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We report on a computer simulation study of a Lennard-Jones liquid confined in a narrow slit pore
with tunable attractive walls. In order to investigate how freezing in this system occurs, we perform
an analysis using different order parameters. Although some of the parameters indicate that the sys-
tem goes through a hexatic phase, other parameters do not. This shows that to be certain whether a
system of a finite particle number has a hexatic phase, one needs to study not only a large system,
but also several order parameters to check all necessary properties. We find that the Binder cumulant
is the most reliable one to prove the existence of a hexatic phase. We observe an intermediate hexatic
phase only in a monolayer of particles confined such that the fluctuations in the positions perpendic-
ular to the walls are less than 0.15 particle diameters, i.e., if the system is practically perfectly 2D.
© 2011 American Institute of Physics. [doi:10.1063/1.3623783]

I. INTRODUCTION

Understanding the structure and dynamics of confined
fluids is important for processes, such as wetting, coating, and
nucleation. The properties of a fluid confined in a pore dif-
fer significantly from the bulk fluid due to finite size effects,
surface forces, and reduced dimensionality. In this work, we
report on a study of one of the simplest models that is still ca-
pable of reproducing the thermodynamic behavior of classical
fluids, the Lennard-Jones (LJ) system. The LJ potential is an
important model for exploring the behavior of simple fluids
and has been used to study homogeneous vapor-liquid, liquid-
liquid, and liquid-solid equilibrium, melting, and freezing.1–3

It has also been used as a reference fluid for complex systems
such as colloidal and polymeric systems.

The vapor-to-liquid transition in confined systems has
been studied intensively and is well understood (see Ref. 4
and references therein). In this article, we will discuss the
liquid-to-solid transition in a slit pore and the process of the
development of the solid phase. In the liquid phase, confine-
ment to a slit induces layering at the walls. One could imagine
this effect to facilitate crystallization. And indeed it is known
that depending on the strength of the particle-wall interaction,
the freezing scenario changes significantly.1, 5 If the walls are
strongly attractive, crystallization starts from the walls and at
a temperature higher than without confinement. If the walls
are strongly repulsive, crystallization starts from the bulk at a
temperature lower than without confinement.

A well-distinguished layer of particles close to the wall
can also, to some extent, be treated as a 2D system. The melt-
ing of true 2D systems has been studied both theoretically6–10
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b)Previous address: Fraunhofer SCAI, Schloss Birlinghoven, D-53754 Sankt
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and experimentally.11–13 A large number of experiments on
2D melting were carried out in colloidal systems where col-
loidal particles contain a magnetic core, giving rise to a mag-
netic repulsion between particles that can be controlled by an
external magnetic field (see, for example, Refs. 14–16). The
type of the scenario strongly depends on the shape of the po-
tential. Soft-core potentials melt via the Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) mechanism,7, 9 meaning
that the liquid turns into a crystal going through an interme-
diate hexatic phase.17–21 For the hard disks system, two dif-
ferent points of view exist.7, 8, 10, 22 Since the Lennard-Jones
potential is rather soft, the freezing of a single layer of LJ par-
ticles can, therefore, be expected to proceed via the KTHNY
mechanism,23 which significantly differs from the bulk nucle-
ation scenario.

As we will show, it can be difficult to check whether
the hexatic phase exists if one studies a system of a finite
particle number. To solve this problem, several order param-
eters to characterize the bond-order were introduced in the
literature. The correlation function of the local bond-order
parameter21 that measures the nearest-neighbor-bond-angular
order is commonly used. However, it cannot distinguish be-
tween a hexatic phase and a heterogeneous system in the two-
phase region. The distribution of the bond-angular suscepti-
bility on various length scales was introduced to overcome
this problem studying a hard disk system and Lennard-Jones
disks.24 Later the search for a general and efficient method to
determine all phases and bounds of the transition was contin-
ued. The scale analysis of the behavior of the fluctuations of
the bond-angular susceptibility and the bond-orientation cu-
mulant provided25 an evidence of a possible continuous tran-
sition in the system of hard disks.10 To our knowledge, the
Binder cumulant was applied in the analysis of the existence
of the hexatic phase only for 2D systems and never for quasi-
2D or 3D. The analysis of fluctuations of the bond-angular
susceptibility within a layer was used already for studying
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the melting of thin films up to 20 layers.26 A modified scal-
ing analysis of the bond-angular susceptibility27 was used
not to check the existence of the hexatic phase only in 2D
systems,8, 27, 28 but also in quasi-2D systems, for example, see
Ref. 29.

