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Abstract: Model transformations based on triple graph grammars (TGGs) have
been applied in several practical case studies and they convince by their intuitive
and descriptive way of specifying bidirectional model transformations. Moreover,
fundamental properties have been extensively studied including syntactical correct-
ness, completeness, termination and functional behaviour. But up to now, it is an
open problem how domain specific properties that are valid for a source model can
be preserved along model transformations such that the transformed properties are
valid for the derived target model. In this paper, we analyse in the framework of
TGGs how to propagate constraints from a source model to an integrated and tar-
get model such that, whenever the source model satisfies the source constraint also
the integrated and target model satisfy the corresponding integrated and target con-
straint. In our main new results we show under which conditions this is possible.
The case study shows how this result is successfully applied for the propagation of
security constraints in enterprise modelling between business and IT models.

Keywords: model transformation, graph constraints, security requirements, triple
graph grammars

1 Introduction

Model integration and transformation between models as well as the compliance of such models
with concrete security requirements have already been studied in different application domains,
especially in the context of enterprise modelling [2]. In detail, it was possible to present how
triple graph grammars (TGGs) in the sense of Schürr [14] can be used to realize the integration
and transformation of those models. In addition to that, graph constraints [4] were utilized to
verify that business and IT models comply with given security requirements.

However, it remained an open question how graph constraints valid for an IT model can be
soundly propagated towards a corresponding business model. For example, the IT constraint
on the left of Fig. 1 (public communication has to be encrypted) should be transformed into a
corresponding business constraint (communication over public lines has to be filtered, right of
Fig. 1). This problem was identified as an operational need in the decentralized organizational
environment of Credit Suisse [2], where security requirements developed for IT models needed
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Figure 1: IT and business models with security requirements

to be understood from the point of view of the corresponding business models in order to ensure
that the different persons responsible for the business models, IT models and security require-
ments will be able to integrate, transform and verify these models successfully. While this paper
presents the case study in concrete syntax the presented techniques are based on the underlying
typed attributed abstract syntax graphs [4].

Furthermore, if an IT model satisfies the source constraint the corresponding business model
should satisfy the target constraint. In general, given a requirement for a source model specified
by a graph constraint we would like to construct a corresponding requirement for the correspond-
ing target model with the following satisfaction property: Whenever a source model satisfies the
given source graph constraint then the target model, defined by the model transformation, sat-
isfies the corresponding target graph constraint. In Fig. 1 the source model GS satisfies the
source graph constraint PC(aS : PS −→ CS), because for each match p : PS → GS (occurrence of
the premise graph) there is morphism q : CS → GS (occurrence of the conclusion graph) with
q◦aS = p.

In this paper we show under which conditions we are able to define a propagation from source
graph to target graph constraints such that this satisfaction property is valid. First of all it makes
sense to require strong functional behaviour of the model transformation, which implies that we
have for each source model a unique target model. Moreover this allows for each source graph
constraint PC(aS : PS −→ CS) with premise PS, conclusion CS and embedding morphism aS to
obtain a unique target graph constraint PC(aT : PT −→ CT ) by applying the model transformation
to PS and CS leading to PT and CT . For this construction we require that PS and CS are source
models, i.e. PS,CS ∈ VLS, where VLS is the source language of the model transformation MT :
VLS V VLT . In this case the source graph constraint PC(aS : PS −→ CS) is called MT-consistent
and leads to a MT-consistent target graph constraint PC(aT : PT −→ CT ). In Sec. 2 we review
model transformation based on triple graph grammars [5, 14, 15] and prepare our case study
based on a model transformation from business to IT-models.

Our first main result in Sec. 3 shows that the satisfaction property stated above for the propaga-
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tion of security constraints is valid for MT-consistent source and target constraints. In Sec. 4 we
discuss how to extend the theory to the case of partially MT-consistent constraints where premise
or conclusion consist only of model fragments, s.t. model transformations are not directly appli-
cable. Our constructions and results are illustrated by a case study of security constraints in
enterprise modelling. For the main results we only give proof ideas. For detailed proofs see
[6, 13].

2 Model Transformation between Business and IT Models

Triple graph grammars (TGGs) [14] are a well known approach for bidirectional model trans-
formations and we apply TGGs to define the model transformation of our case study between
business and IT models. For this purpose we review main constructions and results of model
transformations based on triple graph grammars [15, 5] in this section.

