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SELF-COMMUTING LATTICE POLYNOMIAL FUNCTIONS ON

CHAINS

MIGUEL COUCEIRO AND ERKKO LEHTONEN

Abstract. We provide sufficient conditions for a lattice polynomial function

to be self-commuting. We explicitly describe self-commuting polynomial func-
tions on chains.

1. Introduction

Two operations f : An → A and g : Am → A are said to commute, and we write
f ⊥ g, if for all aij ∈ A (1 ≤ i ≤ n, 1 ≤ j ≤ m), the following identity holds

f
(
g(a11, a12, . . . , a1m), g(a21, a22, . . . , a2m), . . . , g(an1, an2, . . . , anm)

)
= g
(
f(a11, a21, . . . , an1), f(a12, a22, . . . , an2), . . . , f(a1m, a2m, . . . , anm)

)
.

For n = m = 2, the above condition stipulates that

f
(
g(a11, a12), g(a21, a22)

)
= g
(
f(a11, a21), f(a12, a22)

)
.

The Eckmann-Hilton Theorem [11] asserts that if both f and g have an identity
element and f ⊥ g, then in fact f = g and (A; f) is a commutative monoid on A.

The relevance of the notion of commutation is made apparent in works of sev-
eral authors. In particular, commutation is the defining property of entropic alge-
bras [21, 22, 26] (an algebra is entropic if its operations commute pairwise; idempo-
tent entropic algebras are called modes) and centralizer clones [17, 18, 24, 27] (the
centralizer of a set F of operations is the set of all operations that commute with
every operation in F ; the centralizer of F is a clone).

We are interested in functions f that commute with themselves. An algebra
(A; f) where f is a binary operation that satisfies the identity

f
(
f(a11, a12), f(a21, a22)

)
= f

(
f(a11, a21), f(a12, a22)

)
is called a medial groupoid [15, 16]. Hence, self-commutation generalizes the notion
of mediality, and it has been investigated by several authors (see, e.g., [1, 3, 19,
25]). In the realm of functional equation theory, self-commutation is also known as
bisymmetry; for motivations and general background, see [2, 3, 13].

In this paper, we address the question of characterizing classes of self-commuting
operations. In Section 2, we recall basic notions in the universal-algebraic setting
and settle the terminology used throughout the paper. Moreover, we develop gen-
eral tools for tackling the question of describing self-commuting operations.
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This question is partially answered for lattice polynomial functions in Section 3.
We start by surveying well-known results concerning normal form representations
of these lattice functions which we then use to specify those polynomial func-
tions on bounded chains which are self-commuting. This explicit description is
obtained by providing sufficient conditions for a lattice polynomial function to be
self-commuting, and by showing that these conditions are also necessary in the
particular case of polynomial functions on bounded chains.

In Section 4 we point out problems which are left unsettled, and motivate direc-
tions of future research.

2. Preliminaries

In this section, we introduce some notions and terminology as well as establish
some preliminary results that will be used in the sequel. For an integer n ≥ 1, set
[n] := {1, 2, . . . , n}. With no danger of ambiguity, we denote the tuple (x1, . . . , xn)
of any length by x.

2.1. Operations and clones. Let A be an arbitrary nonempty set. An operation
on A is a map f : An → A for some integer n ≥ 1, called the arity of f . We denote

by O(n)
A the set of all n-ary operations on A, and we denote by OA the set of all

finitary operations on A, i.e., OA :=
⋃
n≥1O

(n)
A .

For 1 ≤ i ≤ n, the operation (a1, . . . , an) 7→ ai is called the n-ary i-th projection

on A. If f ∈ O(n)
A and g1, . . . , gn ∈ O(m)

A , then the composition of f with g1, . . . , gn

is the operation f(g1, . . . , gn) ∈ O(m)
A given by

f(g1, . . . , gn)(a1, . . . , am) = f
(
g1(a1, . . . , am), . . . , gn(a1, . . . , am)

)
for all a1, . . . , am ∈ A. A clone on A is a set C ⊆ OA of operations on A that
contains all projections on A and is closed under composition, i.e., f(g1, . . . , gn) ∈ C
whenever f, g1, . . . , gn ∈ C and the composition is defined.

