
Suspicion-driven formal analysis of security requirements

Nuno Amálio
University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

nuno.amalio@uni.lu

Abstract

Increasingly, engineers need to approach security and
software engineering in a unified way. This paper presents
an approach to the formal analysis of security requirements
that is based on planning and uses the concept of suspicion
to guide the search for threats and security vulnerabilities
in requirements. The approach is tested and illustrated by
conducting two experiments: one focussing on a system
with a confidentiality security property, and another with an
integrity security property enforced through the separation
of duty principle. The paper shows that suspicion plays an
important rôle in finding vulnerabilities and security threats
in requirements.
Keywords: Security, requirements, formal analysis, Event-
Calculus, planning, confidentiality, separation of duty.

1. Introduction

Traditional approaches to software engineering and cur-
rent practice tend to treat security concerns as an after-
thought [1]. Security requirements are handled as non-
functional requirements and are kept separate from their
functional counter-parts until design or implementation-time.
This raises problems for the whole software development
process because (as demonstrated in this paper) functionality
has an impact on security. If security aspects are not treated
properly at the requirements phase, then the resolution of the
problem will inevitably be deferred but at a much higher
cost, which is a well known software engineering prob-
lem [2]. This issue can be resolved by integrating security
into the requirements engineering phase of the software life-
cycle [1], [3]. However, the best way to capture, model and
analyse security and system requirements in a unified way
is still an open problem.

The techniques developed to formally model and analyse
general software systems are also applicable to model and
analyse security. However, the emphasis of the analysis is
different. System analysis focusses on safety (something
will not happen) and liveness (something must happen) [4];
safety checks that bad states cannot be reached and liveness
that good state are reached. This is used to check that
invariants are preserved, that operations are applicable when
certain conditions are met (pre-conditions) and that the
operation has the desired effect taking the system into a valid

state. In security, the emphasis is not only in verifying safety
(that some unsecure state is not reached) and liveness (that
the security measures do what is expected from them), but
also in finding security vulnerabilities and possible security
threats that give attack opportunities to malicious users: we
need to look for what can happen if some condition holds.

This paper presents an approach to the formal analysis of
security requirements based on the concept of suspicion. The
approach consists of searching for security vulnerabilities
and threats based on what is suspicious. This search is based
on AI planning. From a formal model of requirements and
an analysis goal (a description of interesting states from
the analysis point of view), planning generates plans that
reach the goal state. Each plan gives a scenario illustrating
a possible threat or security vulnerability. The generation
of plans can be done automatically with tool support. The
approach is illustrated with the Event-Calculus temporal
logic [5] and the analysis is conducted with tool support
using the discrete event calculus reasoner1 (decreasoner).

The remainder of this paper starts by discussing related
work (section 2). Then, it gives a brief introduction to
event calculus (section 3) and presents the approach to the
formal analysis of security requirements that is proposed
here (section 4). After this, the analysis approach is used to
conduct two experiments; one focussing on the analysis of a
system with a security requirement (section 5), and another
to a business system with an integrity requirement enforcing
separation of duty (section 5). Finally, the paper discusses
the results and takes the conclusions.

2. Related Work

There has been substantial interest on security require-
ments threat analysis [6], [3], [7], [8]. In [7], [8], specifiers
need to explicitly identify scenarios or use-cases of abuse
and misuse; here, such scenarios are generated automatically
from a description of suspicious states (the goal).

[6] proposes a method based on the more flexible abuse
frames, specifying undesirable phenomena that the system
should prevent from happening. The approach presented here
enables the specification of such undesirable phenomena as
goals (here called security violation goals). However, it does
not only consider what should not happen, but also considers

1. http://decreasoner.sourceforge.net/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/16434603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


specification of flexible suspicious conditions that (as shown
here) have the potential of exposing unnown threats.