Integrated models are defined as pairs of source and target graphs, which are connected via a
correspondence graph together with relating morphisms between these graphs. More precisely,
a triple graph G =(GS←sG−− GC −tG−→ GT ) consists of three graphs GS, GC, and GT , called source,
correspondence, and target graphs, together with two graph morphisms sG : GC → GS and tG :
GC→ GT .

(GS

mS ��
G GC

sGoo

mC ��

tG // GT )
mT ��

(HSH
m ��

HC
sH
oo

tH
// HT )

A triple graph morphism m : G→H with m = (mS,mC,mT )
consists of three graph morphisms mS : GS→ HS, mC : GC→
HC and mT : GT → HT such that mS ◦ sG = sH ◦mC and mT ◦
tG = tH ◦mC. A typed triple graph G is typed over a triple
graph TG by a triple graph morphism typeG : G→ TG and a typed triple graph morphism m :
(G, typeG)→ (H, typeH) preserves the typing, i.e. typeH ◦m = typeG. Triple graphs may also
contain attributed nodes and edges according to [5] and they form an M-adhesive as well as
weak adhesive HLR category for which several important formal results have been shown in [4].

(LS

trS ��
L LC

sLoo

trC ��

tL // LT )
trT ��

(RSR
tr ��

RC
sR
oo

tR
// RT )

L
m
��

� � tr // R
n
��

(PO)

G � �

t
// H

Triple rules synchronously build up source and
target graphs as well as their correspondence
graphs, i.e. they are non-deleting. A triple rule
tr is an injective triple graph morphism tr =
(trS, trC, trT ) : L→ R and w.l.o.g. we assume tr
to be an inclusion. Given an (almost) injective triple graph morphism m : L→ G, a triple graph
transformation (TGT) step G =

tr,m
==⇒ H from G to a triple graph H is given by a pushout of triple

graphs with comatch n : R→ H and transformation inclusion t : G ↪→ H. Given a sequence of
TGT-steps G0 =

tr1,m1===⇒ G1... =
trk,mk===⇒ Gk its trace is given by trace = tk ◦ . . . t2 ◦ t1. A grammar

TGG = (TG,S,TR) consists of a triple type graph TG, a triple start graph S and a set TR of triple
rules.

Example 1 (Triple Rules) The triple rules in Fig. 2 are part of the rules of the grammar TGG
in [2]. They are presented in short notation, i.e. left and right hand sides of a rule are depicted
in one triple graph. Elements, which are created by the rule, are labeled with green ”++” and
marked by green line colouring. The rule LANToDepartment creates LAN element in the IT
model and a corresponding Department element in the Business model. The rule PublicToP-
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ublic generates public edges with gluing nodes in both domains simultaneously. The encryp-
tion/decryption nodes (E/D) are created in front and at the end of a public Reo connector (de-
picted as black arrows) in the rule EDToFilter, where in the Business model a Filter is attached
to the corresponding public Reo connector.

:Department:LAN
++ ++

++++
++

:A

++
++

++

++

++++ ++

++++

public
++

++

public

++:P

:P

:Filter:E/D

:E/D

++
++++

++++

++

:public

++

:public

++

++++

:A

:A

:P

:P

Triple Rule EDToFilter

Triple Rule LANToDepartment

Triple Rule PublicToPublic

Figure 2: Some triple rules of the model transformation

(LS

trS ��

∅oo

��

// ∅)
��

(RS ∅oo // ∅)
source rule trS

(∅
��

∅oo

��

// LT )
trT ��

(∅ ∅oo // RT )
target rule trT

(RS

id ��

LC
trS◦sLoo

trC
��

tL // LT )
trT��

(RS RC
sRoo tR // RT )
forward rule trF

The operational rules for model transformations based on TGGs are automatically derived
from the set of triple rules TR [5]. From each triple rule tr we derive a forward rule trF for
forward transformation sequences and a source rule trS for the construction resp. parsing of a
model of the source language. By TRS and TRF we denote the sets of all source and forward rules
derived from TR. The sets of backward rules TRB and target rules TRT are derived analogously
as presented in [2].

