product, X,
of manifolds. We shall define a completed tensor product of de Rham algebras as follows,

Qx,® Qx, = Vx5 xa)

where X7 and X5 are arbitrary objects in Man. This completed tensor product makes Q44 into a symmetric
monoidal category so that we can define operads and cooperads in Qaqq,. Moreover, in this case one can associate
with an arbitrary operad P = {P(n)} in the category Man a co-operad, Qp := {Qp(y,)}, of de Rham algebras in
the category Qaqan.

8.2. De Rham field theory on C(R?). For any proper subset A C [n] of cardinality at least two there is a
uniquely associated operadic composition 9,

(41) 04 1= oM T e (RY) X Ta(RY) — Ty (RFH),
which sends the Cartesian product into a corresponding boundary component in dC,,(R?). Moreover,
0C,RY = |J 4 (Cun-apeR?) x Ca(R)
AG[n],#A>2
Let Oz (gay = @pZOQ% (R) stand for the de Rham algebra of (PA) smooth complex valued differential forms on

the C,,(R%). The associated dg S-module,

Q5(re) = {Qﬁn(Rd)a dDR}

is naturally a non-unital dg cooperad in the category Qatan.

n>2

170ne might prefer using the language of functors and natural transformations in this subsection, but, to save the space and the
time, we choose to consider 24y, not as a functor but as a subcategory of the category of dg algebras.

185ee Section [A.3.5]in Appendix for explanation of the notation o£[7L]7A)u"A.
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8.2.1. Definition. A de Rham field theory on the operad {C,(R?%)},>1 is a morphism,
Q: (670) - (Qa(Rd)vdDR)v
of dg cooperads.

Let us translate this definition into a system of explicit formulae.

8.2.2. Proposition. A de Rham field theory on {C,(R%)},>1 is equivalent to a family of maps

) I(d—1)
(0o )
r— Or n>1,1>0

such that dprQr =0, Qr,, , = —(=1)41Qr, and, for any boundary stratum in C, (R?) given by the image of an
operadic composition ([{1]), one has

(42) ol () = (=1)°Qp/r, AQr,

where the sign is determined by the equality ep/p, er, = (—1)%er.

Proof. As differential in & is trivial, the image of  belongs to the subspace of closed differential forms. As the
co-composition in & is given by (BE) while the co-composition in the cooperad Qé(Rd)v

At Qggsy — D W@, @y
AC[n], #A>2
w — A= @ Oz(w)|6([71]—A)uo(Rd)X6A(Rd)
AC[n], #A>2

is just a direct sum of restrictions of the differential form w to all the boundary components I'm(o,4), we conclude
that the map € is a morphism of cooperads if and only if equations ([@2)) hold for any n and any A ¢ [n] with
H#A > 2. |

8.2.3. Theorem. Let
p: 6 — Endx
r — ‘I)F

be a representation of the operad of Feynman graphs in a graded vector space X .Then any de Rham field theory on
C(R%) makes X into a representation,

pq: (FChains(C(RY)),0) — Endx
O, (RY) — iy € Hom(X®" X)

of the operad of fundamental chains of C(R?), that is, makes X into a Loo{d — 1}-algebra with operations, {i,
®@"X — X},>2 given by

(43) i { ZFGG na-z_, CF(I)F Zfd — 1|nd -2
n i= L =

0 otherwise.

(44) Ccr = / QF.
C (R?)

198trict1y speaking, the objects on both sides of the arrow belong to different symmetric monoidal categories as the tensor product
on the r.h.s. is completed; however, it is straightforward to adopt axioms behind the ordinary notion of a morphism of operads in the
category of vector spaces to this particular case.

2001" and ®r depend on the choice of the linear ordering of the set E(I'); however their product er®r is independent of that choice.
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Proof. First we explain the condition d — 1jnd — 2. If T € G,,, then cp # 0 if and only if Qr is a top degree
differential form on C', (R?), i.e. if and only if deg Qr = (d—1)I is equal to dim C,(R?) = dn—d—1 = dn—2—(d—1).
Assume now that n is such that (d — 1)|nd — 3. Then, for any T" € Gn,%fb one has, by the Stokes theorem,

0:/ de:/ Qr = (—1)“/ Q / Qr, = (=1)°Wep epr, .
C,(R?) 9C (R4) Z C M Je ! Z AT/

AC[n] C(n—ayue(RY) Ca(R?) Acv ()
#HA>2 A is admissible

where a subset A C V(') is called admissible if d —1|d#A —2 and 'y € G, aga_z_ ). For admissible subsets
» T d—1
A C [n] both differential forms Qr, and Qr -, are top degree forms on C44(R?) and, respectively, C—4a+1(R?).

For a pair of natural number m and d such that d — 1|jmd — 2 let us denote

m

F[m;d] =G ,md=2_ .
Then, using ([37), we obtain,

Y DT - aye o pa > > Y. (17 Wer,en, @ (g aye 00 P4
—_—

AC AS H#A>2 I'heGp, - I',eG
#i[zni operadic composition in Endx df[lTL#A72 ! [n—#A+1d] -2 [#4.d]

d—1|d(n—#A+1)—2

Z Z (—1)UACFACF/FA (I)F

red d—3 ACVert(I')
n, B =1\ A s admissible

=0
which proves the claim. O
8.2.4. Remark. The above proof is elementary but notationally looks unduly complicated — we have to take
care about divisibility conditions of the type d — 1|nd — 2 to ensure that the integrals fé (RY) Qr make sense. If,

however, we set formally [ (R%) Or = 0 when deg Qr # dim C,,(R?), then the presentation gets simplified. We
assume this convention from now on.

8.2.5. Example. For any ¢,j € [1,...,n] there is a natural map
Tij * Cn(Rd) — Cg(Rd) ~ Sd_l
(X1, xn) — ‘?:ih

which forgets all points in the configuration except those labelled by ¢ and j. This map extends to a map of the
compactifications, 7;; : Cp(R?) — C,(RY).

8.2.5.1. Theorem. Let w be a volume form on S normalized so that de71 w = 1. Then the maps, n > 2,
Q . 6(”) — Qén (Rd)

(45) r — Qr:= /\ We

ecE(T)
define a de Rham field theory on C(RY). Here, for an edge e beginning at a vertex labelled by i € [n] and ending at
a verter labelled by j € [n], we set w, =T (w) .