[3] proposes a goal-based method that is similar to the
approach presented here. Security goals, such as confiden-
tiality, integrity and availability, are negated to obtain goals
that specify what should not happen (our security violation
goals). Then, these negations are refined to obtain more
flexible goals. The approach presented here is more flexible
in that it does not only allow specification of goals that
come from negation and refinement security goals, but also
leaves the specifier the flexibility of defining what constitutes
a suspicious condition. Since it is based on tool support,
the specifier can use the feedback coming from the tool to
either refine analysis goals or specify new analysis goals.
Essentially, the work presented here is complementary to
the body of work on security requirements threat analysis.
It explores automated formal analysis (missing in the works
above) and provides experimental evidence to the usefulness
and effectiveness of security threat analysis.

Suspicion is ubiquitous in intrusion detection [9].
Anomaly-based approaches to intrusion detection [9] are
so called because the search for intrusions is driven by
abnormal (or suspicious) behaviour patterns of system use.
[10] proposes the inclusion of suspicion as a concept driving
the models of misuse-based intrusion detection; it proposes
models based on suspicious activities that may lead to an
attack, as opposed to models based on actual attacks. Instead,
the approach presented here detects abuse by identifying
suspicious states in a model of normal system behaviour.

The approach presented here emerges from its preceding
work on threat detection [11]. [11] uses an EC model of re-
quirements and planning to find threats at run-time. In [11],
however, the goals used to detect threats are more rigid than
the ones used here; they say with absolute certainty whether
there is an attack or not when the goal is satisfied. In the
approach presented here, there is no certainty of attack if a
suspicious goal is satisfied, the plans that reach the goal just
give us threats (possible attacks). It would be possible to
incorporate our approach based on suspicion as a strategy
in looking for threats at run-time. Then, the probabilistic
component of such a system (like the one of [11]) would
try to assign a probability to the computed threats. Here we
use suspicion to look for threats in requirements to avoid
systems with security vulnerabilities.

The approach presented here analyses requirements auto-
matically using a tool based on SAT-solving. The advantage
of this method with respect to other approaches based on
theorem-proving [12], [13] is that the reasoning is automatic,
avoiding the need for user-intervation as it is usually the
case with theorem proving. The disadvantages are that only
a portion of the state space is analysed, and that the models
that can be handled need to be small. Another disadvantage
to the work in [12], [13] is that there is no visual description
of requirements and properties to check; the user needs to

Figure 1. Planning-based formal analysis. EC model
of requirements, and EC description of analysis goal
are fed into decreasoner tool to obtain a set of plans
(scenarios) that achieve the goal.

be an expert in the formal language (here EC).

3. The Event Calculus

Event Calculus (EC) [5] is a language based on first-
order predicate-calculus enabling representation and reason-
ing about action and change. Its basic ontology comprises
events, fluents and timepoints. An event is an action that may
occur in the world. A fluent is a time varying property of
the world. A timepoint is an instance of time. EC includes a
set of basic predicates to describe happening of events, their
effects and state of fluents.

The basic predicates of EC are as follows:
• HoldsAt (f, t) says that fluent f is true at timepoint

t.
• Happens (e, t) says that event e may occur at time-

point t.
• Initiates (e, f, t) says that if event e occurs at time-

point t, then fluent f is true after t.
• Terminates (e, f, t) says that if event e occurs at

timepoint t, then fluent f is false after t.
• Initially (f) says that fluent f holds at timepoint 0.

4. Formal threat analysis based on planning

AI planning [14] underpins the analysis approach pre-
sented here. The analysis is essentially a study of reachabil-
ity: it checks whether certain states are reachable. The actual
planning is conducted in the framework of satisfiability
(SAT) problem solving using the decresoner tool, which is
based on a SAT approach to EC reasoning [15].

Figure 1 depicts the analysis approach followed here. The
EC model and EC description of analysis goals are given as
inputs to decreasoner, which generates a set of plans that
satisfy the goal. Each plan describes a scenario comprising
a sequence of events (a trace) that take the system from the
initial state to one of the states described by the goal.

The goal describes a set of states that are interesting
from the analysis point of view. Planning generates plans
that reach such a state. If there are plans, then the goal is
satisfiable: a state as described by the goal can be reached
in the model. If no plans can be found, then no state as
described by the goal is reachable. If the goal state describes



R1 Doctors must be able to access their patient’s medical data to
provide effective medical care.

