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Abstract

Model transformations are a key concept for modular and distributed model driven devel-
opment. In this context, triple graph grammars have been investigated and applied to several
case studies and they show a convenient combination of formal and intuitive specification
abilities. Especially the automatic derivation of forward and backward transformations out of
just one specified set of rules for the integrated model simplifies the specification and enhances
usability as well as consistency.

Since negative application conditions (NACs) are key ingredient for many model trans-
formations based on graph transformation we embed them in the concept of triple graph
grammars. As a first main result we can extend the composition/decomposition result for
triple graph grammars to the case with NACs. This allows us to show completeness and cor-
rectness of model transformations based on rules with NACs and furthermore, we can extend
the characterization of information preserving model transformations to the case with NACs.

The presented results are applicable to several model transformations and in particular to
the well known model transformation from class diagrams to relational data bases, which we
present as running example with NACs.

Keywords: model transformation, triple graph grammars, completeness,
correctness, negative application conditions

1 Introduction

Model transformations based on triple graph grammars have been introduced in [1, 2]. In order
to define a general framework independent of the specific domain and target language the corre-
spondences between source and target models are defined as relational mappings, where forward
and backward transformation rules are derived automatically.

In [3] we showed how to analyze bi-directional model transformations based on triple graph
grammars with respect to information preservation, which is based on a decomposition and com-
position result for triple graph grammar sequences. Moreover, completeness and correctness of
model transformations have been studied on this basis in [4, 5]. All formal results in these papers,
however, do not consider negative application conditions (NACs), which are very important for
several practical applications (see [6]). The main purpose of this paper is to extend TGGs with
NACs on a formal basis.

As a main result we show completeness, correctness and information preservation of model
transformations with NACs. Our new result can be used to check, whether a model transformation
performed by an algorithm using triple graph transformations with NACs such as [6] is correct
(see Section 7). The relationship between forward and backward model transformation sequences
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was analyzed already in [3] based on a canonical decomposition and composition result for triple
transformations and this paper extends it to the case with NACs.

In Section 2 we review triple graphs and introduce the case study for a model transformation
from class models to relational data base models. Section 3 reviews triple rules and triple graph
transformations as introduced in [1] and extends them to the case with NACs showing that the
composition and decomposition result is also valid for this extension. The second main result of
correctness and completeness of model transformations based on source consistent model transfor-
mations with NACs is presented in Section 4 and explained on a concrete model transformation
sequence of the example. Section 5 shows how the characterization of information preserving bidi-
rectional model transformations is extended to the case with NACs. Related and future work are
discussed in sections 6 and 7, respectively.

2 Review of Triple Graphs

Triple graph grammars [1] are a well known approach for bidirectional model transformations.
Models are defined as pairs of source and target graphs which are connected via an intermediate
correspondence graph together with its embeddings into these graphs. In [2], Königs and Schürr
formalize the basic concepts of triple graph grammars in a set-theoretical way, which was gener-
alized and extended by Ehrig et. el. in [3] to typed, attributed graphs. In this section, we shortly
review triple graphs, while triple rules are defined in Sec. 3 together with the extension to negative
application conditions (NACs).

Definition 1 (Triple Graph and Triple Graph Morphism). Three graphs GS, GC , and GT , called
source, connection, and target graphs, together with two graph morphisms sG : GC → GS and
tG : GC → GT form a triple graph G = (GS

sG← GC
tG→ GT ). G is called empty, if GS, GC , and

GT are empty graphs.
A triple graph morphism m = (s, c, t) : G→ H between two triple graphs G =(GS

sG← GC
tG→ GT )

and H = (HS
sH← HC

tH→ HT ) consists of three graph morphisms s : GS → HS, c : GC → HC and
t : GT → HT such that s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective, if morphisms s, c and
t are injective. A typed triple graph G is typed over a triple graph TG = (TGS ← TGC → TGT )
by a triple graph morphism tG : G→ TG.
Example 1. The type graph of the ex-
ample is given in Fig. 1 showing the

colsattrs
parent

:CT

:AC

next

Class
name: String

Attr

name: String

type: String

Column

name: String

type: String

next

Table

name: String

Figure 1: Triple type graph for CD2RDBM

structure of class diagrams in the source
component and relational databases in
the target component. Classes corre-
spond to tables and attributes to columns.
Throughout the example, originating from
[6] and [3], elements are arranged left, center, and right according to the component types source,
correspondence and target. Morphisms starting at a connection part are given by dotted arrow
lines. Note that the case study is equipped with attribution, which is based on the concept of
E-graphs [7].

The extension of the results of this paper to the case with attributes shall be straight forward,
all results can be shown in the framework of weak adhesive HLR categories and hence, also for
the category AGraphsATG of attributed graphs.

3 Triple Graph Grammars with NACs

Many model transformations use the concept of negative application conditions (NACs) introduced
in [8]. NACs can ensure termination and they can control the application of model transformation
rules by defining forbidden structures as extensions of left hand sides of rules. If a forbidden
structure is present around the selected match, the corresponding rule is not applicable and the
match is invalid, i.e. NACs restrict the applicability of model transformation rules.
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While triple graph grammars (TGGS) are an elegant way to descriptively define model trans-
formations by defining triple rules that specify the synchronous creation of source and target
model, formal results are mainly given for the case of TGGs without NACs. In this section we
review triple rules, derivation of transformation rules and we define NACs for triple rules. The
case study presents rules with NACs motivated by a similar model transformation in [6], where
NACs are used to ensure well formed list structures.

