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Abstract—Suitable installed sensors in a industrial process is
a necessary condition for fault diagnosis. Sensor placement for
diagnosis purposes is to study which process variables have to
be measured to satisfy diagnosis specifications (detectability, dis-
criminability and diagnosability). This paper presents a method
based on the study of the structural model properties and the
Dulmage-Mendelsohn decomposition. Due to the use of structural
models, the proposed approach can be applied to a wide variety
of system (linear, algebraic, dynamics, etc.). Assuming that the
cost of placing a sensor for each possible variable is defined, this
method finds the minimal cost sensor configuration according
to the diagnosability criteria. This method does not require the
computation of testable subsystems

Index Terms—Sensor placement, Structural modeling, Fault
diagnosis, diagnosability specifications

I. INTRODUCTION

In the scientific literature, many approaches of the fault
diagnosis have been proposed since 1980. FDI (fault detection
and isolation) approach ([11], [4]) and DX approach ([16],
[2]). FDI approach is developed by the Automatic Control
community. It is based on the concept of signature table
and the residuals based approaches, whereas DX approach
is coming from the Artificial Intelligence community and
proposes a logical framework for automatic diagnosis pro-
cesses. But this framework was dedicated only to static binary
systems. Recently, a bridge approach between FDI and DX has
been proposed ([10], [12]). Thus, tools for solving diagnosis
problems are now well established. However, designing an
efficient diagnosis system does not start after the system design
but it has to be done during the system design. Indeed, the
performance of a diagnostic system highly depends on the
number and on the location of actuators and sensors. There-
fore, designing a system that has to be diagnosed not only
require relevant fault diagnosis procedures but also efficient
sensor placement algorithms.

[7] has proposed a sensor placement method which deals
with linear systems. This approach makes use of the Gauss-
Jordan elimination method to find a minimum set of variables
to be measured. This ensures the observability of variables
while simultaneously minimising the cost of sensors. Another
method for sensor placement has been proposed in [8]. This
method aims at guaranteeing the detectability and isolability
of sensor failures. The sensor placement can be solved by an

analysis of a cycle matrix or using the technique of mixed
linear programming.

However,all these methods are not suitable for the design
of systems that include a diagnosis system because, in this
context, the goal of sensor placement should be to make it pos-
sible to monitor hazardous components. The sensor placement
algorithm should compute solutions that satisfy detectability
and discriminability properties. Few methods have focused on
this problem.

[18] has proposed a method based on consecutive additions
of sensors, which takes into account diagnosability criteria.
This method requires an a priori design of all the ARR for a
given set of sensors.

Recently, the sensor placement problem satisfying diagnos-
ability objectives becomes possible without designing ARRs.
[5] has proposed an efficient method based on a partial order
on the well-determined subsets from a structural model. This
method finds all the possible minimal sensor sets which makes
the problem intractable when the solutions set becomes large.

Another sensor placement method without designing ARRs
has be presented in ([19]). This method improves the possi-
bility of detecting and localizing faults in systems for which
only the structure is known. It considers the complete range
of specifications respect to the constraints, i.e. the set of
constraints that must be diagnosable, the set of constraints
that must be non discriminable but detectable and the set of
constraints that must be non detectable.

In continuation of the method presented in [19], this paper
presents a sensor placement method which considers practi-
cal specifications. Fault detectability and discriminability are
handled by means of the Dulmage-Mendelsohn decomposition
[3]. Moreover, the search of the optimal solution is performed
by using an Combinatorial algorithm.

II. SENSOR PLACEMENT PROBLEM FOR DIAGNOSIS

A. Sensor placement motivation
Let us present an intuitive (but not efficient) formulation

to understand the sensor placement problem. The solution
of a diagnostic problem is generally decomposed into two
consecutive steps. The first step relies on consistency tests by
means of minimal testable subsets of constraints. Such testable
subsets can be obtained from constraints combinations using
possible conflict generation [15], bipartite graph [1], Dulmage-
Mendelsohn decomposition [6] or elimination rules [13]. An
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inconsistency in a testable subset means that, at least, one
of the behaviour modes associated to this constraint subset is
not actual.The second step is the diagnostic analysis, which
provides global conclusions in term of which are the actual
system modes. The performance of a diagnostic depends on
such testable subsets. Since the generation of all possible
testable subsets depends on the data flows (the observation
set), then it turns out that diagnostic performance also depends
on these observations.