Another method used in 2D systems to check if the tran-
sition is of KTHNY type is to study the elastic properties of
the system.30–32 If Young’s modulus in the solid is less than
16πkBT , then it is very likely that the solid melts via dislo-
cation unbinding. On the other hand, if this value is reached
already in the liquid, the transition is likely to be of first or-
der. However, based only on the elastic properties one cannot
distinguish a two-phase region from a hexatic phase. There is
also some discrepancy in results depending on the method by
which the elastic constants were obtained.32

In the thermodynamic limit, all above-mentioned param-
eters allow to safely distinguish a homogeneous solid, liq-
uid, or hexatic phase. However, both in simulations as well
as in many experiments, one never reaches the thermody-
namic limit. Moreover, experiments especially on colloids are
in fact often performed in the NVT ensemble, in which case
also phase coexistence can easily appear. The latter can be ex-
cluded by finite size scaling, but even then, due to their differ-
ent functional dependences on the system size, not all param-
eters are equally well suited to determine the phase behavior
of a given system.

The question, how the crystallization in a strongly con-
fined quasi-2D system proceeds, i.e., in a system only a cou-
ple of particle diameters wide, is less well studied than the
crystallization in a pure 2D system. In this case, it is not clear
whether the system still behaves like being truly two dimen-
sional, or whether it rather behaves similar to a bulk system.
This question is certainly even more difficult to tackle than
nucleation in a purely 2D or 3D system and has been mostly
addressed by means of computer simulations so far. Under
these circumstances, it is particularly important to have reli-
able order parameters to detect or exclude the existence of a
hexatic phase from computer simulations.

The solid-solid phase transitions of confined fluids in nar-
row slit pores were studied both at zero and at finite tempera-
tures (see Refs. 33–35 and references therein). For a confined
LJ fluid, the question if a hexatic phase exists in a quasi-2D
system has been studied by Radhakrishnan and co-workers36

for a ratio of wall-particle to particle-particle attraction vary-
ing between 0 and 2.14 and pores widths of 3 and 7.5 fluid
particle diameters. For the narrower slit pore, it was shown
that around the freezing temperature the system exhibits a
hexatic phase. With increasing wall attraction this tempera-
ture region becomes wider, i.e., an attractive wall facilitates
the formation of the hexatic phase. The phase diagram for
the wider pore with diameter 7.5 is more complicated. When
the wall-particle attraction becomes bigger than the particle-
particle attraction, at first a hexatic phase and then a crystal
phase appear, however, only in the contact layers near the
walls; the rest of the system remains liquid. Only when de-
creasing the temperature further, the system crystallizes com-
pletely. The temperature range, in which a hexatic or a hexatic
phase is observed only in the contact layers, again widens
with growing wall-particle attraction. This indicates that the

wall-particle attraction facilitates the formation of a hexatic
phase even in wider pores, however, only in the layers close
to the walls. The same group of authors also reported that in
a pore, that can accommodate only a single layer, two second
order transitions are observed, while already in a pore wide
enough to accommodate two layers, both transitions are of
the first order.29

The different crystal structures of the frozen phase were
studied by Vishnyakov and Neimark37 as a function of the
size of the slit for this system. The distance between the walls
was gradually increased up to a slit accommodating three lay-
ers. Depending on the width of the pore, a hexagonal or or-
thorhombic phase was observed in the layers.