A triple rule is used to build up source and target graphs as well as their connection graph,
i.e. they are non-deleting. Structure filtering which deletes parts of triple graphs, is performed by
projection operations only, i.e. structure deletion is not done by rule applications.

Definition 2 (Triple Rule and Triple Transformation Step).
A triple rule tr consists of triple graphs L and R, called left-
hand and right-hand sides, and an injective triple graph mor-
phism tr = (s, c, t) : L→ R. Given a triple rule tr = (s, c, t) :
L→ R, a triple graph G and an injective triple graph mor-
phism m = (sm, cm, tm) : L → G, called triple match m, a
triple graph transformation step ( TGT-step) G =

tr,m
==⇒ H from

G to a triple graph H is given by three pushouts (HS , s′, sn),
(HC , c′, cn) and (HT , t′, tn) in category Graph with induced
morphisms sH :

L = (LS

tr �� s ��

LC
sLoo

c ��

tL // LT )
t��

R = (RS RCsR

oo
tR

// RT )

LS

��

sm xxqqq LC
oo //

��

cm }}{{
LT

��

tm ||yy
G = (GS

tr
�� s′ ��

GC
oo //

c′ ��

GT )

t′ ��
RS

snxx
RC

oo //
cn}}

RT

tn||yy
H = (HS HCsH

oo
tH

// HT )

HC → HS and tH : HC → HT . Morphism n = (sn, cn, tn) is called comatch.

Moreover, we obtain a triple graph morphism d : G→ H with d = (s′, c′, t′) called transforma-
tion morphism. A sequence of triple graph transformation steps is called triple (graph) transfor-
mation sequence, short: TGT-sequence. Furthermore, a triple graph grammar TGG = (S, TR)
consists of a triple start graph S and a set TR of triple rules. Given a triple rule tr we refer by
L(tr) to its left and by R(tr) to its right hand side.

Definition 3 (Triple, Source and Target Language). A set of triple rules TR defines the triple
language VL = {G | ∅ ⇒∗ G via TR} of triple graphs. Source language V LS and target language
are derived by projection to the triple components, i.e. V LS = projS(V L) and V LT = projT (V L),
where projX is a projection defined by restriction to one of the triple components, i.e. X ∈
{S, C, T}.

Definition 4 (Derived Triple Rules). From each triple rule tr = L → R we have the following
source, forward, target and backward rules:

(LS

s ��
∅oo

��

// ∅)
��

(RS ∅oo // ∅)
source rule trS

(∅
��

∅oo

��

// LT )
t ��

(∅ ∅oo // RT )
target rule trT

(RS

id ��

LC
s◦sLoo

c ��

tL // LT )
t��

(RS RC
sRoo tR // RT )

forward rule trF

(LS

s ��

LC
sLoo

c ��

t◦tL // RT )
id ��

(RS RC
sRoo tR // RT )

backward rule trB

Source rules allow to create all elements of V LS as restriction of VL, but they contain less
restrictions for matches during transformation in comparison to their corresponding complete
triple rules. Thus, they possibly allow to generate more elements than V LS contains. This means
that in general we have inclusion V LS ⊆ V LS0 = {GS | ∅ =⇒∗ GS via TRS} resp. V LT ⊆ V LT0 =
{GT | ∅ =⇒∗ GT via TRT }, where TRS and TRT are the sets of source resp. target rules derived
from TR.

Definition 5 (General Negative Application Condition). Given a triple rule tr = (L tr→ R), a
general negative application condition (NAC) (N, n) consists of a triple graph N and an injective
triple graph morphism n : L→ N .
A match m : L→ G is NAC consistent if there is no injective q : N → G such that q ◦ n = m. A
triple transformation G

∗⇒ H is NAC consistent if all matches are NAC consistent.

Definition 6 (Source-Target Negative Application Condition). A source-target NAC (N, n)
is a NAC with injective triple graph morphism n : L → N with n = (nS , idLC

, idLT
) or
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n = (idLS
, idLC

, nT ).
This means a source-target NAC is a NAC which only prohibits the existence of certain structures
either in the source ( source NAC) or in the target part ( target NAC).

:Class

name=n
:CT

:Table

name=n

Class2Table(n:String)

:parent

:Class

:Class

name=n

:CT :Table

:CT

Subclass2Table(n:String)

++
++

++

++++
++

Figure 2: Rules for transforming classes to tables

In most usecases we encounter only source-target NACs, therefore we regard them as the
standard case. In the following when speaking of NACs we always mean source-target NACs. If
this is not the case we will explicitly refer to the term general NAC.

NAC1
NAC2

NextAttr2NextColumn(n:String, t:String)

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t
++

:cols

:next

:next
:Column

++
:Attr

:attrs

:next

:next

NAC1
NAC2

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t

:cols

:next

:next
:Column

++

Attr2NextColumn(n:String, t:String)

NAC1
NAC2

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t

Attr2Column(n:String, t:String)

NAC1
:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs

++++

Source rule: Attr2ColumnS(n:String, t:String)

NAC1

:cols

:AC

:Class

:Attr

name=n

type=t

:attrs

:CT t1:Table

:Column

:cols

++

++++

:Column

name=n

type=t

Forward rule: Attr2ColumnF(n:String, t:String)

Figure 3: Rules for transforming attributes to columns and derived source and forward rule

Definition 7 (Derived Triple Rules with NACs). Given a triple rule tr with NACs and let tr be
its underlying triple rule without NACs. Let trS, trT , trF and trB be the derived rules from tr
according to Def. 4. Then, source rule trS, target rule trT , forward rule trF and backward rule
trB are given by the underlying rules trS, trT , trF and trB, where additionally trS as well as trB

contain all source NACs of tr and trT as well as trF contain all target NACs of tr.