R2 A doctor may nominate a substitute doctor who may be able
to access the patient’s medical data only when the main doctor
is on leave.

Table 1. The requirements that rule the access to
patient’s information in SMIS.

Figure 2. The SMIS with one patient, Anderson, his
doctor Jones, and another doctor, Smith, who is able to
replace Jones while he is on leave.

something that should not happen, then the resulting plans
(scenarios) describe a sequence of events that reach such a
state; thus exposing a way to reach something undesired.

Two strategies are used to formulate the goal. There
is a more traditional strategy that does a safety analysis
by formulating a goal describing states where security is
violated and that must not happen; these goals are called
security violation goals. The other strategy applies suspicion
by defining a goal describing suspicious states deserving
investigation that may expose possible vulnerabilities and
threats. These are called suspicious goals.

5. Analysing confidentiality

Confidentiality is about protecting information. It tries
to ensure that sensitive information is accessible only to
those authorised to access it. Analysis of confidentiality
involves checking ways in which confidential information
may be accessed by those who are not authorised. Here,
confidentiality is studied using a case study of a domain
where it is a professional ethical principle: health-care [16].

The case study is a simple medical information system
(SMIS) that manages patient information. Due to its sensitive
nature, patient information is subject to confidentiality con-
straints to protect the patient’s privacy. The requirements of
SMIS are summarised in table 1. Figure 2 depicts a concrete
system scenario of SMIS.

The EC model of SMIS requirements is given in figure 3.
The model considers that doctors need to obtain credentials

∀ d : Doctor; p : Patient; t : T ime |
HoldsAt (CanAccessMD (d, p), t)
⇔ HoldsAt (IsDoctorOf (d, p), t)
∨ ((∃d′ : Doctor) HoldsAt (IsDoctorOf (d′, p), t)
∧ HoldsAt (IsSubstituteDoctor (d, d′), t)
∧ HoldsAt (OnLeave (d′), t)) (1)

∀ d : Doctor; p : Patient; t : T ime |
HoldsAt (CanAccessMD (d, p), t)
⇒ Initiates (AuthoriseAccess (d, p),

CredentialMD (d, p, t), t) (2)
∀ d : Doctor; p : Patient; t : T ime |

HoldsAt (HasV alidCredential (d, p), t)
⇔ (∃t2 : T ime) HoldsAt (CredentialMD (d, p, t2), t)
∧(t2 + 3) >= t (3)

∀ d : Doctor; p : Patient; t : T ime |
Happens (GetMD(d, p), t)
⇒ HoldsAt (HasV alidCredential (d, p), t) (4)

∀ d : Doctor; p : Patient; t : T ime |
Initiates (GetMD (d, p), ExposedToAt (d, p, t), t) (5)

∀ a : Agent; d1, d2 : Doctor; t : T ime |
Initiates (SetSubstituteDoctor (a, d1, d2),

IsSubstituteDoctor (d2, d1), t) (6)
∀ a : Agent; d : Doctor; t : T ime |

Initiates (SetDoctorOnLeave (a, d), OnLeave (d), t) (7)
∀ a : Agent; d : Doctor; t : Time |

Terminates (DoctorNoLongerOnLeave (a, d),
OnLeave (d), t) (8)

∀ d : Doctor; p : Patient; t : T ime |Initially (¬ ExposedToAt (d, p, t)) (9)
∀ d1, d2 : Doctor |Initially (¬ IsSubstituteDoctor (d1, d2)) (10)
∀ d : Doctor | Initially (¬ OnLeave (d)) (11)
Initially (IsDoctorOf (jones, anderson)) (12)

Figure 3. Initial EC formalisation of the security require-
ments of the SMIS.

in order to access patient’s data. Credentials are obtained
through event AuthoriseAccess; patient’s data is accessed
through event GetMD. The system records substitute doc-
tors through event SetSubstituteDoctor, is informed of
doctors absences through event SetDoctorOnLeave, and
of doctors return to duty after on leave through event
DoctorNoLongerOnLeave.

