
Using VCL as an Aspect-Oriented Approach to

Requirements Modelling

Nuno Amálio, Pierre Kelsen, Qin Ma, and Christian Glodt

University of Luxembourg, 6, r. Coudenhove-Kalergi, L-1359 Luxembourg
{nuno.amalio,pierre.kelsen,qin.ma,christian.glodt}@uni.lu

Abstract. Software systems are becoming larger and more complex. By
tackling the modularisation of crosscutting concerns, aspect orientation
draws attention to modularity as a means to address the problems of
scalability, complexity and evolution in software systems development.
Aspect-oriented modelling (AOM) applies aspect-orientation to the con-
struction of models. Most existing AOM approaches are designed with-
out a formal semantics, and use multi-view partial descriptions of be-
haviour. This paper presents an AOM approach based on the Visual
Contract Language (VCL): a visual language for abstract and precise
modelling, designed with a formal semantics, and comprising a novel
approach to visual behavioural modelling based on design by contract
where behavioural descriptions are total. By applying VCL to a large
case study of a car-crash crisis management system, the paper demon-
strates how modularity of VCL’s constructs, at different levels of gran-
ularity, help to tackle complexity. In particular, it shows how VCL’s
package construct and its associated composition mechanisms are key
in supporting separation of concerns, coarse-grained problem decompo-
sition and aspect-orientation. The case study’s modelling solution has a
clear and well-defined modular structure; the backbone of this structure
is a collection of packages encapsulating local solutions to concerns.

Keywords: modularity, separation of concerns, aspect-oriented mod-
elling, design by contract, VCL.

1 Introduction

Software systems are becoming larger, more complex and part of our everyday
lives. They need to evolve in order to keep up with their complex and dynamic en-
vironments. To help reduce complexity, improve reusability, and simplify evolu-
tion, software engineering emphasises the principle of separation of concerns [1].
By tackling the modularisation of crosscutting concerns, aspect-orientation en-
hances traditional approaches to modularity, providing techniques to achieve
designs with a good level of separation of concerns that effectively separate and
isolate non-orthogonal (or crosscutting) concerns. This enables concerns to be
understood and analysed in isolation, and then composed in a modular fash-
ion. Aspect-oriented modelling (AOM) raises the level of abstraction of aspect-
oriented software development by applying aspect-orientation to the construction
of models of software systems.

S. Katz et al. (Eds.): Transactions on AOSD VII, LNCS 6210, pp. 151–199, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

152 N. Amálio et al.

Visual languages like UML are limited at separating concerns, not supporting
concerns that are crosscutting [2]. There has been substantial work on AOM
(section 11). Most existing AOM approaches: (a) extend UML to enable aspect-
orientation, (b) are designed to enable code generation, (c) are based on multiple
partial view descriptions of behaviour (using scenarios and state diagrams) or
total descriptions based on OCL, (d) are not designed with a formal semantics
(precluding, this way, formal verification), (e) are asymmetric, treating aspects
differently from other modules, and (f) involve complex weaving algorithms to
compose models.

This paper presents an AOM approach based on the Visual Contract Language
(VCL) [3,4,5]. VCL is a visual language for abstract and precise modelling at the
level of system requirements or high-level system designs. It embodies a novel
approach to visual behavioural modelling based on design by contract [6] where
its behavioural descriptions are total. VCL expresses operations and invariants
visually; UML needs to resort to textual OCL to do this. Unlike UML and other
mainstream languages, VCL is designed to have formal semantic foundations
to enable formal semantic analysis. Its semantic is expressed in Z [7], using
the ZOO semantic domain of object-orientation [8,9], which has been applied
to UML-based models in [10,11,9]. VCL is accompanied by a tool, the Visual
Contract Builder1, which is being developed as part of the VCL effort.

VCL is novel in its modular approach to modelling based on different levels of
granularity. At a more finer-grained level, VCL’s contracts and constraints are
modules that can be combined using logical operators. It is, however, through
its coarse-grained construct of packages that VCL realises AOM. VCL packages
are reusable functional units encapsulating structure and behaviour that can be
used or extended by other packages. They enable the definition of modules that
localise solutions to concerns. VCL is symmetric in the way it treats classical
modules and aspects, not making a distinction between them. VCL packages
constitute modules that can be described, understood and analysed in isolation
and then used as a piece in multiple contexts to make larger packages addressing
multiple concerns. In VCL, package compositions have a declarative nature, not
involving complex weaving algorithms.

This paper shows how VCL tackles the complexity of large-scale systems with
a large case study, the car-crash crisis management system (CCCMS) [12]. It
illustrates VCL’s package construct and associated composition mechanisms,
showing how they support separation of concerns, coarse-grained problem de-
composition and aspect-orientation. The resulting VCL model has a clear and
well-defined modular structure; the backbone of this structure is a collection of
packages encapsulating local solutions to concerns.

This paper is organised as follows. Section 2 explains the process that we
followed to model the CCCMS using the VCL-based AOM approach presented
here. Section 3 presents the high-level requirements model of the CCCMS. Sec-
tion 4 overviews the detailed VCL system requirements model. Sections 5 to 8
build parts of the overall VCL model. Section 9 discusses the paper’s results.

1 http://vcl.gforge.uni.lu

http://vcl.gforge.uni.lu

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 153

High-Level Requirements
Modelling using architecture

models and use cases Detailed Requirements
Modelling usingVCL

Fig. 1. Process used to model the CCCMS using VCL

Section 10 evaluates our approach with respect to a number of qualitative crite-
ria. Section 11 discusses related work. The final section presents the conclusions.

2 Process

VCL is a language that emphasises precision and is suited to describe require-
ments (or high-level design) models of software systems. The process used to
model the CCCMS in our VCL-based AOM approach consists of two big steps
(figure 1):

1. High-level requirements modelling. This identifies subsystems and their high-
level functionality. It uses notations other than VCL, such as architectural
diagrams, and UML use case and sequence diagrams.

2. Detailed requirements modelling. This builds VCL models of the identified
subsystems, describing their structure and behaviour.

Figure 1 highlights the iterative nature of this process. It was necessary to
iterate through these different levels of modelling; forwards and backwards. The
high-level model is the basis of modelling in VCL; often, the detailed VCL model
provides useful feedback to elaborate the high-level model.

Crosscutting concerns are identified through the iterative process of figure 1,
being identified in both modelling stages:

– During high-level modelling, cross-cutting concerns manifest themselves by
appearing repeatedly in use cases. Such concerns are then modularised as
VCL packages in the detailed model.

– During VCL modelling, cross-cutting concerns emerge when we observe a
behavioural pattern occurring repeatedly. In this case, it is necessary to go
back and update the high-level requirements model.

The following describes these two levels of modelling in detail.

2.1 High-Level Requirements Modelling

The high-level requirements phase consists of the following steps:

1. Build high-level architectural models. Architectural models describe the sys-
tem’s subsystems and their main units of functionality (features). This helps
structuring the overall model to reflect this decomposition.

154 N. Amálio et al.

2. Build use case models. Main functional units (features) coming from archi-
tectural model are refined into UML use cases.

3. Derive system operations. System operations are derived by drawing UML
sequence diagrams describing use case scenarios, highlighting the interaction
between the environment and the system (see [13]). Derived system opera-
tions are then described in detail in VCL.

2.2 Detailed Requirements Modelling in VCL

The high-level requirements model is the basis for modelling in VCL. For each
subsystem, we build a VCL model, which comprises a collection of VCL packages;
one package represents the overall subsystem. The method followed to build VCL
packages is as follows:

1. Build or reuse VCL packages addressing generic concerns. From the high-
level requirements model, we derive a set of generic concerns, some of which
are crosscutting. These generic concerns are modularised as VCL packages;
there is at least one package for each generic concern. VCL packages should
be designed to be independent in order to achieve low-coupling.

2. Build VCL packages to address problem domain concerns. Problem domain
concerns (crosscutting or not) are derived from the high-level requirements
model. They are modularised in VCL as packages. The aim is to model
relevant fragments of the problem domain in isolation, abstracting away
from other concerns of the system and trying to achieve low-coupling.

3. Build composite packages. Larger packages are built incrementally from the
individual packages using VCL’s composition mechanisms. They may repre-
sent the configuration of generic concerns, compositions to represent generic
or problem domain concerns, and compositions linking domain and aspects
packages. Ultimately, there is a VCL package for each subsystem.

3 High-Level Requirements Model of CCCMS

The process highlighted above (section 2, figure 1) was used to build the VCL-
based requirements model of the CCCMS [12]. The complete model is given
in [14].

The following describes the high-level requirements model of CCCMS.

3.1 Subsystems and Their Functional Features

The diagram of figure 2 describes the systems architecture of the CCCMS, high-
lighting a decomposition into subsystems. This reflects architectural decisions
that have been taken by balancing the case study’s requirements. The CCCMS’s
subsystems are as follows:

– MobCCCMS is a system that runs on mobile devices to assist in real-time re-
sources deployed to rescue missions. It addresses the mobility non-functional
requirement (NFR) (see [12]). This consists of user interfaces to provide
resources with sensible information for the execution of rescue missions.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 155

CCCMS

MobCCCMS CentralCCCMS

Fig. 2. Systems diagram showing subsystems of CCCMS. MobCCCMS (Mobile CC-
CMS) is deployed on mobile devices and used in real-time by resources sent to mis-
sions. CentralCCCMS (Central CCCMS) is used at crisis management headquarters.
Subsystems exchange information through messages.

MobCCCMS

LocationTracking

MappingMobile

GUIMobile

(a) MobCCCMS

CentralCCCMS

CrisisManagement MissionManagement ResourceManagement MappingCentral

GUICentral Authentication AccessControl SystemsAdministration

(b) CentralCCCMS

Fig. 3. Diagrams describing features of the CCCMS’s subsystems

– CentralCCCMS is the system used at the crisis management control-centre by
crisis coordinators. It addresses the persistence NFR of [12]; all data related
with domain functionality is held in this subsystem.

The high-level functional units (features) of the CCCMS’s subsystems are
identified in the block diagrams of figure 3; each block represents a feature.
Table 1 describes these features indicating the requirements they address.

3.2 Use Cases and System Sequence Diagrams

Use cases were organised around the subsystems and their features. Each sub-
system comprises a set of use cases. The use case model of [12] was re-factored to
take subsystems and their features into account, to clarify some omissions and
ambiguities that we found in the requirements, and to enable a clear derivation
of system operations from the use cases.

Figure 4 presents sample use case diagrams belonging to the use case model
of CCCMS [14] for the features MappingMobile and CrisisManagement. In [14],
the scenarios of each use case are described using UML sequence diagrams to
derive system operations. Figure 5 presents sample system sequence diagrams
for use cases of feature CrisisManagement. All messages going from external ac-
tors into the system, identify system operations. System sequence diagrams of
figure 5 highlight crosscutting functionality; in this case the functionality related
to authentication and the Login system operation.

156 N. Amálio et al.

Table 1. Features of CCCMS’s subsystems, and their requirements

Subsystem Feature Description Requirements

MobCCCMS Mapping Mo-
bile

Handling of maps on mobile de-
vices.

Mobility NFR of [12].

MobCCCMS Location
Tracking

Tracking location of resources. Mobility NFR of [12].

MobCCCMS GUIMobile Displays information for re-
sources deployed to missions.

Accuracy NFR
of [12].

CentralCCCMS Crisis Manage-
ment

Management of crisis. Use cases of [12].

CentralCCCMS Resource Man-
agement

Management of resources. Use cases of [12].

CentralCCCMS Mission Man-
agement

Management of missions. Use cases of [12].

CentralCCCMS Mapping Handling of maps in control cen-
tre.

Accuracy NFR
of [12].

CentralCCCMS GUICentral Graphical user interfaces for cri-
sis coordinators.

Use cases of [12].

CentralCCCMS Authentication Authentication of users. Security NFR of [12].

CentralCCCMS Access Control Access-control security policies. Security NFR of [12].

CentralCCCMS Systems Ad-
ministration

Tasks related to administration of
users and access control policies.

Use cases of [12].

Mob CCCMS - Mapping Mobile

Crisis
Coordinator

DisplayCrisisSite

DisplayCurrentLocation

DisplayRoute

Mapping
System

(a) MappingMobile feature

Central CCCMS - Crisis Management

Crisis
Coordinator

Surveillance
System

Capture
Witness Reports

Check Witness
Reports

Create Crisis Authenticate

<uses>

<uses>

<uses>

(b) CrisisManagement feature

Fig. 4. Sample use case diagrams of CCCMS

4 Detailed VCL Model

The process described in section 2.2 is used to build detailed VCL models for
subsystems MobCCCMS and CentralCCCMS, taking into account all features and
their system operations identified in the high-level requirements model (sec-
tion 3).