The clones on A constitute a complete lattice under inclusion order. Therefore,
for each set F ⊆ OA of operations on A, there exists a smallest clone on A that
contains F , which will be denoted by 〈F 〉 and called the clone generated by F .

We assume that the reader is familiar with basic notions of universal algebra
and lattice theory, and we refer the reader to [4, 5, 8, 9, 10, 14, 23] for general
background.

2.2. Essential variables and variable identification minors. We say that the
i-th variable of f : An → A is essential, if there exist elements a1, . . . , an, b ∈ A
such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b, ai+1, . . . , an).

If a variable is not essential in f , then we say that it is inessential in f .

Let f ∈ O(n)
A , g ∈ O(m)

A . We say that f is obtained from g by simple variable
substitution, or f is a simple minor of g, if there is a mapping σ : [m] → [n] such
that

f(x1, . . . , xn) = g(xσ(1), . . . , xσ(m)).

For distinct indices i, j ∈ [n], the function fi←j : An → A obtained from f by the
simple variable substitution

fi←j(x1, . . . , xn) := f(x1, . . . , xi−1, xj , xi+1, . . . , xn)
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is called a variable identification minor of f , obtained by identifying xi with xj .
Note that the i-th variable of fi←j is always inessential.

For studies of classes of operations that are closed under taking simple minors,
see, e.g., [6, 20].

2.3. Self-commutation. Let f ∈ O(n)
A and g ∈ O(m)

A be operations on A. We say
that f commutes with g, denoted f ⊥ g, if for all aij (i ∈ [n], j ∈ [m]), it holds
that

f
(
g(a11, a12, . . . , a1m), g(a21, a22, . . . , a2m), . . . , g(an1, an2, . . . , anm)

)
= g
(
f(a11, a21, . . . , an1), f(a12, a22, . . . , an2), . . . , f(a1m, a2m, . . . , anm)

)
.

We clearly have that f ⊥ g if and only if g ⊥ f . If f ⊥ f , then we say that f is
self-commuting.

For any set F ⊆ OA of operations on A, the centralizer of F is the set⋂
f∈F

{g ∈ OA : f ⊥ g}.

It is a well-known fact that the centralizer of F is a clone.
Let f : An → A and c ∈ A. For i ∈ [n], we define f ic : An−1 → A to be the

operation

f ic(a1, . . . , an−1) = f(a1, . . . , ai−1, c, ai, . . . , an−1).

The following lemma is an immediate consequence of the fact that the centralizer
of a set of operations is a clone.

Lemma 2.1. Assume that f ∈ O(n)
A is self-commuting. Then the following asser-

tions hold.

(i) For every i, j ∈ [n] (i 6= j), fi←j is self-commuting.
(ii) If f preserves c ∈ A, i.e., f(c, . . . , c) = c, then for every i ∈ [n], f ic is self-

commuting.

3. Self-commuting lattice polynomial functions

Let (L;∧,∨) be a lattice. With no danger of ambiguity, we denote lattices
by their universes. In this section we study the self-commutation property on
lattice polynomial functions, i.e., mappings f : Ln → L which can be obtained as
compositions of the lattice operations and applied to variables (projections) and
constants. As shown by Goodstein [12], lattice polynomial functions have neat
normal form representations in the case when L is a bounded distributive lattice.
Thus, unless stated otherwise, we assume in what follows that L is a bounded
distributive lattice, and the least and the greatest elements of L will be denoted by
0 and 1, respectively.

We recall results concerning the representation of lattice polynomials, and we
introduce some related concepts and terminology in Subsection 3.1. Then, we
consider the property of self-commutation on these functions. We start by providing
sufficient conditions for a lattice polynomial function to be self-commuting, namely,
if a lattice polynomial function has so-called chain form, then it is self-commuting.
Moreover, we will show that whenever the underlying lattice is a chain, the self-
commuting polynomial functions are precisely the ones that have chain form.
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3.1. Preliminary results: representations of lattice polynomial functions.
The members of the clone generated by the lattice operations ∧ and ∨ and all
constant functions x 7→ c, c ∈ L, are called (lattice) polynomial functions on L.
Idempotent polynomial functions are also referred to as (discrete) Sugeno inte-
grals [7, 13]. In the case of bounded distributive lattices, Goodstein [12] showed
that polynomial functions are exactly those which allow representations in disjunc-
tive normal form (see Proposition 3.1(i) below, first appearing in [12, Lemma 2.2];
see also Rudeanu [23, Chapter 3, §3] for a later reference).

