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Computing absolute free energies of disordered structures by molecular
simulation

T. Schillinga� and F. Schmidb�
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We present a Monte Carlo simulation technique by which the free energy of disordered systems can
be computed directly. It is based on thermodynamic integration. The central idea is to construct an
analytically solvable reference system from a configuration which is representative for the state of
interest. The method can be applied to lattice models �e.g., the Ising model� as well as off-lattice
molecular models. We focus mainly on the more challenging off-lattice case. We propose a Monte
Carlo algorithm, by which the thermodynamic integration path can be sampled efficiently. At the
examples of the hard sphere liquid and a hard disk solid with a defect, we discuss several properties
of the approach. © 2009 American Institute of Physics. �doi:10.1063/1.3274951�

The fundamental equation S= f�U ,V , �N���, which con-
nects the entropy S with the internal energy U, the volume V,
and the numbers N� of particles of type �, contains all infor-
mation about a system that is accessible within classical ther-
modynamics. Thermodynamic potentials such as the free en-
ergy are related to the fundamental equation by the Legendre
transform, hence they equally contain this information.1

Therefore, there is a large interest in computing free energies
in many areas of science, i.e., statistical physics, materials
science, theoretical chemistry, and biology.2 Computing the
free energy of disordered systems such as lipid membranes,
solids with defects, or nematic liquid crystals, is one of the
long-standing unsolved problems in computer simulations.

There are only very few, special cases in which the free
energy of a system can be computed directly: Either the ac-
cessible phase space volume can be enumerated completely
�as for a lattice gas on a small lattice� or the problem can be
solved analytically in the first place �as for the ideal gas�. In
all other cases, one must resort to approximations or to com-
puter simulations. Unfortunately, the latter only give access
to free energy derivatives and free energy differences. Sev-
eral advanced techniques have been developed that allow to
relate free energies of different state points to each other, and
a large body of literature has been written on this topic.2–8

Nevertheless, comparing the free energies of arbitrary sys-
tems remains a challenge, and alternative approaches that
allow to determine the absolute free energy for each indi-
vidual system are clearly of interest.

In principle, absolute free energies can be obtained by
connecting the system of interest with a reference system of
known free energy. For a large class of systems, however,
this insight is idle because no suitable reference system has
been identified yet. In this letter, we propose a general strat-
egy for the construction of analytically solvable reference
systems that can be connected with disordered target struc-
tures via thermodynamic integration.

Thermodynamic integration9,10 is a widely applied
method to determine free energy differences. Here, we
briefly repeat the main ideas: Consider a system with a
Hamiltonian H�rN ,pN ,��, which explicitly depends on some
parameter �. In order to obtain an expression for its free
energy, one uses the relation �F /��= ��H��� /���, where � . . . �
denotes the thermodynamic average. Here and in the follow-
ing, we set kBT=1. In general, ��H��� /��� is directly acces-
sible in a simulation. Thus, the expression above can be used
to evaluate the free energy difference between two systems at
different �: One samples ��H��� /��� for a range of � and
integrates

�F = F��1� − F��0� = �
�0

�1

d��� �H����
���

	
��

. �1�

If the free energy is known for one �0 �reference system�,
one can calculate absolute free energies for a whole range of
�. However, it is crucial that the evolution of ��H��� /��� on
the integration path is reversible, i.e., no phase transition of
first order may be crossed. This limits the choice of suitable
integration paths and reference systems considerably, and
hence a large class of problems could not be tackled by ther-
modynamic integration up to now. For gases, the ideal gas is
a useful reference system, for frozen solids the “Einstein
crystal” �where the particles are bound to fixed sites by har-
monic potentials11–15�. To the best of our knowledge, no gen-
eral strategy to construct reference systems has been intro-
duced so far that can be used for arbitrary disordered
systems. Additionally, even if a dense system can be con-
nected to an ideal gas, the integration path is long and there-
fore errors accumulate leading to low accuracy of the results.

