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In conductor-insulator nanocomposites in which conducting fillers are dispersed in an insulating
matrix, the electrical connectedness is established by inter-particle tunneling or hopping processes.
These systems are intrinsically non-percolative and a coherent description of the functional depen-
dence of the conductivity σ on the filler properties, and in particular of the conductor-insulator tran-
sition, requires going beyond the usual continuum percolation approach by relaxing the constraint
of a fixed connectivity distance. In this article, we consider dispersions of conducting spherical par-
ticles which are connected to all others by tunneling conductances and which are subjected to an
effective attractive square-well potential. We show that the conductor-insulator transition at low con-
tents φ of the conducting fillers does not determine the behavior of σ at larger concentrations, in
striking contrast to what is predicted by percolation theory. In particular, we find that at low φ the
conductivity is governed almost entirely by the stickiness of the attraction, while at larger φ values σ

depends mainly on the depth of the potential well. As a consequence, by varying the range and depth
of the potential while keeping the stickiness fixed, composites with similar conductor-insulator tran-
sitions may display conductivity variations of several orders of magnitude at intermediate and large
φ values. By using a recently developed effective medium theory and the critical path approxima-
tion, we explain this behavior in terms of dominant tunneling processes which involve inter-particle
distances spanning different regions of the square-well fluid structure as φ is varied. Our predictions
could be tested in experiments by changing the potential profile with different depletants in polymer
nanocomposites. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705307]

I. INTRODUCTION

The challenge of understanding the electrical transport
properties in conductor-insulator composites is central for
conceiving and designing new composite materials with
unique electrical properties, and has fueled ongoing research
ranging from fundamental statistical physics to the more ap-
plied materials science and nanotechnology. In this respect,
recent years have seen remarkable progress in the design and
synthesis of polymer nanocomposites with controllable struc-
tural parameters, so as to combine advantageous properties of
the insulating polymer matrix (flexibility, light weight, trans-
parency, etc.) with appropriate levels of electrical conduc-
tivity σ . For example, high aspect ratio conducting fillers,
such as carbon fibers and nanotubes, graphite platelets, and
graphene sheets, as well as segregated dispersions of carbon-
black particles, have been shown to reduce strongly the load-
ings φ needed to achieve conducting composites.1–3 The in-
terplay of multicomponent fillers has been recently demon-
strated to have a strong influence on transport properties.4

Other studies have evidenced the role of depletants5 and of
shear forces6 in the formation and structure of the conduct-
ing network of carbon nanotubes, thus underlining the impor-
tance of the coupling between the conducting and insulating
phases,7 and how this can be used to tune the overall compos-
ite conductivity.

a)biagio.nigro@epfl.ch.
b)claudio.grimaldi@epfl.ch.

On the theoretical side, the general understanding of the
effects of the filler properties on σ has been traditionally
based on the continuum percolation theory of transport. The
premise behind this approach is that there exists a fixed inter-
particle distance beyond which two particles are electrically
disconnected, thereby leading to a well-defined percolation
threshold φc for the connected particles which marks the tran-
sition between the conducting (at φ > φc) and the insulating
(at φ < φc) regimes of the composite.8, 9 In the vicinity of
φc, the resulting percolation conductivity is thus predicted to
follow the power-law relation

σperc � σ 0
perc(φ − φc)t , (1)

where t � 2 is the universal transport exponent for three-
dimensional percolating systems. Equation (1) is customarily
used to interpret the φ-induced conductor-insulator transition
observed in real composite materials, which are thus viewed
as truly percolating systems, although the values of t ex-
tracted from experiments often deviate from universality.1, 10

Due to the percolation hypothesis, most theoretical efforts
have been concentrated on the calculation of the percolation
threshold φc and of its dependencies on the filler particle
shapes,11–13 dispersions,14, 15 and filler-filler and filler-matrix
interactions.16–19

In polymer nanocomposites, or more generally in
colloidal-like dispersions of conducting fillers in insulating
matrices, the electron transfer between particles is mediated
by tunneling or hopping processes, which implies that the
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conductance between any two particles decays continuously
with the inter-particle distance [see Eq. (4) below]. In this
case, no fixed connectivity length can be unambiguously iden-
tified and, consequently, the premise for the existence of a
percolation transition, and for the validity of Eq. (1), is unjus-
tified for this class of composites. This poses the problem of
understanding the observed filler dependencies of σ without
relying on the percolation hypothesis.