:Filter:E/D

:E/D

++ ++

++

++

:public

++

:public

++

++++

:A

:A

:P

:P

Forward Rule EDToFilter
Figure 3: A derived forward rule

Example 2 (Forward Rule) The rule in
Fig. 3 is the derived forward rule of the
triple rule “EDToFilter” shown in Fig. 2. No
new elements are added in the source graph
by this rule. The “E/D” elements that are
added by the triple rule have already to be
present in a model to make this rule applica-
ble. Whereas the corresponding and target
graphs and the morphisms remain the same
as in the triple rule.

A set of triple rules TR and the start graph ∅ typed over a triple graph T G generate a visual
language VL of integrated models, i.e. models with elements in the source, target and correspon-
dence component. The source language V LS and target language VLT are derived by projection to
the triple components, i.e. V LS = pro jS(V L) and V LT = pro jT (V L). For the S-component T GS

and T -component T GT we denote by VL(T GS) and VL(T GT ) the visual language of all source
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and target models typed over T GS and T GT respectively. This means we have VLS ⊆ VL(T GS)
and V LT ⊆V L(T GT ).

As presented in [5] the derived operational rules provide the basis to define model transforma-
tions based on source consistent forward transformations G0 =⇒∗ Gn via (tr1,F , . . . , trn,F), short

G0 =
tr∗F=⇒ Gn. A forward sequence G0 =

tr∗F=⇒ Gn is source consistent, if there is a source sequence

∅ =
tr∗S=⇒ G0 such that the sequence ∅ =

tr∗S=⇒ G0 =
tr∗F=⇒ Gn is match consistent, i.e. the S-component

of each match mi,F of tri,F(i = 1 . . .n) is uniquely determined by the comatch ni,S of tri,S, where
tri,S and tri,F are source and forward rules of the same triple rules tri. Thus, source consistency
is a control condition for the construction of the forward sequence.

Definition 1 (Model Transformation Based on Forward Rules) A model transformation se-

quence is given by a tuple (GS, G0 =
tr∗F=⇒ Gn,GT ) consisting of a source graph GS, an integrated

graph G = Gn, and a target graph GT , and a source consistent forward sequence G0 =
tr∗F=⇒ Gn

with GS = GS
0 and GT = GT

n . A model transformation MT : VL(T GS) V VL(T GT ) based on

forward rules is given by a set of model transformation sequences (GS,G0 =
tr∗F=⇒ Gn,GT ) with

GS ∈ VL(T GS) and GT ∈ VL(T GT ).

Model transformations based on forward rules using the control condition “source consis-
tency” are syntactically correct and complete as shown in [5, 11]. Correctness means that for
each source model GS that is transformed into a target model GT there is an integrated model
G = (GS←GC→GT ) in the language of integrated models VL generated by the TGG. Complete-
ness ensures that for each valid source model there is always a forward transformation sequence
that transforms it into a valid target model, and if the source model is not in VLS then there is
no source consistent forward transformation sequence. Therefore, we can apply the on-the-fly
construction presented in [5] to any given source model and ensure that we derive a correct corre-
sponding target model and if all source rules are creating then we can always ensure termination.

Example 3 (Model Transformation) The model transformation from IT to business models via
the forward rules of the triple rules in Ex. 1 transforms the source model GS in Fig. 1 into the
target model GT in Fig. 1 as presented in [2]. Using backward and target rules we obtain a model
transformation from business to IT models and all together we obtain a bidirectional model
transformation, where both directions are useful in different phases of enterprise modelling.
Especially a propagation of constraints from IT to business models will be considered in Sec. 3.

3 Propagation of MT-consistent Constraints

The propagation of constraints along a given model transformation aims at translating require-
ments from the source domain to the corresponding target domain in order to verify them at
corresponding target models. In this section we present a constructive approach for the propa-
gation of constraints based on a given model transformation and we show by Thm. 1 how each
source constraint can be propagated to an integrated and a target constraint for the languages
of integrated and target models, respectively. In our main result Thm. 2 we show that under
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suitable conditions the propagation preserves the validity of constraints. An (atomic) constraint
PC(a : P→ C) for a triple graph is given by a premise P and a conclusion C connected by a
morphism a : P→C. A graph G satisfies PC(a : P→C), if for each injective p : P→ G there is
an injective q : C→G with q◦a = p. Atomic constraints can be combined to general constraints
as usual by boolean operators.

