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Abstract— This paper presents a strategy based on fault
diagnosability maximization to optimally locate sensors in
complex systems. The goal is to characterize and determine
a sensor configuration that guarantees a maximum degree
of diagnosability and does not exceed a maximum sensor
configuration cost. The strategy is based on the structural
system model. Structural analysis is a powerful tool for dealing
with complex nonlinear systems. The proposed approach is
successfully applied to a Fuel Cell Stack System.

I. INTRODUCTION

The problem of sensor placement for Fault Detection and
Isolation (FDI) consists in determining the optimal set of
sensors such that a predefined set of faults are detected
and isolated. Usually the optimal sensor placement problem
involves minimising the sensor configuration cost. Thus, the
sensor placement problem can be viewed as a combinatorial
problem where the goal is to find a sensor combination that
fulfils the diagnosis specifications.

Solving the sensor placement for diagnosis can be treated
from many different viewpoints. Indeed, such a problem de-
pends on the kind of system description, the required diagno-
sis specifications, as well as the technique used to implement
the diagnosis system. Because of this, developing a sensor
placement method, that works for all possible fault diagnosis
systems, is unattainable. In this paper, fault diagnosis systems
are based on consistency checking by means of structural
models. The required diagnosis specifications to be fulfilled
are fault detection and isolation for a predefined set of faults
under budgetary constraints. Some works devoted to sensor
placement for diagnosis using graph tools can be found in
[1], [2] and [3]. All these works use a structural model-
based approach and define different diagnosis specifications
to solve the sensor placement problem.

A structural model is a coarse model description, based
on a bi-partite graph, that can be obtained early in the
development process, without major engineering efforts. This
kind of models is suitable to handle large scale and complex
systems since efficient graph-based tools can be used which
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do not have numerical problems. Structural analysis is a
powerful tool for early determination of fault diagnosis
performances.

In structural model based diagnosis, consistency may be
checked by using a set of redundant sub-models (i.e. Minimal
Structurally Overdetermined (MSO) sets of equations). A
residual generator can be implemented from an MSO set
by computing the internal unknown variables through a
convenient manipulation of the equations and later checking
consistency in a redundant equation. This concept is known
as a causal interpretation of the computability [4]. The result
is a directed bi-partite graph, named computation sequence,
that shows how internal values can be computed from the
equations (value propagation) in every redundant sub-model.
However, to guarantee that the residual is generated by using
non-linear equations, the structural model framework needs
to be adapted in order to handle causal computability. Few
works focus this causal assignment in the fault diagnosis
field [5], [6], [7]. In this paper, the causality framework
introduced in [8] will be followed to address it. Thus, the
solution obtained from the sensor placement analysis will
guarantee a set of easily computable residual generators.

This paper presents a new sensor placement algorithm
based on an extension of the work done in [9] that takes
into account maximum diagnosability specifications through
an isolability index. The main contribution of this paper
is the fact that budgetary constraints will be taken into
account. Thus, the goal consists in finding the best diagnosis
performance that can be achieved by installing a sensor
configuration such that the budget is not exceeded.

The sensor placement methodology is applied to a Fuel
Cell Stack (FCS) system. FCS systems are receiving much
attention in the last decade as good candidates for clean
electricity generation. An FCS is a complex system with
many components interacting with each other and combining
thermodynamic, hydraulic and electric phenomena. In order
to cope with such complexity, in this paper a structural model
of the FCS system will be used by the sensor placement
algorithm.

The paper is organized as follows: In Section II, the sensor
placement problem tackled in this paper is presented. Section
III formally introduces the diagnosis framework based on
structural models. Section IV describes the algorithm used to
solve the aforementioned problem. In Section V, the sensor
placement methodology is applied to a FCS system. Finally,
some conclusions and remarks are given in Section VI.
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II. PROBLEM FORMULATION

Usually, the sensor placement problem is presented as an
optimization problem where the best sensor configuration
fulfilling some given diagnosis specifications is sought, see
e.g. [10] and [11]. Nevertheless, ensuring diagnosis speci-
fications may lead to an optimal solution with a large cost
and thus not desirable for a practical implementation. In this
paper, the optimal problem is slightly modified so that only
sensor configurations with a lower cost than a preestablished
value are considered as possible solutions. From this subset,
the sensor configuration with the best diagnosis performance
will be sought.