Additional sensors lead to additional testable subsets. Ba-
sically, once the testable subset has been generated, it is
therefore possible to compute the performance of the diag-
nostic system given some diagnosis specifications. Whether
the performance satisfies the requested specifications or not,
the testable subset is modified by adding more sensors and the
process is repeated once again until specifications are reached.
However, this process requires lots of computations because
the generation of testable subsets is time consuming.Another
better approach for sensor placement is proposed in this paper.
It does not require the computation of testable subsystems,
therefore the computation burden is avoided. It directly solves
the following problem by studying the properties of the model
structure.

B. Diagnosis specifications

The behaviour model of a system Σ can be defined as a
set of relations (constraints) among a set of variables V . In
a component-oriented model, these relations called primary
relations are associated to the components of a system and
each physical variable v ∈ V belongs to a domain dom(v)
representing all the possible values for v.

In this section diagnosis specifications are introduced. First,
the minimal testable set of constraints (TSS) is formally
defined and then the concept of TSS is used to define complete
diagnosis specifications.

A requirement to test consistency given a TSS, is to be able
to compute all the unknown variable involved within this TSS.
This motivates Definition 1.

Definition 1 (Solving Constraint Set): Let K be a set of
constraints and v a variable in var(K) characterised by its
domain dom(v). K is a solving constraint set for v, if using K,
it is possible to find a value set S for v such that S ⊂ dom(v).
A solving constraint set K for v is denoted as K � v.

From the above definition, the TSS is formally defined in
the following definition.

Definition 2 (Minimal Testable Set (TSS)): Let K be a set
of constraints. K is a minimal testable set if and only if there
are two disjoint subsets K1,K2 ⊂ K (i.e. K1 ∩K2 = ∅) such
that K1 � v and K2 � v for v ∈ var(K), and there is no
subset in K with such property.

If the property in Definition 2 is satisfied, then it is indeed
possible to check whether the value set S1 deduced from K1 is
consistent with the value set S2 deduced from K2: S1∩S2 �= ∅.
Moreover, adding any constraint to a testable set leads also to a
testable set of constraints. However, only minimal testable sets
are interesting. A global testable constraint that can be deduced
from a TSS is called an Analytical Redundancy Relation.

Let K = {. . . ,Kk, . . .} be the set of all the minimal testable
subsystems that can be deduced from a system constraint set
KΣ according to Definition 2. In this paper, we assume without
loss of generality, that there is a one-to-one relationships
between constraints and behaviour mode. This allows us to
extend the notions of detectability and discriminability to
constraints from the set KΣ of TSS.

Definition 3 (Detectable constraint): Let K be the set of
TSS. A constraint k ∈ KΣ is detectable [17] in K iff

∃Ki ∈ K : k ∈ Ki (1)

By extension, a set of constraints K ⊆ KΣ is detectable in
K if ∀ki ∈ K, ki is detectable in K.

Definition 4 (Discriminable constraints): Two different de-
tectable constraints k1, k2 ∈ KΣ are discriminable [17] in K
iff:

∃Ki ∈ K : k1 ∈ Ki ∧ k2 /∈ Ki (2)

By extension, two sets of detectable constraints K1,K2 ⊂ KΣ

such that K1 ∩K2 = ∅ are discriminable in K iff: ∀ki ∈ K1

and ∀kj ∈ K2 ki, kj are discriminable in K.
Definition 5 (Diagnosable constraint): A detectable con-

straint k ∈ KΣ is diagnosable [17] in K iff:

∀kj ∈ (KΣ \ k), ∃Ki ∈ K : k ∈ Ki ∧ kj /∈ Ki (3)

By extension, a subset of detectable constraints K ⊂ KΣ are
diagnosable in K iff: ∀ki ∈ K, ki is diagnosable in K.