Each subsystem is represented as a VCL package. A subsystem package is
built by incorporating packages representing the subsystem’s concerns. Figure 6
presents VCL package diagrams for subsystems CentralCCCMS and MobCCCMS.
In VCL, packages are represented as clouds to allude to the fact that they

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 157

sd Check Witness Report

Crisis
Coordinator

Central
CCCMS

ViewWR ()

ReqVideoSurveillance ()

Video
Surveillance
System

ReqVideoSurveillance ()

ShowVideoSurveillance ()
CancelVSReq

CancelVSReq

GetWRs ()

CreateCrisisFromWR ()

AssociateWrWithCrisis ()

IgnoreWR ()

Central
CCCMSCrisis

Coordinator

CreateWR ()

sd Capture Witness Report

Authentication () :
LoginResult

ref

sd Authentication(Nat maxPwMisses)

Central
CCCMS

loop (maxPwMisses)

Login(UID, Passwd)

break
[LoginResult = success]

LoginResult

blockUser(UID)

Crisis
Coordinator

Authentication () :
LoginResult

ref

Central
CCCMSCrisis

Coordinator

CreateCrisis ()

sd Create Crisis

Authentication () :
LoginResult

ref

Fig. 5. Sequence diagrams describing scenarios of CrisisManagement feature. Diagrams
highlight (in red) authentication crosscutting functionality.

CentralCCCMS

CrisisWithAspects MissionWithAspects

ResourceWithAspects AuthenticationOps

SecAuthorisationMgmt

MappingDisplayCentralCCCMS

MobCCCMS

MappingDisplayMobCCCMS

MobCCMSGUICrisisInfoDisplay

MissionInfoDisplay

LocationTrackingMobCCCMS

Fig. 6. Package diagrams defining packages representing CentralCCCMS (left) and
MobCCCMS (right) subsystems

define a world of their own. A VCL package diagram highlights the package being
defined (in bold) and the packages being extended. Package extension means in-
corporation; state structures and operations defined in the incorporated package
become part of the composite package2.

Package diagrams of figure 6 highlight constituent individual VCL packages
that are also, themselves, composite packages. All VCL packages of the overall
model of CCCMS are defined in [14]. Each subsystem has its own VCL model
with its set of constituent packages, some of them common to both subsystems.

The next sections present fragments of the overall VCL model to illustrate the
process described in section 2.2. They highlight VCL’s capabilities to support
abstract modelling in an aspect-oriented way, illustrating VCL and its package

2 Semantically, incorporation means conjunction; structures of composite are those of
packages it incorporates, plus those that composite defines as its own.

158 N. Amálio et al.

UsersMgmt

Users User

UID

uid

Password Nat

◯UserStatus
status loggedIn

blocked

pwMissesmaxPwMisses:Nat

Name

loggedOut

name

MaxPwMissesInv

pw

IDOfUsersUnique

Fig. 7. Package diagram of package UsersMgmt, which extends Users (left). Structural
diagram of package Users defining User blob (right).

construct in their capability to capture generic concerns, support flexible problem
decomposition, and enable a plug-and-play style of modular composition where
modules are plugged to make a whole. The following sections show how VCL
packages modularise generic concerns (section 5), how VCL packages are used
to customise generic packages to some context (section 6), how VCL packages
modularise concerns of the problem domain, which can either be crosscutting
or not (section 7), and how VCL packages can be composed to make larger
packages, ultimately to arrive at a package of a subsystem (section 8).

5 Packages That Localise Generic Concerns

VCL packages can modularise solutions to generic concerns to enable their use
in various settings. They constitute a functional unit that can be reused and has
state of its own; each package comprises a definition of structure (described using
structural and constraint diagrams) and behaviour (described using contracts).

The following shows the VCL modularisation of the following generic cross-
cutting concerns: authentication of users, access control, management of session
activity, security management, logging, mapping and video-surveillance. In [14]
we also address the location tracking concern.

To illustrate VCL’s formal Z semantics, we provide in [14] the Z representation
of some of the packages developed in the next sections.

5.1 Users

Common to both authentication and access control, are concerns related with
users. This section defines packages to represent and manage users.

Package definitions. To represent user information and manage users, we
introduce packages Users and UsersMgmt; both describe user-related concerns.
Figure 7 (left) defines package UsersMgmt, which extends Users; this means that
the former incorporates the latter and adds something of its own. The Z model
resulting from these VCL packages is given in [14].

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 159

UsersEqual

u1

u1 : User

u2 : User

u2UsersHaveSameId UsersEqual

UsersHaveSameId

u1

u1 : User

u2.uid
uid

u2 : User

IDOfUsersUnique

Fig. 8. Constraint diagram defining constraint IDOfUsersUnique

Structure. Packages encapsulate structures, which are defined in the package’s
VCL structural diagram (SD). SDs’ main construct is the blob, a rounded contour
denoting a set, that represents some system entity. There are two types of blobs:
domain (bold line) and value (normal line). Domain blobs are part of the state of
the overall system; they are dynamic and need to be maintained by the system.
Value blobs define an immutable set of values that do not need to be maintained
by the system. To represent objects (members of some blob) VCL uses rectangles.

Figure 7 presents SD of package Users. Domain blob User represents users of
a system; it is to be used by other packages requiring user-related functional-
ity. Value blob UserStatus defines a set by enumerating its elements inside its
contour (symbol © says that a blob is defined by what it encloses); it says
UserStatus comprises distinct elements named loggedIn, loggedOut and blocked.
The labelled arrows emanating from User are called property edges ; they define
properties possessed by all elements of the set. User objects have a user iden-
tifier (uid), the actual name of the user (name), a password (pw), a record of
the number of password misses (pwMisses) kept for security reasons, and a login
status (status), representing the fact that a user may be logged-out, logged-in or
blocked because the number of password tries exceeded the allowed maximum.
The object (rectangle) linked to User defines a local constant visible only in the
scope of this blob; maxPwMisses of blob Nat (natural numbers) represents the
maximum number of allowed consecutive password misses.

In VCL, elongated hexagons represent constraints. The one connected to User
defines a local invariant (in OO terms a class invariant), which restricts the
number of valid instances of this blob. Invariant IDOfUsersUnique is defined in
the constraint diagram of figure 8, which expresses graphically, in a style akin
to the predicate-calculus (see [5,3] for details), that if two users have the same
id, then they must be the same user.

Behaviour. VCL’s unit of behaviour is the operation. VCL packages comprise a
collection of structures, such as blobs and property edges; operations manipulate
the information stored in these structures. Contracts define operations, describ-
ing what they must do. In VCL, operations may be local or global. They are
local when they describe the internal behaviour of a single structure. A global
operation describes the collective behaviour of a collection of structures. The
global operations of a package define the behaviour that the package offers to
the outside world.

160 N. Amálio et al.

User GetUserGivenID

GetID

CreateUser

RemoveUser

User
New

Delete

Edit

EditUser

ChangeUserPassword

ChangePassword

Fig. 9. Behavioural diagrams of package Users (left) and UsersMgmt (right)

GetUserGivenID

u!

u! : User

uid?

uid

uid? : UID

GetID

u?

u? : User

uid!

uid

uid! : UID

Fig. 10. Constraint diagrams defining local observe operations GetUserGivenID and
GetID of blob User in package Users

VCL behavioural diagrams (BDs) identify the operations of a package. There
are two types of operations: update and observe (or query). Update operations
perform changes of state in the system; they involve a pair of states: before-state
(described by pre-condition) and an after-state (described by post-condition).
They are defined in VCL contract diagrams. Query operations observe some
state of the system and they involve a single state. They are defined in constraint
diagrams, differing from ordinary constraints in that they return values (the ob-
servations). In BDs, update operations are represented as contracts (double-lined
elongated hexagons labelled with the name of the operation); observe operations
are represented as constraints (single-lined elongated hexagons); in VCL’s tool,
double-clicking on operations represented in a BD takes the user to their def-
inition. Local operations are connected to the structure whose behaviour they
operate upon. Global operations stand alone.

Figure 9 presents BDs of package Users (left) and UsersMgmt (right). BD
of package Users introduces observe operations GetUserGivenID and GetID of
blob User, which yield, respectively, a user object given a user identifier and
a user identifier from a user object. Package UsersMgmt defines operations for
managing users; it introduces global operations CreateUser, EditUser, RemoveUser
and ChangeUserPassword, and local operations of blob User.

Because they involve a single state, query operations are defined using con-
straint diagrams. Constraint diagrams of figure 10 define observe operations Ge-
tUserGivenID (left) and GetID (right) of blob User. They differ from the normal
constraint of figure 8 in that they output a value (the observation). GetUser-
GivenID receives a user id as input (uid?) and outputs the corresponding User
object (u!).3 In VCL, inputs are decorated with ?; outputs with !. GetID receives
a user object as input (u?) and outputs a user id (uid!).

3 In VCL contract and constraint diagrams, objects say the set to which they belong;
such sets must be visible in the package of the contract or constraint.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 161

status []

u?

loggedIn

u? : User

DeleteNew

u! : User

pw? : Passworduid? : UserID

loggedOut

u!

status

0

pwMisses

uid?uid

name?name

pw?
pw

name? : Name

ChangePassword

u? : User

u?

pwNew?

pwOld? : Password

pwNew? : Password

u?

pwOld?

pw pw

Fig. 11. Contract diagrams defining local operations New, Delete and ChangePassword
of blob User

VCL contract diagrams describe update operations. They have a name, a
declarations compartment, and a predicate compartment sub-divided into pre-
and post- condition compartments. Predicate compartments have a differential
meaning regarding an active unit (object, link or blob), which is represented in
bold: (a) an active unit on the left (precondition), but not on the right means
deletion; (b) an active unit that is on the right compartment (postcondition),
but not on the left means creation; (c) the state of an active unit is updated if
it is both on left and right compartments.

Figure 11 presents contract diagrams for local operations New, Delete and
ChangePassword of blob User. They are as follows:

– New receives as inputs a user id (uid?), a password (pw?), and an actual name
of a user (name), and assigns these to the properties of the newly created
User object (u!) (an active object) in the postcondition compartment; u! is
an output of the contract.

– Delete receives the User object to delete (input u?), and states as a precon-
dition that u? may be deleted provided its status is not logged-in.

– ChangePassword takes as inputs a user (u?), old password (pwOld?) and new
password (pwNew?). Precondition requires that user’s new password matches
old password. Postcondition sets user’s password (pw) to new password.

Global operations incorporate (or extend) local ones, and they define some
extra behaviour of their own (in the form of pre- and post- conditions). This
form of contract composition is achieved through contract importing. A contract
placed on the declarations compartment means that it is being imported. Fig-
ure 12 presents contract diagrams for global operations CreateUser, RemoveUser
and ChangeUserPassword. These contracts import, respectively, local operations
New, Delete and ChangePassword of blob User.

The meaning of contract importing is conjunction. When a contract imports
other contracts, this means that the overall contract is formed as the conjunc-
tion of all imported contracts plus the part that the importer defines as its own;
pre- and post- conditions of imported contracts are conjoined with pre- and
post- conditions of importer. There is no implicit or required ordering in the

162 N. Amálio et al.

uid? : UID

DeleteUser

pw? : PassWorduid? : UID

name? : Name

NewUser

CreateUser RemoveUser

ChangePasswordUser

ChangeUserPassword

GetUserGivenId [u?/u!]User

uid? : UID

pwOld? : Password

pwNew? : Password

GetUserGivenId [u?/u!]User

Fig. 12. Contract diagrams defining global operations CreateUSer, RemoveUser and
ChangeUserPassword of package UsersMgmt

conjunctions underlying contract importing (in logic, conjunction is commuta-
tive). VCL operations specify a computation, when operations are conjoined that
means that corresponding computations are performed in parallel synchronised
on the communication channels being shared. The actual sequential ordering
of operations is a decision to be taken at lower levels of abstraction, such as
implementation.

Contracts may import constraints as well as other contracts. A constraint is
imported when placed on the declarations compartment; in this case, the con-
straint’s state refers to the contract’s before-state (the precondition). Usually,
we place query operations in the declarations part to convey the fact that they
are operations, and because they usually operate on the before state. We place
constraints describing pre- or post- conditions in the appropriate predicate com-
partment.

In contracts, inputs and outputs are communication channels; those having
the same name in importer and imported contracts are shared. Sharing means
that whatever goes through the channel in composite also goes through the chan-
nel with same name in parts; whenever channel names are shared, the bindings
involved in the communication do not have to be made explicit. In figure 12, in-
puts defined in contract CreateUser are shared with imported contract User.New
of figure 11. When a communication channel (input or output) is declared in
imported contract, but not in composite that means that declared input is exis-
tentially quantified in composite contract and is not made available to the outside
world. In contract CreateUser, output u! of User.New is existentially quantified.

Contracts of figure 12 are as follows:

– CreateUser takes inputs uid?, name? and pw? corresponding to inputs with
same name in operation User.New (see figure 11). Output u! of User.New is
existentially quantified in CreateUser. Pre- and post-conditions are those of
User.New.

– RemoveUser takes as input a user id (uid?) of user to delete. The declarations
compartment imports query operation GetUserGivenId (defined in package
Users, see [14]) and the local contract Delete of blob User. The importing
of the observe operation includes a renaming expression; the output u! is
renamed to u? to enable synchronisation with operation Delete, which uses

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 163

this input. As input u? is not explicitly declared, it is existentially quantified.
Precondition is predicate of GetUserGivenId conjoined with precondition of
Delete; postcondition is that of Delete.