Recently, the problem of finding the functional depen-
dence of σ for colloidal composites without imposing any
a priori fixed connectivity distance has been tackled by con-
sidering explicitly the electron tunneling conduction between
any two particles in the composite.20–22 One important out-
come was the realization that, despite the absence of a real
percolation threshold, the transition from the conducting to
the insulating regimes could still be characterized by a char-
acteristic concentration φp below which σ is dominated by
the (small but finite) conductivity σ p of the insulating matrix.
In particular, by considering equilibrium dispersions of hard
spheroidal particles, φp was shown to decrease with the par-
ticle aspect ratio,20 in accord with the general trend observed
in composites with fibrous and plate-like fillers.

In this article, we study by theory and simulations the
functional dependence of σ when, in addition to steric interac-
tions, the conducting colloidal particles are subjected to mu-
tual attraction modeled by a square-well potential. We show
that attraction, when combined with tunneling, gives rise to
unexpected features which could not be anticipated by the
usual continuum percolation theory. Specifically, we find that
the range and the depth of the attraction affect the conduc-
tivity in very different ways according to whether φ is small
or large. In particular, the low-φ behavior of σ , and so the
crossover φp to the insulating regime, turns out to be almost
entirely governed by the overall stickiness of the attraction,
while the conductivity at φ > φp is found to change by sev-
eral orders of magnitude for different potential profiles even if
the stickiness is kept constant. This kind of behavior is com-
pletely missed if the conductor-insulator crossover is treated
as a true percolation transition occurring at the critical con-
centration φc, because in this case the φ dependence of the
percolation conductivity σ perc of Eq. (1) is basically deter-
mined by φc alone.

As shown in the following, in which a recently devel-
oped effective medium theory and the critical path approx-
imation (CPA) are used to interpret the simulation results,
the effects of the attractive potential on σ can be rational-
ized in terms of a φ-dependent dominant distance between the
fillers which governs the composite conductivity. This corre-
spondence establishes a direct connection between the func-
tional dependence of σ and the structure of the square-well
fluid, which could be in principle exploited in the synthesis
of real nanocomposite materials with optimized conduction
characteristics.

II. MODEL

Attractive forces between filler particles in polymer
nanocomposites may arise from several mechanisms such as
van der Waals forces or depletion interactions induced by non-

adsorbing polymers or surfactant micelles.23 In the latter case,
the size and concentration of the depletants control, respec-
tively, the range and depth of the attractive interaction, which
can be modeled by a suitable effective potential. Here, we rep-
resent the conducting fillers by hard-core spheres of diameter
D and for any two spheres centered at ri and rj , we model the
attraction by a square-well potential u(rij) of the form

u(rij ) =

⎧⎪⎨
⎪⎩

+∞ for rij ≤ D,

−ε for D < rij ≤ λD,

0 for rij > λD,

(2)

where rij = |ri − rj | and λD (λ ≥ 1) is the range of attrac-
tion. In the following, we shall vary both λ and ε so as to
consider the hard sphere (HS) case (ε = 0), the short-range
attraction regime ε �= 0 and λ ≤ 1.25, and the adhesive hard
sphere (AHS) limit,24 which is obtained by taking λ → 1 and
ε → ∞ with

τ = λ exp(−ε∗)

12(λ − 1)
(3)

constant, where ε* = ε/kT and kT is the thermal energy. τ

is an inverse measure of particle stickiness which governs,
together with the concentration, the phase behavior of short-
range square-well fluids.25, 26 In the following, we limit our
study to values of τ above the critical point for gas-liquid-like
phase separation.27

We describe the electron transport processes by consid-
ering each sphere as being electrically connected to all others
through inter-particle tunneling conductances of the form

g(rij ) = g0 exp

[
−2(rij − D)

ξ

]
, (4)

where ξ is the tunneling decay length, which is independent of
the range of the attraction λ. In writing Eq. (4), we assume that
the size D of the conducting particle and the temperature are
large enough to neglect charging energy effects and Coulomb
interactions. Furthermore, we have ignored any dependence
on rij of the prefactor g0, which we set equal to 1.