In fault diagnosis, sensor placement has to satisfy specifi-
cations dealing with detectability, discriminality and diagnos-
ability. Because each component is assigned to one constraint,
the required diagnosis specifications can be defined over the
constraint set. Thus, the practical specifications presented in
this paper consist in a classification of the constraint set into
the following tree constraint subsets in KΣ:

• the set of constraints Kspec
diag that must be diagnosable.

• the set Kspec
disc of constraints sets that must be discrim-

inable.
• the set of constraints Kspec

det that must be at least de-
tectable.

The practical specifications Kspec
diag , Kspec

disc and Kspec
det for

sensor placement problems are meaningful if the two following
properties are satisfied:

Ki ∩Kj = ∅
∀Ki,Kj ∈ Kspec

disc ∪ {Kspec
diag};Ki �= Kj (4)

(
�

K∈Kspec
disc

(K) ∪Kspec
diag ) ⊆ Kspec

det ⊆ KΣ (5)

Let K �
Σ represents the extended system model constraints

with the additional sensors, i.e. K �
Σ contains the system

model constraints KΣ plus the additional sensor terminal
constraints KV of V variables, K �

Σ = KΣ ∪KV . Therefore,
solving a sensor placement problem consists in determining
the additional sensor terminal constraints KV that lead to the
satisfaction of practical specifications according Definitions 3,
4 and 5.



Fig. 1. Dulmage-Mendelsohn decomposition of a bipartite graph

III. DULMAGE-MENDELSOHN DECOMPOSITION

The Dulmage-Mendelsohn Decomposition noted “DM De-
composition” is a useful tool for the structural analysis of
system to diagnose. La decomposition DM can be obtained by
applying classical algorithms of bipartite graph ([3], [9]). This
decomposition results by permuting the columns and rows of
the incidence matrix which represents the graph in order to
obtain a lower triangular block.

A Dulmage-Mendelsohn decomposition ([3]) of a bipartite
graph leads to three canonical components called K+, K0,
K−. Figure 1 shows these components, where the grey areas
means that the matrix contains 0 and 1 and the white areas
only contains 0. In this figure, we remark that there are three
subsystems:

S+ = (K+, V +)
S0 = (K0, V + ∪ V 0)
S− = (K−, V + ∪ V 0 ∪ V −)

(6)

such that
• (K+, V +) is over-constrained,
• (K0, V 0) is just-constrained,
• (K−, V −) is under-constrained.

An efficient algorithm [14] to compute the Dulmage-
Mendelsohn decomposition is implemented in Matlab (dm-
perm function).

IV. PROPERTIES OF STRUCTURAL MODELS

The required diagnosability properties of structural models
are presented in this section. First, the concept of linked con-
straints has to be formalized because discriminability depends
on this concept.

Definition 6 (Linked set of constraints): A set of con-
straints K ⊆ KΣ is linked by a set of variables V ⊆ var(K)
if and only if the three following expressions hold:

cons(V ) = K (7)

(K0 ∪K−, V 0 ∪ V −) = (∅, ∅) (8)

|K| = |V |+ 1 (9)

where cons(V ) stands for the set of constraints adjacent to
the set of variables V .
Note that equation (8) means that the sub-model formed by
constraints K and variables V has no just or under-constrained

Fig. 2. Structural matrix of a constraint set K, which is linked by a set of
variables V

Fig. 3. Structural matrix of non detectable constraints

part.
The shape of an incidence matrix dealing with linked con-
straints is depicted in figure 2, where the number of constraints
in K is one more than the number of variables in V according
to (9).

The concept of linked constraints is strongly connected with
discriminability.

Lemma 1: A set of constraints K ⊂ KΣ linked by a set of
variables V ⊂ var(KΣ) is necessarily non discriminable.
The proof is presented in [19].

A set of constraints cannot be used to generate a TSS
if they are linked and if there are additional variables that
cannot be solved. These constraints are qualified as isolated.
Detectability depends on this concept.