Proof. Consider the boundary stratum in C(R?) corresponding to a graph,

AN

It is equal to the image of the map ({I]). Introduce in the neighbourhood of Im (04) a coordinate chart,

Up = [055) X Cit(Rd) X C[if]—A-}-.(Rd)a
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corresponding to the metric version of the above graph (see §4.3]). The boundary stratum Im (04) is given in this
chart by the equation s = 0, where s is the standard coordinate on the semi-open interval [0, ) for some small
d € RT. Thus, to prove the Proposition, we have to check that

QF|5:O = (—1)EPT /\ We! /\p; /\ We!!

e’€E('/T 4) e”cE(T4)
where p; @ C%(R?) x C[SJ]_A_H(R‘I) — C'[if]_AJr.(Rd) and py : C%(RY) x C[SJ]_A_H(R‘I) — C5{(RY) are natural

projections, and the sign (—1)¢ is given just by regrouping of the factors w, in Qr, i.e. by the equality

Qr = (-1)° /\ wer | A /\ Werr

e’€E(I\E(Ta) e”e€E(T4)

All points parameterized by A collapse in the limit s — 0 into a single point zo € R?; we can represent this limit
configuration as s — 0 limit of a configuration {z¢ + sz;}ica U {%;};emp 4. Using now invariance of the forgetful
map 7;; under the transformation (z; — o + szi, x; — xo + sz;), we immediately conclude that

* *
/\ We! |s:0 =D /\ We! and /\ We! |s:0 = P2 /\ Werr

e’ € B(D\E(T'4) e’ €E(T/T 4) e EB(T 4) e €B(T )
as required. 0

For any vector space V the associated vector space gq(V) is a representation of the operad &. Hence we can apply
Theorem [B.2.3] and obtain the following

8.2.5.1. Corollary. The L, -structure, {p, = ZFGQSd(n) cr®r}n>2, induced on gq(V) by the de Rham field theory
{#3) is homotopy non-trivial. For w = Vol(S?~1), the standard homogeneous volume form on the sphere, the

induced L -structure is precisely the Poisson-Schouten structure (39).

Proof. Let us first consider the case w = Vol(S?~1). Proof of the last sentence in the Corollary is based on two
Kontsevich’s vanishing lemmas. It was shown in [Ko2] (for the case d = 2) and in [Kol|] (for d > 3) that, for any
integer n > 3 and for any graph I" € G4(n), one has

/ Qr =0
C,, (R%)

fn = Z cr®r =0
FG@d(n)

Ho = Z cr®r

red,((2))
ry q)Fl +cry, (I)F2

= {.}—17

1 2 1
where we denoted I'y = e——=e and 'y = e——=e and used the fact that, by the normalization assumption on w,
cry = Cry, = 1.

Hence, for n > 3,

and

A generic cohomologically non-trivial and normalized (d — 1)-form w on S¢~! is given by
w = Vol(S41) + df

for some semialgebraic function f on S?~!. In general, Kontsevich’s vanishing lemmas are not true for non-
homogeneous propagators w, and one obtains a non-trivial (but homotopy trivial) £.,-deformation of the Poisson-
Schouten bracket (see [Me2] for an explicit example). This fact implies that the resulting Loo-structure is never
homotopy equivalent to the trivial (i.e. vanishing) £.o-structure on gq(V). O
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8.3. De Rham field theories on a a class of free topological operads. The above results for C(R?) have
obvious analogues for all operads of configuration spaces considered in this paper. In fact, they hold true for any
(coloured) operad C' = {C,,},>1 in the category of smooth manifolds with corners (or semialgebraic manifolds)
which, as an operad in the category of sets, is free, C' = Free(C), and satisfies the following conditions:

(i) each C,, is a compact oriented (semialgebraic) manifold;

(i) the S-space, C' = {Cp}p>1, of generators is given by

Cp:=C,\ 0C,,
where 86,) is the boundary of C:
(iii) as C = Free(C), each manifold C,, is canonically stratified, C,, = [7er, Cr, into a disjoint union of
cartesian products, Cp = Hvev(T) Cyrn(v)- It is assumed that the set theoretic inclusion, Cr — Cp, is
smooth (or semialgebraic) for any T

It follows from these assumptions that the operadic composition in C' corresponding to a tree T' € Ty,
(46) pr : T{C) — Cp,

is a smooth map which sends the Cartesian product 7'(C) ~ HUGV(T) é#ln(v) into a boundary stratum in C,,. We
define (—1)*T to be +1 if this maps preserves orientations and (—1) otherwise. We also have,

0Cn= [ 1 (T(0)

TeTboundary

for a suitable subfamily 7;5’07“"1‘””74 C T,. For concreteness and simplicity, we assume from now on that C = {Un}nzl
is one of the operads of compactified configuration spaces considered in §2-4 so that each connected component of
the generator C,, of C is a quotient of a configuration space, Conf,, (V), of pairwise distinct [n]-labeled points in a
(subspace of a) vector space V modulo an action of an appropriate subgroup of Af f(V).

Let C,, be the vector space spanned by all possible pairs, (62, or), consisting of a connected component, 62, of
C,, and a choice of orientation, or, on C, modulo an equivalence relation, (C,,—or) = —(C.,or). The standard
orientation on C, is denoted by or®. The collection (C) := {(C,)}n>1 is naturally an S-module. The operad of
fundamental chains or the face complez of C id2], by definition, a dg free operad, FChains(C) = (Free(C), )
whose differential is read off from the above formula for 9C,,,

O(Ch,or) = > (=T 0r%).

TETn boundary

(see explicit formulae given in §2-4 for particular examples).

8.3.1. Definition-Theorem. Let &° be an arbitrary (coloured) operad of Feynman graphs. A de Rham field
theory (of type ®°) on a semialgebraic (coloured) operad C = {Cy}n>1 is a morphism, Q : (8°,0) — (7, dpr),
of dg cooperads. Let
p: 6O — Endx
T — dr
be a representation of the operad of Feynman graphs in a graded vector space X (or in a family of vector spaces
parameterized by the set of colours). Then a de Rham field theory, Q, on C = {C,,} makes the graded vector space
X into a representation,
po: FChains(C) — Endx
(C,,0r°)  — g, € Hom(X®" X)

of the operad of fundamental chains on C given explicitly by

(47) = < [ Q(F)) op.
g re%%m /C

n

The representation pg is called a quantization of the representation p.