Example 2 (Triple Rules). Examples for triple rules are given in Fig. 2 and Fig. 3 in short
notation. Left and right hand side of a rule are depicted in one triple graph. Elements, which
are created by the rule, are labeled with green ”++” and marked by green line coloring. Rule
”Class2Table” synchronously creates a class in a class diagram with its corresponding table in the
relational database. Accordingly the other rules create parts in all components. NACs are indicated
by red frames with label “NAC” around the extension of the left hand side of a rule. Each forward
rule is derived from a triple tr rule as follows: The source components which are created in tr are
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preserved by trF , i.e. they are in the left hand side. The source NAC is omitted and the rest of
tr keeps the same. For example the forward rule of “Attr2Colum” is derived by omitting “NAC1”
and adding to the left hand side the attribute node with its connecting edge to the class node shown
on the right part of Fig. 3.

Theorem 1 as a main technical result of the paper shows that TGT-sequences can be decom-
posed to source and forward sequences and composed out of them. All together this correspondence
is bijective. The result uses the following notion of match consistency.

Definition 8 (Match and Source Consistency). Let tr∗S and tr∗F be sequences of source rules triS
and forward rules triF , which are derived from the same triple rules tri for i = 1, . . . , n. Let
further G00 =

tr∗S==⇒ Gn0 =
tr∗F==⇒ Gnn be a TGT-sequence with (miS , niS) being match and comatch of

triS (respectively (miF , niF ) for triF ) then match consistency of G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn means
that the S-component of the match mi is uniquely determined by the comatch niS (i = 1, . . . , n).

A TGT-sequence Gn0 =
tr∗F==⇒ Gnn is source consistent, if there is a match consistent sequence

∅ =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn. Note that by source consistency the application of the forward rules is
controlled by the source sequence, which generates the given source model.

The following Lemma 1 and Lemma 2 are needed as part of the proof for our main result,
Theorem 1.

Lemma 1. The injective match of a triple rule tr is NAC-consistent if and only if the injective
matches of the derived rules trS and trF are NAC-consistent.

Proof of Lemma 1. From [3] we know that any tr is equal to the E-concurrent rule trS ?E trF

with E = LF . Now we consider the NACs of tr and the corresponding NACs of trS and trF (as
described in Def. 7) using this construction (see fig. 4 resp. fig. 7). It remains to show that
the matches of the source rule trS and the forward rule trF are NAC consistent if and only if the
match of the triple rule tr is NAC consistent.

(NS ← ∅ → ∅)

q′

���
�

�
�

�
�

�
�

�
�

�
�

(LS ← ∅ → ∅)
trS //

(id,∅,∅)
��

n′=(nS ,∅,∅) 44jjjjjjjjjjj
(RS ← ∅ → ∅)

(id,∅,∅)

''PPPPPPPP
(RS ← LC → LT )

trF //
id

wwnnnnnnnn
(RS ← RC → RT )

id
��

(LS ← LC → LT ) //

(mS ,mC ,mT )
��

n=(nS ,id,id)

��

(RS ← LC → LT ) //

(m′S ,mC ,mT )
��

(RS ← RC → RT )

��
(GS ← GC → GT ) // (HS ← GC → GT ) // (HS ← HC → HT )

(NS ← LC → LT )
q

jjT T T T T T

Figure 4: E-concurrent rule with source NAC

• match of tr is NAC-consistent for source NAC ⇒ match of trS is NAC-consistent: Assume
trS is not NAC consistent ⇒ ∃ injective q′ : N ′ → G with q′ = (q′S , q′C , q′T ) such that
q′ ◦ n′ = (mS , ∅, ∅). Then we are able to construct an injective morphism q : N → G with
q = (q′S , mC , mT ) such that q◦n = (mS , mC , mT ) (fig. 4). q is a valid triple graph morphism
if (1) and (2) commute in fig. 5. (2) commutes because (mS , mC , mT ) is a valid morphism by
construction and therefore commutes. sG◦mC = mS◦sL = q′S◦nS◦sL = q′S◦sN ◦id = q′S◦sN ,
hence (1) commutes too. This means tr is not NAC consistent ⇒ contradiction!

• match of trS is NAC-consistent ⇒ match of tr is NAC-consistent for source NAC: Assume
tr is not NAC consistent ⇒ ∃ injective q : N → G with q = (qS , qC , qT ) such that
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L

n

��
(mS ,mC ,mT )

**

(LS

nS

��
mS

��

LC
//

sL

oo

id

��
mC

��

LT )

id

��
mT

��

N

q

��

(NS

q′S
��

(1)

LC
//

sN

oo

mC

��
(2)

LT )

mT

��
G (GS GC

//
sG

oo GT )

Figure 5: constructed morphism q is valid

LS

n′

��
(mS ,∅,∅)

**

(LS

nS

��
mS

��

∅ //oo

∅
��

∅

��

∅)

∅
��

∅

��

N ′

q′

��

(NS

qS

��
(1)

∅ //oo

∅
��

(2)

∅)

∅
��

G (GS GC
//oo GT )

Figure 6: constructed morphism q′ is valid

q ◦ n = (mS , mC , mT ). Then we are able to construct an injective morphism q′ : N ′ → G
with q′ = (qS , ∅, ∅) such that q′ ◦ n′ = (mS , ∅, ∅) (fig. 4). q′ is a valid triple graph morphism
if (1) and (2) commute in fig. 6, which they obviously do. This means trS is not NAC
consistent ⇒ contradiction!