– ChangeUserPassword takes as inputs a user id (uid?), old password (pwOld?)
and new password (pwNew?). The last two inputs match those of imported
contract ChangePassword of User. Imported query GetUserGivenId includes a
rename expression to enable synchronisation with ChangePassword. Precon-
dition is predicate GetUserGivenId conjoined with ChangePassword’s precon-
dition; postcondition is that of ChangePassword.

5.2 Authentication

The authentication security concern deals with authentication of users to enable
them to gain access to the system’s resources. The VCL packages addressing this
concern provide a solution based on password control; they are as follows:

– Authentication represents the core of authentication; it constitutes an aspect.
– AuthenticationOps includes authentication operations, enabling users to login

and logout from a system.
– AuthenticationMgmt includes operations to enable management and admin-

istration of authentication.

The Z model resulting from these VCL packages is given in [14].

Package Authentication. It modularises the core of a general solution to the
concern of user authentication. This package focuses on structure; it is to be ex-
tended by other packages to provide authentication-related functionality. Pack-
age Authentication (figure 13, left) extends package Users.

To avoid clutter and improve usability of SDs, a system of views (part of the
design of VCL’s tool) is provided. SDs have a global and a local view. The global
view highlights a package’s main entities and the relations that exist between
them; the local view highlights the details of some blob. Figure 13 (centre)
presents the global view of Authentication package’s SD.

SD of figure 13 refers to blob User of Users and introduces domain blob Ses-
sion (set of sessions users can open in the system). In SDs, Relational edges or
associations are labelled directed lines connecting pairs of blobs (direction is
indicated by arrow symbol). They describe relations between concepts, denoting

Authentication

Users

HasSession

0..11
SessionUser

HasSessionIffLoggedIn

Users

Session
Time

startTm

SID

lastTmActive

sid

IDOfSessionsUnique

Fig. 13. Package Authentication extends Users (left). Global structural diagram of Au-
thentication (centre). Local structural diagram for blob Session (right).

164 N. Amálio et al.

User

UserIsLoggedIn

IsLoggedIn

UserIsLoggedIn

User IsLoggedIn

IsLoggedIn

cu? : User

cu?
status

loggedIn

Fig. 14. Behavioural diagram of Authentication (left). Contract diagrams defining ob-
serve operations IsLoggedIn of blob User (centre), and global UserIsLoggedIn of package
Authentication (right).

AuthenticationOps

Authentication

◯LoginResult

loginOk isBlocked

wrongPW

Login Logout

User Session HasSession

Fig. 15. Package AuthenticationOps extends Authentication (left). SD of Authentica-
tionOps introduces blob LoginResult (centre). Global view of AuthenticationOps pack-
age’s behaviour diagram (right).

a mathematical relation between sets. In the diagram, HasSession is a relational
edge between User and Session; its UML-style multiplicity constraint says that
a user has at most one session and that a session has one user.

In VCL SDs, zooming yields the local details of blobs (their local view). Fig-
ure 13 (right) presents Session’s local SD. Session objects have a session identi-
fier (sid); they record their starting time (startTm) and the last time they were
active (lastTmActive). Constraint IDOfSessionsUnique represents Session’s local
invariant requiring uniqueness of sids (see [14]); its definition is similar to the
constraint diagram of figure 8, which requires uniqueness of User identifiers.

Authentication’s BD (figure 14, left) introduces observe operations UserIs-
LoggedIn (global) and local IsLoggedIn of blob User, where the former promotes
the latter. These operations check whether some user is logged or not; they are
defined in figure 14 (centre, and right).

Package AuthenticationOps. It provides login and logout operations. Its pack-
age diagram (figure 15, left) says that it extends Authentication. Its SD (figure 15,
centre) introduces value blob LoginResult, representing the set of values to be
output as a result of a Login operation.

As SDs, BDs are articulated with a zooming system based on views to reduce
clutter. The local view shows local behaviour of a particular modelling element;
the global view highlights the package’s overall behaviour.

Figure 15 (right) presents global BD of package AuthenticationOps, identifying
the following operations:

– Login: it authenticates users granting them access to the system by opening
a system session.

– Logout: it is used by users to terminate their system sessions.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 165

User

LoginOK

Logout

LoginNotOK u?

loggedOut

status

pw?
pw

u? 0
pwMisses

loginOkr!

u? : User

pw? : Password

r!: LoginResult

LogInOk Logout

u? : User

status

u?

loggedIn

status

u?

loggedOut

loggedIn

status

Fig. 16. Local behaviour diagram of blob User in package AuthenticationOps (left).
Contract diagrams of User operations LoginOk and Logout.

LoginNotOK

u? : User r!: LoginResultpw? : PassWord

LoginBlocked

u? : User

u?

blocked

status

pw? : PassWord r!: LoginResult

isBlocked

LoginWrongPWToBlocked

u?

loggedOut

status

pw?pw []

maxPwMisses

pwMisses

LoginWrongPW

u?

u? : User

u?

loggedOut

status

pw? : PassWord r!: LoginResult

pw?

pw []

maxPwMisses

pwMisses [<]
pwMisses + 1

pwMisses

r!

wrongPWr!

LogInBlocked

LogInWrongPWToBlocked

LogInWrongPw

u? : User pw? : PassWord r!: LoginResult

u? blocked

wrongPwr!

Fig. 17. Contract diagrams describing operation LoginNotOk of blob User

Local BD of User in package AuthenticationOps is given in figure 16 (left). This
introduces operations related with login and logout from the local perspective
of blob User. Operation LoginOk (figure 16, centre) describes a successful login.
Operation Logout (figure 16, right) describes a logout. Operation loginNotOk
(figure 17) describes all cases of an unsuccessful login.

Local BDs of blob Session and relational edge HasSession are described in de-
tail in [14]. Remaining contracts of package AuthenticationOps, local and global,
are also described in detail in [14].

Package AuthenticationOps is to be incorporated by CentralCCCMS package
to provide user authentication services (see figure 6).

Package AuthenticationMgmt. It introduces administration operations of au-
thentication. It is built from package Authentication (figure 18, left).

166 N. Amálio et al.

AuthenticationMgmt

Authentication
ReactivateUser

BlockUser

Fig. 18. Package AuthenticationMgmt extends Authentication (left). Global behavioural
diagram of package AuthenticationMgmt (right).

SessionMgmt

AuthenticationOps

Session

maxInactivityTm : Time

Authentication
UpdSessionActivity

Session

UpdActiveTm

IsExpired

HasSession GetUserSession

Fig. 19. Package diagram showing package SessionMgmt extends AuthenticationOps
(left). Structural diagram showing package SessionMgmt introduces constant maxIn-
activityTm to blob Session defined in Authentication package (centre). SessionMgmt’s
Behavioural diagram (right).

Its BD (figure 18, right) introduces global operations ReactivateUser and
BlockUser (see [14] for their definitions).

5.3 Session Management

The session management concern deals with the management of the activity of
user sessions. It is addressed by package SessionMgmt (figure 19, left), which
extends package AuthenticationOps.

This package’s SD (figure 19, centre) introduces constant maxInactivityTm,
which captures the maximum period of inactivity that some session may reach.
Its BD (figure 19, right) introduces global operation UpdSessionActivity, which
says that there has been activity in some user session.4

Figure 20 defines the local operations of blob Session:

– UpdActiveTm is used to say that there has been activity in some user session.
It takes as inputs a session object (s?) and current time (now?); postcondition
compartment sets property lastActiveTm of object s? to current time.

– IsExpired says whether some session has expired or not. It takes as inputs a
session (s?) and a current time (now?). The predicate compartment defines
constraint by saying that the last time a session was updated (property
lastActiveTm) must be less or equal than the current time subtracted by the
maximum time of inactivity (constant maxInactivityTm).

4 Note that SessionMgmt does not make available to the outside world the global
operations of package Session; it merely uses those operations internally.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 167

now? : Time

s?

s? : Session

now?

lastTmActive

IsExpired

s? : Session

s? now? - maxInactivityTm

lastTmActive []

now? : Time

UpdActiveTm

s?

Fig. 20. Contracts diagram of local operation UpdActiveTm (left) and constraint dia-
gram for query IsExpired (right)

s? : Session

Logout

IsExpiredSession

UpdSessionActivityNotOkUpdSessionActivity

UpdSessionActivityOk

UpdSessionActivityNotOk

UpdActiveTm

Session

¬ IsExpired

Session

UpdSessionActivityOk

now? : Time now? : Timecu? : User cu? : User

AuthenticationOps

GetUserSession [s?/s!]HasSession

GetID [u?/cu?, uid!/uid?]User

Fig. 21. Contracts diagrams of global operation UpdSessionActivity

Figure 21 defines UpdSessionActivity, a global (or package) operation. It iden-
tifies two possible cases: (a) session has not expired and the last time active
needs to be updated (UpdSessionActivityOk), or (b) the session has expired and
therefore needs to be terminated (UpdSessionActivityNotOk). In UpdSessionAc-
tivityOk, note the use of ↑ symbol; this imports the communications channels
(inputs and outputs), as well as the predicate part of the contract (by default
contract importing just imports the predicate). Contracts are as follows:

– UpdSessionActivity takes as inputs a current user (cu?) and a current time
(now?); it imports query HasSession.GetSession to get session of current user,
which is used by the operations combined in the disjunction.

– UpdSessionActivityOk imports contract Session.UpdActiveTm to update last
active time of session. The precondition requires that the current session has
not expired (constraint Session.IsExpired is negated).

– UpdSessionActivityNotOk takes a session (s?), current time (now?) and cur-
rent user (cu?) as inputs. It imports query User.GetID to get the user identifier
of current user (cu?). The precondition says that the session must have ex-
pired (constraint IsExpired). Contract Logout of package AuthenticationOps
is imported, so that current user is logged out and the session is deleted.

Package SessionMgmt defines an aspect that is to be added to the problem
domain packages so that the system takes the crosscutting functionality that it
embodies into account. This involves customising the package for the CCCMS

168 N. Amálio et al.

AccessControl

Users
TaskRole

0..*0..*
User

0..*0..*

String

desc

RoleDescsUniqueUsers

HasRole HasPerm

Fig. 22. Package AccessControl extends Users (left). Structural diagram for the Access-
Control package (right).

context (section 6.3) and then compose the customisation of this aspect into
domain packages to enable its crosscutting functionality (section 8).

5.4 Access Control

Package Authentication (section 5.2) encapsulates a simple security mechanism
of user authentication: users authenticate themselves to gain access to system’s
resources. In most cases, however, not all users have the same permissions in
terms of the system resources they can use. This section addresses this con-
cern by providing packages with solutions based on the rôle-based access control
(RBAC) [15] scheme. This is based on the rôles that users hold within an organ-
isation; access permissions are defined at the level of rôles.

The Z representation of the access control packages presented in the next
sections is given in [14].

Package AccessControl. It describes a simple RBAC scheme, introducing the
notion of access control policies to define who is authorised to use certain sys-
tem’s resources. Package AccessControl (Fig 22, left) extends package Users (sec-
tion 5.1).

Figure 22 (right) presents the VCL SD of this package. It is as follows:

– Domain blob Role represents a set of rôles; a Role has a description that
identifies it. Abstract blob Task defines the set of tasks that can be performed
in a system; it defines the resources that a system offers. Task is abstract
because the actual set is dependent on the application domain; AccessControl
is meant to be domain-independent.

– Relational edge HasPerm defines permissions, saying which rôles are allowed
to execute tasks; a Task can be executed by many Roles, and a Role may
execute many tasks. Relational edge HasRole indicates rôles a user can play;
a User may play many rôles; a Role may be played by many users.

– Invariant RoleDescsUnique says that rôle descriptions assigned to roles are
unique. See [14] for its VCL definition.

Figure 23 (left) presents BD of package AccessControl. Observe operation User-
HasPerm says whether a user is allowed to execute a given task; it is defined in
constraint diagram of figure 23 (right).

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 169

UserHasPerm

UserHasPerm

cu? : User

cu?

t? : Task

r?
HasRole

RoleHasPerm

r? : Role

r?

t? : Task

t?
HasPerm

RoleHasPerm

Fig. 23. Behavioural diagram of package AccessControl (left). Constraint diagram
defining query UserHasPerm of package AccessControl (right).

AccessControlMgmt

AccessControl AssignUserRole

AddPermission DelPermission

DelRoleAssignment

CreateRole DelRole

Fig. 24. Package AccessControlMgmt extends AccessControl (left). Global behavioural
diagram of package AccessControlMgmt (right).

Package AccessControlMgmt. This package extends AccessControl (Fig 24,
left). It provides operations to create and delete rôles, permissions, and rôle
assignments, as shown by its global BD presented also in figure 24 (right). See [14]
for full definitions of behaviour provided by this package.