III. NUMERICAL RESULTS FOR THE CONDUCTIVITY

We performed standard metropolis Monte Carlo (MC)
simulations to find equilibrium dispersions of N = 2000 par-
ticles in a cubic box of side length L, which was changed to
obtain different values of the volume fraction φ = πND3/6L3.
A dedicated Monte Carlo algorithm28 was used for the AHS
limit. For all the φ values considered and for each potential
profile, we obtained NR = 300 independent equilibrium con-
figurations of the system.

To obtain the composite conductivity σ , we constructed
for each of the NR configurations a tunneling resistor network
with inter-particle conductances g(rij) given by Eq. (4). In or-
der to reduce computational times, we exploited the exponen-
tial decay of Eq. (4) by neglecting contributions from particles
sufficiently far apart so as to reduce the number of connected
particles in the network. To this end, we introduced an ad-
justable cut-off length δmax such that the bond conductances
for δij > δmax can be safely removed from the network with-
out altering σ .20, 22 Finally, we solved this reduced network
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FIG. 1. Conductivity probability function P(σ ) (thick solid lines) for various values of the volume fraction φ and for a square-well potential with λ = 1.05 and
τ = 0.2. Here, the tunneling factor is ξ /D = 0.01 and the number of conducting spheres is fixed at N = 2000. The thin dashed lines are the PCPA(σ ) curves
obtained from P(δ) of Fig. 6 and by using σ = σ 0exp (−2δ/ξ ) with σ 0 = 0.09.

using a combination of numerical decimation and precondi-
tioned conjugate gradient algorithms as described in Ref. 22.
From the resulting network conductance G, the dimensionless
conductivity σ follows from σ = GD/L.

In Fig. 1, we show some representative examples of the
cumulative distribution function (CDF) P(σ ) of the conduc-
tivity (thick solid lines) obtained from all NR realizations of
the network for λ = 1.05, τ = 0.2, and for different values of
the volume fraction φ. In all cases, the tunneling decay length
has been set equal to ξ /D = 0.01. Overall, the rise from 0 to 1
of P(σ ) becomes more gradual as φ decreases, which comes
from keeping the number of particles N fixed. Additionally,
for φ = 0.175 and 0.2 the CDF displays a sudden increase
at σ � 0.5 × 10−7. As discussed in more detail in Sec. V,
this latter feature can be traced back to the discontinuity of
the radial distribution function (RDF) of the square-well fluid
at inter-particle distances r = λD. Since the numerical proce-

dure for solving the tunneling network is rather time consum-
ing, we have not attempted to study finite size-effects on P(σ )
systematically. Instead, we have chosen to extract the overall
network conductivity from the condition P(σ ) = 1/2 applied
to the CDF computed for N = 2000. As shown in Sec. V,
where we study the conductivity within the critical path ap-
proximation for which a finite-size analysis is feasible, this
criterion provides a robust estimate of the conductivity for in-
finite systems.

In the main panels of Fig. 2, we show the network con-
ductivity σ (open symbols) as a function of φ for ξ /D = 0.01
and for different parameters λ and ε* of the square-well po-
tential. For comparison, the HS limit is plotted in Fig. 2(a)
as open squares. By inspection of the two panels of the fig-
ure, we see that the φ-dependence of σ strongly depends on
the way in which the potential profile is changed. Namely,
in Fig. 2(a) the conductivity is steadily enhanced for all

FIG. 2. Network conductivity σ as a function of the volume fraction φ obtained from MC calculations (open symbols) and from CPA (plus signs). (a) σ for
well range fixed at λ = 1.05 and different well depths ε* parametrized by τ of Eq. (3). (b) σ for well depth fixed at ε* = 1.0704 and λ = 1.05, 1.15, and 1.25.
Insets: corresponding EMA conductance g*.
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φ values when the well depth is increased while keeping the
range parameter fixed at λ = 1.05, leading for example at φ

= 0.25 to an enhancement of up to 9 orders of magnitude
compared to the HS limit. Conversely, as shown in Fig. 2(b),
when the potential depth is kept as fixed (ε* = 1.0704) but
its range varies from λ = 1.05 to λ = 1.25 the conductivity
at low φ is enhanced, while at intermediate and large φ it is
diminished by about three orders of magnitude.