Let S be the candidate sensor set and C̄ the maximum
admissible sensor configuration cost. Then, the problem can
be roughly stated as the choice of a sensor configuration S ⊆
S with a cost C(S) ≤ C̄ such that the diagnosis performance
is maximised. In addition, if several sensor configurations
exist that satisfy these conditions, the one with the lowest
cost will be chosen.

In model-based diagnosis, fault detectability and fault
isolability are the main objectives. Fault detectability is the
ability of monitoring a fault occurrence in a system, whereas
fault isolability concerns the capacity of distinguishing be-
tween two possible fault occurrences. Thus, the diagnosis
performance will be stated based on fault detectability and
isolability properties. In this work, the single fault assump-
tion will hold (i.e., multiple faults will not be covered) and
no candidate sensor fault will be considered.

Let F be the set of faults that must be monitored, then
FD(S) ⊆ F denotes the detectable fault set when a sensor
configuration S ⊆ S is installed in the system. Fault
isolability can be characterised in a similar way by means
of fault pairs. Let F : F × F be all fault pair permutations
from F, then FI(S) ⊆ F denotes the set of isolable fault
pairs when the sensor configuration S ⊆ S is chosen for
installation (i.e., (fi, fj) ∈ FI(S) means that fault fi is
isolable from fj when the sensor set S is installed in the
system).

Based on the FI(S) set, the isolability index I(S) is
defined as the number of isolability pairs when the sensor
configuration S is installed, i.e.,

I(S) = |FI(S)| (1)

where | · | denotes the cardinality of the set.
To solve the sensor placement problem proposed in this

paper, a system description M is also required. Such descrip-
tion will allow the computation of the detectable faults and
the isolability index for a given sensor configuration. Hence,
the sensor placement for fault diagnosis can be formally
stated as follows:

GIVEN a candidate sensor set S, a system description M,
a fault set F, and a maximum admissible sensor
configuration cost C̄.

FIND a sensor configuration S ⊆ S such that:
1) its cost does not exceed the maximum admis-

sible cost,

2) all faults in F are detectable,
3) the number of isolable fault pairs is max-

imised, and
4) its cost is minimal among all sensor configu-

rations satisfying conditions 1, 2 and 3.

It is worth noting that other diagnosis performance in-
dexes, also designed for sensor placement, could be used
here, see for example [12] and [2]. However, these indexes
may fail at representing maximum fault isolability.

The objective of this paper is to derive an algorithm that
computes a solution for the aforementioned problem. This
algorithm will perform a search through different sensor
configurations until a solution is found.

III. FAULT DIAGNOSIS BASED ON STRUCTURAL MODELS

A structural model approach will be used to solve the
sensor placement problem stated in the previous section.
The analysis of the model structure has been widely used in
the area of model-based diagnosis [4]. Therefore, consistent
tools exist in order to perform diagnosability analysis and
consequently compute the set of detectable and isolable
faults.

The structural model is often defined as a bipartite graph
G(M,X,A), where M is a set of model equations, X a
set of unknown variables and A a set of edges, such that
(ei, xj) ∈ A as long as equation ei ∈ M depends on variable
xj ∈ X . A structural model is a graph representation of the
analytical model structure since only the relation between
variables and equations is taken into account, neglecting the
mathematical expression of this relation. However, due to its
simple description, it cannot be ensured that the diagnosis
performance obtained from structural models will hold for
the real system. Thus, only best case results can be computed.

To mitigate this problem, one possible approach involves
taking into account how unknown model variables are com-
puted in order to perform the diagnosis. Here, the framework
proposed in [8] is adopted. In this framework, a causal
relation for each variable-equation pair is defined. The result
is a structural sub-model, known as causally computable sub-
model, where the computation of all unknown variables is
ensured by straightforward value propagation, i.e., numerical
solvers are not required. For further information on this
framework, the reader is referred to the aforementioned
reference.