Definition 7 (Isolated set of constraints): A constraint k ∈
KΣ is isolated by a set of variables V ⊆ var(k) iff

cons(V ) = k (10)

By extension, a set of constraints K ⊂ KΣ is isolated by a
set of variables V ⊆ var(K) iff K is linked by V � ⊆ V and
there is a non-empty variable subset V

�� ⊆ V \ V � such that

cons(V
��
) ⊆ K (11)

The shape of a structural matrix dealing with isolated
constraints is depicted in figure 3.

The concept of isolated constraints is strongly linked with
detectability.

Lemma 2: A set of isolated constraints K ⊆ KΣ is neces-
sarily non detectable.

The proof is presented in [19].
In lemma 2, a relationship between isolated constraints and
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Fig. 4. Structural matrix of non detectable constraints

the detectability property has been presented. Conversely, a
non detectable constraint may not belong to a set of isolated
constraints. Next lemma shows the general condition that a
non detectable constraints must fulfil according to Definition
7.

Lemma 3: A sufficient condition for a subset of constraints
K ⊂ KΣ to be non detectable is that there is a tuple
(K1, . . . ,Km) of m sets of constraints making up a partition
P(K) of K such that each Ki is isolated in KΣ\

�
j<i Kj

(K1 is a limit case: it should be isolated in KΣ).
The proof is presented in [19].

Figure 4 indicates the shape of a structural matrix of non
detectable constraints.

It is clear that by installing sensors, i.e. adding terminal
constraints in the system, a set of linked constraint can become
a non-linked (i.e. the non discriminable constraints can become
diagnosable) and a set of isolated constraints can become non-
isolated (i.e. these non detectable constraints can become non
discriminable or diagnosable).

V. COMPUTING DETECTABILITY, DISCRIMINABILITY AND
DIAGNOSABILITY FROM A STRUCTURAL MODEL

According to lemma 3, there are several ways to partition
a constraint set K which has to be non detectable into
several parts P(K) = {K1, . . . ,Km} such that each Ki

is isolated in KΣ\
�

j<i Kj . The Dulmage-Mendelsohn
decomposition (decompose(K)) provides a unique way to
partition the constraint set K. The partition resulting from
the Dulmage-Mendelsohn decomposition is included into
the partition resulting from lemma 3. In this paper, the
Dulmage-Mendelsohn decomposition is used for finding the
optimal sensor placement.

Since discriminability and diagnosability concern the de-
tectable constraints, there is no need to search for discrim-
inable or diagnosable faults into the non-detectable constraints,
i.e. the corresponding K−

Σ and K0
Σ sets. Furthermore, non-

discriminable faults are related to the linked set of constraints
according Lemma 1 which means that finding all the linked
set of constraints in K+

Σ is enough to establish the fault
discriminability properties of the system.

Let K be an over-constrained set such that K+ = K. Then
for any linked set of constraint K � ⊆ K it holds that

K � = (K \ {k})0 ∪ {k} ∀k ∈ K � (12)

This is due to the fact that, by removing the constraint k ∈ K �,
the existing complete matching in var(K �) [1] turns into a
perfect matching with the constraints K � \ {k} and the corre-
sponding variables, in other words, K � \ {k} = (K � \ {k})0.

Algorithm 1 finds all the linked sets of constraints within an
over-constrained set by applying (12). The “DM-decompose”
function in the algorithm refers to the Dulmage-Mendelsohn
decomposition. Note that when a linked set is found by
removing a constraint we do not need repeat the procedure
with the remaining linked constraints since the same linked
set would be found more than once.

Algorithm 1 Klink = findLinkedBlocks(K): Compute the
subsets of linked constraints in K
Require: A set of constraints K such that K = K+

Ensure: The subsets of linked constraints Klink

Klink ← ∅
K � ← K
while K � �= ∅ do
{k} ← {k} ∈ K �

(K−,K0,K+) ← DM-decompose(K \ {k})
if K0 �= ∅ then
Klink ← Klink ∪ {K0 ∪ {k}}

end if
K � ← K � \ {{k} ∪K0}

end while

Algorithm 2 is developed in order to determine the de-
tectable Kdet set, the discriminable Kdisc sets and the diag-
nosable Kdiag set of constraints within a structural system
model. The detectable constraints are the constraints included
in the over-constrained part of the the Dulmage-Mendelsohn
decomposition i.e. K+. Once the detectable set is found, then
all the discriminable sets are computed by means of Algorithm
1. Finally, since all the possible discriminable sets has been
found, the remaining constraintsin the detectable set are the
diagnosable ones.