The different functional dependencies of σ in Figs. 2(a)
and 2(b) have important consequences in conjunction with
the conductor-insulator transition of composites. Indeed, al-
though we have considered conducting particles dispersed in
a perfectly insulating medium, in real polymer composites the
conductivity σ p of the polymeric matrix is small but finite
at nonzero temperatures, being typically 10−13–10−18 S/cm
at room temperature. Hence, despite the fact that the tun-
neling conductivity drops all the way to zero as φ → 0,
the conductivity of the complete system (particles and poly-
mer) is limited from below by σ p.29 One can thus iden-
tify a crossover point separating tunneling-dominated from
polymer-dominated conductivity with the volume fraction φp

below which σ matches that of the polymer matrix, as is gen-
erally done in the analysis of experimental conductivity data
of real nanocomposites. As schematically shown in the main
panels of Fig. 2, where the horizontal dashed line represents
σ p fixed for illustrative purposes at 10−20, we can estimate
φp as the intersection point between the calculated tunneling
conductivity and σ p.20 In this way, we find that as the sticki-
ness of the square-well is enhanced (i.e., τ is diminished) φp is
systematically lowered. However, it is evident by comparing
Fig. 2(a) with Fig. 2(b), that the behavior of σ in the con-
ducting regime φ > φp is not determined by φp alone. For
example, the curves for τ = 0.2 in Fig. 2(a) and for τ = 0.22
in Fig. 2(b) have similar φp but very different conductivities
at larger φ.

This latter feature is illustrated even more strikingly in
Fig. 3 where σ is plotted for different values of ε* and λ such
that the stickiness parameter τ remains constant. Even though
φp is basically unchanged in going from λ = 1.25 to the AHS
limit at λ = 1, the conductivity increases by 5 to 10 orders of
magnitude above the HS case at fixed φ in the whole φ > φp

range. Note that a similar behavior is also found if we change
the value of σ p provided that it remains sufficiently small. For
example, if in Fig. 3 we consider σ p = 10−15, the curves for λ

≤ 1.15 would still have equal φp, though slightly larger than
the previous case but very different σ at larger φ.

Our general observation that in square-well fluids of con-
ducting spheres the conductivity for φ > φp is not determined
by the position of the conductor-insulator crossover is in strik-
ing contrast with the usual continuum percolation description.
Indeed, if the conductor-insulator transition is viewed as a
true percolation transition, then the corresponding conductiv-
ity would follow Eq. (1) for φ � φc, where φc is the percola-
tion threshold, and so the conductivity level in the conducting
regime would be completely determined by φc. For the short-
range potentials considered here φc is known to be reduced
by enhanced stickiness,17 in line with the behavior of φp, and
consequently, from Eq. (1), the percolation conductivity for φ

� φc would also be systematically enhanced. Conversely, dif-

FIG. 3. Network conductivity σ as a function of φ obtained from MC calcu-
lations (open symbols) and from CPA (plus signs) for different well widths
and depths with fixed τ = 0.2. Inset: corresponding EMA conductance g*.

ferent potentials with the same parameter τ would give similar
percolation conductivity curves, in strong disagreement with
our results of Fig. 3.

The results shown in Figs. 2 and 3 also have important
practical consequences in relation to the problem of control-
ling the conductivity of polymer nanocomposites by tuning
the attraction through, for example, the depletion interaction.5

Indeed, from Figs. 2 and 3, it turns out that the best strategy to
obtain high levels of conductivity for a broader range of filler
concentrations is by choosing potential profiles that are very
deep and short-ranged (but of course not strong enough to in-
duce phase separation). For depletion induced attraction, this
corresponds to having a large concentration of depletants with
small sizes compared to those of the conducting particles.