5.5 Authenticated Access Control: Composing Aspects

Package Authentication (section 5.2) provides a general user authentication
scheme. AccessControl (section 5.4) provides a general rôle-based access con-
trol scheme. We put these two packages together in a single package to provide
a general solution to authenticated rôle-based access control.

Package Authorisation (figure 25, left) extends both Authentication and Access-
Control. It provides the functionality of incorporated packages, plus some extra
behaviour of its own. Its BD (figure 25, centre) introduces observe operation
UserLoggedInAndHasPerm, which checks if some user is logged in the system and
has permission to execute some task. This query is defined in constraint diagram
of figure 25 (right); it puts together two observe operations.

Package Authorisation constitutes an aspect to be joined with problem domain
packages so that the functionality it embodies is part of the overall system.
This generic package is customised to the CCCMS context in section 6.1; the
customisation is then composed with problem domain packages in section 8. The
Z model that defines this VCL package is given in [14].

170 N. Amálio et al.

Authorisation

Authentication

AccessControl

UserLoggedInAndHasPerm

UserLoggedInAndHasPerm

cu? : User

UserHasPerm

t? : Task

AccessControl

Authentication UserIsLoggedIn

Fig. 25. Package Authorisation extends Authentication and AccessControl (left). Au-
thorisation’s behavioural diagram (centre). Constraint diagram defining behavioural
constraint UserIsLoggedInAndHasPerm.

SysAdmin

Users

Users

User

UserAdmin

SecAuthorisationMgmt

AccessControlMgmt

UsersMgmt

SysAdmin

AuthenticationMgmt

Fig. 26. Package SysAdmin (system administration) extends package Users (left). SD of
package SysAdmin (centre). Package SecAuthorisationMgmt (secure authorisation man-
agement) extends packages UsersMgmt, AuthenticationMgmt, AccessControlMgmt and
SysAdmin (right).

5.6 System Administration and Security Management

The administration and management operations of packages UsersMgmt, Au-
thenticationMgmt and AccessControlMgmt need to be performed in a secure way.
These packages are not secure because they allow any user to add or delete
users, rôles and permissions. This section deals with this problem by introduc-
ing a package that localises the system administration concern, and then adds
this crosscutting concern to the various packages to make them secure.

Package SysAdmin (figure 26, left) extends the package Users to enable system
administration by a restricted set of users. SD of this package (figure 26, centre)
introduces blob UserAdmin, which is defined as a subset of blob User from pack-
age Users. UserAdmin represents users that are system administrators and have
authority to perform system related tasks. This package constitutes an aspect
that is to be added to the management and administration packages.

Package SecAuthorisationMgmt (figure 26, right) provides a secure way of man-
aging users, rôles, permissions and rôle assignments. It extends packages User-
Mgmt, AuthenticationMgmt, AccessControlMgmt and SysAdmin (see above). The
Z model resulting from this VCL package is given in [14].

Figure 27 presents the BD of package SecAuthorisationMgmt. This illustrates
the join extension mechanism, which is used here to weave in the system admin-
istration aspect. In join extension, there is a contract that describes the joining

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 171

SysAdminJoin

UsersMgmtAll

AuthenticationMgmtAll

AccessControlMgmtAll

SysAdminOp

Join

Fig. 27. Behavioural diagram of package SecAuthorisationMgmt. Join extension is used
to add secure system administration operations.

SysAdminJoin

cu? : User SysAdminOp

IsSysAdminSysAdmin

Authentication UserIsLoggedIn

CreateUserUsersMgmtcu? : User

CreateUser

IsSysAdminSysAdmin

Authentication UserIsLoggedIn

Fig. 28. Contract diagram of join operation SysAdminJoin in package SecAuthorisation-
Mgmt (left) and result of join extension for operation CreateUser of package UsersMgmt.

behaviour of an aspect (a join contract) that is composed with a group of opera-
tions placed on a join-box. In figure 27, the join contract is SysAdminJoin, which
is joined with the group of operations within the box, comprising all operations
from UsersMgmt, AuthenticationMgmt and AccessControlMgmt (contracts named
with keyword All refer to all global operations of a package). Label SysAdminOp
on the line from SysAdminJoin to the box, names the interface operation used in
SysAdminJoin.

Semantics of join extension is conjunction. It means that each operation from
the group placed in the join-box is conjoined with the join contract. In the join-
extension of figure 27, each operation of the group is conjoined with SysAdminJoin
to make a new operation named after the original operation whose behaviour is
extended.

Figure 28 presents the contract diagram of join contract SysAdminJoin (left)
and the result of join composition for operation CreateUser of package UsersMgmt
(right). These are as follows:

– SysAdminJoin declares one input to represent current user (cu?), and imports
the contract to which the join is to apply along with its inputs (symbol ↑);
this contract is represented by the name SysAdminOp. The precondition re-
quires that the current user is a system administrator that is logged in the
system; this is expressed by placing the constraints from packages Authenti-
cation and SysAdmin in the precondition compartment.

172 N. Amálio et al.

Logging LogItem Timetm

Message

msg

EventKind

evKind
CreateLogItem

LogItem New

Fig. 29. Package Logging (left), its SD (centre) and its BD (right). SD defines domain
blob LogItem. BD introduces global operation CreateItem and local operation New of
blob LogItem.

msg? : Message now? : Time

evk? : EventKind li! : LogItem

li!

ek?

evKind

now?
tm

msg?

New

msg

LogItem New

msg? : Message now? : Time

evk? : EventKind

CreateLogItem

Fig. 30. Contract diagram for local operation New of blob LogItem (left) and global
operation CreateLogItem (right) in Package Logging

– CreateUser mimics what is defined in contract SysAdminJoin: input cu?, im-
ported contract, in this case CreateUser from package UsersMgmt, and state-
ment of precondition.

Package SecAuthorisationMgmt constitutes a module that is to be incorporated
by the CentralCCCMS package to provide a secure way of managing security-
critical information (see figure 6, left).

5.7 Logging

Package Logging (figure 29, left) defines a general solution to the logging concern.
It logs the activity of a system by recording events as they are executed.

Figure 29 (centre) defines Logging’s SD. Domain blob LogItem represents
events to be logged; LogItems have a creation time (tm), a logging message (msg)
and the type of event being logged (evKind).

Figure 29 (right) presents the BD of package Logging. This introduces the
global (or package) operation CreateLogItem, and the New local operation of
LogItem.

Figure 30 gives contract diagrams for these operations. They are as follows:

– New receives as inputs a logging message (msg?), a logging event (evk?), and
a current time (now?), outputting the newly created LogItem object (li!);
the postcondition compartment sets attributes of object li! from given input
objects.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 173

MappingCommon
Map

◯MapType

Loc Route

mapTy

Fig. 31. Package (left) and structural (right) diagrams of package MappingCommon

– CreateLogItem defines the same inputs as imported local contract New. This
establishes that those inputs are shared communication channels between
these two contracts; as they are defined in the global contract, those inputs
are to be provided by the package’s environment.

Package Logging constitutes an aspect that needs to be added to problem
domain packages so that the crosscutting functionality that it embodies is part
of the overall system. This package is customised to the CCCMS context in
section 6.2 and the customisation package is composed with problem domain
packages in section 8.

5.8 Mapping

The mapping concern represents functionality related with the handling of maps.
Our model considers that there is an external mapping system that provides
maps upon request (use case diagram of figure 4, page 156 identifies such a
system as an actor). Package Mapping defines a general solution to the mapping
concern by providing an interface to this external system. The following defines
the VCL packages addressing the mapping generic concern.

Package MappingCommon. It defines structures that are common across sev-
eral mapping packages. Its package and structural diagrams are given in figure 31.
SD introduces blobs MapType (defining the two types of maps, location or route)
and Map (defining a map to be displayed).

Package Mapping. It encapsulates the general solution to the mapping concern.
Its package and structural diagrams are given in figure 32. Blob MapManager is
the package’s controller; it contains a single object5. A MapManager holds a url
of the mapping system, an availability flag of the mapping system (sysStatus),
a time at which the last request to the mapping system was made (lastReqAt),
a flag indicating whether there is an active mapping request or not (activeReq).
In addition, blob MapManager includes a constant MReqTimeout, indicating the
timeout period associated with a request to the mapping system.

Blob MappingRequest represents a request to the mapping system. A Mappin-
gRequest has a request kind of blob MappingRequestKind; this represents queries
to ask whether the external mapping system is available (QIsAvailable), to request
a location map (RequesLocMap), or request a route map (RequesRouteMap).
MappingRequest also also has two locations (locFr and locTo).
5 This follows singleton pattern of [16].

174 N. Amálio et al.

Mapping

MappingCommon

◯Mapmanager

◯YesNo

Yes

No

activeReq

URL

url

◯MappingRequestKind

ReqLocMap

MappingRequest
kind

Location

locFr

◯MapSysStatus

availble unavailble
sysStatus

QIsAvailable

MReqTimeout : Nat

TimelastReqAt

locTo

0..1 0..1 ReqRouteMap

theMapmanager

Fig. 32. Package (left) and structural (right) diagrams of package Mapping

Startup MapSysAvailable RetryMapSys RequestLocationMap

PutRequestedMap RequestedMapTimeout CouldNotFindMap ChangeMapSys

RequestRouteMap

Fig. 33. Global Behavioural diagram package Mapping

Figure 33 presents Mapping’s global BD showing the operations offered to
the outside world. This includes operations to: start the mapping controller
(Startup), check if external mapping system is available (MapSysAvailable), retry
an availability query on the external mapping system (RetryMapSys), request a
location map from the external mapping system (RequestLocationMap), request a
route map from the external mapping system (RequestRouteMap), load requested
map (PutRequestedMap), issue a timeout when requested map is not delivered on
time (RequestedMapTimeout), indicate that requested map could not be found
(CouldNotFindMap), and change the external mapping system (ChangeMapSys).

Figure 34 presents contract diagrams for the operations of Mapping that are
involved in defining the global operation PutRequestedMap. It presents a contract
diagram for local operation PutRequestedMap of blob MapManager (figure 34,
left); this requires (pre-condition) that the external mapping system is available,
that there is an active request and that the timeout period for the request has not
expired; the post-condition says that there is no active request. Global contract
PutRequestedMap imports its local counter-part and says that the local operation
is to be executed on the sole MapManager instance.

5.9 Video Surveillance

The video-surveillance concern is related with the handling of videos requested
from the external video surveillance system. In our model, we consider that there

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 175

mm? : Mapmanager

mm?

PutRequestedMap

No

m? : Map

activeReq

mm? available
sysStatus

Yes
activeReq

now? - mm?.lastReqAt MReqTimeout
<

now? : Time

PutRequestedMap

MapmanagerPutRequestedMap

theMapManager
mm?

m? : Map

now? : Time

Fig. 34. Contract diagrams of operation PutRequestedMap of blob MapManager (left),
and global operation with same name (right).

VideoSurveillanceCommon Video

Fig. 35. Package (left) and structural (right) diagrams of package VideoSurveil-
lanceCommon

is an external video surveillance system that provides video footage upon request
(use case diagram of figure 4, page 156 identifies such a system as an actor).
Package VideoSurveillance defines a general solution to the video-surveillance
concern by providing an interface to this external system. The following defines
the packages addressing this generic crosscutting concern.

Package VideoSurveillanceCommon. It defines structures that are common
across several packages that need video surveillance. Figure 35 presents its pack-
age (left) and structural (right) diagrams. SD introduces blob Video, which de-
fines a video footage to be shown to the user.

Package VideoSurveillance. It defines the actual general solution to the video
surveillance concern. Its package (left) and structural (right) diagrams are given
in figure 36. Blob Controller is the package’s controller; it represents a single-
ton set. Its property edges include: time of last request to the mapping system
was made (lastReqAt), flag indicating whether there is an active video request
(activeReq). In addition, Controller has constant VReqTimeout, indicating the
timeout delay of a request to the external video-surveillance system.

Blob VideoSurveillanceReq represents a request to the external video surveil-
lance system. It has properties: location (loc) and a time period (fromTm and
toTm); these indicates location and time-period of requested video footage.

Figure 37 (left) presents VideoSurveillance’s global BD showing the
operations offered to the outside world. This includes operations to:
start the controller (Startup), request video footage from external system
(ReqVideoSurveillance), cancel a video surveillance request (CancelVideoReq),
load requested video (PutVideo), and issue a timeout when a video request ex-
pires (VideoRequestTimeout).

176 N. Amálio et al.

VideoSurveillance

VideoSurveillanceCommon

fromTm

VideoSurveillanceReq

Location

loc

toTm◯Controller

TimelastReqAtVReqTimeout : Nat

◯YesNo

Yes No

activeReq

theController

Fig. 36. Package (left) and structural (right) diagrams of package VideoSurveillance

Startup CancelVideoReq

RequestVideo PutVideo

VideoRequestTimeout

RequestVideo

New VideoSurveillanceReqc? : Controller

now? : Time

c? No c? Yes
activeReq

now?
lastReqAt

activeReq

Fig. 37. Global behaviour diagram of package VideoSurveillance. Contract diagrams of
operation ViewVideoSurveillance of blob Controller (left)

Figure 37 (right) presents the contract diagram of operation RequestVideo of
blob Controller. This requires (pre-condition) that there is no active request; the
post-condition sets the active request flag and the lastReqAt property to the
current time (input now?). The global contract of RequestVideo would import
the local contract with the same name and request it to be carried out by the
sole Controller instance (similarly to Mapping’s global contract of figure 34).