21The most natural way to define this notion is to use the theory of semialgebraic chains developed in [KS| [HLTV].
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Proof. The natural pairing,
Chains(C) x Q(C) — C
w

o — [w
gives rise to a morphisms of operads,
Q*: Chains(C) — O
o — ZF (fcr QF) r

The required representation pg is given finally by the composition,

FChains(C) = Chains(C) 2 0 25 Endy

8.3.2. Important remark. In down to earth terms a de Rham field theory on C is a family of maps

{ Q: G" — Q;losed(an) }
r— Or nZl,lZO,

such that, for any boundary stratum in C,,(R?) given by the image of a reduced operadic composition or, respec-
tively, a “full” composition one has

(48) oi (Qr) = (=1)*Qpr, A Qr,
or, respectively,
(49) o?1|_|...|_|1p (QF) = (_1)EQF/{F11,...,FIP} A QFII A QF[2 VANAN QFIP'

where the signs are determined, as usually, by comparison of orientations on the sets of edges. Once the above
conditions hold true, formulae [@T) define a quantization of an arbitrary representation of an operad of Feynman

diagrams. Here Q2 __.(C),) C Q°*(C,,) stands for the subspace of closed differential forms.

closed
We are interested in this paper only in deformation quantization of representations of the suboperad of Chains(C)
spanned by the fundamental chains. As it stands, Theorem [8.3.7] holds true for representations of the full chain
operad as well; for this Theorem to work only at the level of fundamental chains only one can weaken the notion
of a de Rham field theory by requiring that factorization properties (@8)-([@9]) hold only for top degree differential

forms on Co. From now on we understand by a de Rham field theory on C such a weakened version as well.

9. Examples of quantized representations of operads of Feynman diagrams

9.1. Propagators on C(HY). Let us consider the operad (see §4.3)
C@?) = Co®RY) [ Co.o (%)

for d > 2. The space C(H?) is a compact d-dimensional semialgebraic space of the form

Its boundary is a union Si:l U Sf‘fl U SeL where Sﬁ:l is the sphere corresponding to two points in the upper
half space H? collapsing to a point in H?, Sifl (respectively, Siﬁl) is the half—sphereiorresponding to the limit
configurations where the point labelled 1 (respectively, 2) approaches the boundary, OH?, of the closed upper-half
space.

The space Ca0(H?) is homotopy equivalent to S4~!. Any cohomologically non-trivial PA-form w on Csq o (H?)
normalized so that

w™ =1, where w" = wlga-1,
Sd71 in
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defines a de Rham field theory of type &™ on the 2-coloured operad C(H?) by the following two sets of maps (see

Remark [8.3.2))
. n (d-1)#ET) (7 (pd
(50) {9 om — 9 (Cn(RY) }

r Qin (L) == /\eeE(F) pi(w™)
and
- { Q: Ghntm) — QU-DEED(G, () }
r — QD) = Aepm T (w)
Here

pe: Cr(RY) — C2(RY), and 7 : Cyp (HY) — Co0(RY)
are the natural forgetful maps. To prove this claim we have to check factorization property ([@8) for the boundary
stratum in C,, ,, corresponding to graphs of the form,

{

@% and
ANt

N——
Iy

These strata are images of the following operadic compositions,
o, : Cgrt1,m(l?) x Cr,(RY) = Cpm(l?)  and  oppy: Coprymir1 (HY) x Cpry 1 (HY) = T (HY),
so that the required factorization conditions are given, respectively, by
o, () = (=1)QI/Tp) AQin(T'r) and o (QT)) = (=1)7QT/Ta) AQ(T'4)
where we set A := ILU{k+1,...,k +[}. Both these conditions can be checked in the associated coordinate charts,
U = [0,6) x C;f12+1,m(Hd) x Cyr, (Rd) and U =10,0) x C;fIIJrl,m—l(Hd) X C#h,l(Hd)
using the same arguments as in in the proof of Theorem [B.2.5.1] but with two small subtleties:
(1) in the limit s — 0, s € [0,4), the differential form Acrepr,, ywe does not stay invariant but tends to
Nere B(T Il)o.)é" explaining thereby appearance of §2;, in the r.h.s. of the first factorization condition;
(2) contrary to the above case (1) the differential form Ac/cpr )we in the limit s — 0 does stay invariant; the
reason is that the point into which A-labelled points collapse is located on the boundary of the upper-half
space and, with no loss of generality, can be placed at 0 € H¢; then, by definition of the coordinate chart

Uy, the parameter s acts on the A-labelled configuration as an ordinary dilation while each we~ is both
translation- (along R%~! € H?) and dilation-invariant.

Therefore, we have the following

9.1.1. Theorem. Given a representation, p : & — Endy, v, , of the 2-coloured operad of Feynman diagrams in a
pair of vector spaces (V.,V,). Then, for any any homologically non-trivial smooth (or PA) differential (d—1)-form

w on Cao(H?), the formulae
Up = / Qm(l")> p(T)
FeZGn < Cn(RY)

define a Loo{d — 1}-structure on the vector space V.., and, for any MC-element v in (V.,vs), the formulae,

(52) w)r (01, ) ::Z;T Z </_ )Q(I‘)) PV ®@v1 ®...Qvy), v; € Vo,
n=0

’ FEGn+m Cn’m(Hd
define,
(i) in general, a non-flat Ax-algebra structure in V,[[h]] for d = 2,
(ii) in general, a non-flat Loo{d — 1}-algebra structure in V,[[h]] for d > 3.

9.2. Examples of propagators.
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9.2.1. Homogeneous volume form on a sphere. A differential form on Cy o(H?),

0 :=p* (Vol(5771))
where p : Ca o(H?) — C2(R?) is the natural projection, extends to the compactification Cs o(H?) and hence defines
a non-trivial de Rham field theory on the operad C'(HY).

9.2.2. Kontsevich (anti)propagators. Let [21,22] be an arbitrary configuration in Cy o(H?) and (z1, 22) be its
arbitrary representative in Conf Q)O(Hd). Let

dzi+ ...+ d2?

2
Tyq

ds? :=

be the standard hyperbolic metric on H? := {(xy,...,24) € R¥|2q4 > 0}. Let S% '(z;) and w) be the unit
hyperbolic sphere centered at z; and, respectively, its induced normalized volume form (with respect to the above
metric). Using the unique hyperbolic geodesic g(z1, 22) from z1 to za,

o
e/
21
we define a smooth map
PH : C’onfzyo(Hd) — S}d{_l(zl)
(21,22) — g(z1,22) N SF(21)

and set

wie (21, 22) = Py (W)
This form is R* x Reinvariant and hence defines a closed homologically non-trivial (d — 1)-form on Cy o(H?).
Moreover, it extends to the compactification 6270 (H?). For d = 2 this form is precisely the Kontsevich propagator

used in the construction of his formality map [Ko2|; hence the notation. We set wg(21, 22) := wi (22, 21) and call
it Kontsevich antipropagator.