We conclude this section by addressing the role of the
tunneling decay length ξ in the overall functional dependence
of σ . In Fig. 4, we plot σ for τ = 0.2 and λ = 1.05 in units

FIG. 4. Enhancement factor of the conductivity for τ = 0.2 compared to the
conductivity in the HS limit for different values of the tunneling length ξ /D.
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of the HS conductivity for ξ /D = 0.01, 0.02, and 0.05. As
expected, the strong enhancement obtained for ξ /D = 0.01 is
systematically reduced as ξ /D increases. For example, at ξ /D
= 0.05 only a maximum 102 fold enhancement with respect
to the HS limit is achieved. This is because for large ξ /D, two
particles having separation less or greater than the potential
range have similar tunneling probabilities, and so the short-
range structure of the square-well fluid is smeared out. If we
consider that, depending on the material properties, the tun-
neling decay length ranges from a fraction of a nanometer to
a few nanometers, from the results of Fig. 3 we expect that
particle sizes of tens to hundreds of nanometers are optimal
for σ to be strongly enhanced by increased attraction.

IV. EFFECTIVE MEDIUM THEORY

The numerical results of Sec. III and the effects of attrac-
tion on the functional dependence of σ find a more complete
understanding by employing the effective medium approxi-
mation (EMA) introduced in Refs. 21 and 30. Briefly, this
EMA amounts to replacing each conductance g(rij) of Eq. (4)
by an effective value, ḡ, which is independent of the inter-
particle distance rij. By requiring that the resulting effective
and fully connected network has the same average resistance
as the original, and by considering only two-site clusters,30

the following self-consistent equation is found21, 30

24φ

∫ ∞

0
dx x2g2(x)

[
1

g∗ exp[2D(x − 1)/ξ ] + 1

]
= 2,

(5)
where x = r/D, g2(x) is the RDF for the conducting spheres,
and g∗ = Nḡ/2 is the two-point conductance of the effective
N-node network.

We have numerically solved Eq. (5) for g* using the
quasi-analytical model RDF proposed in Ref. 31 for the
square-well fluid, which reduces to the Percus-Yevick approx-
imation for both the HS and AHS limits and is in rather good
agreement with the MC results of the RDF for λ < 1.3.31, 32

Although g* is a two-point conductance (which is the mean-
ingful quantity for a complete network of identical resistors)
rather than a conductivity, the EMA results shown in the insets

of Figs. 2 and 3 and in Fig. 5 (solid lines) closely follow the
conductivity behavior obtained by the full numerical solution
of the tunneling network. Using Eq. (5), we can thus explain
the effect of attraction on σ by reasoning simply in terms of
g2(x) and of its dependence on the square-well potential. To
this end, let us rewrite the EMA conductance as

g∗ = exp[−2D(x∗ − 1)/ξ ], (6)

where we have introduced a characteristic EMA distance x*.
By noting that for ξ /D 	 1 the term in square brackets in
Eq. (5) reduces to the step function θ (x* − x), x* is found as
the solution of the following equation:

24φ

∫ x∗

0
dx x2g2(x) = 2, (7)

where the left hand side gives the number of particle centers
having distances less than x* from a particle at the origin. To
proceed further, we note that for sufficiently narrow and deep
potential wells the RDF can be approximated by

g2(x) = θ (x − 1)[g2(1+)θ (λ − x) + 1], (8)

where g2(1+) is the RDF at contact, and from Eq. (7) we ob-
tain finally

x∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1

4φg2(1+)
+ 1

]1/3

for x∗ < λ,

[
1

4φ
− g2(1+)(λ3 − 1) + λ3

]1/3

for x∗ > λ.