In a recent article by Page and Sear,38 it was shown that
freezing is controlled by prefreezing in a similar system. Nu-
cleation of the bulk crystal is affected by the surface phase
behavior. With increasing wall attraction, the bulk nucleation
is smoothly transformed into nucleation of a surface crystal
layer. Xu and Rice39 investigated theoretically a quasi-2D sys-
tem of hard spheres and reported the dependence of the den-
sity at the liquid-to-hexatic phase transition on the thickness
of the system, with wall separation changing from 1 to 1.6
hard sphere diameters. For the current state of art in crystal-
lization of confined systems, we recommend to consult recent
reviews.2, 3, 22

In this paper, we investigate a Lennard-Jones fluid con-
fined between two planar walls at different values of wall-
particle attraction during freezing and melting. The walls
form an attractive slit pore with changing wall separation, that
is able to accommodate 1 or 2 layers. To characterize and
distinguish the liquid, hexatic and solid phases, we investi-
gate several order parameters and compare their behavior. We
show that those parameters are not equally reliable when it
comes to predicting the existence of a hexatic phase from fi-
nite size configurations.

By combining several of the parameters, we can drasti-
cally narrow down the possible range of a hexatic phase. Most
notably, we cannot find such a phase in multilayer systems,
as predicted by Radhakrishnan et al.29, 36 With just two lay-
ers, we always observe phase coexistence of solid and liquid,
rather than a hexatic phase. Even in a single layer, we find
a possible hexatic phase only for very strong confinement,
which can explain some controversy in experiments regard-
ing the observation of a hexatic phase.40, 41

The article is structured as follows. In Sec. II, we describe
our simulation method, and in Sec. III we present the order
parameters and the results. We conclude with a summary in
Sec. IV.

II. SIMULATION METHOD

We performed molecular dynamics (MD) simulations of
Lennard-Jones particles confined between two structureless
walls. The particles interact via the LJ-potential

u(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

, (1)

where r is the distance between the particles, σ is the par-
ticle diameter, and ε is the depth of the minimum of the LJ
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potential. The interaction between walls and particles is given
by a LJ-potential integrated over semi-space,

uw(r) = 4εw

[(σ

r

)9
−

(σ

r

)3
]

. (2)

The particle-particle interaction was cutoff and shifted at a
distance rc = 2.5σ and the wall-particle interaction at a dis-
tance rc = 4.0σ , since the wall-particle potential is wider and
deeper than the particle-particle potential. For the follow-
ing, we will use ε as the unit of energy, σ as the unit of
length, and τ =

√
1 · σ 2/ε as unit of time (i.e., use the par-

ticle mass as the unit of mass); consequently, temperatures
are given in multiples of ε/kBT . The simulations were per-
formed in a cuboid box with periodic boundary conditions
in the x and y directions and two walls positioned at z = 0
and Lz. The distance between the walls was chosen such that
n = 1 or 2 layers can be accommodated in the pore, namely
Lz = 2 × 1.12 + 0.916(n − 1). Here, 1.12 is the distance at
which the wall potential has its minimum, and 0.916 is the
layer distance in an ideal FCC lattice with spacing one. There-
fore, Lz was either 2.24 or 3.16 for one or two layers, re-
spectively, while the other two dimensions of the simulation
box were fixed as Lx = Ly = 200, if not otherwise stated.
The number of particles N was chosen such that the density
was kept constant at one particle per unit cube independent
of the width of the slit, and therefore ranged from 44 800 for
one layer to 81 600 particles for two layers. Since the slit is
narrow, layering in the two layered system is observed in the
whole range of the temperatures.

We carried out our simulations out in the NVT ensem-
ble, since this corresponds to the way recent experiments were
done,13, 26 although our parameters do not strictly allow to re-
produce these experiments. For each system studied, we per-
formed a full heating and cooling cycle, where for each tem-
perature, we used 1.0 × 106 MD steps for equilibration and
2.5 × 105 MD steps for sampling. There was no visible hys-
teresis in pressure or total energy during the cycles, which
we take as a sign that our sampling is sufficient. Also, even
in the crystalline phase, particles were on average moving
about 7 particle diameters during each sampling phase, so that
it is unlikely that the simulations sample only a local mini-
mum. Errors were estimated a posteriori by a binning pro-
cedure. For our simulations the software package ESPResSo
version 2.1.2j was used.42

III. RESULTS AND DISCUSSION

To check whether the system is in a hexatic phase, one
usually studies the decay of the radial distribution function
g(r) and the correlation of the local bond-order parameter,
G6. Alternatively, one can check the orientational suscepti-
bility χ6,24, 27 or the modified susceptibility χ ′