To remedy this situation, we propose to take a configu-
ration that is representative for the structure of interest �ob-
tained within a typical simulation of an equilibrated system�
and to construct a reference system by first “pinning” this
configuration with suitable external fields, and then switch-
ing off the internal interactions. In the remainder of this let-
ter, we will show how this idea can be exploited to evaluate
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absolute free energies in practice. For the purpose of illustra-
tion, we begin by considering the Ising model
H0=−J
�ij�sisj, where �ij� denotes neighboring i and j and
si= �1. To evaluate the free energy F0 at a given tempera-
ture, we simulate the system until it is equilibrated, and then
pick a typical configuration �si

R� as “representative” reference
configuration. The reference system is then defined by the
Hamiltonian

Href��� = − �

i

sisi
R �2�

and its free energy can be computed easily, Fref���
=−N ln�2 cosh����. To establish the connection with the
original system, we proceed in two steps: First, we define an
intermediate model H����=H0+Href���, which reduces to H0

at �=0. The free energy difference �F1���=F0−F���� be-
tween the original system and the intermediate system can be
calculated for arbitrary � by thermodynamic integration, us-
ing ��H� /���=−�
isisi

R�. The second step is to connect the
intermediate system to the reference system. The free energy
difference between the two systems at the same value of �,
�F2���=F����−Fref���, is evaluated by carrying out a simu-
lation with additional Monte Carlo �MC� moves that switch
on and off the interaction J according to a Metropolis crite-
rion. �� is chosen large enough that the spins in the system
H���� hardly fluctuate about the reference value.� We obtain
�F2���=−ln�Pon / Poff�, where Pon,off is the fraction of con-
figurations with interactions switched on �off�. Combining
everything, we obtain the absolute free energy of the target
system H0, F0=Fref���+�F1���+�F2���.

Now, we transfer this idea to off-lattice particle models.
For clarity, we only discuss monatomic liquids and solids in
the NVT ensemble in the following. Our method can be eas-
ily generalized to molecular systems, and, as we shall dem-
onstrate below, to constant pressure simulations. Further-
more, we disregard the kinetic contribution to the free
energy, which can be evaluated trivially.16

Let configurations be characterized by a set of coordi-
nates �ri� and the configurational energy be given by a
Hamiltonian H0=U��ri��. To calculate the free energy of a
given, arbitrary equilibrium structure, we choose a represen-
tative configuration �ri

R�, obtained from a simulation of an
equilibrated system, and construct a reference system by im-
posing local potentials

Href��� = �

i

� �ri − ri
R�

rcutoff
� �3�

that pin the particles’ positions ri to the reference positions
ri

R. Here, � defines attractive potential wells centered at each
position ri

R, with ��x��0 for x�1 and ��0 elsewhere.
Note that particle i can only be trapped by well i and not by
the other wells. To make the particles indistinguishable as
they should be, we allow them to swap identities �i.e., labels
i , j� at regular intervals during the simulations. We will show
below that such identity swaps are also necessary to equili-
brate the system efficiently.

The �configurational� reference free energy is given by

Fref���
N

= lnN

V
� − ln1 +

V0

V
g����� , �4�

where V0 is the volume of the sphere of radius rcutoff and
g����ªd�0

1dx xd−1�e−���x�−1� for a d-dimensional problem.
Here, we mostly used a linear well potential ��x�=x−1, giv-
ing g����=d /�d�e�−
k=0

d �k /k!�. As before, we define an in-
termediate model H����=H0+Href���, and evaluate �F2��� at
high � with a MC simulation where the interaction H0 is
switched on and off �if necessary, in several steps�. �F1��� is
computed by sampling �F� /��= �
i���ri−ri

R� /rcutoff�� and
performing a thermodynamic integration. The remaining
challenge is to devise an algorithm for sampling the interme-
diate model efficiently for arbitrary �.

We first note that the range rcutoff of the reference poten-
tial must be chosen finite when looking at liquid systems.
Otherwise, �F� /�� diverges at �→0 and cannot be sampled
efficiently in large systems. �In practice, the particular choice
of rcutoff turns out to be not crucial.� This, however, intro-
duces a problem: The particles need to find their respective
wells of attraction. We therefore introduce two MC moves
that help particles i explore their well i �Fig. 1�. One move
�Fig. 1�b�� swaps particles in a smart way. It works as fol-
lows:

• Pick a random particle i and find the set of particles �ni�
that are within the attraction range of well i.