Analysis uses the configuration depicted in figure 2.
There are two doctors, Jones and Smith, and a patient of
Jones, Anderson. Analysis starts by formulating a security
violation goal: it asks whether it is possible to reach a state
where patient confidentiality is compromised. In the context
of SMIS, this happens when some doctor accesses some
patient’s data without a valid security credential; the goal
expressing this is formulated as:

∃ d : Doctor; p : Patient; t1, t2 : Time |
HoldsAt (ExposedToAt (d, p, t2), t1)
∧¬ HoldsAt (HasV alidCredential (d, p), t2)

For this goal, decreasoner does not find any plans. This
means that the modelled system cannot reach one of the
goal’s states. At this point, one could argue that the modelled
system is secure because it is not possible to reach an
unsecure state, but it isn’t so.

Analysis proceeds by applying suspicion. The substitute
doctor rule (Requirement R2) enables access to patient’s



R2’ A substitute doctor may be nominated by the doctor that is
to be substituted or by one of his administrators only. A
substitute doctor may be able to see the medical data of
patients of the doctor being substituted while he/she is on
leave only.

R3 Only the doctor himself or one of his administrators may
inform the SMIS of a doctors absence from duty (on leave)
or that a doctor is back to duty.

Table 2. Requirements emerging from analysis to the
SMIS early requirements.

∀ a : Agent; d : Doctor; t : T ime |
HoldsAt (CanDoAdminForDoctor (a, d), t)
⇔ a = d ∨ (∃ ad : Admin |a = ad
∧ HoldsAt (HasAdmin (d, ad), t)) (13)

∀ a : Agent; d : Doctor; t : Time |
Happens (SetDoctorOnLeave (a, d), t)
⇒ HoldsAt (CanDoAdminForDoctor (a, d), t) (14)

∀ a : Agent; d : Doctor; t : T ime |
Happens (DoctorNoLongerOnLeave(a, d), t)
⇒ HoldsAt(CanDoAdminForDoctor(a, d), t) (15)

Initially (HasAdmin (Jones, Alice)) (16)
Initially (HasAdmin (Smith, Sue)) (17)

Figure 4. EC formalisation of the security requirements
of the SMIS after analysis uncovered problems with EC
model of figure 3.

data by doctors other than the main patient’s doctor. This
should occur, but not very often; the situations under which
this occurs are suspicious and deserve investigation. Analy-
sis investigates states where those other than the main doctor
access the patient’s data. This is formulated as the goal:

∃ d : Doctor; p : Patient; t1, t2 : Time |
HoldsAt (ExposedToAt (d, p, t2), t1)
∧¬ HoldsAt (IsDoctorOf (d, p), t2)

For this goal, decreasoner generates plans exposing a
security vulnerability. In some scenarios, the system behaves
as it should: Jones sets Smith as his substitute, at a later
time Jones informs system that he is on leave, and so
Smith is able to access the medical data. Other scenarios
are more unusual. In some of them, it is possible that Smith
himself requests to be the substitute of Jones. In another,
it is Smith who informs the system that Jones is on-
leave. Obviously this is strange and could be explored by a
malicious doctor determined to get some patient’s medical
data: (a) he set’s himself as the substitute doctor, then (b)
he informs the system that main doctor is on-leave and (c)
finally he is able to access the patient’s medical file.

Such scenarios are possible because events
IsSubstituteDoctor and SetDoctorOnLeave (equations
6 and 7 in figure 3) are uconstrained: any agent may
execute them and this introduces a loophole, providing an
opportunity to access medical data in non-legal ways.

These analysis findings are used to elaborate the require-
ments. The requirements that emerge as a result of this

R1 There are two types of users clerks and managers. Managers
can performs the tasks that usually the clerks do, but clerks
should not usually perform manager’s tasks (exception is
delegation, below).

R2 Clerks are responsible for starting the refund procedure, and
for issuing or cancelling the refund.

R3 The refund shall be issued by a clerk if approved by the
managers, or cancelled otherwise.