6
13, 25, 43 and (to

our knowledge used only in strictly 2D systems before) the
Binder cumulant of ψ6.25, 44

We would like to introduce these parameters at the exam-
ple of the system accommodating one layer and with the wall
attraction εw = 5. All parameters are based on the local bond-
order correlation parameter since the hexatic phase is charac-
terized by quasi-long-range bond order. The local bond-order

correlation parameter of particle j in layer m at a position xj

is defined as

ψ6(xj ) = 1

Nj

Nj∑
k=1

ei6θjk , (3)

where Nj is the number of neighbors of particle j within layer
m, the sum is over the neighbors k of j within m, and θjk is
the angle between an arbitrary fixed axis and the line connect-
ing particles j and k. The order parameter of the layer 	6 is
defined as the average over ψ6(xj ) for all N particles within
the layer,

	6 = 1

N

∣∣∣∣∣∣
N∑

j=1

ψ6(xj )

∣∣∣∣∣∣ . (4)

The correlation function G6(r) of the local bond-
orientational order helps to distinguish long- and short-range
orientational orders. It is defined as

G6(r) = 〈ψ∗
6 (x′)ψ6(x)〉, (5)

where the average is taken over all particles within a layer
where positions x′ and x are a distance r apart. The radial
distribution function in turn allows to distinguish long- and
short-range translational orders and is defined as

g(r) = 〈ρ(r)〉/ρ, (6)

where 〈ρ(r)〉 denotes the average local density at distance r

from a fixed particle and ρ is the overall average density.
Ideally, the decay of G6 together with the radial distribu-

tion function g(r) (RDF) allows to detect a hexatic phase. For
a two-dimensional crystal with long-range orientational and
translational order, G6 flattens to a nonzero constant, while
g(r) decays very slowly to 1. In a two-dimensional liquid,
we have only short-range order, and therefore both functions
decay exponentially to 0 and 1, respectively. In the hexatic
phase with its long-range orientational, but short-range trans-
lational order, G6 decays algebraically, while g(r) decays
exponentially.

As shown in Fig. 1, the radial distribution for
T = 5.05, 5.15 is still quasi-long ranged and solidlike, and
for T = 5.2, 5.25, and 5.35 the RDF looks like the one for liq-
uid. Meanwhile, G6 only for T = 5.05 does not show any de-
cay, for T = 5.15 and 5.2 it decays algebraically and starting
with T = 5.25 it decays exponentially. Combining conclu-
sions from RDF and G6 one can suspect that around T = 5.2
there is a hexatic phase and at T = 5.15 we have a defec-
tive crystal. However, the crossover to exponential decay at
T = 5.25 happens at very long distances above 20 particle di-
ameters. To reliably detect the type of decay, we would need
G6(r) for distances of at least an order of magnitude more,
that is above 200 in our case. Simulations in such a large box
would be extremely time consuming, which would be unfea-
sible with our resources.

However, both G6 and the RDF are averaged over the
whole system, so if the system is not homogeneous, they can-
not detect that. The obvious way to check the homogeneity,
except for a direct observation, is to divide the original sys-
tem into several subsystems and to compare the behavior of
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FIG. 1. Left figure: Radial distribution function g(r) for one layer, εw = 5 versus r/σ . The curves are shifted along the y axis to separate them, temperatures:
5.05, 5.15, 5.2, 5.25, 5.35 from top to bottom. The RDF for T = 5.05, 5.15 is quasi-long ranged and solidlike, and for T = 5.2, 5.25, and 5.35 it is short ranged
as for liquid. Right figure: Correlation function G6(r) of the bond order parameter versus r/σ . Temperatures: 5.05, 5.15, 5.2, 5.25, 5.35 from top to bottom.
G6 does not decay for T = 5.05, for T = 5.15 and 5.2 it decays algebraically, for T = 5.25 and 5.35 G6 decays exponentially.

the parameters in each of subbox. Calculating G6 in subsys-
tems is not favorable, since we are interested in the long-range
decay that becomes impossible to study with decreasing sys-
tem size.