It is well-known that the over-determined part of the
model is the only useful part for system monitoring [4].
The Dulmage-Mendelsohn (DM) decomposition [13] is a
bipartite graph decomposition that defines a partition on the
set of model equations M . It turns out that one of these parts
is the over-determined part of the model and is represented
as M+.

The diagnosis analysis is next performed based on the
structural model properties under the causal computable
framework. Specifically, fault detectability and isolability are
defined as properties of the over-determined part of the model
[1]. First, it is assumed that a single fault f ∈ F can only
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violate one equation (known as fault equation), denoted by
ef ∈ M .

Definition 1: A fault f ∈ F is (causally structurally)
detectable in a model described by the set of equations M
if

ef ∈ E+ (2)

where E is the causally computable part of M . Remark that
the procedure to compute E from M is described in [8].

Definition 2: A fault fi is (causally structurally) isolable
from fj in a model described by the set of equations M if

efi ∈ E+
fj

(3)

where Efj is the causally computable part of M \ {efj}.
Without loss of generality, it is assumed that a sensor

si ∈ S can only measure one single unknown variable
xi ∈ X . In the structural framework, such sensor will be
represented by one single equation denoted as e s (known as
sensor equation). Given a set of sensors S, the set of sensor
equations is denoted as MS . Thus, given a candidate sensor
configuration S and a model M , the updated system model
corresponds to M ∪MS .

From Definition 1, FD(S) can be computed as

FD(S) = {f ∈ F | ef ∈ E+
S } (4)

where ES is the causally computable part of M ∪MS , and
from Definition 2, FI(S) can be computed as

FI(S) = {(fi, fj) ∈ F | efi ∈ E+
fj |S} (5)

where Efj |S is the causally computable part of MS ∪ (M \
{efj}).

It is worth noting that testing different sensor configura-
tions involves different sensor equation sets, MS , in (4) and
(5).

Remark that the isolability index, I(S) can be computed
straight away as the number of elements in FI(S), according
to (1).

IV. OPTIMAL SENSOR PLACEMENT ALGORITHM

The sensor placement problem stated in Section II is
solved by Algorithm 1, which is based on a depth-first branch
and bound search.

Every node in the search tree consists of two sensor sets:

• node.S, the sensor configuration that the node repre-
sents.

• node.R, the set of sensors that are allowed to be
removed in its child nodes.

Throughout the search, the best solution is updated in
S∗ whenever a feasible sensor configuration1 is found that
satisfies one of the following two conditions:

• This sensor configuration has a cost not greater than
the maximum admissible sensor set cost and the fault
isolability index of the current best sensor configuration
is improved.

1A feasible configuration means a sensor configuration such that all f ∈
F are detectable.

Algorithm 1 S∗ = searchOpC(node, S
∗)

childNode.R := node.R
for all s ∈ node.R ordered in decreasing cost do
childNode.S := node.S \ {s}
childNode.R := childNode.R \ {s}
if C(childNode.S \ childNode.R) > C̄ then

return S∗

end if
if I(childNode.S) = I(S∗) then

if C(childNode.S \childNode.R) < C(S∗) then
if FD(childNode.S) = F then

if C(childNode.S) < C(S∗) then
S∗ := childNode.S % update best solution

end if
S∗ := searchOpC(childNode, S∗)

end if
else

if I(childNode.S) = I(Node.S) then
return S∗

end if
end if

else
if I(childNode.S) > I(S∗) and
FD(childNode.S) = F then

if C(childNode.S) ≤ C̄ then
S∗ := childNode.S % update best solution

end if
S∗ := searchOpC(childNode, S∗)

end if
end if

end for
return S∗

• The fault isolability index of the current best sensor
configuration is matched but its cost is greater than that
of this sensor configuration.