The first important property for ensuring the creation of propagated constraints for a given
source constraint is MT-consistency meaning that the constraint has to be compatible with the
model transformation MT . We take into account a domain specific source language LS which
should be a sublanguage of VLS, i.e. LS ⊆ VLS.

Definition 2 (MT-consistent Constraints) Given a model transformation MT : VLS V VLT , then
a constraint is MT-consistent, if the corresponding condition below is satisfied.

constraint kind typed over condition

source constraint PC(aS : PS→CS) TGS PS,CS ∈ LS ⊆ VLS

integrated constraint PC(a : P→C) TG P,C ∈V L
target constraint PC(aT : PT →CT ) TGT PT ,CT ∈V LT

Moreover, the sound propagation of constraints is based on the notion of propagation consis-
tency, which requires strong functional behaviour of the model transformation and one further
technical condition.

Definition 3 (Propagation Consistency and Strong Functional Behaviour of Model Transforma-
tions) A model transformation MT is propagation consistent, if:

• The model transformation MT has strong functional behaviour with respect to LS. This
means that matches are injective and for each source graph GS ∈ LS ⊆ VLS the execution

of MT terminates resulting in a model transformation sequence (GS,G0 =
tr∗F=⇒ Gn,GT ), and

moreover, any two source consistent forward sequences G0 =
tr∗F=⇒ Gn and G0 =

tr∗F=⇒ Gm con-
structed via MT that cannot be extended by any further step via MT are switch-equivalent
up to isomorphism, i.e. the rules of tr∗F are a permutation of those in tr∗F , n = m and
Gn ∼= Gm.

• Furthermore, each triple graph G = (GS←sG−− GC −tG−→ GT ) ∈ VL has to be left-linear, i.e. we
have that sG is injective.

Remark 1 (Checking Propagation Consistency) Concerning the first condition (strong func-
tional behaviour), we have presented in [11] how model transformations based on forward rules
are checked for strong functional behaviour using the tool AGG for critical pair analysis. For the
second condition (left linearity) it suffices to show that no rule is capable to transform a triple
graph G = (GS←sG−− GC −tG−→ GT ) into a triple graph H = (HS←sH−− HC −tH−→ HT ) with non-injective
sH . This condition is ensured if there is no triple rule which simultaneously creates a correspon-
dence element c and relates it to an existing source element s ∈ LS, i.e. we require for all rules
that [c ∈ RC \LC∧ sR(c) = s] ⇒ [s /∈ LS]. Both conditions have been verified for our case study.

In our first main result we show how each source constraint can be propagated into an inte-
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Figure 4: Source constraint as well as propagated integrated and target constraints

grated and a target constraint as shown by the example in Fig 4 which happens to be exactly the
rule EDToFilter. Note that in general those graphs are not necessarily the same. Intuitively, the
transformation steps of the premise graph P, which is contained in the conclusion graph C, are
transferred to the transformation steps for C and the transformation of C is completed for the
remaining parts in C.

Theorem 1 (Propagation and Restriction of Constraints) Given a TGG model transformation
MT with strong functional behaviour, then

1. an MT-consistent source constraint PC(aS) generates an MT-consistent integrated con-
straint PC(a), called propagated integrated constraint, where aS is the source component of
a and diagrams (1) and (2) below commute using the trace morphisms of the transformation
sequences.

(PS← /0→ /0) = P0
tr∗F +3

(aS, /0, /0)

��

traceP

44

(1)

Pl = P

al

��

a

!!C
CC

CC
CC

CC
CC

C

(CS← /0→ /0) = C0
tr∗F +3

traceC1

44 Cl
tr′∗F +3

(2)

traceC2

66 Cn = C

2. an MT-consistent integrated constraint PC(a) can be restricted to and an MT-consistent
target constraint PC(aT : PT →CT ).

Proof Idea. 1. Given an MT-consistent PC(aS : PS −→ CS) we have PS,CS ∈ LS ⊆ VLS. Now

the completeness of model transformations shown in [5, 11] implies P0 =
tr∗F=⇒ Pl = P with

P0 = (PS ← /0 −→ /0) and P ∈ VL. This model transformation sequence can be extended

firstly along (aS, /0, /0) : P0 −→ C0 leading to C0 =
tr∗F=⇒ Cl with (1) commutative and secondly
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by strong functional behaviour of MT to C0 =
tr∗F=⇒ Cl =

tr′∗F=⇒ Cn with Cn = C ∈ VL. This
implies that a : P−→ C defined by triangle (2) is MT-consistent, i.e. P,C ∈ VL.