In Ref. 24, a study of the nearest-neighbor bond-angular
susceptibility on various length scales was performed. The
susceptibility is defined as

χ6 =
〈∣∣∣∣∣ 1

N

∑
j

ψ6(xj )

∣∣∣∣∣
2〉

= 〈
	2

6

〉
. (7)

This quantity is used to examine the system on different
length scales by dividing the system into equal subblocks
of length Lb = L/2, L/4...L/64, L/128, where L is the box
length of the original system. For each subblock the distri-
bution of χ6 was computed. In the solid χ6 will be between
1 and 0.5 due to the presence of the long-range order and in
the liquid χ6 will be close to zero. In Fig. 2 (left), we show
the distribution of χ6 at T = 5.2, where the hexatic phase is
suspected. One can see that the distribution has one peak, so
the phase should be homogeneous at this temperature. The
χ6 peak gradually shifts away from 0.5 and becomes wider

with increasing temperature and then, at T = 5.25, the sys-
tem changes into the liquid state (Fig. 2 (right)). Again, this
supports the idea that at T = 5.2 the system goes through a
hexatic phase.

If the system is inhomogeneous, a combination of solid
and liquid distributions for subblocks with small length is ob-
served, a vivid example is shown in Fig. 3 (right) for the two
layers system at T = 3.8. In all two-layer systems for dif-
ferent wall attraction we could see only three regimes: solid,
liquid, or a solid-liquid coexistence. As expected, the radial
distribution function and the correlation of the bond-order pa-
rameter do not capture this (Fig. 3 (left)). The RDF of up to
T = 3.8 is still quasi-long range and then at T = 3.85 it be-
comes short range. The decay of the G6 at T = 3.8 is alge-
braic, at T = 3.85 it shows a combination of algebraic and
exponential decays and at T = 3.9 it becomes purely expo-
nential (see the inset Fig. 3 (left)). No homogeneous phase
in the intermediate region was observed for any of the wall-
particle attractions we studied.

Bagchi et al.27 analyzed the scaling of the logarithm
of the ratio χ6(Lb)/χ6(L) versus ln(Lb/L). In the isotropic
phase, the slope should be −2 and in the hexatic phase it will
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FIG. 2. Left figure: The distribution of χ6 for L/128, L/64, . . . L/8 subdivisions (from right to left) of the box at T = 5.2 in one layer, εw = 5, where we
suspected a hexatic phase. The distribution has one peak and the phase is homogeneous. Right figure: The distribution of χ6 for subdivision 1/8 at temperatures
4.95, 5.0, . . . 5.25, 5.35 (from right to left). The peak of the distribution gradually shifts away from 0.5 and becomes wider with increasing temperature, then at
T = 5.25 the system changes into the liquid state.
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FIG. 3. Left figure: The radial distribution function for temperatures 3.65, 3.8, 3.85, and 3.9 (from top to bottom) in two layers. The RDF for T = 3.65 and
T = 3.8 still behaves solidlike and for T = 3.85 and T = 3.9 it shows the liquidlike behavior. Inset: Correlation of the bond order parameter G6 for the same
temperatures as the RDF. G6 decays algebraically up to T = 3.8, for T = 3.85 it has at first an algebraic decay and that becomes later exponential, at 3.9 G6
decays exponentially. Right figure: The distribution of χ6 for L/128, L/64, . . . L/4 subdivisions of the box (from right to left) at T = 3.8 in two layers, εw = 5.
The distribution has two peaks around 0.5 and 0 that shows that the system has a liquid-solid coexistence.