• If particle i� �ni�, pick a particle j from �ni� and swap i
and j with the probability min�1, �ni /N�e−�H��.

• Otherwise, pick a particle j from all particles;

• if j� �ni�, swap with probability min�1, �N /ni�e−�H��.

• if j� �ni�, swap with probability min�1,e−�H��.

Here, �H� is the difference in the energies �according to
the intermediate model� of the old and new configuration.
This algorithm promotes particle swaps that bring particles
close to their respective well and nevertheless satisfies de-
tailed balance.

The other move �Fig. 1�c�� relocates particles i with a
bias toward the neighborhood of their well i.

• Pick a random particle i �with position ri�.

• Choose a new position ri� from a given �biased� distri-
bution Pi�ri��=exp�−W��ri�−ri

R���.

FIG. 1. Sketch of moves in our MC algorithm. �a� Simple particle displace-
ments. �Could be replaced, e.g., by short molecular dynamics runs.� �b�
Smart particle swaps. �c� Smart particle relocations. See text for explanation.
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• Relocate the particle from r to ri� with probability
min�1, P�ri� / P�ri��e

−�H��.

Obvious choices for W�r� which we have tested are
W�r�=���r /rcutoff� or W�r�=const. for r�rcutoff. At high �,
the relocation move helps to overcome trapped situations
where most particles are bound to a well, and a few cannot
escape from a local cage. To illustrate the effect of the dif-
ferent moves, Fig. 2 shows the evolution of the observable
��i�, averaged over all particles i, in a two-dimensional sys-
tem of hard disks, after � had been raised from zero to a high
value. In a MC simulation that includes only random particle
displacements, the system is far from equilibration after one
million MC sweeps �a�. The smart swap moves speed up
equilibration considerably, but the system gets trapped in a
configuration where one particle cannot enter its well �b�.
This problem is solved by including smart relocation moves
�c�.

We will now demonstrate the power of our approach at a
few examples. We have studied hard spheres in two �2d� and
three dimensions �3d�. The simulations were carried out on
ordinary workstations with test programs within a few days.
Optimized programs would yield even higher accuracy. For
the remainder of this letter, we use the particle diameter D as
unit of length.

Table I shows results for the free energy of a liquid in
3d. The simulations were performed on a system of N=256
particles, using 50 values of � and 6�105 MC sweeps for
each value at N /V=0.25 and N /V=0.5, and 200 values of �
times 1 Mio. MC sweeps at N /V=0.75. The results agree
with the values obtained by integration of the Carnahan–
Starling equation of state17 within the error bars. For N /V
=0.5, we compared the cases �a� linear potential � and liquid
reference state, �b� linear � and crystalline reference state,
and �c� harmonic � and liquid reference state. Within the
error bars, these variations produce the same result. How-
ever, for more accurate calculations the linear potential
seems to be most useful because the particles get trapped
most efficiently. In case �b�, we did not see a hysteresis on
increasing/decreasing �. This will presumably be different
closer to liquid/solid coexistence. Nevertheless, we can con-
clude that our method is robust and may work even if the
reference configuration is not “ideal,” i.e., not representative
of the target structure.

Next, we show an example for the application of the
method to dense disordered systems, where the dynamics is
driven by cooperative processes. We studied hard disks in 2d
up to densities where the equilibrium phase is a solid, and
enforced a vacancy defect by taking one particle out of an
otherwise ordered configuration. These simulations were car-
ried out at constant pressure P in a rectangular simulation
box of varying area, but fixed side ratio 1:�3 /4, to accom-
modate a triangular lattice. The defect is then stable, but
highly mobile �see Fig. 3, right�.