2. Given an MT-consistent integrated constraint PC(a : P−→ C) we have P,C ∈ VL. By defini-
tion of VLT = pro jT (VL) we have PT ,CT ∈ VLT and hence the required MT-consistency
of the target constraints.

Integrated constraint publicIsSecured for integrated models
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Figure 5: Propagated Integrated Constraint

Example 4 (Propagation) According to Rem. 1 the model transformation of our case study is
propagation consistent. Furthermore, the source constraint is MT-consistent, such that we can
apply Thm. 1 and derive the propagated integrated and target constraints in Fig. 5. For better
visibility we take a subgraph G′ ⊆ G of the integrated model G in Ex. 3, such that the source
model G′S is similarly transformed into the target model G′T . Now, the integrated model G′

satisfies the propagated integrated constraint, i.e. for any injective occurrence p : P→ G′ of
the integrated premise P in G′ there is an injective occurrence q : C→ G′ compatible with the
constraint morphism a, i.e. p = q◦a.

In order to generally ensure the validity of propagated constraints we provide a suitable static
condition on constraints by Def. 4 below that can be checked automatically (see Remark 2). Es-
sentially, the condition requires that whenever the premise graph P of a constraint is found in an
integrated model, then its occurrence is already fully determined by the source and correspon-
dence component. This condition is not very restrictive, because it must only hold for premise
graphs of constraints and not for all integrated graphs in VL.

Definition 4 (Admissable Premise) Given a TGG with triple language VL. The premise P
of an integrated constraint PC(a : P→ C) is called admissable, if for any injective morphisms
p, p′ : P→ G with G ∈ VL we have pS = p′S and pC = p′C implies pT = p′T .
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Remark 2 (Checking Admissability) It suffices to show that the internal morphism tP : PC −→ PT

of the premise graph P is surjective on nodes, and furthermore, for each edge type occurring in
the target component PT of P we have that there are no parallel edges in any triple graph G ∈ VL
of this type. The latter can be verified - especially in our case study - by checking that the triple
rules do not create edges of those types separately, but always together with an adjacent node.

The premise graph of a propagated target constraint may occur with a target model at places
that do not correspond to occurrences of the premise graph of the source constraint in the source
model, because differently typed source elements may be transformed into target elements of the
same type. From the application point of view, it is clear that the preservation of properties of the
source model can be ensured only at corresponding occurrences in the target model. Theorem 2
below shows that the validity of source constraints is preserved at those places using the notion
of weak satisfaction. More precisely, given an integrated constraint PC(a : P→C), then a target
model GT weakly satisfies a target constraint – written (GT |=w PC(aT )) – if for all injective
pT : PT →GT which can be extended to an injective integrated morphism p : P→G there exists
an injective qT : CT → GT with qT ◦aT = pT . Furthermore, the theorem shows that the validity
is completely preserved for the propagated integrated constraint. It is formulated for (atomic)
constraints PC(aS : PS −→ CS) but can be extended to general constraints.

Theorem 2 (Validity of Propagation for MT-Consistent Constraints) Given a propagation con-
sistent model transformation MT acc. to Def. 3, and given an MT-consistent source graph con-
straint PC(aS : PS→CS) with an MT-consistent propagated integrated constraint PC(a : P→C)
and a propagated target constraint PC(aT : PT →CT ) according to Thm. 1, such that P is ad-

missable, then we have for all GS ∈LS with model transformation sequence (GS,G0 =
tr∗F=⇒ G,GT ):(

GS |= PC(aS)
)
⇒
(

G |= PC(a) ∧ GT |=w PC(aT )
)
.

This means that given the source graph satisfies the source constraint, then the integrated
graph satisfies the propagated integrated constraint and the target graph weakly satisfies the
propagated target constraint.