be −η6 ≤ −1/4. For the crystal without defects there should
be no scaling. This relation is widely used to check the pres-
ence of the hexatic phase and finite size effects. In Fig. 4,
we present the results of the scaling for our system. Due to
defects in the crystal the scaling for low temperatures is not
linear. The dotted line with the slope −1/4 reproduces the
maximum slope expected in the hexatic phase. As we can see
from Fig. 4, the slope of the scaling curve for T = 5.25 is
very close to 1/4, but we already know that the corresponding
G6 decays on long distances exponentially, so, most probably,
at this temperature no hexatic phase exists. The scaling for
lower temperatures does not allow us to distinguish between
a crystal with many defects and a probable hexatic phase. The
scaling for T = 5.2, where we expected the hexatic behavior,
does not look any different from the one for T = 5.15, that we
verified as a crystal. We conclude that while the distribution of
χ6 is a good parameter to detect a possible two-phase region,
it is difficult to detect a hexatic phase by it alone, since the
distribution of χ6 in both liquid and crystal is rather broad, so
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FIG. 4. Subblock scaling analysis for χ6, in one layer, εw = 5 for tempera-
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a slope −1/4, the maximum possible slope for a hexatic phase. The slope of
χ6 at T = 5.25 is close to −1/4, for the other temperatures it is lower. If not
visible, error bars are smaller than the symbols. The observed nonlinearity is
due to defects.

that the intermediate hexatic phase can be easily overlooked.
The subblock scaling of χ6 is more sensitive, but as we have
shown, cannot distinguish a defective crystal from a hexatic
phase.

Another version of susceptibility,25, 43 χ ′
6(Lb), measures

the fluctuations of the bond-order parameter in the system,

kBT χ ′
6 = L2

b

(〈
	2

6 (Lb)
〉 − 〈	6(Lb)〉2

)
. (8)

It should show a dramatic increase as the transition tempera-
tures are approached either from solid or from liquid phases
and for the hexatic region it should become infinite.25 How-
ever, it is impossible to produce infinity in the simulations,
therefore, a large, but finite value is expected. χ ′

6 is presented
in Fig. 5 (left) as a function of temperature, both for our
standard system with Ly = Lz = 200 and a smaller one with
Ly = Lz = 100 to show that the size effects are very small.
We compare χ ′

6 for subdivisions L/64 and L/128 in the big-
ger system that correspond to L/32 and L/64 in the smaller
system. The two comparable subdivisions of the two different
realizations agree within error bars, which indicates that the
system is sampled sufficiently well. We can see that the max-
ima of all curves are shifted to the liquid phase to T = 5.35,
which is a consequence of the finite size effects in first or-
der transitions.25, 45 The dashed line marks the temperature
T = 5.2, where some signs of the hexatic phase were ob-
served, here we do not see any special features. The right
part of Fig. 5 displays the dependence of χ ′

6 on the inverse
value of the length of a subbox. If we do not subdivide the
box, the scaling breaks down as we can clearly see on the
graphs (first points). This failure can be explained by the fact
that we simulate in the canonical ensemble, but as soon as
we start subdividing the system, it behaves more like a grand-
canonical ensemble. Unfortunately, we cannot extrapolate our
curves to χ∞ as it was done in Ref. 25 since our way of sub-
division does not provide enough data in the linear region of
the curve. What we can still see is that the steepest slope is
observed for temperature 5.35, and we already know that this
temperature lies in the liquid state region. We can conclude
that the observed transition is of a first order, but, as expected,
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FIG. 5. Left figure: Fluctuation of the bond-order parameter, χ ′
6, as a function of temperature, in one layer, εw = 5 for systems with box-lengths 100 and 200

for different subdivisions. The dashed line marks T = 5.2, where we suspected a hexatic phase. The maxima of the curves are shifted to the liquid region. Size
effects are small. Inset shows χ ′

6 for the next smaller subdivision, L/64 and L/128, respectively. If not visible, error bars are smaller than the symbols. Right
figure: χ ′

6 as a function of number of subboxes per side L/Lb , where Lb is the subbox length. The steepest slope is observed for temperature 5.35, which is in
the liquid phase.

the transition temperatures obtained with this parameter are
too high.

The last order parameter we investigate is the Binder
cumulant,25, 44

UL = 1 −
〈
	4

6

〉
3
〈
	2

6

〉2 . (9)

Away from criticality in the limit of infinite system size, the
cumulant assumes different limiting values for ordered and
disordered phases. For finite systems, the value of the cumu-
lant depends on the system size: the smaller the system, the
more the cumulant deviates from the limiting value. In the
case of a first order transition, the cumulant exhibits an ef-
fective common intersection point at the transition for suffi-
ciently large systems. As for the hexatic phase, the cumulant
is expected to be independent of the system size and to col-
lapse onto one line over the entire range of the phase. Figure 6
(left) presents the behavior of the cumulant with temperature
(lines serve as guides to the eye). We see clearly that there
is only one intersection point, meaning that there is one first
order solid-liquid transition and no hexatic phase.