6 Customising Generic Packages for the CCCMS Context

Generic packages are designed to be used in various settings. Usually, they need
to be configured (or adjusted) for the new context in which they are used. The
next sections illustrate such customisations; they show how generic packages
from section 5 are customised to the CCCMS.

6.1 Customising Authorisation by Defining a Configuration

Customisation of package Authorisation is performed by defining packages AC-
TasksCCCMS and the configuration AuthorisationCCCMS (figure 38).

Package ACTasksCCCMS defines the set of tasks that are subject to access
control in the CCCMS; it sees package AccessControl (figure 38, left). The sees
arrow defines a dependency relationship; in the figure, it means that it uses

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 177

ACTasksCCCMS

AccessControl

sees

Task

◯CCCMSTask

AccessControl

CrisisTask ResourceTask

ResourceMgmtTask CoordinatorTask

AuthorisationCCCMS

Authorisation

ACTasksCCCMS

Fig. 38. Package ACTasksCCCMS sees AccessControl (left). Package ACTasksCCCMS
specialises Task in the context of CCCMS (centre). Package AuthorisationCCCMS ex-
tends Authorisation and sees ACTasksCCCMS (right).

User

Authorisation

DefMaxPwMisses

maxPwMisses:Nat

DefMaxPwMisses

maxPwMisses 3

Fig. 39. SD of package AuthorisationCCCMS (left). Definition of constant maxPwMisses
(right).

structures defined in AccessControl, but those structures are not part of the state
of the newly defined package. Package ACTasksCCCMS defines set CCCMSTask,
which subsets set Task of package AccessControl (see [14] for further details) and
defines all CCCMS tasks to be subject to access control.

Package AuthorisationCCCMS (figure 38, right) customises package Authori-
sation (authentication+access control, section 5.5) to the CCCMS; it extends
packages Authorisation and ACTasksCCCMS. It defines a set of initial rôles and
permissions, and customises constant maxPwMisses of blob User.

Figure 39 (left) presents SD of package AuthorisationCCCMS. This package
does not add any new state; it merely inherits state from package Authorisation.
SD says that constant maxPwMisses of blob User has a constraint defining it.
This constraint defines maxPwMisses to hold value 3 (figure 39, right).

Figure 40 presents constraint diagrams defining the initial state of package
AuthorisationCCCMS. In VCL, the keyword Init associated with a constraint
indicates that an initialisation of some structure or package is being defined.
Constraint diagrams of figure 40 are as follows:

– Init defines package’s initial state. It imports other constraint diagrams defin-
ing initial state of set Role (InitRoles), and initial state of permissions with re-
spect to tasks of crisis management (InitCrisis), mission management
(InitMission) and resource management (InitResources).

– InitRoles defines rôles Coordinator and Resource.

178 N. Amálio et al.

InitCrisis

InitMission

InitResourceMgmt

InitRoles

Init

r1 : Role r2 : Role

InitRoles

'Coordinator'r1 : Role

desc

'Resource'r2 : Role

desc

r1 : Role

InitCrisis

r1 : Role
HasPerm

CrisisTask

ACTasksCCCMS

Fig. 40. Constraint diagrams specifying initialisation of the package AuthorisationCC-
CMS (Init), initialisation of roles (InitRoles) and an initialisation for the permissions for
the tasks related with crisis management (InitCrisis).

– InitCrisis says that the role r1 (Coordinator) has permission to execute all
tasks of set CrisisTask defined in package ACTasksCCCMS.

– Remaining constraint diagrams defining initial states are defined in [14].

Authorisation All

Fig. 41. BD of Authorisa-
tionCCCMS package.

Package AuthorisationCCCMS needs to extend the
behaviour of Authorisation. Its BD is given in fig-
ure 41. Its global operations are all operations of
Authorisation, which are kept unaltered; this is de-
fined using integral extension on all global opera-
tions of package Authorisation. This is expressed by
connecting a contract with keyword All to the pack-

age where operations come from. When extensions are defined in this way, no
extra contract definitions are necessary.

6.2 Customising Logging by Adjusting Behaviour

To use the generic Logging package in CCCMS, its structure and behaviour need
to be adjusted. This is done following the incremental or additive approach to
change that characterises VCL: we define new structures and operations that
extend those of the generic package.

Packages EventsCCCMS and LoggingCCCMS customise package Logging (sec-
tion 5.7) to the CCCMS context. This involves the following adjustments:

– Package EventsCCCMS defines the events to be logged in CCCMS, by defin-
ing set CCCMSEventKind, a subset of EventKind blob defined in Logging
(Figure 42).

– Blob LogItem of package Logging does not carry enough information for the
needs of CCCMS. LoggingCCCMS extends this blob to carry the required
extra information, providing operations for the new structure.

Package LoggingCCCMS (figure 43, left) extends package Logging and sees
package EventsCCCMS. Its SD (figure 43, right) introduces three sub-blobs (sub-
sets) of blob LogItem: CrisisLogItem, ResourceLogItem and MissionLogItem. These
blobs represent log items of events related with crisis management, resource
management and mission management, respectively. They define a property to
hold an identifier of either a crisis, mission or resource.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 179

EventsCCCMS

Logging

sees

EventKind

◯CCCMSEventKind
Logging

MissionEventKind CrisisEventKind ResourceEventKind

Fig. 42. Package EventsCCCMS extends Logging (left). EventsCCCMS’s SD specialise
blob EventKind defined in Logging (right).

LoggingCCCMS

Logging

EventsCCCMS

LogItem

CrisisLogItem

Logging

MissionLogItem

ID

crisisID

missionID

ResourceLogItem

resourceID

Fig. 43. Package LoggingCCCMS extends Logging and sees EventsCCCMS (left). Log-
gingCCCMS’s SD introduces blobs CrisisLogItem, ResourceLogItem and MissionLogItem,
which are defined as subsets of blob LogItem defined in package Logging (right).

CreateCrisisLogItem

CreateMissionLogItem

CreateResourceLogItem

CrisisLogItem New

MissionLogItem New

ResourceLogItem New

LoggingCreateLogItem

Fig. 44. Behavioural diagram of package LoggingCCCMS, comprising local operations
New of blobs CrisisLogItem, MissionLogItem and ResourceLogItem, and global opera-
tions CreateLogItem (defined from Logging by integral extension), CreateCrisisLogItem,
CreateResourceLogItem and CreateMissionLogItem.

Figure 44 presents BD of package LoggingCCCMS. This defines local oper-
ations New of blobs CrisisLogItem, MissionLogItem and ResourceLogItem, and
global operations CreateLogItem (defined by integral extension), CreateCrisisLog-
Item, CreateResourceLogItem and CreateMissionLogItem. Global operation Cre-
ateLogItem enables logging of general log items; remaining global operations log
items related with crisis, resource and mission management. Contracts for these
operations are fully defined in [14].

Operation New of blob LogItem, defined in package Logging, creates general
LogItem objects; in package LoggingCCCMS, we need new operations to take
specialisations of LogItem into account; this is done using behavioural extension.

180 N. Amálio et al.

cID? : ID

NewLogItem

New

li! cID?
crisisID

'Crisis Event'

msg?

CrisisEventKind

ek?
CrisisLogItem

now? : Time

ek? : EventKind

li! : LogItem cID? : ID now? : Time

ek? : EventKind NewCrisisLogItem

CreateCrisisLogItem

Fig. 45. Contract diagram defining operations New of blob CrisisLogItem and Create-
CrisisLogItem.

This is illustrated in figure 45, which gives contract diagrams for operations New
of blob CrisisLogItem and global operation CreateCrisisLogItem:

– Operations New of blob CrisisLogItem declares inputs cID?, ek? and now? and
imports operation New of blob LogItem (defined in package Logging), which
is the operation to specialise. Predicate compartments define the extra be-
haviour of this operation. The precondition says that input ek? must belong
to set CrisisEventKind defined in package EventsCCCMS. The postcondition
sets property crisisID of object li! to input cID?, requires that li belongs to set
CrisisLogItem, and sends the message to be logged with value ‘Crisis Event’
to imported operation New over input msg?.

– Global operation CreateCrisisLogItem declares same inputs as imported Cri-
sisLogItem.New. Pre- and post-conditions are as in imported contract.

6.3 Customising Session Management

VCL package SessionMgmtCCCMS customises package SessionMgmt (figure 31).
It specifies the value of constant maxInactivityTm (maximum period of inactivity)
to be 30 minutes and defines its operations by integral extension (as operations
of LoggingCCMS in figure 44). See [14] for full details.

6.4 Customising Mapping

VCL package MappingCCCMS represents customisation of package Mapping (fig-
ure 32) to the CCCMS. It specifies the value of constant MReqTimeout (timeout
of a request to the mapping system) to be 30 seconds and defines its opera-
tions by integral extension (as operations of package LoggingCCMS in figure 44).
See [14] for full details.

6.5 Customising Video-Surveillance

VCL package VideoSurveillanceCCCMS represents customisation of package Video-
Surveillance (figure 35) to the CCCMS. It specifies value of constant VReqTimeout
(timeout of a request to the video-surveillance system) to be 30 seconds and de-
fines its operations by integral extension (as operations of package LoggingCCMS
in figure 44). See [14] for full details.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 181

Mission

Resource

ResourceMgmt Crisis

Resource
MappingDisplay

Fig. 46. Core packages that modularise problem domain concerns in CentralCCCMS
subsystem

7 Packages That Localise Problem Domain Concerns

A key design principle that we followed in modelling this large-scale case study
is to decompose by localising key functionalities and then incrementally add de-
tails by defining extensions. We call this design principle: keep key modules as
local as possible. This principle is followed in order to maintain low-coupling in
our package design. This can be observed in our design for the general packages
that describe a solution to a crosscutting concern, such as Authentication and
AccessControl (section 5). We can see that from these more localised packages,
we defined an extension that brings the two packages together to define Autho-
risation, and then we add further detail to adjust Authorisation to the problem
domain context (section 6).

In the design of the packages that capture the problem domain, the same
principle is followed. Core domain packages focus on domain concerns only in
order to keep things as small and as local as possible. Domain packages are then
composed with other packages to bring about the desired system.

Figure 46 overviews the core domain packages of the CentralCCCMS subsys-
tem. This includes:

– package Mission, which extends package Resource and localises the mission
management concern;

– package ResourceManagement, which extends package Resource and localises
the resource management concern;

– package Crisis, which localises the crisis management concern and;
– package MappingDisplay, which localises the concern of map handling that is

common to both MobCCCMS and CentralCCCMS subsystems.

All these packages are fully defined in [14]. The next sections present the do-
main packages that address the crisis management concern, and illustrate VCL’s
capability to capture crosscutting domain concerns with package MappingDisplay.

7.1 Crisis Management

The following overviews the VCL model of the crisis management domain con-
cern, presenting VCL packages CrisisCommon, WitnessReports and Crisis.

Package CrisisCommon. It introduces structures that are common across crisis-
related functionality. Its package and global structural diagrams are given in
figure 47. Its complete definition is given in [14].

182 N. Amálio et al.

CrisisCommon

◯CStatus

active

solved

ongoing

CrisisType

◯Gender

female male

◯Level

low

medium

high

◯AgeGroup

child adult senior

CrisisID

ViID

VictimListInfoVictim

Vehicle

VeID

◯VehicleType

Car Van

Truck Bus
VehicleListInfo

Fig. 47. Package diagram describing package CrisisCommon (left) and its global struc-
tural diagram (right)

Package WitnessReports. It encapsulates functionality related with witness
reports. Its package, structural and behavioural diagrams are given in figure 48.
The SD introduces blob WitnessReport, which holds information of car crashes
reported by witnesses. The BD introduces global operations CreateWR (to create
a witness report), ViewWR (to view a witness report), GetUnassignedWrs (to
obtain those witness reports that are active and have not been assigned to a
crisis), together with local operations of blob WitnessReport. Full definition of
this package is given in [14].

Package Crisis. It encapsulates the functionality of the crisis management fea-
ture. Its package and structural diagrams are given in figure 49. The package
diagram says that Crisis extends packages CrisisCommon, WitnessReports and
VideoSurveillanceCommon (section 5.9, page 174). The SD introduces blob Cri-
sis, which represents the actual crisis instance opened in the system, and some
relational edges. Relational edges Vehicles and Victims indicate, respectively, the
vehicles and victims involved in a crisis. Relational edge BasedOn indicates that
the witness reports are associated with a crisis instance.