Proof Idea. The main idea is to show that GS |= PC(aS : PS→CS) implies G |= PC(a : P→C)
where both are related by diagrams (1) and (2) of Thm. 1. Similar to the proof of Thm 1 we

are firstly able to extend C0 =
tr∗F=⇒ Cl =

tr′∗F=⇒ Cn = C along (qS, /0, /0) : C0 → G0 with G0 = (GS ←
/0→ /0) to G0 =

tr∗F=⇒ Gl =
tr′∗F=⇒ Gn with qn : Cn→Gn and secondly by strong functional behaviour to

G0 =
tr∗F=⇒ Gl =

tr′∗F=⇒ Gn =
tr′′∗F==⇒ Gm = G with G ∈ VL. Using q = traceG ◦qn : C→G where traceG =

trace(Gn =
tr′′∗F==⇒ Gm) we can deduce q ◦ a = p using left linearity (see Def. 3) and admissability

of premise P (see Def. 4).

Example 5 (Validity of Propagated Constraints) The premise graph of the integrated constraint
in Fig. 5 is admissable, which we verified via Remark 2. According to Ex. 4 the model transfor-
mation is propagation consistent and the source as well as the propagated constraints are MT -
consistent. Therefore, we can apply Thm. 2 for showing that the integrated model G′ satisfies the
propagated integrated constraint and the target model G′T weakly satisfies the propagated target
constraint PC(aT : PT →CT ) in Fig. 5, i.e. the constraint holds at all structures that correspond
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to occurrences of the source constraint in the source model.

4 Propagation of Partially MT-consistent Constraints

In this section we discuss how to generalize constructions and results of Sec. 3 to the case of
partially MT-consistent constraints, i.e. for the source constraint PC(aS : PS −→ CS) we may have
PS /∈ LS ⊆ V LS or CS /∈ LS as shown in Fig. 6a. Note that in Fig. 6a black bullets are missing
s.t. PS is a model fragment in contrast to PS in Fig. 4. Moreover, PS in concrete syntax in Fig. 6a
corresponds to a single node in abstract syntax in Fig. 6b. If PS /∈ LS or CS /∈ LS they can be
considered as model fragments and we show now how to handle this important more general
case. The main idea is to use an extended model transformation approach for model fragments
introduced in [13] based on the general framework of graph transformation with borrowed con-
text (BC) [8]. Intuitively, BC-transformations allow for partial matching of the forward rules in
the S-component. The missing context that is required by the left hand side LF of the forward
rule is borrowed and the instance graph is extended by this context. More precisely each BC-
forward transformation step consists of two POs (1) and (2), where in PO (1) the partial match is
completed and in PO (2) we have a forward transformation step with total match.Verteilung

:E/D
CSPS

1:public
1:public :E/D

Source Constraint publicIsEncrypted2for IT-models

aS

name = "public"
1 : Reo

PS

(a) (b)

Figure 6: Partially MT-consistent source constraint (a) and abstract syntax of PS (b)

Definition 5 (BC-Forward and BC-Model Transformation) Given triple rules T R with corre-
sponding forward rules T RF then

1. A BC-forward transformation Ĝ0 =
tr∗F=⇒BC Ĝn via T RF is given by BC-forward transfor-

mation steps Ĝi−1 =
tri,F ,m̂i,F ,di======⇒ Ĝi for i = 1, ...,n consisting of POs (1) and (2) where in

PO (1) the partial match m′ : Li,F ⇀ Ĝi−1 – given by injective morphisms m̂i,F and di –
is extended to a total injective match m+

i,F : Li,F −→ Ĝ+
i−1 and in PO(2) we have a forward

transformation step with total injective match as in Sec. 2. Moreover we require that the
C- and T -components dC

i and dT
i of di are identities. Note that the S-component trS

i,F is the
identity of RS

i by construction of TRF , i.e. trS
i,F = idRS

i
.

Di
di //

m̂i,F ��

Li,F

m′ytttttt

Ĝi−1

Di

m̂i,F ��

di //

(1)

Li,F

m+
i,F��

tri,F //

(2)

Ri,F

ni,F
��

Ĝi−1 hi

// Ĝ+
i−1 h+

i

// Ĝi

2. A BC-model transformation sequence (GS, Ĝ0 =
tr∗F=⇒BC Ĝn,GT ) consists of a source con-

sistent BC-forward transformation Ĝ0 =
tr∗F=⇒BC Ĝn via T RF with source model GS = ĜS

n and
target model GT = ĜT

n . A BC-model transformation MTBC :V L(T GS) VBC V L(T GT ) con-
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sists of BC-model transformation sequences (GS, Ĝ0 =
tr∗F=⇒BC Ĝn,GT ) with GS ∈V L(T GS)

and GT ∈V L(T GT ).