• match of tr is NAC-consistent for target NAC ⇒ match of trF is NAC-consistent: Assume
trF is not NAC consistent ⇒ ∃ injective q′ : N ′ → G′ with q′ = (q′S , q′C , q′T ) such that
q′◦n′ = (m′S , mC , mT ). Then we are able to construct an injective morphism q : N → G with
q = (mS , mC , q′T ) such that q◦n = (mS , mC , mT ) (fig. 7). q is a valid triple graph morphism
if (1) and (2) commute in fig. 8. (1) commutes because (mS , mC , mT ) is a valid morphism by
construction and therefore commutes. tG◦mC = mT ◦tL = qT ◦nT ◦tL = qT ◦tN ◦id = qT ◦tN ,
hence (2) commutes too. This means tr is not NAC consistent ⇒ contradiction!

• match of trF is NAC-consistent ⇒ match of tr is NAC-consistent for target NAC: Assume
tr is not NAC consistent ⇒ ∃ injective q : N → G with q = (qS , qC , qT ) such that
q ◦ n = (mS , mC , mT ). Then we are able to construct an injective morphism q′ : N ′ → G′

with q′ = (m′S , mC , qT ) such that q′ ◦ n′ = (m′S , mC , mT ) (fig. 7). q′ is a valid triple graph
morphism if (1) and (2) commute in fig. 9, which they do analoguously. This means trF is
not NAC consistent ⇒ contradiction!

(LS ← ∅ → ∅)
trS //

(id,∅,∅)
��

(RS ← ∅ → ∅)
(id,∅,∅)

((PPPPPPPP
(RS ← LC → LT )

trF //
id

vvnnnnnnnn

n′=(id,id,nT )

��

(RS ← RC → RT )

id��
(LS ← LC → LT ) //

(mS ,mC ,mT )
��

n=(id,id,nT )

��

(RS ← LC → LT ) //

(m′S ,mC ,mT )��

(RS ← RC → RT )

��
(GS ← GC → GT ) // (HS ← GC → GT ) // (HS ← HC → HT )

(LS ← LC → NT )
q

jjU U U U U
(RS ← LC → NT )
q′

hhP P P P

Figure 7: E-concurrent rule with target NAC
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L

n

��
(mS ,mC ,mT )

**

(LS

id

��
mS

��

LC
tL //oo

id

��
mC

��

LT )

nT

��
mT

��

N

q

��

(LS

mS

��
(1)

LC
tN //oo

mC

��
(2)

NT )

q′T
��

G (GS GC
tG //oo GT )

Figure 8: constructed morphism q is valid

LF

n′

��
(m′S ,mC ,mT )

((

(RS

id

��
m′S

��

LC
//oo

id

��
mC

��

LT )

nT

��
mT

��

N ′

q′

��

(RS

m′S
��

(1)

LC
//oo

mC

��
(2)

NT )

qT

��
G′ (HS GC

//oo GT )

Figure 9: constructed morphism q′ is valid

Lemma 2. Given sequentially independent rules tr2S and tr1F with NACs the following holds:
The injective matches of G10 =

(tr1F ,m1)======⇒ G11 =
(tr2S ,m2)======⇒ G21 are NAC consistent if and only if the

injective matches of G10 =
(tr2S ,m2′ )======⇒ G20 =

(tr1F ,m1′ )======⇒ G21 are NAC consistent too.

Proof of Lemma 2. Having constructed a NAC consistent match consistent sequence (3) we now
want to reorder the rules according to Fig. 10 until we have sequence (2). We have to show that
upon swapping the rules the NAC consistency is preserved (see fig. 11 resp. fig. 13).

L1

m1

��

tr1 // R1

  BBBBBBBB L2

m2~~||||||||

tr2 //

d

tti i i i i i i i i i i i R2

��
G1 g1

// G2 g2
// G3

G11

(tr2S ,m2)

�&
EEEEEEE

EEEEEEE

G10

(tr1F ,m1)
8@yyyyyyy

yyyyyyy

(tr2S ,m2′) �&
EEEEEEE

EEEEEEE
G21

G20

(tr1F ,m1′)

8@yyyyyyy

yyyyyyy

Figure 10: sequential independence of source and forward rules

• match m2 of tr2S is NAC consistent ⇒ match m′2 = d of tr2S is NAC consistent: Assume
d is not NAC consistent ⇒ ∃ injective q′ : N → G10 with q′ = (q′S , q′C , q′T ) = (q′S , ∅, ∅) such
that q′ ◦ n = d. Furthermore we know that g1 ◦ d = m2. Thus g1 ◦ q′ ◦ n = m2. Because g1

is based on a forward rule we know that (G10)S = (G11)S and g1S
= idG10S

⇒ ∃ injective
q : N → G11 with q = g1 ◦q′ = (q′S , ∅, ∅) such that q◦n = m2 because q◦n = g1 ◦q′ ◦n = m2.
q is a valid triple graph morphism if (1) and (2) commute in fig. 12, which they obviously
do. This means m2 is not NAC consistent ⇒ contradiction!