Algorithm 2 (Kdet,Kdisc,Kdiag) = decompose(K): Find the
different subsets of constraints in K according definitions3, 4
and 5
Require: A set of constraints K
Ensure: Kdet,Kdisc,Kdiag

(K−,K0,K+) ← DM-decompose(K)
Kdet ← K+

Kdisc ← findLinkedBlocks(K+)
Kdiag = K+ \

�
K∈Kspec

disc
K

VI. OPTIMAL SENSOR PLACEMENT FOR PRACTICAL
SPECIFICATIONS

A. Verification of practical diagnosis specifications
Let us consider a system modeled by a constraint set KΣ.

Let Kdet, Kdisc and Kdiag be the diagnosis properties of a



system KΣ, and Kspec
det , Kspec

disc and Kspec
diag the required practical

specifications, we say that the system KΣ fulfils:
1) detectability specifications if

Kspec
det ⊆ Kdet (13)

2) discriminability specifications if

|{Kspec ∈ Kspec
disc | Kspec ∩K �= ∅}| ≤ 1 ∀K ∈ Kdisc

(14)
3) diagnosability specifications if

Kspec
diag ⊆ Kdiag (15)

According to these expressions, the practical specifications
are not fulfilled as long as a specified detectable constraint
becomes non-detectable or two specified discriminable con-
straints are non-discriminable (i.e. are non-detectable or both
constraints belongs to the same set K ∈ Kdisc) or a specified
diagnosable constraint becomes non-diagnosable (i.e. is non-
detectable or belongs to any set K ∈ Kdisc). Otherwise the
practical specifications are fulfilled.

Algorithm 3 verifies whether the practical specifications
are fulfilled. Given the set of model constraints KΣ without
installed sensors, a set of variables V ⊆ var(KΣ) to be mea-
sured and the practical specifications Kspec

det , Kspec
disc and Kspec

diag ,
the algorithm first adds the corresponding terminal constraints
of V to the system constraints and computes the diagnosis
properties by means of Algorithm 2. Then detectability and
diagnosability are verified according (13) and (15). Finally
discriminability is verified by ensuring that, for each set in
Kdisc, there is not more that one set in Kspec

disc with a non-
empty intersection, according to (14).

If the practical specifications are verified then the set of
candidate sensors to measure V is a feasible solution for the
sensor placement problem. The Algorithm 3 returns a boolean
value indicating whether V is a feasible configuration.

B. Optimal sensor search
There may be several sensor placements that satisfy diag-

nosability specifications. In order to select the most interesting
one, a criterion based on the cost of the sensor placement
is considered. Let’s introduce the following notations. The
cost of the measurement of a variable v is denoted C(v). By
extension, the cost of the measurement of a set of variables V
is denoted: C(V ) =

�
v∈V C(v).

In order to describe the sensor placement method, the
notions of V node and buffer of V nodes are introduced. A
V node is a couple of variable sets: V node = (V a, V b),
where V node− = V a and V node+ = V b. A buffer is a
special First In First Out buffer. The basic functionalities
are: buffer .push(V node) and buffer .pop(). They respectively
correspond to add a V node in the buffer and get a V node
from the buffer.

The optimality criterion for a feasible sensor placement
defined by Vmeasured is given by: C(Vmeasured). Combina-
torial algorithm is implemented in the placeSensor() method
(algorithm 4) using a simple First In First Out buffer of nodes
of variables.

Algorithm 3 feasible(KΣ, V,K
spec
det ,Kspec

disc ,K
spec
diag ) : Check

whether the sensor placement satisfies the specifications
Require:

A structural set of constraints KΣ.
A set of candidate sensors V ⊆ var(KΣ.
The consistent specifications, Kspec

det ,Kspec
disc ,Kdiag in KΣ.