Let 2[n] denote the set of all subsets of [n]. For I ⊆ [n], let eI be the characteristic
vector of I, i.e., the tuple in Ln whose i-th component is 1 if i ∈ I, and 0 otherwise.
Note that the mapping α : 2[n] → {0, 1}n given by α(I) = eI , for every I ∈ 2[n], is
an order-isomorphism.

Proposition 3.1. Let L be a bounded distributive lattice.

(i) (Goodstein [12]). A function f : Ln → L is a polynomial function if and only
if there exist aI ∈ L, I ⊆ [n] such that, for every x ∈ Ln,

(3.1) f(x) =
∨
I⊆[n]

(
aI ∧

∧
i∈I

xi
)
.

(ii) (Goodstein [12]). A function f : Ln → L is a polynomial function if and only
if for every x ∈ Ln,

(3.2) f(x) =
∨
I⊆[n]

(
f(eI) ∧

∧
i∈I

xi
)
.

(iii) Let f : Ln → L be a polynomial function on L given by (3.1). The following
are equivalent:
• aI = f(eI) for all I ⊆ [n].
• aI ≤ aJ whenever I ⊆ J ⊆ [n].

The expression given by (3.1) is usually referred to as a disjunctive normal form
(DNF) representation of the polynomial function f . It is easy to see that the DNF
representations of a polynomial function f : Ln → L are not necessarily unique.
For instance, if for some I ⊆ [n] we have aI ≤

∨
J(I aJ , then for every x ∈ Ln,

f(x) =
∨

I 6=J⊆[n]

(
aJ ∧

∧
i∈J

xi
)
.

(For a discussion on the uniqueness of DNF representations of lattice polynomial
functions see [7].)

A DNF representation of a lattice polynomial function f of the form (3.2) is
called a canonical DNF of f . By definition, there exists a unique canonical DNF
for every lattice polynomial function.

We refer to the term aI ∧
∧
i∈I xi in the canonical DNF of f as the I-term of f ,

or the term of f associated with the set I, and we say that |I| is its size. We say
that the I-term aI ∧

∧
i∈I xi is essential if aI >

∨
J(I aJ ; otherwise, we say that it

is inessential.

Remark 3.2. Observe that we can omit inessential terms from the canonical DNF
of a polynomial function f in order to obtain equivalent polynomial representations
of f .
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Remark 3.3. Every polynomial function is completely determined by its restriction
to {0, 1}n. Moreover, every polynomial function is range-idempotent, i.e., for every
c ∈ Im f , f(c, . . . , c) = c.

Remark 3.4. Considering only bounded distributive lattices rather than arbitrary
distributive lattices is not a serious restriction. Namely, let L be a distributive
lattice, not necessarily bounded, and let L′ be the lattice obtained from L by
adjoining new top and bottom elements > and ⊥, if necessary. Then, if f is a
polynomial function on L induced by a polynomial p, then p induces a polynomial
function f ′ on L′, and it holds that the restriction of f ′ to L coincides with f .
Similarly, if f ′ is a polynomial function on L′ represented by the DNF∨

I⊆[n]

(
aI ∧

∧
i∈I

xi
)
,

then by omitting each term aI ∧
∧
i∈I xi where aI = ⊥ and replacing each term

aI ∧
∧
i∈I xi where aI = > by

∧
i∈I xi, we obtain an equivalent polynomial repre-

sentation for f ′. Unless f ′ is the constant function that takes value > or ⊥ and this
element is not in L, the function f on L induced by this new polynomial coincides
with the restriction of f ′ to L. Moreover, self-commutation is preserved by this ex-
tension: if f ′ : (L′)n → L′ is the extension of f : Ln → L, then f is self-commuting
if and only if f ′ is self-commuting.

3.2. Self-commuting polynomial functions on chains. In this subsection we
provide explicit descriptions of self-commuting polynomial functions on chains. In
order to simplify notation, if I is a singleton or a two-element set, then we write ai
and aij for a{i} and a{i,j}, respectively. Also, to avoid cumbersome notation, we
shall often denote ∧ by juxtaposition.