Figure 50 presents the global BD of package Crisis. This uses integral extension
to say that all global operations of package WitnessReports are brought into Crisis,
and introduces the following global operations:

– CreateCrisisFromWR: create a crisis from some witness report.
– AssociateWRWithCrisis: associates a witness report with an existing crisis.
– IgnoreWR: ignores a witness report because it is considered irrelevant.
– AddNewCrisisVictim: adds a victim record as part of an existing crisis.
– AddNewCrisisVehicle: adds a vehicle record as part of an existing crisis.
– ViewVideoSurveillance: asks for video surveillance footage of some location

(contract diagram defining this operation is given in figure 50).
– CancelVideoSurveillanceReq: cancels a previous request for video surveillance.
– ShowVideoSurveillanceReq: shows the video surveillance request footage.

This package’s complete definition is given in [14].

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 183

WitnessReports

Name PhoneNo

witNm

witPhNo

WitnessReport

Location
where

Time
createdAt

Notesdesc

◯WRStatus

status

created

associatedWithCrisis

ignored

WRID

id

reportedBy

when

◯YesNo

roadBlocked

yes no activated

IDOfWRsUnique

CreateWR

GetUnassignedWRs

ViewWR

WitnessReport New

GetWR

Fig. 48. Package diagram describing package WitnessReports (left), and its structural
(centre) and behavioural diagrams (right)

Crisis

WitnessReports CrisisCommon

VideoSurveillanceCommon

Crisis WitnessReport
BasedOn

0..*0..1

Victim

Victims

1

0..*
WitnessReports

Vehicle
0..* 1

Vehicles

CrisisCommon

Fig. 49. Package (left) and structural (right) diagrams of package Crisis

CreateCrisisFromWR AssociateWRWithCrisis

IgnoreWR AddNewCrisisVictim

WitnessReport All

AddNewCrisisVehicle ViewVideoSurveillance

ShowVideoSurveillanceCancelVideoSurveillance

ViewVideoSurveillance

now? : Time

loc? : Location fromTm? : Time

toTm? : Time

Fig. 50. Behavioural diagram of package Crisis and contract diagram defining operation
ViewVideoSurveillance

184 N. Amálio et al.

MappingDisplay

MappingCommon

◯MapDisplay
Map

currMap

mapTy

◯MapLoadingStat
usLoading

BeingShown
loadMode

prvMapTy

◯MapDisplayStatus

NotActive Active

status

0..1

MapType

MappingCommon
theMapDisplay

Fig. 51. Package diagram describing package MappingDisplay, which extends Mapping-
Common. Structural diagram of package MappingDisplay.

Startup StartMapDisplay

LoadMap LoadMapTimeout

CouldNotFindMap DisplayLocation

DisplayRoute

MapDisplay

New

StartMapDisplay

LoadMap

LoadMapTimeout

CouldNotFindMap

DisplayLocation
DisplayRoute

Fig. 52. Behavioural diagram of package MappingDisplay

7.2 Package MappingDisplay

This package describes a generic user interface for handling maps that is common
to both MobCCCMS and CentralCCCMS. It is package focused on the display of
maps to the user that abstracts away from other features of mapping (such as the
interface to the mapping system). Its package diagram is given in figure 51 (left);
package MappingDisplay extends package MappingCommon (section 5.8). Package
MappingDisplayWithMapSys (section 8) extends this package to incorporate the
Mapping package defined in section 5.8.

Structure. Figure 51 (right) presents the SD of package MappingDisplay. Blob
MapDisplay is a singleton. Blob MapDisplay has properties: map to display
(currMap), current map type (mapTy), type of previous map (prvMapTy), load
mode (loadMode), which indicates whether a map is currently being loaded
(Loaded) or it has been loaded and is being shown (BeingShown), and current
status of the display (status), which can either be Active or NotActive.

Behaviour. Figure 52 presents the BD of package MappingDisplay. This
identifies this package’s global operations together with local operations of blob

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 185

md? : MapDisplay

LoadMap

md? Active md? BeingShown

m?

currMap

m? : Map

status

md?.mapTy

prvMapTy

loading

loadMode

loadMode

LoadMap

theMapDisplay

MapDisplayLoadMap

md?

m? : Map

Fig. 53. Contract diagrams of local operation LoadMap of blob MapDisplay (left) and
global operation with same name (right) in package MappingDisplay

MapDisplay. This includes operations to: initialise the map display controller
(Startup), start displaying some map (StartMapDisplay), load a new map to dis-
play (LoadMap), take the appropriate action when there is timeout in load-
ing some map (LoadMapTimeout), indicate that the requested map has not
been found (CouldNotFindMap), display a location map for some location
(DisplayLocation), and display a route map (DisplayRoute).

Figure 53 presents contract diagrams of local operation LoadMap of blob
MapDisplay together with the global operation with same name. Local LoadMap
requires that the map display is active and that the loading mode is Loading;
the post-condition takes the map sent as input and sets it as the current map,
changes the loading mode to BeingShown and sets the previous map type to
that of the current map. Global LoadMap just dispatches the request to the sole
MapDisplay instance. Remaining operations of this package are defined in [14].

8 Composing Domain Packages with Aspect Packages

The previous section fragmented the problem domain into coherent modules.
These modules are confined to problem domain phenomena. They talk about cri-
sis, missions, and mission resources, excluding access control, logging and other
crosscutting concerns. This section shows how aspect packages are joined with
problem-domain packages. This is illustrated with the crosscutting concerns:
authentication, access control, session management, logging and mapping.

VCL package composition has already been illustrated. We have seen in sec-
tions 5 and 7 how it enables composition of any kind of module, be it a classical
module or an aspect. This section continues this theme by showing how aspect
packages can be joined into domain packages. In our AOM approach based on
VCL, this can be done in two ways: (a) directly by specifying a package that
represents the composition and incorporates the packages being composed, (b)
or indirectly via a join interface. The following illustrates these two approaches.

8.1 Direct Composition

The direct composition approach is illustrated with mapping and video-
surveillance.

186 N. Amálio et al.

MappingDisplayWithMapSys

MappingDisplay

MappingCCCMS

Startup

StartMapDisplay

DisplayLocation

DisplayRoute

MappingDisplay

StartupMappingCCCMS

Merge

MapSysAvailableMappingCCCMS

RetryMapSys

PutRequestedMap

PutRequestedMapTimeout
CouldNotFindMap

CouldNotFindMap

Fig. 54. Package (left) and behavioural (right) diagrams of package MappingDisplay-
WithMapSys

PutRequestedMap

LoadMapMappingDisplay

PutRequestedMapMappingCCCMS

Fig. 55. Contract diagram of global operation PutRequestedMap of package Map-
pingDisplayWithMapSys

Mapping. Package MappingDisplayWithMapSys (figure 54) links domain pack-
age MappingDisplay (section 7.2) with generic Mapping package (section 5.8) to
make a package that displays maps and interacts with an external mapping sys-
tem. Figure 54 presents its package (left) and behavioural (right) diagrams. The
package diagram says that this package incorporates packages MappingDisplay
and Mapping. These two packages are linked at the behavioural level. BD says
that the operations Startup and CouldNotFindMap of packages MappingDisplay
and Mapping are to be merged ; this is expressed using VCL’s merge join box,
which creates, through merging (conjunction) a new operation with the same
name as those being merged. BD uses integral extension to say that operations
MapSysAvailable and RetryMapSys are to be used integrally. The remaining oper-
ations of BD perform the behavioural composition using custom extension, being
defined in their own contract diagrams. Figure 55 shows how this is done for op-
eration PutRequestedMap; it puts together operations PutRequestedMap from
Mapping (figure 34, page 175) and LoadMap from MappingDisplay (figure 53,
page 185).

Video surveillance. Package CrisisWithVS links the domain package Crisis
(section 7.1) with the generic VideoSurveillance package (section 5.9) to make

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 187

CrisisWithVS

VideoSurveillanceCCCMS

Crisis

CreateCrisisFromWR

AssociateWRWithCrisis

IgnoreWR

AddNewCrisisVictim

AddNewCrisisVehicle

ViewVideoSurveillance ShowVideoSurveillance

CancelVideoSurveillance

CreateWR

GetUnassignedWRs

ViewWR Crisis

Fig. 56. Package (left) and behavioural (right) diagrams of package CrisisWithVS

ViewVideoSurveillance

Crisis ViewVideoSurveillance

VideoSurveillance RequestVideo

Fig. 57. Contract diagram of global operation ViewVideoSurveillance of package Cri-
sisWithVS

a package that handles crisis and interacts with a video surveillance system.
Its package (left) and behavioural (right) diagrams are given in figure 56. The
package diagram says that it incorporates both packages Crisis and VideoSurveil-
lance. These two packages are combined at the behavioural level. The BD uses
integral extension to say that operations of package Crisis are used integrally in
the new package (CreateWR, etc.). Remaining operations interact with the video
surveillance system and are defined using custom extension.

Figure 57 presents contract diagram of operation ViewVideoSurveillance, which
joins two operations using a custom extension. This puts together operations
ViewVideoSurveillance from Crisis (figure 50, page 183) and RequestVideo from
VideoSurveillance (figure 37, page 176).

8.2 Indirect Composition via a Join Interface

In many cases, package compositions cannot be performed directly. Sometimes
an interface between the packages being composed is needed. This provides extra
information to link the two worlds so that composition is meaningful; at the same
time, it ensures that the two worlds can be specified apart and unaware from
each other; the link between the two is described in a join interface package.
The method for building compositions via join interfaces is as follows:

1. Build join interfaces that describe link (or bridge) between different packages.
This involves defining the extra information (usually operations) required to
link the packages being composed.

188 N. Amálio et al.

CrisisAuthorisationJI

ACTasksCCCMS

sees

CrisisLoggingJI

EventsCCCMS

sees

CrisisWithJI

CrisisAuthorisationJI

CrisisLoggingJI CrisisWithVS

Fig. 58. Adding the required join interfaces to package Crisis. Package CrisisAutho-
risationJI defines join interface for package Authorisation. CrisisAuthorisationJI defines
joins interface for Logging. Package CrisisWithJI extends CrisisWithVS with required
join interfaces.

2. Add the join interfaces to a base package (here a domain package) to make
the base package fit for composition. This is usually done using a merge
extension.

3. Compose aspect packages with the package representing the base enriched
with the interfaces. This is usually done using join extension.

Above, we added video-surveillance to domain package Crisis. This resulted in
package CrisisWithVS, which is now composed with more aspects. The following
illustrates the method of indirect composition with package CrisisWithVS.

Defining join interfaces. Join interfaces packages for adding aspects to pack-
age CrisisWithVS are as follows (figure 58):

– Authorisation requires each global operation of CrisisWithVS to indicate the
corresponding access-controlled task (an object of set Task defined in package
ACTasksCCCMS); this is described in join-interface package CrisisAuthorisa-
tionJI.

– Logging requires each global operation of CrisisWithVS to indicate corre-
sponding logging event (from set EventKind defined in EventsCCCMS); this
is described in the join-interface package CrisisLoggiongJI.

– Join with SessionMgmt does not need an interface package.
– Package CrisisWithJI (Crisis with join interfaces) enriches the base package

CrisisWithVS to make it fit for composition with aspect packages; it extends
join interface packages and CrisisWithVS.

BDs of packages CrisisAuthorisationJI and CrisisLoggingJI (figure 59) comprise
operations named after global operations of CrisisWithVS.

Figure 60 presents contract diagrams of operation CreateWR in CrisisAutho-
risationJI (left) and CrisisLoggingJI (right). In CrisisAuthorisationJI, the contract
diagram declares output t! and says in postcondition compartment that its value
is TCreateWR, which is the access-controlled task corresponding to this opera-
tion. In CrisisLoggingJI, CreateWR declares output ek! and says in postcondition
compartment that its value is EvCreateWR, which is the logging event corre-
sponding to operation CreateWR.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 189

CreateWR CreateCrisisFromWR

AssociateWRWithCrisis

ViewVideoSurveillance

ShowVideoSurveillance IgnoreWR

CancelVideoSurveillance

GetWRs

ViewWR

CreateVictim

Fig. 59. Behavioural diagram is the same in packages CrisisAuthorisationJI and Crisis-
LoggingJI

TCreateWRt!

CreateWR

t! : Task

EvCreateWRek!

CreateWR

ek! : EventKind

Fig. 60. Contract diagrams for join interface operations CreateWR in CrisisAuthorisa-
tionJI (left) and CrisisLoggingJI (right)

CrisisWithVSAll

CrisisLoggingJIAll

CrisisAuthorisationJIAll

Merge CreateWR

CreateWR

CreateWR

CreateWR

CrisisWithVS

CrisisAuthorisationJI

CrisisLoggingJI

Fig. 61. Behavioural diagram of package CrisisWithJI, which uses merge extension
(left). Operation CreateWR of package CrisisWithJI that results from merge extension
(right).

Enriching a base package with join interfaces. Individual join interfaces
need to be added to the base package that is going to be the target of the ulti-
mate composition. Package CrisisWithJI represents this composition; it extends
the join interface packages and base package CrisisWithVS (figure 58, right). Join-
ing of behaviour is done using merge extension. BD of CrisisWithJI (figure 61,
left) illustrates this; it declares operations with the same name as globals of Cri-
sisWithVS and packages defining the join interfaces. Operations with same name
are merged, which results in their composition through conjunction. Figure 61
(right) shows the effect of the merge for operation CreateWR.