• match d of tr2S is NAC consistent ⇒ match m2 of tr2S is NAC consistent: Assume m2

is not NAC consistent ⇒ ∃ injective q : N → G11 with q = (qS , qC , qT ) = (qS , ∅, ∅) such
that q ◦ n = m2. We know that g1 ◦ d = m2. Thus g1 ◦ d = q ◦ n. Because g1 is based on
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N

q

��

7
/

'
�

�
�

�

q′

��

�
�

�

�

�

�

�

L2

m2

��

tr2S

""EEEEEEEE

n=(nS ,∅,∅)

OO

d

�����������������

G11

g2 ""EEEEEEEE R2

��

�����������������

G10

g1

<<yyyyyyyy

""EEEEEEEE G21

G20

<<yyyyyyyy

Figure 11: sequential independence: source rule with NAC

L2

n

��
m2

&&

(L2S

nS

��
m2S

��

∅ //oo

∅
��

∅

��

∅)

∅
��

∅

��

N

q

��

(NS

q′S
��

(1)

∅ //oo

∅
��

(2)

∅)

∅
��

G11 (G11S G11C
//oo G11T )

Figure 12: constructed morphism q is valid

a forward rule we know that (G10)S = (G11)S and g1S
= idG10S

⇒ dS = qS ◦ nS ⇒ ∃
injective q′ : N → G10 with q′ = (qS , ∅, ∅) such that q′ ◦ n = d because q′S ◦ nS = dS . q′ is a
valid triple graph morphism by the same arguments as in fig. 12. This means d is not NAC
consistent ⇒ contradiction!

N

q

��

�
�

��
'

/
7
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7
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,
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#

R1
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L1

m1
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tr1F

<<yyyyyyyy
n

OO

g3◦m1

2222222

��2
222222

G11

""EEEEEEEE

G10

g1yyyy

<<yyyy

g3
EEEE

""EEEE

G21

G20

<<yyyyyyyy

Figure 13: sequential independence: forward rule with NAC

• match m1 of tr1F is NAC consistent ⇒ match m′1 = g3 ◦ m1 of tr1F is NAC consistent:
Assume m′1 is not NAC consistent ⇒ ∃ injective q′ : N → G20 with q′ = (q′S , q′C , q′T )
such that q′ ◦ n = m′1. We know that (L1)S = NS and (L1)C = NC with nS = idL1S

and
nC = idL1C

. Furthermore g3 is based on a source rule which means that (G10)T = (G20)T

and g3T
= idG10T

. Thus ∃ injective q : N → G10 with q = (m1S
, m1C

, q′T ) such that
q ◦ n = m1. q is a valid triple graph morphism if (1) and (2) commute in fig. 14. (1)
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commutes obviously. tG10 ◦m1C = m1T ◦ tL1 = q′T ◦ nT ◦ tL1 = q′T ◦ tN ◦ id = q′T ◦ tN , hence
(2) commutes too. This means m1 is not NAC consistent ⇒ contradiction!

L1

n

��
m1

&&

(L1S

id

��
m1S

��

L1C

tL1 //oo

id

��
m1C

��

L1T )

nT

��
m1T

��

N

q

��

(NS

m1S

��
(1)

NC
tN //oo

m1C

��
(2)

NT )

q′T
��

G10 (G10S G10C

tG10 //oo G10T )

Figure 14: constructed morphism q is valid

• match m′1 = g3 ◦ m1 of tr1F is NAC consistent ⇒ match m1 of tr1F is NAC consistent:
Assume m1 is not NAC consistent ⇒ ∃ injective q : N → G10 with q = (qS , qC , qT )
such that q ◦ n = m1. We know that (L1)S = NS and (L1)C = NC with nS = idL1S

and
nC = idL1C

. Furthermore g3 is based on a source rule which means that (G10)T = (G20)T

and g3T
= idG10T

. Thus ∃ injective q′ : N → G20 with q′ = (m′1S , m′1C , qT ) such that
q′ ◦ n = g3 ◦m1. q′ is a valid triple graph morphism by the same arguments as for fig. 14.
This means m′1 is not NAC consistent ⇒ contradiction!

Theorem 1 (Decomposition and Composition of TGT-Sequences with NACs).

1. Decomposition: For each TGT-sequence

G0 =tr1=⇒ G1 =⇒ . . . =trn==⇒ Gn (1)

with NACs there is a corresponding match consistent TGT-sequence

G0 = G00 =tr1S==⇒ G10 =⇒ . . . =trnS==⇒ Gn0 =tr1F==⇒ Gn1 =⇒ . . . =trnF==⇒ Gnn = Gn (2)

with NACs.

2. Composition: For each match consistent transformation sequence (2) with NACs there is
a canonical transformation sequence (1) with NACs.

3. Bijective Correspondence: Composition and decomposition are inverse to each other.

Remark 1 (Injective matches). Opposed to the version without NACs in [3] the matches of the
triple rules are required to be injective. If we allow non-injective matches, then we must allow n
and q in definition 5 to be non-injective as well.

Proof of Theorem 1. This proof is based on the proof without NACs in [3] and the following
triangle diagram.