We say that a lattice polynomial function f : Ln → L has chain form if

(3.3) f(x) = a∅ ∨
∨
i∈[n]

aixi ∨
∨

1≤`≤r

(
aS`

∧
i∈S`

xi
)
,

for some subsets S1, . . . , Sr ⊆ [n] with at least two elements, r ≥ 0, such that for
1 ≤ ` ≤ r, the S`-term is essential (in the canonical DNF of f) and the following
conditions are satisfied:

(1) S1 ⊆ S2 ⊆ · · · ⊆ Sr,
(2) if r ≥ 1, then for all i ∈ [n], there exists a j ∈ S1 such that ai ≤ aj ,
(3) aI ≤ aJ whenever I ⊆ J and

I, J ∈ {∅} ∪ {{i} : i ∈ [n]} ∪ {S` : 1 ≤ ` ≤ r}.
In the above definition, if r = 0, then f has the form

f(x) = a∅ ∨
∨
i∈[n]

aixi

for some elements a∅, ai (i ∈ [n]) of L. In this case f is called a weighted supremum.

Theorem 3.5. Let L be a bounded chain. A polynomial function f : Ln → L is
self-commuting if and only if it has chain form.

Theorem 3.5 will be a consequence of Lemmas 3.6 and 3.9 below. We start with
the result that provides sufficient conditions for a polynomial to be self-commuting
in the general case of distributive lattices.
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Lemma 3.6. Let L be a distributive lattice. Assume that a function f : Ln → L
has chain form. Then f is self-commuting.

Proof. Assume first that f is a weighted supremum, i.e., r = 0 in (3.3). We have
that

f
(
f(x11, x12, . . . , x1n), . . . , f(xn1, xn2, . . . , xnn)

)
= a∅ ∨

∨
i∈[n]

ai

(
a∅ ∨

∨
j∈[n]

ajxij

)
= a∅ ∨

∨
i∈[n]

∨
j∈[n]

aiajxij

= a∅ ∨
∨
j∈[n]

∨
i∈[n]

ajaixij = a∅ ∨
∨
j∈[n]

aj

(
a∅ ∨

∨
i∈[n]

aixij

)
= f

(
f(x11, x21, . . . , xn1), . . . , f(x1n, x2n, . . . , xnn)

)
.

Thus, f is self-commuting.
Assume then that r ≥ 1. The assumption that for every i ∈ [n] there is a j ∈ S1

such that ai ≤ aj implies that ai ≤ aS`
(and hence aiaS`

= ai) for all i ∈ [n] and
for all ` ∈ [r]. Using this observation and distributivity we get

f
(
f(x11, x12, . . . , x1n), f(x21, x22, . . . , x2n), . . . , f(xn1, xn2, . . . , xnn)

)
= a∅ ∨

∨
i∈[n]

ai

[
a∅ ∨

∨
j∈[n]

ajxij ∨
∨

1≤`≤r

aS`

∧
j∈S`

xij

]
∨
∨

1≤t≤r

aSt

∧
i∈St

[
a∅ ∨

∨
j∈[n]

ajxij ∨
∨

1≤`≤r

aS`

∧
j∈S`

xij

]
= a∅ ∨

∨
i∈[n]

∨
j∈[n]

aiajxij︸ ︷︷ ︸
(I)

∨
∨
i∈[n]

∨
1≤`≤r

ai
∧
j∈S`

xij︸ ︷︷ ︸
(II)

∨
∨

1≤t≤r

∧
i∈St

[
a∅ ∨

∨
j∈[n]

ajxij ∨
∨

1≤`≤r

aSt
aS`

∧
j∈S`

xij

]
︸ ︷︷ ︸

(III)

.

Every term in (II) is absorbed by a term in (I): for every i ∈ [n], there is a
k ∈ S1 such that ai ≤ ak, and hence for any ` ∈ [r], the term ai

∧
j∈S`

xij =

aiakxik
∧
j∈S`\{k} xij in (II) is absorbed by the term aiakxik in (I).

In (III), for a fixed t, if ` > t, then the term aStaS`

∧
j∈S`

xij = aSt

∧
j∈S`

xij is

absorbed by aSt

∧
j∈St

xij = aSt
aSt

∧
j∈St

xij , and hence (III) simplifies to

(3.4)
∨

1≤t≤r

∧
i∈St

[
a∅ ∨

∨
j∈[n]

ajxij ∨
∨

1≤`≤t

aS`

∧
j∈S`

xij

]
︸ ︷︷ ︸

(IV)

.