Remark 3 Source consistency of BC-forward transformations is based on partial BC-match
consistency [13], where both notions are defined in analogy to source and match consistency in
the standard case without BC [5].

BC-forward and BC-model transformations can be extended by Fact 1 (with proof in [13]) to
forward and model transformations in the sense of Sec. 2.

Fact 1 (Extension of BC-Forward and BC-Model Transformations) Given a BC-forward trans-

formation sequence Ĝ0 =
tr∗F=⇒BC Ĝn with Ĝ0 = (ĜS

0 ← /0→ /0) there is an extension to a forward

transformation sequence G0 =
tr∗F=⇒ Gn with G0 = (ĜS

n← /0→ /0) and Gn = Ĝn.

Moreover, each BC-model transformation sequence (GS, Ĝ0 =
tr∗F=⇒BC Ĝn,GT ) with GS = ĜS

n,

GT = ĜT
n can be extended to a model transformation sequence (GS,G0 =

tr∗F=⇒ Gn,GT ) with the
same GS, GT satisfying GS = GS

0, GT = GT
n and Gn = Ĝn.

D1

��

d1 //

(1)

L1,F

��

tr1,F //

(2)

R1,F

  B
BB

BB
BB

D2

��

d2 //

(3)

L2,F

��

tr2,F //

(4)

R2,F

��

Dn

��

d2 //

(5)

Ln,F

��

trn,F //

(6)

Rn,F

��
Ĝ0

g0 //

f0
��

(7)
Ĝ+

0

g+
0 //

f +
0~~||

||
|| (8)

Ĝ1

f1
��

g1 //

(9)
Ĝ+

1

f +
1~~||

||
||

g+
1 //

(10)

Ĝ2

��

Ĝn−1

fn−1
��

gn−1 //

(11)
Ĝ+

n−1

f +
n−1{{xxx

xx
xx

g+
n−1 //

(12)

Ĝn

fn
��

G0 h0

// G1 h1

// G2 Gn−1 hn−1

// Gn

Figure 7: Extension of a BC-forward Transformation Sequence
Now correctness of model transformation shown in [5, 11] can be extended by Fact 2 (with

proof in [13]) to BC-model transformation.

Fact 2 (Correctness of BC-Model Transformations) Each BC-model transformation is correct,

i.e. for all BC-model transformation sequences (GS, Ĝ0 =
tr∗F=⇒BC Ĝn,GT ) we have Ĝn ∈ V L with

ĜS
0 ⊆ ĜS

n = GS ∈V LS and ĜT
n = GT ∈V LT .

Finally we show how to propagate a partially MT-consistent source constraint (see Fig. 6) to
MT-consistent target constraint as shown already in Fig. 4 using the BC-model transformations
in Def. 6. Intuitively a partially MT-consistent source constraint PC(aS : PS −→ CS) is a source
constraint such that we have a BC-model transformation sequence from (PS ← /0→ /0) to P̂
and from (CS ← /0→ /0) to Ĉ leading to a propagated integrated constraint PC(â : P̂ −→ Ĉ) to-
gether with a corresponding propagated source constraint PC(âS : P̂S −→ ĈS) and target constraint
PC(âT : P̂T −→ ĈT )

Definition 6 (Partially MT-Consistent Source Constraint) A source constraint PC(aS) with
aS : PS −→ CS is called partially MT-consistent if there exist BC-model transformation sequences

11 / 14 Volume 41 (2011)
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P̂0 =
tr∗F=⇒BC P̂l , Ĉ0 =

tr∗F=⇒BC Ĉl =
tr∗F=⇒BC Ĉn as shown below leading to a morphism â = trace(tr′∗F )◦ âl ,

such that the diagram below commutes and we have P̂S,ĈS ∈ LS:

(PS← /0→ /0) = P̂0
tr∗F

BC
+3

(aS, /0, /0)

��

Pl = P̂

âl

��

â

!!C
CC

CC
CC

CC
CC

C

(CS← /0→ /0) = Ĉ0
tr∗F

BC
+3 Ĉl

tr′∗F
BC
+3 Ĉn = Ĉ

Moreover, PC(â : P̂→ Ĉ) is called propagated integrated constraint, PC(âS : P̂S → ĈS) propa-
gated source constraint, and PC(âT : P̂T → ĈT ) propagated target constraint, where âS and âT

are the source and target components of â.