R4 A refund must by approved by two different managers.
R5 A clerk shall not both prepare and issue or cancel a refund.
R6 Managers can delegate the authority on approval of refunds

to one of their administrators.

Table 3. The requirements that rule the processing of
tax refunds.

Figure 5. The payment processing workflow of the tax
refund process.

clarification are given in table 2; here, R1 of table 1 still
holds, R2 is replaced by R2′, and there is the new require-
ment R3 which introduces administrators. This results in the
additional EC formulas given in figure 4.

Under these new requirements, we re-submit the model to
the security violation and suspicion goals. For the security
violation goal we still get no plans (not possible to break
confidentiality in an obvious way). For the suspicious goal,
we no longer get obvious security threats, but the results
still prompt interesting requirements questions, such as: the
system allows doctors to operate the system while they are
recorded as being on leave, should this be allowed?

6. Analysing Separation of Duty

Separation of Duty (SoD) [17], [18] is a security mech-
anism used to prevent fraud and errors. It aims to pre-
vent a single individual from executing sensitive tasks of
some sensitive transaction. SoD requires such tasks to be
performed by different users acting in cooperation (e.g by
requiring two persons to sign a cheque). Here, SoD is
studied using a classical case study: a workflow of payment
processing, where SoD is put in place by requiring payment
authorisations to be executed by different users.

The requirements of this worklflow system are given in
table 3. The underlying workflow is depicted in figure 5. The
two tasks involving approval of payments to be carried out
by managers, and the tasks prepare payment and issue/void
payment, to be carried out by clerks, are subject to SoD.

The EC model (not given here) specifies workflow, system



requirements, rôles and users. Workflow is modelled as a
set of activities made of several alternative tasks; one of the
tasks must be carried out in order to complete the activity.
In the workflow of figure 5, activity Approve/Refuse Pay
comprises tasks approve pay and refuse pay, and activity
Issue/Void Pay comprises tasks issue pay and void pay.

Analysis is conducted in a configuration made of three
managers, Bob, John and Martin, and three clerks Sam,
Alice and Sue; Sue also works as an administrator for John.
It starts with a security violation goal to know if it is possible
to reach a state where SoD is breached. This happens if
a user executes two different tasks belonging to activities
constrained under SoD. This is expressed as the predicate:

∀ u : User; s : Session; t : Time |
HoldsAt (BreaksSoD (u, s), t)
⇔ ∃ a1, a2 : Activity | a1 6= a2

∧ HoldsAt (ExecTaskOfActivity (u, a1, s), t)
∧ HoldsAt (ExecTaskOfActivity (u, a2, s), t)
∧ (SoD (a1, a2) ∨ SoD (a2, a1))

From this predicate, the goal is defined by describing states
where SoD is breached:

∃u : User; s : Session; t : Time |
HoldsAt (BreaksSoD (u, s), t)

For this goal, decreasoner does not find any plans. This
means that it is not possible to reach a state where SoD is
breached. Again, one could argue that SoD is preserved and
the system is secure, but it isn’t so.

Analysis proceeds by investigating the suspicious. Al-
though a user is allowed to execute more than one task in
some workflow session, this should not happen very often
and is suspicious. First, we define a predicate describing the
suspicious system condition of having a user executing two
tasks in a workflow session:

∀ u : User; s : Session; t : Time |
HoldsAt (HasExecutedTwoTasks (u, s), t)
⇔ ∃ ta1, ta2 : Task; t2, t3 : Time |
∧ Happens (ExecTask (ta1, u, s), t2)
∧ Happens (ExecTask (ta2, u, s), t3)
∧ ta1 6= ta2 ∧ t2 ≤ t1 ∧ t3 ≤ t1

From this predicate, the suspicious goal describes states
where some user executes two different tasks in some
workflow run:

∃ u : User; s : Session; t : Time |
HoldsAt (IsWrkfComplete (s), t)
∧HoldsAt (HasExecutedTwoTasks (u, s), t)

For this goal, decreasoner generates interesting plans. We
have scenarios where a manager prepares the payment and
then approves it, or that he approves and then issues the
payment. This happens because managers may act as clerks
and there is no SoD constraint between tasks that managers

R6’ Managers can delegate the authority on approval of refunds
to one of their administrators, but when the administrator
executes such task it should be considered that is as if it
had been executed by the manager.