For a fixed t, (IV) expands to the disjunction of all possible conjunctions
∧
i∈St

φi
of |St| terms, where each φi is one of a∅, ajxij for some j ∈ [n], or aS`

∧
j∈S`

xij
for some 1 ≤ ` ≤ t. If φi = a∅ for some i ∈ St, then the conjunction is absorbed
by a∅. If φi = aixii for some i ∈ St, then the conjunction is absorbed by the term
aiaixii = aixii in (I).

Consider then such a conjunction
∧
i∈St

φi where for all i ∈ St, φi is not equal to
a∅ nor to aixii, but for some i ∈ St, φi = ajxij for some j 6= i. By our assumption,
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there is a k ∈ S1 such that aj ≤ ak and hence aj = ajak. We have that φk equals
either a`xk` for some ` 6= k or aS`

∧
m∈S`

xkm for some 1 ≤ ` ≤ t. In the former

case, φiφk = ajakxija`xk`, and hence the conjunction
∧
i∈St

φi is absorbed by the

term aka`xk` in (I). In the latter case, φiφk = ajakxijaS`

∧
m∈S`

xkm, and hence

the conjunction
∧
i∈St

φi is absorbed by the term akakxkk = akxkk in (I).

The remaining conjunctions that arise from the expansion of (IV) are of the form∧
i∈St

aS`i

∧
j∈S`i

xij

where 1 ≤ `i ≤ t (i ∈ St). Let `′ = mini∈St `i. If `′ < t, then this conjunction is
absorbed by aS`′

∧
i∈S`′

∧
j∈S`′

xij , which arises from the expansion of∧
i∈S`′

[
a∅ ∨

∨
j∈[n]

ajxij ∨
∨

1≤`≤`′
aS`

∧
j∈S`

xij

]
in (3.4). Thus, the only remaining conjunction that arises from the expansion of
(IV) is aSt

∧
i∈St

∧
j∈St

xij .
Thus, we have that

(3.5) f
(
f(x11, x12, . . . , x1n), f(x21, x22, . . . , x2n), . . . , f(xn1, xn2, . . . , xnn)

)
=

a∅ ∨
∨
i∈[n]

∨
j∈[n]

aiajxij ∨
∨

1≤`≤r

aS`

∧
i∈S`

∧
j∈S`

xij .

In a similar way, we can deduce that

(3.6) f
(
f(x11, x21, . . . , xn1), f(x12, x22, . . . , xn2), . . . , f(x1n, x2n, . . . , xnn)

)
=

a∅ ∨
∨
j∈[n]

∨
i∈[n]

aiajxij ∨
∨

1≤`≤r

aS`

∧
j∈S`

∧
i∈S`

xij .

The right-hand sides of (3.5) and (3.6) are clearly equal, and we conclude that f is
self-commuting. �

The necessity of the conditions in Theorem 3.5 follows from Lemma 3.9. In its
proof, we will need the following two auxiliary results.

Lemma 3.7. Let f : Ln → L be a polynomial function. Assume that the I-term of
f is essential.

(i) If i, j /∈ I, then the I-term of fi←j is essential.
(ii) If i, j ∈ I, then the I ′-term of fi←j is essential, where I ′ := I \ {i}.

Proof. (i) Since i, j /∈ I, for every K ⊆ I we have that fi←j(eK) = f(eK). Thus,

fi←j(eI) = f(eI) >
∨
K(I

f(eK) =
∨
K(I

fi←j(eK),

where the inequality holds because the I-term of f is essential. Hence the I-term
of fi←j is essential.

(ii) Since i, j ∈ I, for every K ⊆ I we have that fi←j(eK) = f(e∇K), where

∇K =

{
K if j /∈ K,

K ∪ {i} if j ∈ K.
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Since ∇I ′ = I, we have

fi←j(eI′) = f(e∇I′) = f(eI) >
∨
T(I

f(eT ) ≥
∨
K(I′

f(e∇K) =
∨
K(I′

fi←j(eK),

where the first inequality holds because the I-term of f is essential. The second
inequality holds because every joinand on the right-hand side appears on the left-
hand side. Thus the I ′-term of fi←j is essential. �

Lemma 3.8. Let f : Ln → L be a polynomial function, and assume that the i-th
variable of f is inessential.