G00
tr1S +3

tr1 �&
EEEEEEE

EEEEEEE
G10

tr2S +3

tr1F

��

G20 . . .
trnS +3

tr1F

��

Gn0

tr1F

��
G11

tr2S +3

tr2
!)JJJJJJJJJ

JJJJJJJJJ
G21 . . .

trnS +3

tr2F

��

Gn1

tr2F

��. . .

trn !)JJJJJJJJJ

JJJJJJJJJ . . .

trnF

��
Gnn
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In a first step we want to decompose the match consistent NAC-consistent TGT-sequence (1)
with injective matches into an intermediate version

G0 = G00 =tr1S==⇒ G10 =tr1F==⇒ G11 =tr2S==⇒ . . . =trnS==⇒ Gn(n−1) =trnF==⇒ Gnn = Gn (3)

which is match consistent and NAC-consistent.
In [3] it has been shown that any tr is equal to the E-concurrent rule trS ?E trF without NACs

with E = LF - the left hand side of the forward rule. Using this result following Lemma 1 multiple
times we are able to split the triple rules with NACs until we obtain sequence (3).

Thereafter we can reorder the rules until we have sequence (2). In [3] it has been shown that
triS and trjF are sequentially independent for i > j without NACs. Following Lemma 2 multiple
times finally leads to sequence (2) which is still match consistent and NAC-consistent.

Analogously we can transform sequence (2) back into sequence (1). The bijective correspon-
dence follows from the bijective correspondence of the Concurrency Theorem and the Local
Church-Rosser Theorem in conjunction with the equivalence of the NAC-consistency according
to Lemma 1 and 2.

4 Completeness and Correctness of Model Transformations
with NACs

Model transformations with NACs from models of the source language VLS0 to models of the
target language VLT0 can be defined on the basis of forward rules as shown in [3] without NACs.
Vice versa, it is also possible to define backward transformations from target to source graphs
using derived backward rules leading to bidirectional model transformations. In this section we
analyze completeness and correctness of model transformations. Main results are based on the
composition and decomposition result in Thm. 1 in Sec. 3.

Definition 9 (Model Transformation). MT = (GS , G =
tr∗F==⇒ H,HT ) is a model transformation

from GS to HT , if G =
tr∗F==⇒ H is source consistent with NACs, where GS and HT are the source

and target graphs of G and H, respectively.

As pointed out already source consistency with NACs of G =
tr∗F==⇒ H means that the forward

sequence is controlled by the corresponding source sequence ∅ =
tr∗S==⇒ G which generates G. Model

transformations are correct and complete with respect to the source and target language V LS =
projS(V L) and V LT = projT (V L) (see Def. 3).

Theorem 2 (Correctness with NACs). Each model transformation MT = (GS , G =
tr∗F==⇒ H,HT )

is correct, i.e. GS ∈ V LS and HT ∈ V LT .

Proof. (G =tr∗=⇒ H) source consistent ⇒ ∃ (∅ =
tr∗S==⇒ G =

tr∗F==⇒ H) match consistent and GS = HS

⇒ ∃ (∅ =tr∗=⇒ H) by Thm. 1 ⇒ H ∈ V L and HT ∈ V LT and GS = HS ∈ VLS .

Theorem 3 (Completeness with NACs). For each H ∈ VL : ∃ model transformation MT =

(GS , G =
tr∗F==⇒ H,HT ) with GS ∈ V LS , HT ∈ V LT . This means in particular:

• For each HT ∈ V LT : ∃ GS ∈ V LS and model transformation MT = (GS , G =
tr∗F==⇒ H,HT ),

• For each GS ∈ V LS : ∃ HT ∈ V LT and model transformation MT = (GS , G =
tr∗F==⇒ H,HT ).

Proof. H ∈ V L ⇒ ∃ (∅ =tr∗=⇒ H) =Thm.1====⇒ ∃ match consistent (∅ =
tr∗S==⇒ G =

tr∗F==⇒ H) and GS = HS

⇒ GS ∈ V LS , HT ∈ VLT and G =
tr∗F==⇒ H is source consistent ⇒ MT = (GS , G =

tr∗F==⇒ H,HT ) is
model transformation.
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Forward Sequence Elements Backward Sequence Elements
Step Matched Created Matched Created
1 s1 c1,t1 t1 s1,c1
2 s1,c1,t1,s4,s9 c4 s1,c1,t1 s4,s9,c4
3 s1,s2,s7,c1,t1 c2,t2,t5 s1,c1,t1,t2,t5 s2,s7,c2
4 s1-s3,s6-s8,c1,t1,t2,t5 c3,t3,t6,t7 s1,c1,t1-t3,s2,c2,s7,t5-t7 c3,s3,s6,s8
5 s4,s5,s10,c4,t1,t3,t6 c5,t4,t8,t9 s4,c4,t1,t3,t4,t8,t9 c5,s5,s10

Table 1: Steps forward and backward model transformation

Coming back to the example of a model transformation from class diagrams to database models,
the relevance and value of the given theorems can be described from the more practical view.
The resulting data base of the following model transformation is correctly typed and completely
corresponds to the class diagram, which is the source model of the transformation.