R7 The same person may perform tasks as either manager or
clerk, but not both, in any workflow session.

Table 4. Requirements that rule the processing of tax
refunds that emerged after analysis.

do and clerks do; this may give a fraud opportunity. Clari-
fication of this requirements results in new requirement R7
(table 4), which says that a person can execute tasks under
at most one role in any workflow session. After the fix, this
behaviour is no longer allowed.

Analysis turns to delegation, which is known to generate
security vulnerabilities. Someone executing a task on behalf
of someone is legal but suspicious and deserves investiga-
tion. We introduce a predicate to capture this:

∀ u : User; ta : Task; s : Session; t : Time |
HoldsAt(ExecutedTaskAsDelegator(u, ta, s), t)
⇔ ∃ u2 : User; t2 : Time |t2 ≤ t

Happens (ExecTask (ta, u2, s), t2)
∧ HoldsAt (HasDelegTo (u, u2), t2)
∧ HoldsAt(CanExecAsDelegateOnly(u2, ta), t2))

From this predicate, the goal is defined by describing states
of complete workflow runs where someone executes a task
on behalf of someone else. This results in the goal:

∃ u : User; ta, : Task; s : Session; t : Time |
HoldsAt (IsWrkfComplete (s), t)
∧HoldsAt(ExecutedTaskAsDelegator(u, ta, s), t)

The plans generated by decreasoner result in what is
normally expected under delegation (someone executes a
task on behalf of someone else), but they also result in
plans that may be possible frauds: a delegate approves a
payment on behalf of the manager and the same manager
also approves the same payment. From this, we elaborate
the requirements, and we get R6′ (table 4) an elaboration
of requirement R6. When the model is fixed, this possible
fraudulent behaviour is no longer allowed.

7. Experimental Results

In both experiments presented above, formal analysis
verified that it was not possible to reach an unsecure state in
the modelled systems, where security requirements would be
breached. However, suspicion-based analysis demonstrated
that the modelled systems were in fact not secure.

Section 5 analyses a simple medical information system
that includes a confidentiality requirement. Following the
traditional route of safety analysis, it was not possible to
find ways in which confidentiality would be compromised:



Case Study Anaysis Goal Time
SMIS Security Violation 5.2s
SMIS Suspicion goal 1 6.1s
SMIS Suspicion goal 1, after fix 28.2s
Workflow Security violation 314s (5.2m)
Workflow Suspicion goal 1 692.3s (11.5m)
Workflow Suspicion goal 1, after fix 618.6s (10.3m)
Workflow Suspicion goal 2 353.3s (5.9m)
Workflow Suspicion goal 2, after fix 360.8s (6.0m)

Table 5. Running times for analysis of EC models with
decreasoner. Table indicates case study, analysis goal

and time it takes to generate plans.

without a valid credential it would not be possible to obtain
the patient’s medical data. Analysis based on suspicion then
uncovered a security vulnerability (or loophole) that would
enable a malicious user to obtain the required credentials in
a non-legal way.

Section 6 analyses a business process whose security
requirements included two integrity requirements enforced
through SoD. Again, SoD could be breached, but not in
an obvious way. Following the traditional safety analysis
route, we checked that it was not possible that the same
user would be able to execute two different tasks protected
by SoD. Analysis-based on suspicion, however, uncovered
several problems: the same user could execute different tasks
in a workflow session under different roles, and delegation
introduced a loophole that would enable users to indirectly
breach SoD.

Table 5 presents the running times of the formal analysis
based on planning with decreasoner2. For each case study,
it shows how much time it took to carry out the analysis
for each analysis goal. We can see that the analysis of the
workflow model of section 6 takes substantially longer than
SMIS analysis because it is more complex.