(i) For every I ⊆ [n] such that i ∈ I, we have that the I-term of f is inessential.
(ii) If the I-term of f is essential (and hence i /∈ I by (i)), then the I ′-term of f ic

is essential, where c ∈ L, I ′ := σ[I] and σ : [n] \ {i} → [n− 1] is the bijection
given by

σ(a) =

{
a if a < i,

a− 1 if a > i.

(iii) f has chain form if and only if f ic (c ∈ L) has chain form.

Proof. (i) Let I ⊆ [n] be such that i ∈ I. Since the i-th variable of f is inessential,
we have f(eI) = f(eI\{i}). Thus, the I-term of f is inessential.

(ii) By the definition of f ic and by the assumption that the i-th variable of f is
inessential, we have that f ic(eI′) = f(eI). The following calculation shows that the
I ′-term of f i1 is essential:

f ic(eI′) = f(eI) >
∨
T(I

f(eT ) ≥
∨
K(I′

f(eσ−1(K)) =
∨
K(I′

f ic(eK).

Here the first inequality holds since the I-term of f is essential, and the second
inequality holds since every joinand on the right-hand side occurs on the left-hand
side.

(iii) Assume first that f has chain form, i.e., f is of the form (3.3) and satisfies
conditions (1)–(3) of the definition of chain form. Since the i-th variable is inessen-
tial in f , then by (i) none of the essential terms of f is associated with a subset
S ⊆ [n] that contains i. Therefore, we may assume that f is of the form

f(x) = a∅ ∨
∨

j∈[n]\{i}

ajxj ∨
∨

1≤`≤r

(
aS`

∧
j∈S`

xj
)
,

where i /∈ Sr ⊇ · · · ⊇ S1. Then

(3.7) f ic(x) = a∅ ∨
∨

j∈[n]\{i}

aσ(j)xσ(j) ∨
∨

1≤`≤r

(
aσ(S`)

∧
j∈σ(S`)

xj
)
,

which has chain form, since σ is bijective.
For the converse, assume that f does not have chain form. Then

(a) f has essential terms associated with incomparable subsets I, J ⊆ [n] of size at
least two; or

(b) f has the form (3.3) and there is a j ∈ [n] \ S1 such that aj > ak for every
k ∈ S1.

If (a) holds, then by (ii) the σ(I)-term and σ(J)-term of f ic are essential but σ(I)
and σ(J) remain incomparable. Hence f ic does not have chain form.
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If (b) holds, then j 6= i, because the i-th variable is inessential in f . Moreover,
f ic is given by (3.7) as above. From the fact that σ is bijective it follows that
aσ(j) > aσ(k) for every k ∈ S1. Since σ(j) /∈ σ(S1), f ic does not have chain form. �

Lemma 3.9. Let L be a bounded chain. If a polynomial function f : Ln → L is
self-commuting, then it has chain form.

Proof. The statement clearly holds for n = 1 and n = 2, since every unary or binary
polynomial function has chain form.

Suppose n = 3. Then, by Proposition 3.1, the canonical DNF of f has the form

(3.8) f = a∅ ∨ a1x1 ∨ a2x2 ∨ a3x3 ∨ a12x1x2 ∨ a13x1x3 ∨ a23x2x3 ∨ a123x1x2x3,

where aI ≤ aJ whenever I ⊆ J .
We have that

f
(
f(1, 1, 0), f(0, 1, 1), f(0, 0, 0)

)
= f(a∅ ∨ a1 ∨ a2 ∨ a12, a∅ ∨ a2 ∨ a3 ∨ a23, a∅)
= f(a12, a23, a∅)

= a∅ ∨ a1a12 ∨ a2a23 ∨ a3a∅ ∨
a12a12a23 ∨ a13a12a∅ ∨ a23a23a∅ ∨ a123a12a23a∅

= a1 ∨ a2 ∨ a12a23,
f
(
f(1, 0, 0), f(1, 1, 0), f(0, 1, 0)

)
= f(a∅ ∨ a1, a∅ ∨ a1 ∨ a2 ∨ a12, a∅ ∨ a2)

= f(a1, a12, a2)

= a∅ ∨ a1a1 ∨ a2a12 ∨ a3a2 ∨
a12a1a12 ∨ a13a1a2 ∨ a23a12a2 ∨ a123a1a12a2

= a1 ∨ a2,

(3.9)

and since f is self-commuting, we have a1 ∨ a2 ∨ a12a23 = a1 ∨ a2. This equality
translates into a12a23 ≤ a1∨a2. In a similar way, after suitably permuting the rows

and columns of the 3× 3 matrix
(

1 1 0
0 1 1
0 0 0

)
used in (3.9), we can deduce that

(3.10) aijajk ≤ ai ∨ aj ≤ aij
for {i, j, k} = {1, 2, 3}.