Example 3. Fig. 15 shows triple graph G5 of the model transformation (GS = G0,S , G0 =
tr∗F==⇒

G5, GT = G5,T ) with the following forward sequence: G0 =Class2Table=======⇒ G1 =Subclass2Table=========⇒
G2 =Attr2Col=====⇒ G3 =NextAttr2NextCol============⇒ G4 =Attr2NextCol=========⇒ G5,
where G0 is generated by the correspond-

t5:cols

s9:parent

c2:

AC

s8:next

s1:Class

name=“Person“

s5:Attr

name=“customer_id“

type=Integer

t2:Column

name=“S-ID“

type=String

t7:next

s4:Class

name=“Customer“

s3:Attr

name=“birth“

type=String

s2:Attr

name=“S-ID“

type=String

s7:attrss6:attrs

s10:attrs

c3:

AC

c5:

AC

c1:

CT

t1:Table

name=“Person“

t3:Column

name=“birth“

type=String

t4:Column

name=“customer_id“

type=Integer

c4:

CT

t6:cols

t8:cols
t9:next

Figure 15: G5 of Forward Sequence

ing source sequence ∅ =
tr∗S==⇒ G0. All el-

ements are labeled with numbers spec-
ifying the matches and the created ob-
jects for each transformation step ac-
cording to the left part of Table 1. GS

is given by G5 restricted to elements
of the class diagram part. After creat-
ing the table and building up the cor-
respondences to the class nodes in the
first two derivation steps, rules for trans-
lating attributes are applied. All steps
of the sequence respect the NACs and
furthermore, they correspond to a suit-
able source sequence making the forward
transformation source consistent. In the
third step, rule “Attr2Column” is applied
and translates attribute “s2” to column
“t2”. Attribute s3 is generated after s2

in the source sequence, which is required by the source NAC of “NextAttr2NextColumn”. Thus,
the corresponding forward transformation translates s3 after s2. The remaining two attributes
are translated by “NextAttr2NextColumn” and “Attr2NextColumn”, where the target NACs ensure
that the created columns are inserted after the last existing one of table “t1”. Thus, the ordering
of the created columns is not completely determined by the source model itself, but depends on the
chosen source sequence. The nodes and edges of correspondence and target component as well as
the morphisms (G5,S ← G5,C → G5,T ) are created during the forward transformation.

5 Information Preserving Model Transformations

In [3] we have shown that there is an equivalence between corresponding forward and backward
TGT sequences. This equivalence is based on the canonical decomposition and composition result,
which is extended to the case with NACs in this paper (see Theorem 1).

Theorem 1 and its dual version lead to the following equivalence of forward and backward TGT-
sequences with source-target NACs, which can be derived from the same general TGT-sequence.
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Theorem 4 (Equivalence of Forward and Backward TGT-sequences with source-target NACs).
Each of the following TGT-sequences with source-target NACs implies the other ones where the
matches are uniquely determined by each other.

1. G0
tr1=⇒ G1

tr2=⇒ G2 =⇒ ...
trn=⇒ Gn (1)

2. G0 = G00
tr1S=⇒ G10 =⇒ ...

trnS=⇒ Gn0
tr1F=⇒ Gn1 =⇒ ...

trnF=⇒ Gnn = Gn, (2)
which is match consistent. In this case we have: G00,T = Gn0,T , Gn0,S = Gnn,S.

3. G0 = G00
tr1T=⇒ G01 =⇒ ...

trnT=⇒ G0n
tr1B=⇒ G1n =⇒ ...

trnB=⇒ Gnn = Gn, (3)
which is match consistent. In this case we have: G00,S = G0n,S, G0n,T = Gnn,T .

Proof. Theorem 4 is a direct consequence of Theorem 1 concerning decomposition and composition
of forward TGT-sequences with NACs and its dual version for target rules triT and backward rules
triB where match consistency in Part 3 is defined by the T-components of the matches.

Theorem 5 (Information Preserving Forward Transformation).

Each source consistent forward TGT-sequence G =
tr∗F==⇒ H is backward information preserving, i.e.

for K = (∅ ← ∅ → HT ), there is a backward TGT-sequence K =
tr∗B==⇒ H, which means that the

source model GS can be reconstructed from the target model HT :
G =

tr∗F==⇒ H −projT−−−→ K =
tr∗B==⇒ H with GS = HS.

Proof. G =
tr∗F==⇒ H is source consistent which implies the existence of (2) ∅ =

tr∗S==⇒ G =
tr∗F==⇒ H being

match consistent with GS = HS . By Theorem 4 with G0 = ∅, Gn0 = G, G0n = K and Gn = H

we obtain (3) ∅ =
tr∗T==⇒ K =

tr∗B==⇒ H being match consistent with KT = HT and HS = GS leading to

G =
tr∗F==⇒ H −projT−−−→ K =

tr∗B==⇒ H. Hence, G =
tr∗F==⇒ H is backward information preserving.

Example 4. Example 3 Table 1 shows that for the given model transformation G0 =
tr∗F==⇒ G5

according to Thm. 5 there is an inverse backward transformation G5|T =
tr∗B==⇒ G5, i.e. the source

model can be reconstructed. However, there are also target consistent backward transformations
G5|T =

tr∗B==⇒ G′5 with G′5,S 6= G0,S, because there are some class models with different inheritance
relations corresponding to the given data base model.

6 Related Work

Correctness of model transformations can be analyzed from different perspectives. Baleani et.
al. motivate in [9] that correctness of model transformations for industrial tools should be based
on formal models in order to ensure correctness by construction. For this purpose they suggest
to use a block diagram formalism, called synchronous reactive model of computation (SR MoC).
However, correct interpretation of the model transformation rules does not imply a correct result,
such that it is a model of the target language. Semantical correctness is discussed by Karsai
et. al. in [10], where specific behavior properties of the source model shall be reflected in the
target model. This property can be checked for a restricted class of models. In [11] semantical
correctness is ensured by using the rules for the model transformation also for the transformation
of the operational semantics, which is given by graph rules. This way the behaviour of the source
model can be compared with the one of the target model by checking mixed confluence. However,
this paper concentrates on syntactical correctness based on the integrated language generated by
the triple rules.