Adding aspects to the base package. Once a base package is equipped with
a join interface, it is possible to incorporate aspects. This is done following the
extension or additive approach that characterises VCL.

190 N. Amálio et al.

CrisisWithAspects

AuthorisationCCCMS

CrisisWithJI LoggingCCCMS

SessionMgmtCCCMS

AuthorisationOp

CrisisOp

LoggingOp

CrisisOp

All CrisisWithJI

SessionMgmtOp

Join

Fig. 62. Package CrisisWithAspects extends packages CrisisWithJI, AuthorisationCCMS
and LoggingCCMS (left). Behavioural diagram of package CrisisWithAspects specifying
the join extensions (right).

CrisisOp

UserLoggedInAndHasPerm [t?/t!]

AuthorisationCCCMS

AuthorisationOp

cu? : User

LoggingOp

LoggingCCCMS

CrisisOp CreateCrisisLogItem [ek?/ek!]

SessionMgmtOp

SessionMgmtCCCMS UpdSessionActivity

Fig. 63. Contract diagrams of join operations LoggingOp, AuthorisationOp and Session-
MgmtOp

Package CrisisWithAspects represents the result of adding aspects to the base
package CrisisWithVS. It extends packages CrisisWithJI, LoggingCCCMS, Autho-
risationCCCMS and SessionMgmt (figure 62, left). Figure 62 (right) presents its
BD, which defines the global behaviour of the package using join extension. BD
says that the behaviour of package CrisisWithAspects is made of all global oper-
ations defined in the package CrisisWithJI, but extended with the join contracts
AuthorisationOp, SessionMgmtOp and LoggingOp.

Join operations of figure 62 (right) are described in figure 63. They are as
follows:

– AuthorisationOp imports operation to join (CrisisOp) and declares input cu?
to represent current user. Precondition says that current user must be logged
in and has the required execute permissions for given task (constraint User-
LoggedInAndHasPerm).

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 191

– LoggingOp imports operation to join (CrisisOp), and CreateCrisisLogItem,
which represents extra behaviour to add.

– SessionMgmtOp imports UpdSessionActivity (see figure 21, page 167). This
results in the updating of activity for session of the current user.

Package CrisisWithAspects is to be incorporated by the subsystem package
CentralCCCMS (see figure 6) so that this system’s model includes problem do-
main functionality of package Crisis augmented with all required crosscutting
concerns. The process illustrated above is applied to the construction of other
packages, namely: ResourceWithAspects and MissionWithAspects, also part of
CentralCCCMS (see figure 6).

9 Discussion

This paper illustrates an AOM approach based on VCL with a large-scale case
study. It shows how VCL’s package construct enables the modularisation of con-
cerns that can either be generic or problem-specific, and crosscutting or not. It
highlights VCL’s plug-configure-and-play based on packages, where the configu-
ration step is in most cases trivial.

VCL is a language with an abstract and declarative nature designed with
a formal semantics. It tends to emphasise the what rather than the how ; it
describes what is to be achieved and computed, abstracting away from the details
of how it is achieved. VCL’s contracts, for instance, describe what an operation
is to perform, without going into specific details on how the operation is to be
implemented. This style follows the abstract mathematical semantics of VCL,
which is based on set theory, predicate calculus, and design by contract. A VCL
model results in a Z specification, which can be subject to formal semantic
analysis using proof (assisted by a theorem prover, such as Z/Eves) to enable
verification and validation of VCL models.

The VCL-based AOM approach presented here is symmetric. Crosscutting and
non-crosscuting modules all are represented equally as VCL packages that can be
composed using VCL’s compositions mechanisms. This paper provides several
illustrations of this: section 5 composes aspect packages, section 7 composes
packages addressing non-crosscutting concerns, and section 8 composes aspect
packages with non-crosscutting problem domain packages.

VCL’s package composition mechanisms provide various ways of specifying
compositions. They are as follows:

– State Extension. This occurs when composite packages define their own state
structures by combining state from the packages being extended; this tends
to create more tightly coupled compositions. The Crisis package (figure 49,
page 183) was built in this way.

– Custom behavioural extension. Most package compositions presented here
involve behaviour only: different behaviours from different packages are com-
bined to make new behaviours. Custom extension combines in a single op-
eration the behaviours from the different packages being imported. This is

192 N. Amálio et al.

illustrated in compositions of generic mapping with package MappingDisplay
and video-surveillance with package Crisis in section 8.1.

– Integral, merge and join extensions. VCL provides other ways of compos-
ing behaviour; these specialise custom extension to facilitate behavioural
composition. Integral extension makes available in a new context operations
coming from some package being extended; the operation is used in the new
context integrally (it is not changed in any way). Merge extension merges
(or conjoins) operations from different packages but with the same name in
a new context. Join extension enables the addition of aspects to a group of
operations. These extensions are illustrated in sections 5 and 8.

VCL takes a plug-configure-and-play approach to composition. Its composi-
tions are additive and non-invasive (composed packages are not changed); they
describe how packages are plugged in or out. The configuration of compositions
is, in most cases, trivial; it involves integral, join and merge extensions, which
have nice modular properties. More complicated configurations involve state and
custom extensions. Section 8.2 showed how concerns of access control, authen-
tication and logging could be added to a collection of packages representing
problem domain concerns in a non-invasive way (i.e., composed packages were
not changed), where the laborious part consisted of defining the surrounding
interface between the packages being composed. Once this was done, the com-
position itself was trivial; it involved merge and join extension. In other cases,
the composition involves a custom extension, which, although more laborious,
can also be specified in a modular and non-invasive way.

VCL is designed to capture concerns with functional solutions. This reflects
functional nature of VCL packages, which are functional units encapsulating
structure and behaviour. France et al [2] consider two broad categories of con-
cerns: concrete and quantitative. Concrete concerns have functional solutions,
whereas quantitative concerns are based on the quantification of qualities or at-
tributes of a system. VCL-based AOM approach presented here is applicable to
concrete concerns only. Therefore, all requirements of [12] that refer to quanti-
tative qualities (such as the system shall not exceed a maximum failure rate of
0.001%) are not expressible in VCL.

VCL described most requirements of CCCMS case study [12]. We did not
find difficulties in describing functional requirements. Requirements classified as
non-functional in [12], such as those dealing with security, mobility, persistence,
and accuracy, could also be described in VCL because they could be expressed
functionally. Again, requirements corresponding to quantitative concerns could
not be described because VCL has not been designed to express such properties.

The size of the problem was the biggest obstacle to model the CCCMS. This
often hampered our ability to conceptualise the problem, to separate concerns,
and to find the right abstractions. However, once this was achieved, we could
proceed with VCL modelling. Despite the difficulties, VCL’s mechanisms of sep-
aration of concerns helped to tackle the complexity of the problem. The technical
report that accompanies this paper [14] is 212 pages long; the overall VCL model
of CCCMS addresses eight system concerns and is made of 33 VCL packages.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 193

10 Evaluation

This section evaluates VCL against some qualitative criteria using the VCL
model of CCCMS presented here.

10.1 Scalability

VCL enables the decomposition of a problem into meaningful and manageable
pieces. VCL packages represent modules that are very focussed in terms of what
they do and small in terms of size. VCL’s plug-configure-and-play approach to
composition, where the configuration step is in most cases trivial, clearly states
how a whole is composed out of its parts. It enables a non-invasive approach to
composition that clearly separates the details of the composition from the inner
details of the composed packages. This helps scalability by reducing complex-
ity, aiding understanding and facilitating the construction of large models. A
system can be understood by analysing its parts in isolation together with the
compositions fitting different parts into ensembles. In the VCL model of CC-
CMS, the generic packages have less than ten structures and global operations;
larger packages describe the composition of smaller parts into a whole.

VCL’s package composition mechanisms do not incur a big overhead of com-
plexity. Semantically, all they do is to define a contract, which is then conjoined
with the contract(s) being imported. In the case of custom and join extensions,
the composite contract may add an extra precondition and postcondition. In the
end, all that needs to be done when going from the visual world to the underlying
Z world is to build these conjunctions.

10.2 Usability

There are many features in VCL that benefit usability:

– VCL is a visual language, which by itself tends to aid usability [17]. Visual
representations, when well designed, tend to facilitate human processing [17].

– VCL’s zooming features help to reduce clutter in diagrams, which benefits
usability. Users zoom in to see details and zoom out to get an overview; this is
possible in both definitions of structure and behaviour. In the SD of package
Authentication (figure 13, page 163), the global view highlights the package’s
main structures and the relations that exist between them; through zooming
it is possible to see the details of blobs Session and User (Fig. 13, right,
page 163). The same applies to BDs: the global view highlights the package’s
global behaviour, through zooming it is possible to see the behaviour of local
structures, and by clicking on the operation (in VCL’s tool) it is possible to
see its definition — for instance, see global BD of package AuthenticationOps
(figure 15) and local BD of blob User (figure 16).

– VCL is designed with an underlying formal semantics, providing a layer
that abstracts away from the underlying mathematics. This enables users to
build large formal models using intuitive visual concepts, saving them from

194 N. Amálio et al.

the details of mathematical formulas6. We found that it was more productive
to specify in VCL than in Z directly, and that VCL was easier to learn than
Z; this, of course, need further empirical validation7.

– VCL packages and its plugging style of modular composition benefit usability
by facilitating large-scale modelling. Packages can address a single concern
or more than one concern; concerns can be removed or added using VCL’s
plug-configure-and-play approach.

10.3 Reuse

VCL packages enable large-scale reuse at the level of abstract models. In the
VCL model presented here, packages Authentication and AccessControl represent
generic solutions to common concerns; they can be reused in multiple contexts
requiring a similar solution. We have also seen how we could define packages that
were reused in both VCL models of CentralCCCMS and MobCCCMS (package
MappingDisplay of section 7.2, page 184).

In the VCL-based approach presented here, adaptation and customisation of
generic packages to a context is done through a configuration in an additive
and non-invasive fashion, which enhances reuse. This can be observed in the
customisation of generic packages to the CCCMS context done in section 6.

10.4 Correctness and Testability

VCL is designed with a formal semantics. It takes a translational approach to
semantics, where Z specifications are generated from VCL models8. These Z
specifications are key for correctness and testability in VCL because they enable
formal validation (or testing) and verification of certain desired properties. In Z,
this is done using theorem proving.

A visual approach to formal validation of UML-based models that have a ZOO
semantics (also used for VCL), called snapshot analysis, is developed in [18,9].
This tests a Z specification against examples and counter-examples (represented
as snapshots) using theorem proving. We intend to incorporate this approach in
VCL in the future. Snapshot-analysis of [18,9] is as follows:

– The modelled system’s state space can be tested using single snapshots (UML
object diagrams), which can either constitute a valid model instance or not
(examples and counter-examples). Theorem proving ([18,9] uses the Z-Eves
prover) checks whether the snapshot is valid or not. Snapshots effectively
constitute tests, and they can reveal subtle errors in models.

6 VCL’s formal Z semantics is illustrated in [14] with the Z specification of package
Authorisation and its sub-packages (sections 5.1 to 5.5). Complete VCL formalisation
and generation of Z in VCL’s tool, are ongoing efforts at the time of writing.

7 VCL model presented here was developed by a team made of one Z expert, two
Alloy experts and one programmer. According to our experience, VCL appeared to
be easier to learn and use than Z, and it appeared that it was more productive (and
abstract) to specify in VCL than in Z directly.

8 Generation of Z from VCL is an ongoing effort at time of writing; [14] illustrates the
generation of Z from VCL for some packages of the CCCMS’s VCL model.

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 195

– Operations of a model can be validated using snapshot-pairs. Snapshot-pairs
have a before state and an after state; they can represent either a valid or
invalid state transition. Theorem proving checks the validity of snapshot
pairs.

The ZOO-based snapshot analysis of [18,9] has not been applied to the VCL
model presented here. It could have been applied in the following ways:

– We could check the security properties of access control. For instance, to
check that users are not authorised to execute tasks for which they do not
have the required permissions. This would involve building a snapshot-pair
that would achieve this (a non-authorised user executing some task) whose
invalidity would be checked using theorem proving. This could be done in
isolation within the scope of package AccessControl or in the broader model
of the system where AccessControl has been weaved in.

– We could check properties of authentication, session management and other
system concerns in a similar way.

10.5 Evolution

The VCL-based AOM approach illustrated here emphasises localisation of con-
cerns and incremental construction of packages. This facilitates evolution because
changes can be done either locally, as they are confined to individual packages, or
incrementally, by adding new packages to encapsulate new requirements; often
without requiring big changes to the overall model.

The model of the CCCMS presented here evolved in this way. Initially, we
developed a simple model that focussed on the problem domain in order to
gain a better understanding of the problem. Incrementally, we kept adding more
features following the process described in section 2, by building new packages
that would be composed to make a larger whole. It was often the case that we
needed to go back and elaborate parts of the model; however, most of these
changes were local with little impact upon the overall model.