(9)

As shown in Fig. 5, g* obtained from Eqs. (6) and (9) (dashed
lines) is in overall good agreement with the solutions of
Eq. (5) with the full RDF of Ref. 31. Furthermore, Eq. (9) ex-
plicitly introduces two different regimes according to whether
the EMA distance x* is less or greater than λ, which phys-
ically corresponds to whether the dominant tunneling pro-
cesses occur between particles with separation less or greater
than the well range. The two regimes x* > λ and x* < λ

identify two different regions, respectively, φ < φ* and
φ > φ*, where φ* is a characteristic concentration (not to be
confused with φp) obtained from the condition x* = λ applied

0.1 0.2 0.3 0.4 0.5
φ

(c)

τ=0.2

λ=1.25
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λ=1.05
λ=1.0 (AHS)

0.1 0.2 0.3 0.4 0.5
φ

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

g*

(a)

λ=1.05

HS
τ=0.6
τ=0.3
τ=0.2

0.1 0.2 0.3 0.4 0.5
φ

ε*=1.0704

(b)

τ=0.6
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τ=0.143

FIG. 5. Comparison between the full numerical solution of the EMA Eq. (5) (solid lines) and g* obtained from Eqs. (6) and (9) (dashed lines). The parameters
used in (a), (b), and (c) are the same of those in Figs. 2(a), 2(b), and 3, respectively.
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to Eq. (9), i.e., 4φ*g2(1+)(λ3 − 1) = 1. Since g2(1+) scales
essentially as exp (ε*),31 φ* can be approximated by τ /λ2 for
λ − 1 and τ small.

From Eq. (9) and g2(1+) ≈ exp (ε*), we thus see that
the conduction at large densities (φ > φ*) is mainly gov-
erned by the well depth, which is indeed expected since in this
regime x* < λ. In contrast, from Eq. (9), g* turns out to be af-
fected by both ε* and λ at low densities (φ < φ*) because the
relevant tunneling distances span the entire well range (i.e.,
x* > λ). In this regime and for sufficiently narrow wells,
g2(1+)(λ3 − 1) − λ3 reduces simply to 1/4τ − 1 + O([λ
− 1]/τ ), which explains the equal asymptotic behaviors for
φ → 0 of Fig. 3 as ε* and λ are changed but τ is held fixed.

From the low-density approximation derived above, it
is also possible to deduce the conductor-insulator crossover
point φp by introducing a two-point conductance gp 	 1 of
the polymeric matrix, which represents the EMA equivalent
of σ p introduced in Sec. III. Thus, by requiring that Eq. (6)
coincides with gp, and using Eq. (9) in the narrow well limit,
we find for (ξ /2D)ln (1/gp) 	 1

φp ≈ τ

1 + 6(ξτ/D) ln(1/gp)
. (10)

Besides confirming that the structure of the square-well fluid
affects φp only through the stickiness, Eq. (10) also makes
it explicit that the locus of the conductor-insulator transition
depends (although only logarithmically) on the insulating ma-
trix through gp, in contrast to the usual continuum percolation
theory which predicts a percolation threshold φc independent
of the matrix conductivity.20

V. CRITICAL PATH APPROXIMATION

Although colloidal dispersions of tunneling connected
particles are intrinsically non-percolative systems, concepts,
and quantities of percolation theory are nevertheless at the ba-
sis of the CPA (Ref. 33) which, as already shown for HS fluids
of conducting particles,20, 22 can reproduce to a high accuracy
the tunneling conductivity behavior of composites.

As we have seen in Sec. IV, for sufficiently small ξ /D the
EMA conductance g* is dominated by a characteristic length,
x*, such that the cumulative coordination number satisfies
Eq. (7). In a similar way, CPA amounts to approximating the
tunneling network conductivity by

σ � σ0 exp

[
−2δc(φ)

ξ

]
, (11)

where σ 0 is a φ-independent conductivity prefactor and δc(φ)
= rc(φ) − D is a critical distance given by the shortest among
the δij = rij − D lengths such that the subnetwork defined
by all distances δij ≤ δc(φ) forms a percolating cluster. From
Eq. (11), we see that CPA expresses σ in terms of a criti-
cal connectivity distance, δc(φ), which is a genuine percola-
tion quantity. However, contrary to the continuum percolation
approach with fixed connectivity length, in CPA the critical
connectivity changes as φ and the potential profile are varied.
This adaptation of the connectivity range compensates for the
artificial basis of the sharp cutoff at δc.