Summarizing all our investigations we have shown that
one should be quite careful in choosing the order parameters
in order to claim to have observed a hexatic phase. In our case,
the Binder cumulant provided the most stringent test.

What would happen if the attraction of the walls becomes
even more attractive? Let us look at the case εw = 7. We will
start from the last parameter we considered previously, UL

given by Eq. (9), since we claimed that this was the most
sensitive parameter. As one can see in Fig. 6 (right), there
is a small interval for temperatures between 5.44 and 5.46
where the curves for different subdivisions of the system al-
most fall together. We interpret this as a sign of a possible
hexatic phase, since here the cumulant is independent of the
system size. However, the temperature interval is extremely
narrow, so that the collapse of Ul might not show a new phase
itself, but might be a precursor of a hexatic phase that would
appear at higher wall attraction or might happen only for infi-
nite wall attraction.

The distribution of χ6 (Eq. (7)) in the possible hexatic
phase, T = 5.45, shows that the system is homogeneous
(Fig. 7, left). If we look at the behavior of the χ6
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FIG. 6. Left figure: The Binder cumulant UL for several subdivisions of the system in one layer, εw = 5 as a function of temperature. The curves do not collapse
anywhere and intersect around T = 5.23 (see inset), meaning that there is one first order solid-liquid transition and no hexatic phase. Lines are guides to the
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distribution (Fig. 7 right), taking as an example the subdivi-
sion into 8 × 8 subblocks, we observe again that the peak of
the distribution decreases and slowly moves to lower values
of χ6 with increasing temperature. We do not see any pecu-
liarities in the distribution for T = 5.45, and at T = 5.55 we
observe a change to the characteristic liquid distribution with
the maximum at 0.

Also the behavior of other parameters, such as the radial
distribution function and the correlation of the bond-order pa-
rameter or scaling of χ6, does not qualitatively differ from the
behavior in the case of a less attractive wall εw = 5, so we go
through them briefly.

The correlation of the bond-order parameter decays al-
gebraically for temperatures up to T = 5.5 (inset of Fig. 8),
and at T = 5.35 and further on we see a short-range behav-
ior of the radial distribution function (Fig. 8). However, we
already know that for T = 5.35 and 5.4 there is no hexatic
phase and we deal with a defective crystal. So, we conclude,
that a combination of RDF and G6 is unreliable for claiming
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FIG. 8. Radial distribution function g(r) for one layer, εw = 7 for temper-
atures 5.1, 5.35, 5.4, . . . 5.55 (from top to bottom). The curves are shifted
along the y axis to separate them. RDF for T = 5.1 is quasi-long ranged and
solidlike, already at T = 5.35 it is short ranged as for liquid. Inset: Correla-
tion of the bond-order parameter g6 in one layer, εw = 7 (same temperatures
as for RDF). For T = 5.1 it does not decay; for T = 5.35, 5.4, 5.45, 5.5, it
decays algebraically and for T = 5.55 G6 decays exponentially.

the occurrence of a hexatic phase, since it does not distinguish
it from a defective crystal.

The scaling of the χ6(Lb)/χ6(L4) for temperatures up to
T = 5.45 is below the 1/4 slope (Fig. 9). For T = 5.5 the
scaling of the ratio is exactly 0.25. The distribution of χ6 for
5.5 is also not yet liquid (Fig. 7). Therefore, according to dis-
tribution and scaling of χ6 and G6 at the temperature 5.5 the
system has hexatic properties, but for the cumulant UL it is
already in the liquid phase. On the one hand, since we do
not observe any two-phase region between a hexatic and liq-
uid phase, one can assume that the Binder cumulant is over-
sensitive and can omit some points. On the other hand, the
transition from the hexatic to the liquid state proceeds very
smoothly and the temperature 5.5 can be treated as a bound-
ary temperature between two phases.