A branch operation is initiated2 whenever a feasible sensor
configuration is found that satisfies one of the following two
conditions:

• The lowest reachable sensor configuration cost in a
branch exploration does not exceed the maximum ad-
missible sensor set cost and the fault isolability index
of the current best sensor configuration is improved.

• The lowest reachable sensor configuration cost in a
branch exploration is lower than the current best sensor
configuration cost and the fault isolability index of the
current best sensor configuration is matched.

A branch operation is aborted at some child node when-
ever any of the following three conditions hold:

C1A: The fault isolability index corresponding to the
node is worse than the current best one.

C2A: The node does not correspond to a feasible sensor
configuration.

2Initiating a branch operation involves a recursive call to searchOpC .

ThAA.4 180



C3A: The fault isolability index corresponding to the
node matches the current best one but not that of
the parent node, and the current best sensor config-
uration cost does not exceed the lowest reachable
sensor configuration cost in a branch exploration.

A branch operation always involves removing a sensor
from a sensor configuration, so if condition C1A holds then
no sub-node can improve the best isolability index either.
Moreover, if condition C2A holds then no sub-node corre-
sponds to a feasible sensor configuration either. Condition
C3A concerns a node that matches the current best isolability
index and no descendant can improve the current best cost.

A branch operation involves visiting the child nodes of a
parent node. Aborting a branch operation at a parent node
means that a call to searchOpC returns. A branch operation
is aborted at a parent node whenever any of the following
two conditions hold:

C1B: All child nodes that are ancestors of some sensor
configurations which does not exceed the maximum
admissible sensor set cost have been already vis-
ited.

C2B: The fault isolability index corresponding to the
node matches the current best one and that of the
parent node, and all child nodes that are ancestors
of some sensor configurations that can improve the
current best sensor configuration cost have been
already visited.

Condition C1B occurs when the lowest reachable sensor
configuration cost in a branch exploration exceeds the max-
imum admissible sensor set cost. Then, visiting the rest of
the child nodes is not worth it. On the other hand, condition
C2B occurs when the current best sensor configuration cost
does not exceed the lowest reachable sensor configuration
cost in a branch exploration.

Algorithm 1 is initialised as follows:

1) The root node of the search tree corresponds to the
candidate sensor set: node.S := node.R. = S.

2) The current best sensor configuration corresponds to
the empty set: S∗ := ∅.

V. APPLICATION TO FUEL CELL SYSTEM

A. Fuel-cell system model

A fuel cell is an electrochemical energy converter that
converts the chemical energy of fuel into electrical current.
A model for a Fuel Cell system was proposed in [14] and
further information can be found in [15] and [16]. This model
is widely accepted nowadays in the control community as a
good representation of the behavior of an actual fuel cell
for control purposes. The model, see Fig. 1, includes a
very detailed description of the air compressor, the inlet
and return cathode manifolds, the static air cooler, the static
humidifier, the hydrogen flow and the PEM fuel cell stack.
The fuel cell stack model is further decomposed in four
main subsystems: stack voltage, cathode flow, anode flow
and membrane hydration. In the model, it is assumed that

Compressor
Inlet

Manifold
Magic
Cooler

Static
Humidifier

Stack
Return

Manifold

Anode Inlet
Flow Control

Fig. 1. Fuel Cell System scheme

the temperature is known and constant since its dynamic is
much more slower than those of the rest of the model.

The model was originally developed for control purposes.
So, it is necessary to first pinpoint which equations belong
to each component. In order to do so, every component
is modelled apart. This means that internal and external
variables are considered apart for each component, and then
extra equations will be defined to interconnect the differ-
ent components. Following this procedure, the component
behaviour can be easily modelled, as well as system faults
defined. Note that, by doing this, the number of variables and
equations involving the complete model is increased. How-
ever, the redundancy degree is preserved, meaning that no
extra computing effort is expected. In fact, all the structural
properties needed for diagnosis will remain unaltered.

The resulting FCS system model is a complex and large-
scale model involving 96 equations and 96 unknown vari-
ables.