Ensure: true if the candidate sensors satisfy the specifica-
tions, false otherwise.
K �

Σ ← KΣ ∪KV

(Kdet,Kdisc,Kdiag) = decompose(K �
Σ)

if (Kspec
det �⊆ Kdet) then

return false
end if
if (Kspec

diag �⊆ Kdiag) then
return false

end if
for all K ∈ Kdisc do
isthesecond ← false
K � = (

�
K��∈Kspec

disc
K ��) ∩K

for all Kspec ∈ Kspec
disc do

if Kspec ∩K � �= ∅ then
if not isthesecond then

isthesecond ← true
else

return false
end if

end if
end for

end for
return true

Fig. 5. Scheme of the electronic circuit

VII. APPLICATION

The algorithm of sensor placement summarized in section
VI has been applied for an electronic circuit (figure 5). This
electronic circuit is modeled by the following constraints:

k1 : v1c − v2 = 0 k8 : v3 − v4a −R2i2 = 0
k2 : i1 − i2 − i3 = 0 k9 : v1 − v4b −R3i3 = 0
k3 : v1 − v1a = 0 k10 : v2 −R4i4 = 0
k4 : v1 − v1b = 0 k11 : v4 − v4a = 0
k5 : v1 − v1c = 0 k12 : v4 − v4b = 0
k6 : v0 − v1 = R1i1 k13 : v0 − ṽ0 = 0

k7 : C(v1a − v3)−
� t
0 i2dt = 0

(16)
with KΣ = {k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13}.



Algorithm 4 searchOpt(KΣ,K
spec
det ,Kspec

disc ,K
spec
diag )): a set of

variables to be measured
Require: Specifications are consistent in KΣ.
Require: C() is defined for each variable in VΣ

criteria ← C(var(KΣ))
Vmeasured ← var(KΣ)
buffer ← ∅
Vcandidat ← var(KΣ)
buffer .push(∅, Vcandidat)
while buffer in not empty do

V node ← buffer .pop()
Vremaining ← V node+

for all v ∈ V node+ do
Vselected ← V node− ∪ {v}
if C(Vselected) < criteria then

if isFeasible(KΣ, Vselected,K
spec
det ,Kspec

disc ,K
spec
diag )

then
criteria ← C(Vselected)
Vmeasured ← Vselected

else
Vremaining ← Vremaining\{v}
buffer .push(Vselected, Vremaining)

end if
end if

end for
end while
return Vmeasured

Suppose that the costs of the measurements are:

C(v0) = C(i1) = 1

C(v4) = 2

C(v1) = C(v2) = C(v3) = C(v1a) = C(v1b) =

= C(v1c) = C(v4a) = C(v4b) = 4

C(i2) = C(i3) = C(i4) = 8

Let consider the following practical specifications:

Kdet = {k1, k6, k7, k8, k9, k10, k13}
Kdisc = {{k6} , {k7} , {k8} , {k9} , {k10} , {k13}}
Kdiag = {k1}

In order to find the cheapest sensor placement that satisfies
specifications, algorithm 4 is used. It yields the following
results:

Vmeasured = {v0, v2, v3, v4, i1, i4, v1c}

with a minimal cost C(V ∗) = 24.

VIII. CONCLUSION

A new approach of sensor placement which satisfies prac-
tical specifications has been proposed. It is thus possible to
specify the performances that a diagnostic system has to meet
and then to compute where the sensors should be placed.

Several lemmas and algorithms are used to develop a
method for sensor placement that deals with practical spec-
ifications: the set of constraints that must be diagnosable, the
set of constraint sets that must be discriminable and the set of
constraints that must be at least detectable. This method can
be applied to a large class of systems since they are based on
a structural model approach.

Algorithm for sensor placement managing practical specifi-
cations has been presented. Thanks to the proposed algorithm,
cost optimal sensor placements satisfying practical diagnos-
ability specifications is possible without designing ARR a
priori. It is an important feature since it is no longer necessary
to design all the possible ARRs.
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