9.3. Deformation quantization of associative algebras of polyvector fields. For any graded vector space
V, the associated pair X, = X, = gq(V) carries a natural representation of the Feynman operad &'¥. For
propagators considered in §9.2] the induced Lo.{d — 1} algebra structure on X, is, by Corollary §8.2.5.7] precisely
the Poisson-Schouten bracket ([89). Hence any propagator from §9.2] together with an MC element ~ in the degree
1 —d Lie algebra (gq(V),{ e }) makes, by Theorem [0.1.7] g4(V') into a (non-flat) A-algebra for d = 2 or into a
Loo{d — 1}-algebra for d > 3. The case d > 3 will be considered in more detail below while in this subsection we
assume from now on that d = 2 so that (g2(V'), { ® }) is the Schouten algebra, Ty, (V'), of formal polyvector fields
on V. Then an arbitrary Poisson structure, v € Tpoy(V'), and any propagator from the set {wo,wr,wz} defines
by formulae (52) a non-flat A structure on Tpo, (V). For v = 0 the only graph contributing to (G2)) is the one
consisting of two vertices on the real line with no edges,

(53) ———

so that p2=9 = 0 for m # 2 and ugzo is the ordinary product of polyvector fields. Thus, for v # 0, formulae (52I)
describe a deformation quantization of that ordinary product in 7Tpe, (V). Using de Rham field theories discussed
in §I0] below using a de Rham field theory on @(H) one can show that the three non-flat A.-algebras structures
on Tpoy (V) corresponding to propagators {wo,wr,wg} are all homotopy equivalent to each other. The simplest
of them is given by the propagator wy as in this case

/ WQ(F) =0
671,0(]}]1
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for any graph I' € &,, 2,_2 with n > 2 (the reason is that the differential form wy(I') is invariant under vertical
translations and hence vanishes for degree reasons). Hence the only graph contributing to g is the following one

so that ) = . The next term of the Ao-structure on 7o, (V) is given by,
=y /_ QT)or.
n>1Tedp41,2n—1 O

The initial n = 1 term in this sum is given by the graph
[}

L

of weight 1; the associated operator ®r is {y e ...}. Using the reflection 2 — —Z one can easily check that
fén . Q') = 0 for n even. For a graph I' € &,,41 2,1 let us denote by T'; its drawing in C), ; with the vertex

labelled by i put at the point in R; for any n > 2 we have, by Kontsevich vanishing Lemma 6.4 in [Ko2],
Z/ Q) = / QI)=0
=1 6n,l(]HI) 671+1(C)

i (pg) = pi(v) ={ve} =0
which is in a full agreement with the claim that formulae (52)) for w = wy define a non-flat A-structure. The
graphs

so that

v

give, for example, non-zero contributions to ug while

AN

and their products contribute to higher homotopies, p) -5. These graphs are not, of course, the only non-trivial
contributions; for example, the weight of the following graph

AKX

is non-zero so that it contributes, in general, to uJ. As we shall see below, this non-flat A.-structure on T (V) ~
OV @ A*V* interpolates, in a sense, two Koszul dual deformation quantizations on ®®*V and A®*V* associated
with propagators wx and, respectively, wy. Note in this connection that wy = %(wK + wi).

9.4. Kontsevich’s formality maps. As we saw in the previous section, any cohomologically non-trivial dif-
ferential 1-form, w, on Co(H) gives us a non-trivial A, structure on 7Tpey (V). The latter algebra contains two
subalgebras,
@.(V*) =: 0Oy and oM (V[—l]) = OV*[l]
which can be viewed as the rings of smooth formal function on affine manifolds V' and, respectively, V*[1]. Note
that the pairs,
(Xc = %Oly(V),X(/) = Ov) and (XC = %Oly(V), X(/)/ = OV*[l])
carry naturally representations of Feynman operads &+ and, respectively, & (see §7.3)). It is an elementary exercise
to check that any cohomologically nontrivial normalized differential 1-form w on Coo(H) satisfying the condition
(U|Sl+:0 (respectively, w|s1 = 0) defines by formulae (&) and ([&1) a De Rham field theory on C(H) of type &*
(respectively, &T).
46



The Kontsevich propagator wy satisfies the condition wgk]| §1=0 and hence defines by formulae (52) a morphism of
operads,

]:Chazns(U(Hd) — 5nd{Xc:TpoLy(V),Xé:OV}
which is the same as his famous formality map. Any MC element v in the Schouten algebra T,y (V) makes
Oy [[A]] into a (non-flat, in general) Ao-algebra. The same propagator wy and the same MC element v make also
Tpoiy(V)[[A]] into a (non-flat) A-algebra. It is clear that the natural inclusion

Ov [[Al] — Tpory (V)I[[7]]
is a morphism of these A -algebras which we denote by Fr : (Ov[[h]],wx) = (Tpoiy(V)[[A]], wk ), the symbol wg
indicates the origin of the induced Ayo-structures.
Similarly, the Kontsevich antipropagator wz satisfies the condition wx|g1 —g and hence defines a morphism of
operads,
]:Chazns(U(Hd) — ENd{XCZTpDZy(V),X[,’:Ov* nt

which coincides again with Kontsevich’s formality map. Thus any MC element +y in the Schouten algebra 7o, (V)

makes Oy-qj[[R]] into a (non-flat) A..-algebra. The same antipropagator wz and the same MC element vy make
also Tpory(V)[[71]] into a (non-flat) Asc-algebra. The natural inclusion

Ov[[Al] — Tpoty (V)I[7]
is a morphism of A-algebras which we denote by F : (Ov«[[h]], wig) = (Tpoty (V)[[R]], wie)-
Using the 4-coloured operad E(H) one can construct explicitly A.o-quasi-isomorphisms (in any direction),

(Tpoty V)[[A]]; wic) = (Tpoty (V)[A]];w0) S (Tpory (V)I{[1]], i)

and hence a diagram of canonical A,,-morphisms,

(Ov[[al), wi) = (Tpoty (V)[[Pl];wr) & (Tpory (V)I[[A]], w0) S (Tpoty (V)] wie) = (Ov-puy[[B]], wre)-

It would be interesting to see if this diagram can be used to define Koszul duality of generic non-flat A.o-structures
on Oy and Oy-py). For a subclass of MC elements v which make (Ov[[R]],wr) and (Ovy-j[[R]], wg) into flat Ao
algebras the Koszul duality was already established in [Sh2l [CFFR] (in fact, not all A, algebras appearing in
[CEFR] must be flat).

9.5. Deformation quantization of the Schouten bracket. In this section the propagator degree, d — 1, of all
operads under consideration is set by default to 2, i.e. d = 3.