Since L is a chain, we have for some choice of {α, β, γ} = {1, 2, 3} that aαβ ≤
aβγ ≤ aαγ . Inequalities (3.10) then imply

aα ∨ aβ = aαβ and aβ ∨ aγ = aβγ ,

i.e., the terms associated with the sets {α, β} and {β, γ} are inessential. Thus,
f has at most one essential term of size 2. If f has no essential term of size 2,
then it has chain form. Otherwise f has precisely one essential term of size 2,
namely, the one associated with S1 = {α, γ}. Without loss of generality, assume
that {α, γ} = {1, 2}. Then a12 > a1 ∨ a2 and

a3 ≤ a13 = a13a12 ≤ a1 ∨ a2.

Since L is a chain, this implies that a3 ≤ a1 or a3 ≤ a2, and we conclude that f
has chain form.
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We now proceed by induction on n. Assume that the claim holds for n < ` for
some ` ≥ 4. We show that it holds for n = `. In the sequel, we will write “X ‖ Y ”
for “X 6⊆ Y and Y 6⊆ X”.

Let f =
∨
I⊆[`] aI

∧
i∈I xi be self-commuting, and in view of Proposition 3.1,

assume that aI ≤ aJ whenever I ⊆ J . If f has no essential terms of size at least
2, then f has chain form. Thus, we suppose that f has an essential term of size at
least 2. First we show that the essential terms of f of size at least 2 are associated
with a chain S1 ⊆ S2 ⊆ · · · ⊆ Sr. For a contradiction, suppose that there are
I, J ⊆ [k] such that |I| ≥ 2, |J | ≥ 2, I ‖ J and the I-term and the J-term of f are
essential. Fix such I and J so that |I ∩ J | is the largest possible, |I| ≤ |J | and |J |
is the largest among such pairs. We need to consider several cases.

Case 1: |I ∩ J | ≥ 2. Take distinct i, j ∈ I ∩ J . By Lemma 3.7, the I ′-th
and the J ′-th terms of fi←j are essential, where I ′ = I \ {i}, J ′ = J \ {i}.
Since I ′ ‖ J ′, fi←j does not have chain form. Choose c ∈ Im fi←j . By
Lemma 3.8, (fi←j)

i
c does not have chain form either. By our induction

hypothesis, (fi←j)
i
c is not self-commuting, which contradicts Lemma 2.1

which asserts that self-commutation is preserved by the two operations
that we just performed.

Case 2: |I ∩ J | ≤ 1 and |J | ≥ 3. Take distinct i, j ∈ J \ I. As in Case 1, we
derive a contradiction by taking I ′ = I, J ′ = J \ {i}.

Case 3: |I ∩ J | = 1, |J | = 2 and ` ≥ 5. Take distinct i, j ∈ [`] \ (I ∪ J). As
in Case 1, we derive a contradiction by taking I ′ = I, J ′ = J .

Case 4: |I ∩ J | = 1, |J | = 2 and ` = 4. Then [4] \ (I ∪ J) = {i} for some
i ∈ [4]. Since the I-term and the J-term of f ia∅ are clearly essential, f ia∅
does not have chain form, and by the induction hypothesis it is not self-
commuting. This is a contradiction to Lemma 2.1, since f is assumed to
be self-commuting.

Case 5: |I ∩ J | = 0 and |J | = 2. Note that in this case the essential terms of
f of size at least 2 are associated with pairwise disjoint sets and have size
exactly 2. Let I = {i, j}, J = {k, t}. If f has an essential term of size (at
least) 2 associated with a set K distinct (and hence disjoint) from I and
J , then by Lemma 3.7, the J-term and the K-term of fi←j are essential.
Since J ‖ K, fi←j does not have chain form.