Three different kinds of equations are distinguished: com-
ponent equations, known variable equations and component
interconnection equations. Component equations refer to the
equations that model the FCS system components. Known
variables equations are introduced in the model to indicate
that some model variables are assumed known. Compo-
nent interconnection equations describe the interconnections
among components.

In Figure 2, the resulting structural model is depicted in
matrix form where the equation set corresponds to rows
and the variable set corresponds to columns. A dot in the
(i, j) element indicates that there exists an edge incident to
equation ei ∈ M and variable xj ∈ X , i.e., (ei, xj) ∈ A.
Note that the structural model of the FCS system is a
just-determined model where all unknown variables can be
computed, i.e. the model can be used for system simulation.

A set of faults has been defined for this benchmark
[16]. Each fault affects a primarily equation by changing
a parameter or a variable, so that the relation between a
fault and an equation is unique. Table I summarizes the
faults considered in this work3. Other faults could be easily
included in this set, that should be related to other model
equations. Another assumption is that only single faults are
allowed. This means that two or more faults can not occur
in the system at the same time.

There are two compressor faults, fcp1 and fcp2. Fault fcp1

3As already mentioned, a complete description of how these faults are
modeled can be found in [16].
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Fig. 2. Structural model of the FCS system

represents an electric fault where the electrical resistance
varies (e.g. due to an overheating). Fault fcp2 represents a
malfunction of the compressor box. The supply manifold
is affected by fault fsm which represents, for example, a
leak. Air cooler and static humidifier faults are represented,
respectively, by fac and fsh. These two faults are simulated
by a change in the setpoints values, Tdes and φdes, meaning
that the device is not working properly. Next fault, f st, affects
the fuel cell stack. It represents a malfunction in the outlet
cathode (e.g. the outlet is partially stuck). Last fault fom

affects the outlet manifold. It could represent either a leak
or an outlet obstruction.

TABLE I

SYSTEM FAULTS

Fault Fault description
fcp1 compressor motor fault
fcp2 compressor box fault
fsm supply manifold fault
fac air cooler fault
fsh static humidifier fault
fom outlet manifold fault
fst stack cathode fault

B. Sensor placement for fault detection and isolation

Installing sensors for measuring certain variables is not al-
ways possible or it may be difficult. For instance, measuring
some internal variables in the fuel cell stack would require
inserting probes into the stack which is physically impossi-
ble. Other variables like a partial mass in the gas mixture
is considered not measurable because a complex equipment
is needed and therefore installing such device would not be
realistic. Bear in mind that the running time of Algorithm
1 critically depends on the number of candidate sensors. So
minimising the cardinality of S is important. Remark also
that the maximum admissible sensor configuration cost sets
an upper bound on the cost of any candidate sensor. Thus,
C̄ establishes indeed a practical criterium to a priori discard
potential candidate sensors. Assume that a maximum budget
for investment on instrumentation has been set to 32 by the

TABLE II

MEASURABLE VARIABLES AND COSTS.

variable description cost
ωcp compressor angular speed 10
τmcp compressor motor torque 12
icp compressor current 1

Wcp,out compressor exit air mass flow rate 15
Tcp,out compressor exit air temperature 2
φcp compressor exit air relative humidity 30

Wsm,out supply manifold exit air mass flow rate 15
Tsm,out supply manifold exit air temperature 2
psm,out supply manifold exit air pressure 5
φsm,out supply manifold exit air relative humidity 30
Wac,out air cooler exit air mass flow rate 15
Tac,out air cooler exit air temperature 2
φac,out air cooler exit air relative humidity 30
Wsh,out static humidifier exit air mass flow rate 15
Tsh,out static humidifier exit air temperature 2
psh,out static humidifier exit air pressure 5
φsh,out static humidifier exit air relative humidity 30
Wv,inj static humidifier injected vapour mass flow rate 28
Wom,out outlet manifold exit air mass flow rate 15
pom,out outlet manifold exit air pressure 5
φom,out outlet manifold exit air relative humidity 30
Wafc,out regulated hydrogen mass flow rate 15
pan,in FCS anode input hydrogen pressure 5
Wan,out FCS anode exit hydrogen mass flow rate 15
pan,out FCS anode exit hydrogen pressure 5
φan,out FCS anode exit hydrogen relative humidity 30
Wca,out FCS cathode exit air mass flow rate 15
pca,out FCS cathode exit air pressure 5

Wv,an,out FCS anode exit vapour mass flow rate 28
Wv,ca,out FCS cathode exit vapour mass flow rate 28

FCS system owner. In all, 30 variables will be assumed
to be measurable. The set of candidate sensors and their
corresponding cost is depicted in Table II.