If we look at the change of χ ′
6(L) (Eq. (8)) with temper-

ature, we observe maxima between the temperatures 5.6 and
5.65 (Fig. 10), which indicate that the transition to the liquid
is of first order, since the maxima for this parameter are far
in the liquid phase. However, no change in behavior is ob-
served in the possible region of a hexatic phase, the borders
of which are marked with dashed lines. We compare again the
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sponds to a slope −1/4, the maximum possible slope for a hexatic phase. If
not visible, error bars are smaller than the symbols.
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behavior of χ ′
6(L) for subdivisions L/64, L/128 in our stan-

dard system with box-length 200 and L/32, L/64 in a smaller
one with Ly = Lz = 100. The curves for the corresponding
subdivisions coincide within error bars in the solid without
defects and the liquid region. They show a small quantitative
difference when the crystal gains defects and then goes to the
hexatic phase, which region is marked by two dashed lines.

We have shown that only the Binder cumulant be-
haves qualitatively different for the systems with εw = 5 and
εw = 7. The behavior of the other parameters is similar for
both cases. In our simulations, the Binder cumulant shows
signs of a hexatic phase only at the strongest wall attraction
εw = 7. We checked the fluctuations of particles perpendicu-
lar to the walls by fitting the density profile to a Gaussian dis-
tribution. The standard deviation for εw = 5 is �z ≈ 0.175
and �z ≈ 0.15 for εw = 7, practically independent of the
temperature in the studied range. Both values are significantly
smaller than 0.4, which was reported to be the maximally
possible fluctuations for liquid-to-hexatic transition in the
quasi-2D system of hard spheres.39 Since our Lennard-Jones
particles are much softer than hard spheres and therefore can
overlap to some extent, this might explain why we need a
stricter confinement to observe a hexatic phase.

IV. CONCLUSIONS

We carried out a simulation study of the liquid-to-solid
transformation of a LJ fluid in a slit pore accommodating one
or two layers and several ratios of wall-particle to particle-
particle attractions. To investigate the possible existence of an
intermediate hexatic phase that was previously observed not
only in 2D, but also in quasi-2D systems,10, 29, 39 we performed
an analysis using a broad range of order parameters.

Studying the radial distribution function g(r) together
with the decay of the bond-order correlation G6(r) turned out
to be insufficient to investigate the phase behavior, since, on
the one hand, they characterize the system as a whole and do
not allow to detect phase separation. On the other hand, the

(possible) crossover from algebraic decay to exponential de-
cay happens only at large distances, which requires very large
and computationally expensive simulation boxes.

The angular susceptibility χ6 turned out to be a good tool
to detect phase coexistence, but cannot distinguish properly
between a defective crystal and a hexatic phase, and therefore
also does not allow to investigate the phase behavior alone.
The modified susceptibility χ ′

6 is more sensitive, but again re-
quires much larger simulation boxes.

We consider the Binder cumulant UL to be the most re-
liable parameter in detecting a hexatic phase already for rel-
atively small system sizes. However, one should study in ad-
dition also the distribution of the angular susceptibility χ6 in
order to exclude a possible phase coexistence.

We observed signs of a possible intermediate hexatic
phase only in the slit with extremely attractive walls and a
single layer of particles, i.e., if the system is practically 2D,
otherwise there is a single liquid-solid transition. This is in
contrast to the works29, 36 on a similar system, in which signs
of a hexatic phase in the contact layers near the wall were
observed even in systems with up to seven layers, at wall
strengths comparable to our εw = 7. These findings, however,
were based on studying the behavior of global order parame-
ters and scaling of 	6 only, which, as we have shown, are not
sufficient to safely detect a hexatic phase.

In our work the temperature of the transition computed
with the help of UL does not coincide with the temperature
where the fluctuation of the bond-order parameter has a max-
imum, which makes it possible to assume a first order transi-
tion in all cases we studied.25

Our results have implications for experimental studies
on the hexatic phase,11, 14 since they show that even a mono-
layer requires a strong confining force to exhibit a true hexatic
phase, while studies based on the decay of the RDF and G6

can easily be fooled by defective crystals or coexistent phases.
This might explain why some studies find a hexatic phase,
while other studies of a seemingly very similar system do not.
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