Otherwise I and J are the only essential terms of size at least 2. Since
L is a chain, aI ≤ aJ or aJ ≤ aI . Assume without loss of generality that
aJ ≤ aI . Then f is of the form

f = a∅ ∨ aixi ∨ ajxj ∨ aijxixj ∨ akxk ∨ atxt ∨ aktxkxt ∨ · · ·

where the remaining terms are associated with singletons distinct from {i},
{j}, {k}, {t}. Consider then

fi←j = (ai ∨ aj ∨ aij)xj ∨ akxk ∨ atxt ∨ aktxkxt ∨ · · · .

But fi←j does not have chain form, because condition (2) in the definition
of chain form is not satisfied by fi←j as the following computation shows:

ai ∨ aj ∨ aij = aij ≥ akt > ak ∨ at,

where the first inequality holds by our assumption that aJ ≤ aI , and the
second inequality holds by the assumption that the J-term of f is essential.
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Thus, for a c ∈ Im fi←j , (fi←j)
i
c does not have chain form by Lemma 3.8.

The induction hypothesis implies that (fi←j)
i
c is not self-commuting, which

contradicts Lemma 2.1.

Thus, the essential terms of f of size at least 2 are associated with a chain
S1 ⊆ S2 ⊆ · · · ⊆ Sr. To complete the proof, we need to show that for every i /∈ S1,
there is a j ∈ S1 such that ai ≤ aj . For a contradiction, suppose that there is an
i ∈ [n] such that ai > aj for every j ∈ S1. We consider two cases.

Case 1: |S1| ≥ 3. Take distinct k,m ∈ S1, and consider fk←m. Using the
polynomial expression obtained by removing all inessential terms from the
canonical DNF of f , and applying Lemma 3.7, one can see that the essential
terms of fk←m of size at least 2 are associated with a chain S′1 ⊆ S′2 ⊆
· · · ⊆ S′r, where S′i := Si \ {k} for 1 ≤ i ≤ r, and the {m}-term of f
is (ak ∨ am)xm. Since ai > aj for every j ∈ S1, the induction hypothesis
implies that (fk←m)kc is not self-commuting for any c ∈ Im fk←m. As above,
this contradicts Lemma 2.1.

Case 2: |S1| = 2. Then there is a t ∈ [`] \ (S1 ∪ {i}). Consider ft←i. The
essential terms of ft←i of size at least 2 are associated with a chain whose
least element is S1, and the {i}-term of this function is (ai ∨ at)xi. Since
for every j ∈ S1, ai > aj , we also have ai ∨ at > aj . Hence ft←i does not
have chain form, and thus (ft←i)

t
c, c ∈ Im ft←i, is not self-commuting. As

above, this contradicts Lemma 2.1. �

Proof of Theorem 3.5. Lemma 3.6, when restricted to chains, shows that the con-
dition is sufficient. Necessity follows from Lemma 3.9. �

4. Concluding remarks and future work

We have obtained an explicit form of self-commuting polynomial functions on
chains (in fact, unique up to addition of inessential terms). As Lemma 3.6 asserts,
our condition is sufficient in the general case of polynomial functions over distribu-
tive lattices. Whether it is also a necessary condition in the general case constitutes
a topic of ongoing research.

Another problem which was not addressed concerns commutation. As men-
tioned, self-commutation appears within the scope of functional equation theory
under the name of bisymmetry. Also, in the context of aggregation function theory,
functions are often regarded as mappings f :

⋃
n≥1A

n → A. In this framework,
bisymmetry is naturally generalized to what is referred to as strong bisymmetry.
Denoting by fn the restriction of f to An, the map f is said to be strongly bisym-
metric if for any n,m ≥ 1, we have fn ⊥ fm. This generalization is both natural
and useful from the application point of view. To illustrate this, suppose one is
given data in tabular form, say an n ×m matrix, to be meaningfully fused into a
single representative value. One could first aggregate the data by rows and then
aggregate the resulting column; or one could first aggregate the columns and then
the resulting row. What is expressed by the property of strong bisymmetry is that
the final outcome is the same under both procedures. Extending the notion of poly-
nomial functions to such families, we are thus left with the problem of describing
those families of polynomial functions which are strongly bisymmetric.
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