10.6 Variability

VCL’s package construct and its composition mechanisms enable the design
of hierarchies of packages describing a family of model solutions. This is done
by defining packages capturing the commonality of some domain, which are
then specialised for several variants. For instance, in the model presented here,
package Users captures the commonality that exists between Authentication and
AccessControl. We could have built packages representing more than one model
of RBAC in a similar way; these various models could be defined by extending
a base RBAC model.

10.7 Aspect Interaction

VCL is a declarative and abstract language. Its models are set in an abstract
world where computations of individual components are performed in parallel.

196 N. Amálio et al.

This mitigates the ordering problem that is typical of aspect interaction [19].
In the operations of our case study, there is a before-state (pre-condition) and
an after state (post-condition); individual changes to the system’s components
are considered to be done in parallel; there is, therefore, no sequential ordering
of computations. This precludes the ordering problems associated with aspect
interaction. In our VCL models, all that is required to add aspects is to enforce
the pre-condition, or the post-condition, or both; the execution order of compu-
tations representing pre- and post-condition predicates does not matter at this
level of abstraction.

For example, the custom extension of figure 55 composes the generic mapping
with MappingDisplay; the two operations being composed LoadMap and PutRe-
questedMap are considered to be performed in parallel, but synchronised on the
communication channels that they share. In an implementation, PutRequest-
edMap would be executed before LoadMap, but at this level of abstraction this
does not matter — that is a decision to be taken by a refinement of this model.
This simplifies most compositions to a simple conjunction, without the need to
specify an ordering of computations.

11 Related Work

VCL is a visual language for describing precisely structures, their constraints
and behaviour at the abstract level of requirements (or high-level designs). It
has a semantics based on set theory, predicate calculus and design by contract.
VCL can be used on its own or in conjunction with other languages. This paper
uses architectural block diagrams, and UML use case and sequence diagrams to
describe the high-level requirements of the CCCMS; VCL is used to define a
detailed yet abstract requirements model.

11.1 Contracts Notation

VCL uses diagrams of contracts to describe operations. VCL contracts use two
compartments placed side-by-side (left and right) to describe pre- (left) and post-
(right) conditions. This is inspired by Catalysis’ snapshot-pairs [20], where each
snapshot represents a specific system state. VCL contract diagrams, however,
denote an operation specification (a relation between before and after states).

Some approaches augment UML with contracts described as pairs of UML
object-diagram pairs. Lohmann et al. [21,22,23] translate, using graph transfor-
mations, UML class diagrams and contracts to Java skeletons and JML asser-
tions. Visual OCL [24] also uses graph transformations to go from contracts to
OCL. Like VCL, these approaches follow a translational approach to semantics.

Constraint diagrams [25,26] notation has many similarities with VCL; it de-
scribes behaviour based on pre- and post-conditions and uses circles to represent
sets and insideness to represent the subset relation. Unlike VCL, this approach
does not take a translational approach to semantics; instead, the language is
given a semantics to enable modelling and reasoning at the visual level. Con-
straint diagrams, however, are formally defined notation; VCL presented here

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 197

is a design of a language with an outline of a formal semantics. VCL’s design
illustrated here, however, provides better modularity mechanisms than all these
approaches to contracts: contracts are modules that can be composed, and pack-
ages are coarse-grained modular units encapsulating structure and behaviour.

11.2 AOM

Several aspect-oriented modelling (AOM) approaches enhance UML to support
modularisation of crosscutting concerns [2,27,28,29]. France et al. [2,27] propose
an approach to architectural modelling based on class models and textual OCL
operations, where template-based aspect models are instantiated for a particular
context and then composed with a base model; the result of the composition
is a merge based on signatures (a conjunction). VCL differs in that it targets
requirements modelling, it is entirely visual, and does not use templates. The
composition mechanisms of [2] are akin to VCL’s merge extension; VCL provides
other mechanisms of composition, such as custom and join extensions.

Other AOM approaches represent crosscutting behaviour as scenarios [28,29].
Whittle and Araújo’s asymmetric approach [28] builds scenarios of crosscut-
ting behaviour as interaction templates; these are composed with base scenarios
(described as UML sequence diagrams) through an integration operator to syn-
thesise state diagrams. The asymmetric approach of Kienzle et al. [29] defines
aspect models made of class, state and sequence diagrams; it relies on pointcuts
to describe points of insertion of crosscutting behaviour; behavioural models
are composed through a weaving algorithm. VCL differs from these approaches
in that it is symmetric, it uses contracts to totally describe behaviour (as op-
posed to partial scenario descriptions), and does not require complex weaving
algorithms — compositions are done at the level of semantics, hidden from the
visual world, and they involve simple conjunction with some merging of names.
Unlike [28], VCL does not need ordering constraints to specify compositions
involving crosscutting behaviour; at VCL’s level of abstraction computations
occur in parallel. Unlike [29], VCL does not need pointcuts; package operations
are specified separately from compositions, which are described externally in a
non-invasive way.

The protocol modelling AOM approach [30,31] has many things in common
with VCL. It is, like VCL, symmetric and declarative, and designed for abstract
modelling with an underlying formal semantics. Both take a similar declara-
tive approach to composition not requiring weaving algorithms: the semantics
of the composition operators rely on the properties of a composition operator
of an underlying formal language; protocol modelling relies on the CSP parallel
composition operator; VCL presented here relies on the schema conjunction op-
erator of Z. The protocol machines approach defines compositions of individual
protocol state machines, which are descriptions of behaviour. VCL offers sim-
ilar compositions for contracts, VCL’s behavioural artefact. In addition, VCL
provides more flexible operators for coarser-grained compositions at the package
level. The composite package may define some extra behaviour of its own. VCL
provides join and merge extension mechanisms to enable flexible behavioural

198 N. Amálio et al.

compositions at the package level, avoiding the need for individual behavioural
compositions.

12 Conclusions

This paper illustrates a AOM approach based on VCL with the large car-crash
crisis management system case study [12]. It illustrates VCL with fragments of
the overall model to highlight VCL’s AOM features. The complete VCL model
of the case study is given in [14].

This paper illustrates several VCL features that are novel: (a) a modular
approach to visual description of behaviour based on contracts, and (b) the
coarse-grained modularity mechanism of packages, enabling the construction and
flexible composition of classical modules and packages. The most relevant con-
tribution of this paper is to show that VCL’s novel modularity mechanisms are
able to cope with the demands of large-scale modelling. In particular, the paper
shows (a) how VCL’s contract notation is capable of capturing complex be-
haviour, (b) how VCL’s package construct enables modularisation of concerns,
which can either be generic or problem-specific, crosscutting or not crosscutting;
(c) how VCL’s composition mechanisms provide a general and symmetric ap-
proach to the composition of concerns; and (d) how VCL packages constitute a
coarse-grained unit of reuse enabling coarse-grained modular composition.

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

2. France, R., Ray, I., Ghosh, S.: Aspect-oriented approach to early design modelling.
IEE Proc. Softw. 151(4), 173–185 (2004)

3. Amálio, N., Kelsen, P., Ma, Q.: Specifying structural properties and their con-
straints formally, visually and modularly using VCL. In: EMMSAD 2010. LNBIP,
vol. 50, Springer, Heidelberg (1977)

4. Amálio, N., Kelsen, P.: VCL, a visual language for modelling software systems
formally. In: Jamnik, M. (ed.) Diagrams 2010. LNCS (LNAI), vol. 6170, pp. 282–
284. Springer, Heidelberg (2010)

5. Amálio, N., Kelsen, P., Ma, Q.: The visual contract language: abstract modelling of
software systems visually, formally and modularly. Technical Report TR-LASSY-
10-03, LASSY, Univ. of Luxembourg (2010),
http://vcl.gforge.uni.lu/doc/vcl-tech-rep.pdf

6. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
7. Spivey, J.M.: The Z notation: A reference manual. Prentice-Hall, Englewood Cliffs

(1992)
8. Amálio, N., Polack, F., Stepney, S.: An object-oriented structuring for Z based on

views. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS,
vol. 3455, pp. 262–278. Springer, Heidelberg (2005)

9. Amálio, N.: Generative frameworks for rigorous model-driven development. Ph.D.
thesis, Dept. Computer Science, Univ. of York (2007)

10. Amálio, N., Polack, F., Stepney, S.: UML+Z: Augmenting UML with Z. In: Abrias,
H., Frappier, M. (eds.) Software Specification Methods. ISTE (2006)

http://vcl.gforge.uni.lu/doc/vcl-tech-rep.pdf

Using VCL as an Aspect-Oriented Approach to Requirements Modelling 199

11. Amálio, N., Polack, F., Stepney, S.: Frameworks based on templates for rigorous
model-driven development. ENTCS 191, 3–23 (2007)

12. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: a case study
for aspect-oriented modeling. Transactions on Aspect-Oriented Software Develop-
ment 7, 1–22 (2010)

13. Larman, C.: Applying UML and patterns. Prentice-Hall, Englewood Cliffs (2002)
14. Amálio, N., Ma, Q., Glodt, C., Kelsen, P.: VCL specification of the car-crash

crisis management system. Technical Report TR-LASSY-09-03, LASSY, Univ. of
Luxembourg (2009), http://vcl.gforge.uni.lu/doc/vcl-cccms.pdf

15. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2) (1996)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
reusable object-oriented software. Addison-Wesley, Reading (1994)

17. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Sciece 11, 65–99 (1987)

18. Amálio, N., Stepney, S., Polack, F.: Formal proof from UML models. In: Davies,
J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 418–433.
Springer, Heidelberg (2004)

19. Wilke Havings, I.N.L.B., Aksit, M.: A graph-based approach to modeling and de-
tecting composition conflicts related to introductions. In: AOSD 2007, pp. 85–95.
ACM Press, New York (2007)

20. D’Souza, D., Wills, A.C.: Objects, Components and Frameworks with UML: the
Catalysis approach. Addison-Wesley, Reading (1998)

21. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In: IEEE Sym-
posium on Visual Languages and Human-Centric Computing, pp. 63–70 (2005)

22. Engels, G., Lohmann, M., Sauer, S., Heckel, R.: Model-driven monitoring: an ap-
plication of graph transformation for design by contract. In: Corradini, A., Ehrig,
H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178,
pp. 336–350. Springer, Heidelberg (2006)

23. Heckel, R., Lohmann, M.: Model-driven development of reactive information sys-
tems: from graph transformation rules to JML contracts. International Journal on
Software Tools for Technology Transfer 9(2), 193–207 (2007)

24. Ehrig, K., Winkelmann, J.: Model transformation from visual OCL to OCL using
graph transformation. ENTCS 152, 23–37 (2006)

25. Fish, A., Flowe, J., Howse, J.: The semantics of augmented constraint diagrams.
Journal of Visual Languages and Computing 16, 541–573 (2005)

26. Howse, J., Schuman, S., Stapleton, G.: Diagrammatic formal specification of a
configuration control platform. ENTCS 259, 87–104 (2009)

27. Reddy, R., Ghosh, S., France, R., Straw, G., Bieman, J.M., et al.: Directives for
composing aspect-oriented design class models. In: Rashid, A., Aksit, M. (eds.)
Transactions on Aspect-Oriented Software Development I. LNCS, vol. 3880, pp.
75–105. Springer, Heidelberg (2006)

28. Whittle, J., Araújo, J.: Scenario modelling with aspects. IEE Proc. Softw. 151(4),
157–171 (2004)

29. Kienzle, J., Abed, W.A., Klein, J.: Aspect-oriented multi-view modelling. In: AOSD
2009, IEEE, Los Alamitos (2009)

30. McNeile, A., Simons, N.: Protocol modelling: a modelling approach that supports
reusable behavioural abstractions. Software and Systems Modelling 5(1), 91–107
(2006)

31. McNeile, A., Roubtsova, E.: CSP parallel composition of aspect models. In: AOM
2008, ACM Press, New York (2008)

http://vcl.gforge.uni.lu/doc/vcl-cccms.pdf

	Using VCL to specify the car-crash crisis management system
	Introduction
	Process
	High-Level Requirements Modelling
	Detailed Requirements Modelling in VCL

	High-Level Requirements Model of CCCMS
	Subsystems and Their Functional Features
	Use Cases and System Sequence Diagrams

	Detailed VCL Model
	Packages That Localise Generic Concerns
	Users
	Authentication
	Session Management
	Access Control
	Authenticated Access Control: Composing Aspects
	System Administration and Security Management
	Logging
	Mapping
	Video Surveillance

	Customising Generic Packages for the CCCMS Context
	Customising Authorisation by Defining a Configuration
	Customising Logging by Adjusting Behaviour
	Customising Session Management
	Customising Mapping
	Customising Video-Surveillance

	Packages That Localise Problem Domain Concerns
	Crisis Management
	Package MappingDisplay

	Composing Domain Packages with Aspect Packages
	Direct Composition
	Indirect Composition via a Join Interface

	Discussion
	Evaluation
	Scalability
	Usability
	Reuse
	Correctness and Testability
	Evolution
	Variability
	Aspect Interaction

	Related Work
	Contracts Notation
	AOM

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200063006f007600650072002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