For any vector space V', consider the following pair of Schouten-Poisson algebras,

g2(V) = (@*(V? o V[-1]), {e}1)=Tp(V)
and
gV eV) =@ (V' oVi-loV[=2loV'[-1),{ , }-2).
If {x} is a basis in V*, and {¢o}, {n*} and {y,} the associated bases in V[—1], V*[—1] and, respectively, V[-2],
then

g2(V) ~ R[[z%,¢4]] with {feg}_1:= Z gj iz )|f“q‘+f+qg1fa z];

and
g3(V[1] D V*) = R[[‘Tav Ya, nav ya]]

= =
gy o= (1200, 1O £0 Jy (-1 )m\gwga as (1 )m\gwga kil
’ Yo Oz ON™ M4 Oya Oz % O,
where we use the fact that || = —|2%| + 1, |n?| = |2%| + 1, |ya| = —|2%| + 2. Note that 6 := > n®y, is an MC
element in (g3(V[1] ® V*),{, }_2) making the latter into a dg Lie algebra with the de Rham type differential
d := {4, }_o; its cohomology is equal to R

with

There is a natural projection
mgs(VI[ e V) — g2(V)
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so that formulae completely analogous to ([B8) and ([@0) make the pair

(54) X1 =gs(V[1]®o V") and Xz = Tpoy(V)

into a representation of the 2-coloured operad &*, i.e. there exists a canonical morphism of 2-coloured operads,
p:BY — Endx, x,.

On the other hand, the propagator wx on Cs o(H?) defines, by Theorem [B.3.1] a morphism of 2-coloured operads,

OCLy := FChains(C(H?)) — &t
o B EF (fa’ QF) r

so that the composition of the above two morphisms makes the pair (B4) into an open-closed homotopy Lie 3-
algebra, i.e. defines (see §4.3))

(i) a Loo{2}-structure, v = {v,, : @"(X1[3]) = X2[4]}n>1, on X7, i.e. an ordinary Loo-structure on X7[2]; as
restriction of the propagator wx to the inner 2-sphere in Cy o(H?) is the standard homogeneous volume
form on S2%, we conclude by Corollary [B.2.5.1] that this L..{2}-structure is precisely the Poisson-Schouten
bracket { , }_o in X7;

(ii) a Loo{1}-structure, p = {uon : ©"(X2[2]) = X1[3]}n>1, on Xo; this structure is given by graphs I" whose
vertices lie in C = 9HB3; as weights of all such graphs w.r.t. wx are equal to zero, we conclude that this
Loo{1}-structure is trivial, i.e. all operations g, = 0 for n > 2;

(iii) a Loo-morphism, F, of Lie algebras,

F: (Xla{ ) }72) — (COder(Q.(X2[2]))a[ ) ])

given by sums over graphs I' € &*. Note that as degwyx = 2, only those graphs contribute to F which
satisfy the condition 3n 4+ 2m — 3 = 2, where n is the number of vertices of I lying in H?, m is the number
of vertices of T' lying in the boundary plane C = dH3 and [ is the number of edges of I'; put another way,
l =3k +m and n = 2k + 1 for some k € N.

At the first glance it might seem that, contrary to the case of C(H) where the graph (53) encodes a natural
graded commutative structure in Xy = Oy, there is no graph with non-zero weight in the case of C'(H?)-theory
which would encode the canonical Lie{1} structure on Xo = Tpo1y (V). However, this is not quite so: if v is an
arbitrary MC element of the Poisson-Schouten 2-algebra (X1 = g3(V*[1] @ V), {, }_2), then the aforementioned
Loo-morphism F' sends « into an MC element, F(v), of the Lie algebra (Coder(®®*(X2[2])),[, ]) which is the same
as a Loo{1}-structure on Xo = Tpory (V). If we take v = §, then the only graph contributing to F'(4) is the following
one

A
and has weight 1. Therefore, F'(6) is nothing but the ordinary Schouten structure, { ® }_1, in Tpor, (V)!
The conclusion is that any MC element, v, in the dg Lie algebra

(93(‘/*[1] ® V)v{ ’ }725 d= {57 }*2)
gives a deformation, F'(7y), of the Schouten bracket in 7,01, (V). As the former dg Lie algebra is cohomologically
trivial, any such a deformation of { e } _; must be homotopy trivial. Still homotopy trivial does not mean trivial,
and we can get some funny deformations of (o1, (V),{ ® }—1) in this way.
9.5.1. Proposition. To any Lie coalgebra structure,

A:V—=VAV

in a vector space V.= R% there corresponds an MC' element in the dg Lie algebra

(55) (ES(V* [1] D V) = R[[Iav 1/)a, naa ya]]v { ) }72) d= {57 }72)7
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given explicitly by the following formal power series

Z Copn™n y5+z Z mNC O 08, - CF e | gty
aﬁdelta n=1 " &G

where Cgﬁ € R are the structure constants of A in a basis x®,

— Z Cgﬁxo‘:vﬁ
af
and B, are the Bernoulli numbers, By = —%, By = %, B3 =0, By = 3—10, etc.
Proof. Set

1 5 pays 8
yi=—g5 > Cognn’s + ) Chla)n ys
a,B,8 a.f
for some C#(x) € R[[z*]]. This degree 3 element satisfies the MC equation in (53,

dy + %{%7}—2 =0
if and only if
COcCh, + CoCL y + ChCE, =
and the series CP(z) := 67 + C§ () satisfies the equations,
(56) C1,C5 (@) = E3(2)0, C(x) — € (2)0, € a).

The first equations are the co-Jacobi identities for A. The second equations have a nice geometric meaning. Let
g := V* be the Lie algebra dual to the coalgebra V; in a basis {e,} of g dual to {x®} the Lie algebra structure is

given by,
[easep] Z cl 567

Equations (b)) are equivalent to saying that the map,
f: g — Tq
o — E@ Cﬁ( )amﬁ
is a map of Lie algebras. Here 7y is the Lie algebra of formal vector fields on g, i.e. derivations of the completed

symmetric tensor algebra ®*V. It was proven in [Mel] (see Corollary 4.1.2 there) that for any Lie algebra g such
a canonical map exists and is given by the formulae

B G G2 . B 1,82 . n
- 5 + Z Z Cagl OCI&Z CCnflgnx II ’ x
n=1 """ £.G

This fact completes the proof. |

The Schouten brackets and the wedge product of polyvector fields make Ty, (R?) ~ R[[2%,),]] into a Gerstenhaber
algebra so that the Schouten bracket, { e }_1, is uniquely determined by its values on the generators ® and ,,

{z¥ezP} , = 0,
{to ® 3:6},1 = 03,
{¢aoz/13}_1 = 0.
9.5.1. Corollary. For any Lie coalgebra structure on V =R? the following formulae,
{z¥ezP} ; = 0,
T Bnh" G oG B gEighe .. ke
(Yaez’}1 = 05+ Z m YOG CE,CE o ata® gt
&i,Gi

{Vaevp} 1 = Z 75ty
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give a I-parameter deformation of the standard Gerstenhaber algebra structure on Tpory (V).