To calculate δc(φ), we follow the route described in
Ref. 22. Namely, for fixed φ and potential profile, we coat
each sphere with a concentric penetrable shell of thickness
δ/2, and consider two spheres as connected if their penetrable
shells overlap. A clustering algorithm described in Ref. 22 al-
lows computation of the spanning probability P(δ), which is
plotted in Fig. 6 for λ = 1.05, τ = 0.2, N = 2000, and for dif-
ferent values of φ. Note that there is a rather sudden change
in the slope of P(δ) when δ/D crosses λ − 1 (vertical dashed
line) which is due to the discontinuity of the square well po-
tential at r/D = λ.

In order to define a suitable criterion to extract δc from
the P(δ) curves for all parameter values used, and which is
also insensitive to the feature at δ/D = λ − 1, we have car-
ried out the finite-size scaling analysis of the type shown in
shown in Fig. 7, where P(δ) is compared with the percolation
probability P(φ) calculated as a function of φ for fixed δ. In
Fig. 7(a), we show the evolution of P(φ) as the system size
L/D increases for λ = 1.05 and δ/D = λ − 1 = 0.05. By us-
ing the finite-size scaling relation φc − φc(L)∝L−1/ν , where
ν � 0.88 is the correlation length exponent and φc(L) is such
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FIG. 6. Percolation probability as a function of the connectivity distance δ for various values of the volume fraction φ and for a square-well potential with
λ = 1.05 and τ = 0.2 (i.e., ε* = 2.169). The number of conducting spheres is fixed at N = 2000. The vertical dashed line indicates δ/D = λ − 1.
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FIG. 7. Percolation probability P for λ = 1.05 and τ = 0.2 (i.e., ε* = 2.169). (a) P as a function of φ for δ/D fixed at λ − 1 = 0.05 and for different sizes L
of the cubic box. (b) P as function of δ/D for φ = 0.19 and for different number N of spheres. (c) Fits of the percolation probability of (b) obtained by using a
linear combination of two error functions. Inset: probability distribution function PDF obtained from dP(δ)/dδ.

that P = 1/2, we find that the percolation threshold as L/D
→ ∞ is φc = 0.19035 ± 0.00001. In Fig. 7(b), we plot
P(δ) obtained for different numbers N of particles by using
φ = 0.19. Note that as N increases, the change of slope of P(δ)
at δ/D = λ − 1 = 0.05 tends to decrease. This is more clearly
seen in Fig. 7(c), where we plot fits of P(δ) with linear combi-
nations of two error functions, and in the inset where we show
the resulting probability distribution function (PDF) dP(δ)/dδ,
which is characterized by two peaks of different strengths. If
we use the criterion that δc(N) is given by P = 1/2, we find
from δc − δc(N) ∝ N−1/3ν that δc/D = 0.05066 ± 0.00007 at
N → ∞, practically coinciding with δ/D = 0.05 of Fig. 7(a).
Furthermore, for N = 2000 the criterion P = 1/2 gives δc/D
� 0.0512, which is only 1% larger than the critical distance at
N → ∞.

From the finite-size study of Fig. 7, and from other cases
we have considered, we thus see that P(δc) = 1/2 is a reliable
criterion to find the critical distance even for N = 2000. When
we compare in Fig. 1 the CDF of the network conductivity

with PCPA(σ ) obtained from P(δ) by using the CPA expres-
sion σ = σ 0exp (−2δ/ξ ) with σ 0 = 0.09 (thin dashed lines),
we see that the shapes of the two probability functions are
very similar, which justifies the criterion P(σ ) = 1/2 that we
have adopted for the network conductivity results shown in
Figs. (2) and (3).

Let us now discuss the conductivity dependence on φ and
on the potential profile in terms of the CPA formula (11).
The calculated values of the critical distance are shown in
Fig. 8 for the same parameter values as Figs. 2 and 3. For
all cases studied, δc is a monotonically decreasing function of
φ, which is to be expected because larger particle concentra-
tions bring about shorter mean inter-particle distances. How-
ever, the rate of decrease depends on whether δc/D is greater
or less than λ − 1 (horizontal dashed lines in Fig. 8), which re-
flects the existence of the two different regions of the conduc-
tivity already discussed in Sec. IV. In particular, as shown in
Fig. 8(c), when δc/D � λ − 1 the critical distance is governed
solely by the particle stickiness and closely follows the AHS

FIG. 8. Calculated critical distance δc as a function of φ for (a) λ = 1.05 and different well depths; (b) ε* = 1.0704 and λ = 1.05, 1.15, and 1.25; (c) λ and ε*
varying with τ = 0.2 fixed. The horizontal dashed lines identify δc/D = λ − 1.