We compare three different structures �Fig. 3, left�: An
ordered solid �a�, an ordered solid with a vacancy �b�, and a
metastable disordered jammed phase �c�, which was obtained
by compressing the system from the fluid phase. Free energy
calculations were carried out at P=10 for these three cases,
and additionally at P=6, in the fluid regime. To calculate the
free energy in the enthalpic ensemble, we use a reference
system that is defined in terms of scalable coordinates �i.e.,
the positions of the well centers are rescaled along with the
particle coordinates if the volume of the system changes�,
and pin the volume of the system by an additional term
��V−Vref�2 in the reference Hamiltonian. The resulting free
enthalpies G can be related to the chemical potential � by
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FIG. 2. Illustration of the effect of the moves of Fig. 1 on the equilibration
of a system of 80 hard disks �diameter D� at a density 	=0.8 /D2, after
switching on linear well potentials with strength �=50 �rcutoff=2D�. Swap
moves and relocation moves �one per bead� were attempted one per 100 MC
sweeps. Left: Evolution of ��� in simulations that include different moves
as indicated. Right: Corresponding final configurations. Circles indicate par-
ticle positions, crosses give well positions. Particles and their respective
wells are connected by straight lines.

TABLE I. Results for the free energy of hard spheres. F /NCS is the value
according to the Carnahan–Starling equation of state �Ref. 17�.

N /V F /N �F /N�CS

0.25 0.620�0.002 0.625
0.5a 1.541�0.002 1.544
0.5b 1.540�0.002 1.544
0.5c 1.549�0.002 1.544
0.75 3.009�0.005 3.005

aLinear potential �, liquid reference state.
bLinear �, hcp reference state.
cHarmonic �, liquid reference state.
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FIG. 3. Characterization of the dense two-dimensional systems discussed in
the text. Left: Pressure vs density as obtained from constant pressure simu-
lations at �=0. �a� N=100 particles, expanded from an ordered solid phase,
�b� N=99 particles, expanded from an ordered solid phase with one vacancy,
�c� N=100 particles �diameter D�, compressed from the fluid phase. The
solid line shows the theoretical estimate �Ref. 18� P= 	̂ / �1− �
 /4�	̂�2 with
	̂= �N+1� / �V�. Right: A configuration with one vacancy at the beginning
�crosses� and the end �circles� of a MC run. The thin and thick arrows mark
the respective positions of the defect.
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virtue of the thermodynamic relation G=�N.
At P=6, the free energy calculation yields the free en-

thalpy per particle �=8.997�0.002, which is in reasonable
agreement with the theoretical estimate �=9.047.18 At
P=10, we found �solid=13.617�0.002 in the solid state and
�jam=13.675�0.002 in the jammed state, which establishes
that the solid is indeed the stable phase. For the system with
one defect, we obtained the total enthalpy Gdefect

=1361.7�0.2. This result can be used to estimate the core
free energy of the vacancy �c=Gdefect−�solidN+ln�N�
=7.1�0.3, which corresponds to a relative vacancy fre-
quency of roughly 10−3. �For comparison, the frequency of
vacancies at liquid/solid coexistence19 in 3d is roughly 10−4.�
Probably, �c is largely overestimated due to finite size ef-
fects, hence the value given above is at best an upper bound.
More detailed studies shall be carried out in the future. Here,
the example mainly serves to illustrate the use of our ap-
proach in situations where free energies are difficult to ac-
cess with other methods.

In summary, we have introduced a general method to
compute absolute free energies for a wide range of struc-
tures. We have illustrated the method for monatomic simple
systems, but it can be applied equally well to molecular flu-
ids and mixtures. We anticipate that our method will be use-
ful to calculate free energies of systems that are not directly
connected with the ideal gas, such as liquid crystal phases or
membranes. In combination with additional smart moves
such as configurational bias,9 it should also be applicable to
macromolecular systems. Another promising field of applica-
tion is defects in solids. From a fundamental point of view, it
should be interesting to study how well the method can be

applied to glassy systems, which have not just one, but a
whole set of representative configurations, one for each local
minimum in a rugged free energy landscape.

We thank M. Oettel for stimulating discussions. We are
grateful to the DFG �Emmy Noether Program SCHI 853/1-3
and SFB 625� for financial support.
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