10. Towards the theory of open-closed morphisms of deformation quantizations

10.1. De Rham field theory on the first model of @.((C). In §8]l we introduced two different configuration
space models for the operad Mor (L), /QE((C) and C (H), the first being a compactification of the quotient space
Conf, (C)/{z = z + C} and the second being that of the space Conf,, (H)/{z — RTz + R}; moreover, each model
was equipped with two non-isomorphic semialgebraic structures. In [Me2] we studied de Rham field theories on
G(H) and obtained some exotic Ls-automorphisms of the Lie algebra Ty, (R?) for any d. In this section we
outline an analogous theory for the compactification E((C)

Consider the 2-coloured operad of semialgebraic manifolds
€(C) := C4(C) L &4 (C) L T4 (C)

equipped with a semialgebraic structure given by the embedding ([3]), and let

B%c) = c.(0) @ &z, ) @ &z,

be an associated 2-coloured operad operad of Feynman diagrams. Each summand in the latter direct sum is
spanned by (equivalence classes of) directed graphs satisfying all the conditions given in §7.1} the only important
difference from the definition of & in §7.1]is that graphs in each summand should be understood as drawn on the
corresponding summand of the operad /QE((C) and equipped thereby with the corresponding colour. We leave to
the reader as an exercise to write down explicitly composition rules in 66(({:) with the help of the basic 1-coloured

formula (B4)).
A de Rham field theory on @((C), that is a morphism of dg cooperads,

Q' (g0:0) — (e dor)
is the same as

(i) a pair of de Rham field theories on C4(C), i.e. a pair of maps

Qin : G"al - Qlclosed (Un (C)) and Qout : Gn,l — Qlclosed (Un (C))
T — Qe n>o T — Q%“t n>2

satisfying on the boundary strata of C,,(C) the factorization property ([@2), and

(ii) a map
{ E: G"al - Qlclosed(Q:n(C)) }
I — or n>92
such that =p, = —Er and, for any I' € Gy, 2,,—3, and any boundary embeddings

o~ — — ~

ja: € par1(C) X Cga(C) = €u(C),  jiay,y : Ck(C) X T, +1(C) X ... X €, 41(C) = €,(C)

one has

(57) Ja(Er) ~ (=1)74 1, A O,

(58) JAy.a, (Br) o (=1)740 AkQ?f{rAl,...,rAk} AEBr,, A...AZr, ,
where the sign (—1)741--4x is defined by the equality

Or = (_1)UA1WAkOF/{FA1)N }/\OI‘A1 /\.../\OpAk,

T,

i.e. it is given just by a rearrangement of the wedge product of edges of T'.
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The space €5(C) is the cylinder S! x [0, +00], see (23), whose boundaries are circles Sl and, respectively, SI,,,

corresponding to two points moving too close to each other and, respectively, to two points moving too far away
from each. For any pair of integers 4, j € [n], i # j, there is an associated forgetting map,

¢,(C) —  &(C)

Dij
59
( ) (217"'7’277«) — (Zi,Zj),

which extends to a smooth map of their compactifications,
Dij - Q:n((C) — Q:Q((C)

Hence, for any closed differential 1-form w on C, the pull-back p;j(w) is a well-defined one-form on ¢,(C). In

particular, for any graph I’ € G, ; and any edge e € E(T) there is an associated differential form p} (w) € Q* (/Q\n (©)),
where p. := p;; if the edge e begins at the vertex labelled by i and ends at the vertex labelled by j. Similar forgetful
maps 7;; and . can be defined for the configuration spaces Cq(C).

Let w be an arbitrary closed differential 1-form on €5 (C) such that the restrictions
(60) win = w|lg1  and Wyt = w|g1

out

define cohomologically non-trivial 1-forms on the circle normalized so that

/ Win = / Wout = 2.
St St

We call such a differential form a propagator on €4(C). Define a series of maps,

QN Gy = QYE,(C)) Qout s G, — Q!(€,(C))

(61) in . 7, (Win) in . . (wout)

r — Qf .—/\7% Po— o=\ =2

e€E(T) ecE(I")
and
= Gn,l — Ql(ényo)
(62 P s p B
ecE(T)

10.1.1. Theorem. For any propagator on ag(C) the associated data (61)-062) define a de Rham field theory on
the semialgebraic operad €(C).

Proof. Equation (B1)) is equivalent to the following one,

/ e e S, [ ok,
Cn—#a)ue(C)xCra(C) Cn—gayue(C) C4#4(C)

~—~~

Studying the embedding a(n—#A)LI.(C) x Cya(C) — @n(([:) in local coordinates defined by metric graphs, one
easily sees that both sides of the above equation are zero unless I'4 has 2# A — 3 edges (so that Q%"A is a top degree
form on C 4 4(C)) in which case the equality is almost obvious (cf. the proof of Proposition B.2.5.1]).

Consider next, for a partition [n] = A U. ..U Ay, the associated boundary stratum of the form,
Jaroay i Ck(C) X €4, (C) X ... x €4, (C) = €,(C).

By definition, this is a subset of En((C) obtained in the limit 7 — oo from a class of configurations in Con f,(C)
determined by the data:

(a) aconfiguration 7-p = (721,...,72) € Conf,(C) obtained from a standard configuration p = (21, ..., 2x) €
Cst(C) ~ Ck(C) by r-dilation,

(b) a collection of configurations, p; € @%ZAI((C), .o Dk € Q%ZAk(C)v 1 < i < k, placed, respectively, at the
positions 721, ..., 72 in H, that is, a configuration (721 + p1,..., 72k + pr) € Conf,(C).
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We have, therefore,

lim p? lim pz (w)

jAl ..... A, (EF) _ (_1)0'A ’’’’’’ Ay /\ T—=to0 €7 € H /\ Toto0 "7

e€E(T/{Ta;..Ta,}) i=lecE(Ta;)
As p}(w) is invariant under translations we have for each i € [k]
: pe (W) pe (@)
TEIEOO eeE/}“A ) eeE/(}‘Ai) 2m
On the other hand, for any e € E(I'/{T'4, ...T4, }),
lim pg (w) = 72 (Wout)

T—r+00
so that
li :
i pew) ot
ot — T/ {Tay,Ta b
eeE(F/{FAl---FAk})
These two facts prove equality (B8] and hence complete the proof of the Theorem. O