This allows us to present our second main result – the validity of propagation of partially
MT-consistent source constraints – as a generalisation of Thm. 2.

Theorem 3 (Propagation of Partially MT-consistent Source Constraints) Given a propagation
consistent model transformation MT and a partially MT-consistent source constraint PC(aS :
PS −→ CS), then we have MT-consistent propagated constraints PC(â : P̂ −→ Ĉ) with PC(âS) and
PC(âT ). If P̂ is admissable, then we have for all GS ∈ LS with model transformation sequence

(GS,G0 =
tr∗F=⇒ G,GT ):(

GS |= PC(âS)
)
⇒
(

G |= PC(â) ∧ GT |=w PC(âT )
)
.

Proof Idea. MT-consistency of PC(â), PC(âS), and PC(âT ) follows from correctness of BC-
model transformations (see Fact 2) and P̂S,ĈS ∈ LS by assumption. This allows us to apply
Thm. 2.

Constraint publicIsEncrypted2

P

C

:E/D

:E/D

1:public

a

1:public

Extended Constraint publicIsEncrypted2+

P

C

:E/D

:E/D

1:public

a

D

1:public

Forward Rule PublicToPublic
L

1:public

R

1:public 2:public

4:P

3:P

m

+

+

+

m+

d

hP

hC

Partially translated Constraint publicIsEncrypted2'

C'

:E/D

:E/D

1:public

a'

1:public

tr

hP
+

hC
+

n

P'

1:public 2:public

4:P

3:P

2:public

4:P

3:P

m -

Figure 8: Source constraint and propagated constraint

Example 6 (Propagation of a Partially MT-consistent Source Constraint) The constraint pub-
licIsEncrypted2 in Fig. 8 is a partial model, as shown in Fig. 6. Therefore there is no total match
from the left-hand-side of the rule L to P, but only a partial match m−. This leads to the injective
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span (L d← D −m→ G) with D being the domain of m−. With a pushout over D the black bullet
nodes are “borrowed” from L and a standard triple graph transformation over the rule can be
performed. After this step the premise graph is already completely translated and the conclusion
graph can be translated as seen in Fig. 4.

5 Related Work and Conclusion

Model transformation is an important concept in order to establish a consistent relationship be-
tween source and target models, like business and IT models in enterprise modelling [2]. Security
constraints can be defined separately for source and/or target models, but up to now, it is an open
problem how to establish a consistent relationship between source and target constraints.

Triple graph grammars have been successfully applied in several case studies for bidirectional
model transformations, integrations and synchronizations [15, 12, 16, 10], and there are a variety
of formal results concerning correctness, completeness and termination [5], functional behaviour
and optimization with respect to the efficiency of their execution [11].

Previous studies on the relationship between model transformations and constraints focussed
on general properties, e.g. in order to provide techniques for the verification and validation
of model transformations [9, 1, 3] in order to detect underspecified parts or mismatches to the
requirements of the domain. They perform semi-automated reasoning using e.g. the theorem
prover Isabelle/HOL [9], Prolog [1] or they use OCL validation tools [3]. In contrast to them,
this paper has its main focus on a constructive approach for the translation of domain and model
specific source into target constraints, i.e. those properties of a source model which are usually
not valid for all models of the source language.

Given a model transformation MT based on triple graph grammars, we have defined in this
paper MT-consistent constraints and shown how to propagate source constraints to integrated
and target constraints. In our first main result, we prove that under suitable conditions this
propagation is consistent in the sense that validity of the source constraint for the source model
implies validity of the integrated and target constraint for the integrated resp. target model. Since
constraints are often incomplete models we study in Sec. 4 also the propagation of partial MT-
consistent source constraints leading to our second main result. For this purpose we provide a
new concept of model transformations with borrowed context, which allows to transform also
model fragments. Transformations of model fragments along total matches are considered for
the case of plain graph transformations already in [7] for the refactoring of rules. Based on the
new theory of model transformations with borrowed context we will also propagate other kinds
of model fragments in future work, e.g. rules of the operational semantics from source to target
models in order to prove semantical correctness of model transformations.
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