8. Discussion

This paper proposes suspicion to drive the analysis of
security requirements. Through experiments, it argues that in
security the interesting question is not only to know whether
there is a state compromising some security property (safety
analysis), but also to look for what is suspicious in order
to find security vulnerabilities and threats. The experiments
are conducted in the context of the EC temporal logic,
planning and the decreasoner tool. They demonstrate the
usefulness of suspicion. The tradition safety analysis route,
which checks whether some security property is violated,
would not expose any security issues; this can mislead
analysts in concluding that the system being analysed is
secure. Analysis based on suspicion uncovered security

2. Model analysis carried out on an Apple MacBook, with a 2.2 Ghz
Intel Core Duo processor and 2GB memory RAM.

vulnerabilities and threats; such findings drive elaboration
of the requirements.

The approach presented here generates automatically pos-
sible scenarios of misuse (threats) from a statement de-
scribing some security violation or suspicious condition (the
goal). This provides a flexible and illuminating scheme to
the analysis of security requirements. Rather then finding
themselves possible threats, analysts describe instead what
would constitute a violation of security or a suspicious
system condition. Analysis goals require an understanding
of the requirements domain, and should be described with
some security asset in mind.

The security vulnerabilities exposed by the analysis may
seem contrived, but they illustrate the sort of vulnerabilities
that attackers exploit to intrude into today’s software sys-
tems. The vulnerabilities identified in the health-care system
give insiders the opportunity to perpetrates attacks on the
system; the insider threat has been identified as one of the
main sources of attacks in the medical domain [16]. Once
a source of threats is identified in the requirements, two
decisions can be made: (a) introduce further constraints by
elaborating the requirements so that the source of threats is
eliminated, or (b) do nothing in terms of requirements, but
take the problem into account in terms of run-time intrusion
and threat detection which then has to judge whether some
uses of the system are malicious or not. The latter must be
considered because it is not possible to eliminate all possible
security threats, doing so could result in a system design that
is rigid and over-constrained.

The experiments conducted here confirm the importance
of modelling and analysing security together with system
requirements. Both case studies show how a functionality
of the system, delegation, have a serious impact on security
and how it was necessary to further elicit and elaborate the
requirements in order to eliminate threats. It is interesting
that many formal models tend to include some security
mechanism (such as role-based access control) in the model
of the requirements. Here, the requirements were modelled
independently of any design decisions as much as possible,
so that abstract security requirement models can be refined
into particular security mechanism. Inevitably, some design
decision have to be made at the level of the more abstract
model; the aim was to keep this to a minimum.

Formal security analysis with tool support is capable
of exposing many unexpected situations, providing a level
of assurance not guaranteed by semi-formal approaches.
The drawback of the analysis with decreasoner lies in the
efficiency of the tool: as models get more complex, the
solution to analysis problems take more time to the point
that the analysis becomes unpractical. The workflow model
of section 6 is a simplification of an earlier model to enable
practical analysis. As usual, the secrete is in getting the right
abstraction in order to analyse the property of interest.

It is interesting to comment on the usability of the



approach presented here. The process of defining analysis
goals may require domain knowledge and skill in build-
ing and analysing models. However, the process can be
partially or fully automated by following the pattern-based
approach proposed of [11]. [11] uses the Formal Template
Language [19], [13] to represent patterns of EC models
together with their associated security monitoring goals. [11]
defines templates of such goals that are of the security
violation type, but patterns of suspicious goals can also be
defined if we know in advance what can arouse suspicion. In
our experiments, delegation was the focus of our suspicious
goals; this is something that can be known in advance
and captured using patterns. Following [11], we can have
goals that capture what is known to arouse suspicion; actual
suspicious goals would then be automatically generated from
templates. [11] also uses UML models to enable intuitive
requirements modelling; the same approach can also be used
to enhance the usability of the approach proposed here.

9. Conclusions

This paper proposes an approach to the formal analysis
of security requirements based on planning guided by the
concept of suspicion. The approach was illustrated using
the EC and the decreasoner tool by performing two exper-
iments: one involving a simple health-care system with a
confidentiality requirement and another a business system
with an integrity requirement enforced through SoD. The
experiments showed how functional requirements can impact
upon security requirements in subtle ways. It showed that
the more obvious way of analysing security, by doing the
traditional safety analysis would not give any useful results:
an unsecure state could not be reached. However, it was
through more flexible goals based on suspicion that we could
obtain useful results exposing subtle security vulnerabilities.