Our example in this paper presents a model transformation with NACs from class diagrams
to relational data bases and it is based on the grammars defined in [3] and especially on [6]. In
contrast to the presented algorithm in [6] for controlling the model transformations we introduced
NAC consistency based on source consistent forward sequences. In this way we could extend
several important results to the case of TGGs with NACs. In particular, model transformations
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given by source consistent forward transformations are correct and complete with respect to V L
by Theorems 2 and 3. While a formal proof of correctness for the above mentioned algorithm is
not given in [6], completeness of the algorithm is effectively not ensured, because recursion calls
may cause transformations that produce structures forbidden by other necessary rule applications.

But still the algorithm in [6] convinces to be an elegant approach for a restricted class of
relations to efficiently detect correct rule orderings for a subset of model transformations. This
opens the possibility to combine efficiency with the here presented results in the following way:
Each model transformation with NACs given by an efficient algorithm can be checked to be correct
by performing the test of source consistency presented as Fact 2 in [5], which is now also valid for
model transformations with NACs according to Thm. 1.

Model transformations based on triple rules with NACs were also analyzed in [12] for a re-
stricted class of triple rules with distinct kernel elements. Special NACs of forward rules ensure
that kernels are not translated twice and kernel typing guarantees that each rule produces exactly
one kernel. For this restricted class of triple graph grammars local confluence and termination can
be analyzed and thus, model transformations can be checked for functional behaviour.

7 Conclusion

This paper focusses on syntactical correctness and completeness. In order to analyze these impor-
tant properties we extended the composition and decomposition result for triple graph transfor-
mations in [3] to the case with NACs, i.e. TGT sequences with NACs can be decomposed into
source and forward as well as target and backward transformations, respectively, and vice versa.
Based on this fundamental property we have shown that source consistent model transformations
are correct and complete with respect to the language given by the original triple rules. This
extends the result in [13] to triple rules with NACs.

Source consistency of model transformations guarantees that each element of the source model
was matched by a model transformation rule and correspondences to target model elements were
created. A suitable source sequence can be calculated by parsing the source model using the
source rules and the corresponding forward transformation can be checked to be source consistent.
Alternatively, forward transformations can be created by an arbitrary strategy and checked after-
wards using the algorithm for checking source consistency presented in [5]. Source consistency is
not restricted to cases, where all source nodes have to be connected via correspondence nodes.
Therefore, correctness of many algorithms for model transformations based on triple rules with
NACs can be checked using the source consistency check.

According to [13] model integration sequences can be characterized as special model transfor-
mation sequences, such that the results of this paper for model transformation can be transferred
to model integrations based on triple rules in a next step.

In this paper we focused on NACs which specify conditions on separately source and target
elements. They are sufficient to most model transformations, which were considered by case studies
so far. However, future work will include the analysis of how to handle general NACs and their
relevance for language specification. An interesting problem - which could be solved with general
NACs - is termination, where a parsing of the source model is omitted. A possibility may be to
introduce additional NACs for the forward rules, such that source elements, which are already
in correspondence with target elements, cannot be matched again for translation. In this way
termination for a restricted class of rules could be ensured automatically. But note that NACs,
which are equal to the right hand side of a forward rule, are not sufficient, because in this case
matches of the transformation are required to be essential.
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[6] Schürr, A., Klar, F.: 15 years of triple graph grammars. In Ehrig, H., Heckel, R., Rozenberg,
G., Taentzer, G., eds.: ICGT. Volume 5214 of LNCS., Springer (2008) 411–425

[7] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theoretical Computer Science. Springer Verlag (2006)

[8] Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application Conditions.
Special issue of Fundamenta Informaticae 26(3,4) (1996) 287–313

[9] Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A.L., Freund, U., Schlenker,
E., Wolff, H.J.: Correct-by-construction transformations across design environments for
model-based embedded software development. Design, Automation and Test in Europe Con-
ference and Exhibition 2 (2005) 1044–1049

[10] Karsai, G., Narayanan, A.: On the correctness of model transformations in the development
of embedded systems. In Kordon, F., Sokolsky, O., eds.: Monterey Workshop. Volume 4888
of LNCS., Springer (2006) 1–18

[11] Ehrig, H., Ermel, C.: Semantical Correctness and Completeness of Model Transformations
using Graph and Rule Transformation. In: Proc. International Conference on Graph Trans-
formation (ICGT’08). Volume 5214 of LNCS., Heidelberg, Springer Verlag (2008) 194–210

[12] Ehrig, H., Prange, U.: Formal Analysis of Model Transformations Based on Triple Graph
Rules with Kernels. In Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G., eds.: Proc. Interna-
tional Conference on Graph Transformation (ICGT’08). Volume 5214 of LNCS., Heidelberg,
Springer Verlag (2008) 178–193

[13] Ehrig, H., Ehrig, K., Hermann, F.: From Model Transformation to Model Integration based
on the Algebraic Approach to Triple Graph Grammars. In Ermel, C., de Lara, J., Heckel,
R., eds.: Proc. Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT’08). Volume 10., EC-EASST (2008)

14