Downloaded 29 Jul 2013 to 158.64.77.122. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



164903-8 Nigro et al. J. Chem. Phys. 136, 164903 (2012)

limit, in full correspondence with the low-φ behavior of σ of
Fig. 3. Indeed when the δc(φ) values of Fig. 8 are inserted
in Eq. (11), we find that the resulting CPA conductivity (plus
signs in Figs. 2 and 3) is in excellent agreement with our MC
values.34

We therefore see that, in analogy with the results of
Sec. IV, the conductivity changes driven by attraction are due
to the variations of the dominant tunneling distances, which
are represented by the effective connectivity length δc. From
Eq. (11), we see also that in the presence of a finite con-
ductivity σ p of the insulating matrix, tunneling dominates the
overall conductivity as long as δc(φ) � δc(φp), where δc(φp)
= (ξ /2)/ln (σ 0/σ p) is the connectivity at the insulator-
conductor transition.

VI. CONCLUSIONS

In this article, we have studied by theory and simulations
the effects of short-range particle attractions on the functional
dependencies of the conductivity σ of equilibrium dispersions
of conducting spherical fillers electrically connected through
tunneling processes. Instead of employing the traditional con-
tinuum percolation approach in which a fixed connectivity
length is introduced to mimic the extent of the tunneling elec-
tron transfer, we have solved the network equations by treat-
ing each conducting particle as being connected to all others
by tunneling conductances. We have shown that the lack of
a fixed connectivity distance gives rise to new and important
features which the continuum percolation approach fails to
predict, and which could be crucial in the design of nanocom-
posite materials with unique electrical properties.

In particular, we have found that the conductivity at in-
termediate and large contents of the conducting fillers is ex-
tremely sensitive to the profile of the attractive potential,
while the low-density regime is generally governed only by
the stickiness of the attraction. As a consequence, materials
with similar values of the conductor-insulator concentration
φp may display at φ > φp conductivities which differ by sev-
eral orders of magnitude if the attraction is tuned while keep-
ing the stickiness constant. More generally, we have demon-
strated that the knowledge of φp and of its dependence on the
attraction are not sufficient conditions to presume the overall
behavior of σ as a function of φ, in striking contrast to the
percolation transition approach represented by Eq. (1).

As discussed in Sec. IV our simulation results can be
reproduced by using a recently developed effective medium
theory which, for sufficiently small values of ξ /D, expresses
the conductivity in terms of the radial distribution function at
contact, explicitly relating the different regimes of conduction
to the depth and range of the potential well. Furthermore, we
have shown how the critical path approximation overcomes
the limitations of the continuum percolation approach by al-
lowing the connectivity length to adjust for given φ and poten-
tial profile, so as to represent the dominant tunneling distances
governing σ .

Although we are not aware of experiments on conduct-
ing colloidal composites where the electronic conductivity is
tuned by controlling the filler attraction,35 our work may nev-
ertheless stimulate experiments in this direction. In principle,

our predictions may be systematically tested in experiments
by changing the size and concentration of depletants in col-
loidal conductors. In particular, we have predicted that an
optimal enhancement of the conductivity can be realized by
high concentrations of depletants with small sizes compared
to those of the conducting particles, so to drive the system
towards the AHS limit. Furthermore, stronger enhancements
are expected in composites with conducting filler sizes suffi-
ciently large compared to the tunneling decay length ξ , so as
to avoid a smearing out of the attraction potential well.

We conclude by pointing out that the system considered
here, i.e., attracting fillers with spherical shapes, has served
primarily to illustrate the general principles at the basis of the
interplay between attraction and tunneling. Stronger effects of
the attraction are expected when the conducting particles have
shape anisotropy, as in fibrous or plate-like fillers, where the
mutual orientations of the particles couple with the attraction
interaction. This represents certainly an issue of great interest
for future investigations.
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