The main contribution of this paper is the proposal of
suspicion as a driving concept in the analysis of security
requirements. The paper also provides experimental evi-
dence to certain claims made in the security requirements
literature. It confirmed that it is important to model security
requirements together with its system counter-parts because
functionality impacts on security. It showed that a system
verified against some security property does not necessarily
mean that it is secure; often, more flexible analysis driven
by concerns such as what is suspicious is more useful
because it exposes subtle security weaknesses. This paper
also demonstrated the importance of formality and tool
support, and usefulness of the AI technique of planning in
the analysis of requirements.

References

[1] P. T. Devanbu and S. Stubblebine, “Software engineering for
security: A roadmap,” in The Future of Software Engineering.
ACM, 2000, pp. 227–239.

[2] B. W. Boehm, “Software engineering,” IEEE Transactions on
Computers, pp. 1266–1241, 1976.

[3] A. van Lamsweerde, “Elaborating security requirements by
construction of intentional anti-models,” in Proc. ICSE’04,
2004, pp. 148–157.

[4] L. Lamport, “Proving the correctness of multiprocess pro-
grams,” IEEE Trans. on Software Engineering, vol. 3, no. 2,
pp. 125–143, 1977.

[5] M. Shanahan, “The event calculus explained,” in Artificial
Intelligence Today, ser. LNCS. Springer, 1999, vol. 1600,
pp. 409–430.

[6] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson, “Using abuse
frames to bound the scope of security problems,” in Proc. RE
’04. IEEE, 2004, pp. 354–355.

[7] I. Alexander, “Misuse cases: Use cases with hostile intent,”
IEEE Software, vol. 20, no. 1, pp. 58–66, 2003.

[8] J. McDermott and C. Fox, “Using abuse case models for
security requirements analysis,” in Annual computer security
applications conference. IEEE, 1999.

[9] D. Denning, “An intrusion detection model,” IEEE Trans. on
Software Engineering, vol. 13, no. 2, pp. 222–232, 1987.

[10] T. Hollebeek and R. Waltzman, “The role of suspicion in
model-based intrusion detection,” in Proc. of NSPW ’04.
ACM, 2004, pp. 87–94.

[11] N. Amálio and G. Spanoudakis, “From monitoring templates
to security monitoring and threat detection,” in Proc. of
SECURWARE ’08. IEEE, 2008, pp. 185–192.

[12] N. Amálio, S. Stepney, and F. Polack, “Formal proof from
UML models,” in Proc. ICFEM 2004, ser. LNCS, vol. 3308.
Springer, 2004, pp. 418–433.

[13] N. Amálio, “Generative frameworks for rigorous model-
driven development,” Ph.D. dissertation, Dept. Computer Sci-
ence, Univ. of York, 2007.

[14] J. Allen, J. Hendler, and A. Tate, Eds., Readings in planning.
Morgan Kaufmann, 1990.

[15] E. T. Muller, “Event calculus reasoning through satisfiability,”
Journal of Logic and Computation, vol. 14, no. 5, pp. 703–
730, 2004.

[16] R. J. Anderson, “A security policy model for clinical infor-
mation systems,” in Proc. of SP ’96. IEEE, 1996.

[17] D. D. Clark and D. R. Wilson, “A comparison of commercial
and military computer security policies,” in Proc. IEEE Symp.
Research in Security and Privacy, 1987, pp. 184–194.

[18] M. J. Nash and K. R. Poland, “Some conundrums concerning
separation of duty,” in Proc. IEEE Symp. Research in Security
and Privacy, 1990, pp. 201–207.

[19] N. Amálio, S. Stepney, and F. Polack, “A formal template
language enabling meta-proof,” in FM 2006, ser. LNCS, vol.
4085. Springer, 2006, pp. 252–267.