10.1.2. Corollary. For any propagator w on EQ(C) and any graded vector space V there are associated

(i) two Loo-structures on Tpory(V),
pt = {MZ" O " Tpoty (V) = Tpoty(V)[3 — 2n]}n>2 and .UO = {.Uout O poly(Rd) - %oly(Rd)B = 2n]}n>2,

given by formulae {3)-{A) for @ = Q" and, respectively, Q@ = Q°“*; pi" and pg“t coincide with the
Schouten bracket;
(ii) a Loo morphism,

Fo { Freb . onT o, (V) — Ty (RY[2 — 2] }
'-Yl®®")/n — Fn(ﬂ)/ly,’}/n) n>17

from ™ -structure to p*t-structure given by the formulae,
Id forn =1,
63 Fo(viy-oosvn) =
(63) (m n) { Zrean’%d Cr®r(y1y.-yn) forn>2
with
w
(64) Cr = /A A p—82( ).
€n(C) cepry T

10.1.3. Remark. If w is a propagator on ¢, (C) such that its restrictions (60) to both boundary circles coincide
with the standard homogeneous volume form dArg(z; — z2) on S*, then formulae (63)) and (64]) define a universal
L automorphism of the Schouten algebra of polyvector fields. The propagator

w(z1,22) = dArg(z1 — 22)
is well-defined on 62(([:) and satisfies the aforementioned boundary conditions. However, all the weights (64]) with

n > 2 vanish in this case so that the associated automorphism F' is just the identity map. Any other smooth
propagator on €9(C) is of the form

(65) w(z1, 22) = dArg(z1 — z2) + df (21, 22)
for some smooth (or semialgebraic) function f on /6\2 (C). It was proven in [Me2] that any such propagator defines

a Loo-automorphism of Tpery (V) which is homotopy equivalent to the trivial one. Thus the class of smooth
propagators on EQ(C) can not give us an exotic (i.e. homotopy non-trivial) universal automorphism of the Schouten
algebra. Hence one should try using singular propagators for that purpose (cf. [Ko3]) which have at most simple
polar singularity at the collapsing stratum S* C @,(C). We conjecture that

21 — %2

1
= —dl _—
@iz, 7) = qdlog T
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is an example of such suitable propagator on EQ(C) which gives us an exotic universal L,-automorphism of the
Schouten algebra via Corollary 10.1.21 We hope to discuss elsewhere our motivation for that conjecture, and its
relation to the Deligne-Drinfeld conjecture on the structure of the Grothendieck-Teichmiiller algebra grt.

De Rham field theories on the upper half space model of Mor(Ls) have been studied in [Me2].

10.2. On (auto)morphisms of deformation quantizations. Any de Rham field theory, 2, on the 4-coloured
operad,

C(H) = Co(C) | |Coa(@)| | €0 ()| |€a(T)| |Ta(C)| |Coo(m),

out
7

gives us an open-closed homotopy morphism between the two deformation quantizations corresponding to the “in
and “out” colours, respectively.

It follows from Tamarkin’s proof of Kontsevich formality theorem that the Grothendieck-Teichmiiller group, GRT,
acts (up to homotopy) on deformation quantizations. Following the general philosophy one can expect that this

action can be explicitly presented as an open-closed homotopy morphism determined by a propagator w € Q% (&)
2,0

which vanishes on all boundary strata of EQﬂo(H) except the inner cylinders, both Kontsevich eyes and the spaces
By and Bs shown in the following picture

It is not hard to construct such a de Rham field theory on @(H) out of a smooth propagator on Egyo(H) along the
lines explained in the previous section; however, as EQﬂo(H) is contractible to the topological circle, any such a theory
gives us a homotopy trivial open-closed transformation. Therefore again only singular propagators can, in principle,
give us explicit formulae for the action of GRT on deformation quantizations. One such singular propagator on
Ce.o(H) was introduced by Kontsevich in [Ko3] but a rigorous proof of his claim that this propagator works indeed
is not yet available in the literature (to the best knowledge of the author).

APPENDIX A. OPERADS AND COLOURED OPERADS [BM| [GJ, [GK] [LV]

A.1. Trees. Let T be the set of all possible connected genus 0 graphs constructed from the following 1-vertex
directed graphs called n-corollas,

the output leg

(66) /R n >0,

by taking their disjoint unions then and gluing some output legs to the same number of input legs. The resulting
graph is called a tree. The glued legs are called the edges of the tree, and all the rest legs are called the legs of the
tree. Each tree T has, by construction, a unique output leg. The set of edges of T is denoted by FE(T'), the set
of vertices by V(T'), and the set of input legs by L(T'). If #L(T) = n, then T is called an n-tree. The subset of
T consisting of n-trees is denoted by 7T,. Note that every edge as well as every leg of a tree is naturally directed;
we tacitly assume in all our pictures that the direction flow runs from the bottom to the top. For a vertex v, we
denote by In, the set of its input legs.

Let I be a finite set. An I-tree is an #I-tree equipped with a bijection I — L(T'). The set of I-trees is denoted by
Tr.
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A.2. S-modules. Let C be a symmetric monoidal category with the tensor product denoted by ® and the unit
object denoted by 1. We assume that the category C has small limits and colimits, and that for any object O the
functor O® preserves colimits.

Let S be the groupoid of finite sets. A functor O : & — C is called an S-module. The subcategory, S, of & whose
objects are the sets [n], n € N, and morphisms are the permutation groups S,, is the full sceleton of S. The
restriction of O to S is called an S-module. One can reconstruct O from its restriction to S by setting O(I) to be
the colimit

o) :=| P o(#l)

[#I—1 Sur

Given an S-module O and a tree T, one constructs a decorated tree T(O) as the colimit,

T<O> = @ O(I’ng(l)) & O(I?’Lg(g)) &K...Q0 O(Ino(#V(T))) ,
o [#V(T)]| >V (T) S v
and then defines an S-module, T(O) : § — C, which is given on a finite set I as the following colimit,
T(O)I) == P T(0).
TET:

The association T : O ~ T(O) is an endofunctor in the category of S-modules which comes canonically equipped
with a natural transformation ¢ : 7 o7 — 7T as, for any finite set I, there is a natural in O “tautological” map

T(T(O)I) — P T(0) = T(0)

TeTr

which sends a tree T7 € T(T (O)) whose vertices, v, are decorated by some O-decorated trees, T)) € T(O), into the
O-decorated tree T obtained from T” by replacing each v with T)/.

A.3. Definitions of an operad.

A.3.1. First definition. A non-unital operad is an S-module, O, together with a natural transformation,
p:T(O) — O
such that the diagrams,
TW_ 710y and 0 —T(0)
tl ul Rﬂl
(@)

0

commute. Here v : O — (T) stands for the trasnformation which identifies O(I) with the decorated I-corolla.

We omit the definition of a morphism of (non-unital) operads as it is obvious.