Different dimensionless costs have been assigned to each
measurable variable according to the ease of installation and
the price of its corresponding sensor. For example, note that
measuring humidity or vapour mass flow rate has a large
cost since the sensors are expensive and difficult to install in
the system. On the other hand, installing sensors to measure
air temperature, pressure or current is easy. Moreover, their
measurements are rather reliable. Therefore, this kind of
sensors have a smaller cost. Gas mass flow rate, angular
speed and motor torque are assumed to be measurable at an
intermediate cost.

If all candidate sensors were installed, the maximum
diagnosis performance would be achieved. For this particular
application, all faults would be detectable and the isolability
index would be maximised (I(S) = 2× (

7
2

)
= 42). However

the cost of installing all sensors would be C(S) = 445,
which clearly exceeds C̄ = 32.

The company wants to install a set of sensors such that
the maximum budget is not exceeded but the diagnosis per-
formance is maximised. Algorithm 1 has been implemented
in MATLAB and applied to solve this problem. After 155.93
seconds, the algorithm returns the following optimal sensor
configuration:
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S∗ ={icp, Tcp,out, Tsm,out, psm,out, Tsh,out, psh,out,

pom,out, pca,out}
The cost of this sensor configuration is 27 and the isolabil-

ity index is 36. This means that this is the lowest cost sensor
configuration that has an isolability index of 36, which is the
maximum diagnosis performance that can be achieved under
the stated budgetary constraint.

It is clear that there is a trade-off between the budgetary
constraint and the best achievable isolability index. In order
to illustrate it, Algorithm 1 has been run with different values
for C̄. Figure 3 shows these results. Remark that there exists
a sensor configuration with a cost of 64 that has the same
isolability index gained by installing all candidate sensors.
On the other hand, there does not exist a sensor configuration
such that all faults are detectable with a smaller cost than 21.
So it is not shown in the figure. It is interesting to note that
just a 16% increase in the budget (i.e., from 32 to 37) would
lead to an 8% increase in the isolability index (i.e., from 36
to 39). This new optimal sensor configuration would involve
just the addition of a sensor measuring ωcp to the previous
optimal sensor set.

Regarding the search strategy performance issues, with 30
candidate sensors there are 230 (i.e., more than 109) possible
sensor configurations. However, applying Algorithm 1 with
C̄ := 32 just 889 nodes are visited, and thus inspected.

VI. CONCLUSIONS

The sensor placement problem in a complex system has
been addressed in this paper. An FCS system involves a
high number of equations which involve look-up tables, maps
and other nonlinear relations. Such complexity requires the
development of suitable tools. The approach provided in this
paper addresses it applying a structural analysis framework.

In the literature, most approaches to optimal sensor place-
ment try to solve the following problem: search the minimum
cost sensor configuration that satisfies a given set of fault
diagnosis specifications. A key contribution of this work

is the generalization of this problem by introducing the
concept of the isolability index as a measurement of the fault
diagnosis performance achievable in a given system. This
measurement allows to set up a sensor placement problem
based on a fault diagnosis performance maximization under
the constraint of a given maximum sensor configuration cost.
Thus, the new formulation presented in this paper becomes
appropriate in complex systems with a bound in the budget
assigned to instrumentation.

Remark that the sensor placement search strategy in Algo-
rithm 1 could be applied to other model-based fault diagnosis
methods than the structural analysis framework, provided
that such methods could evaluate FD(S) and I(S) for a given
sensor configuration S.
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