A.3.2. Example. For any S-module € the & module 7(€) has a natural structure of a non-unital operad called
the free operad generated by .

A.3.3. Example. For any vector space V the S-module Endy := {Hom(V®™, V)}, >0 has a natural structure of
an operad called the endomorphism operad of V.

Let 1 denote the exceptional tree without vertices, and set

TH:=Tu?t
be the enlarged family of trees. For any S-module O set the decorated graph 1(O) to be 1, the unit in the category
C.

An operad with unit is defined by replacing in the as bove definition of a non-unital operad the symbol T by the
symbol 7 +.
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A.3.4. Second definition. A non-unital operad is an S-module, O, together with a family of natural transfor-
mations,

{pr : T{O) — O}rer
parameterized by all possible tress from the family 7 such that

(67) W = pir/T © [T

for any subtree T/ C T. Here T/T" stands for the tree obtained from T by shrinking the whole subtree 7" into a
single L(T")-corolla, and figs : T(O) — (T/T"){O) stands for the natural transformation which equals pps on the
decorated vertices lying in T" and which is identity on all other vertices of T'. Enlarging the family of trees from T
to T as above, one obtains similarly a definition of an operad with unit.

A.3.5. Third definition. A non-unital operad is an S-module, O, together with a family of natural transforma-
tions,

{pr : T(O) — Olrerrea
parameterized by the subfamily 77¢¢ C T of 2-vertex trees such that for any three vertex tree T the diagram

T(O) — ' T/77(0)

g l lHT/T’

T/T"(0) ——> O

Hg 1

commutes. Here T’ and 7" stand for the two only possible 2-vertex subtrees of T

For arbitrary finite sets I and J let Ty be the I-corolla, Ty be the J-corolla, and, for any ¢ € I, let T(;_;.; be
the 2-vertex tree obtained by gluing the output vertex of T; into the i-labeled input leg of T;. The associated
composition

/’LT(I—i)uJ : O(I) ® O(J) — 0 ((I - Z) U J)

is often denoted in the literature by of 7

An operad with unit is, by definition, a non-unital operad equipped with a morphism 1, : 1 — O(e) for any one
point set e such that the compositions

O(1) = o) © 1% o(1) & 0(e) 25 O(1)

and
L.g1d st
OI) =10 == 0(e)0(I) = O)
are the identities for any finite set I and any ¢ € I.

A.3.6. Fourth definition. A non-unital operad is an S-module, O, together with a family of natural transfor-
mations,

icl

{Of L0(I) @ Q) O(f (i) — 0<J>}
fiJ—=I

f
parameterized by a family, {f : J — I}, of surjections of finite sets, such that, for any triple K %7 % I the
diagram

[O(1) @ ®,c; O ()] Qs Olg™1 () — L2 O()) © ® e, Olg™ (7))
O1) & [ i O (1) ®j,cp)-1() Olo ™ ()] 2
®og;
O(1) ® ®ye; O(f9)~1(0)) O(K)
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commutes. An operad with unit is, by definition, a non-unital operad equipped with a morphism 1 : 1 — O(e)
for any one point set e such that the compositions

OI) — O(I) @ 1%#1 Id@i?;#l O(I) ® O(e)®2#1 214 O(T)

and
O(I) = 1® O(I) = O(I)

are identities.

A.3.7. (Non)equivalences of definitions. All the four definitions of operads with unit are equivalent to each
other. The first three definitions of non-unital operads are equivalent to each other, but not to the fourth definition.
Every non-unital operad in the sense of the first three definitions is a non-unital operad in the sense of the fourth
definition, but, obviously, not vice versa. A free non-unital operad in the sense of the fourth definition uses leveled
trees rather than the ordinary ones.

In this paper we always understand a non-unital operad in the sense of any of the first three definitions. However,
when we work with non-unital coloured operads we can in principle have a mixture of both approaches, one
approach for one set of colours and another inequivalent approach for another set of colours. Such a mixture of two
non-equivalent approaches does indeed happen in the geometric models for various operads of homotopy morphisms
between homotopy algebras. We give a rigorous definition of that mixture below under the name of a non-unital
coloured operad of transformation type.

A.4. Coloured operads. Let ® be a set which we refer to as the set of colours. An n-corolla,
bo
, n=>0,
¢1 ¢2 ¢n

whose all legs are decorated with some (not-necessarily distinct) elements ¢g, ¢1,...,¢0, € @ is a called an -
coloured n-corolla. If the set ® consists just of a few elements, then we often make legs dashed or wiggy to indicate

their colours, for example

Let 7% be the set of all possible connected genus 0 graphs constructed from ®-coloured corollas by taking their
disjoint unions and then gluing some output legs with input legs of the same colour. The resulting graph is called
a ®-coloured tree.

Now repeating all the first three definitions above with the symbol T replaced by 7% we obtain three equivalent
definitions of a (non-unital) ®-coloured operad in a symmetric monoidal category C.

A.5. Coloured operads of transformation type. Many important examples of coloured operads come from
ordinary operads and their modules.

Let Oy, and O,y be ordinary non-unital operads. An S-module M is said to be a bimodule of transformation type
over operads O;, and O, if

(i) M is a right module over O, in the sense of the first definitions of a non-unital operad, i.e. for any finite
sets I and J and any ¢ € I there is a morphism
ol T M(I) @ O (J) — M((I — i) J)

K2

which is natural in 4, I and J and satisfies obvious associativity conditions;
(ii) M is a right pseudo-module over O;,, in the sense of the fourth definition of a non-unital operad, i.e. for
any surjection f :J —» I there is a morphism,

°r + O1) ® QM) — M(J)



[ f
such that, for any triple K 2 751 the diagram

[O) @ Qi O(F 1 (1)] ® ey Mg (1))

|

O & |®icr OU () ®; ey Mg~ (i) Z

800, l

O(I) ® ;e M((f9)7'(1))

or®Id

O(J) @ Qe Mlg™(j))

M(K)

Ofg
commutes.

The colimit Oy, ® M & O, has then a natural structure of a non-unital two-coloured operad of mixed type which
we call a non-unital coloured operad of transformation type. Such operads often occur when, for example, one
is interested in universal morphisms from O;,-algebras to O,,;-algebras. Propositions [3.1.1] and [5.1.1] describe
typical examples of such 2-coloured operads.

The above notion can be straightforwardly generalized to the case when O;, and O,,; are themselves non-unital
coloured operads. The associated colimits O;, & M & O, are also called non-unital coloured operad of transfor-
mation type. Theorem describes an example.
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very grateful to the referee for a spotting a mistake in the original definition of the operad G™ in §7.1.1 and for numerous
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