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Abstract

Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the
topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability
makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be
considered.
A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past
few years, with a focus on network inference, network intervention and control. With respect to areas of applications,
PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal
transduction, metabolic, and also physiological networks. At the same time, a number of computational tools,
facilitating the modelling and analysis of PBNs, are continuously developed.
A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a
comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to
their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis
of complex biological systems, ranging from molecular to physiological levels.
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Background
A large number of formal representation types that exist
in Systems Biology are used to construct distinctive math-
ematical models, each with their own strengths and
weaknesses. On one hand, deciphering the complexity
of biological systems by quantitative methods, such as
ordinary differential equation (ODE) based mathemat-
ical models, yields detailed representations with high
predictive power. Such an approach is however often
hampered by the low availability and/or identifiability
of kinetic parameters and experimental data [1]. These
limitations often result in the generation of relatively
small quantitative network models. On the other hand,
qualitative modelling frameworks such as the Boolean
Networks (BNs), allow for describing large biological net-
works while still preserving important properties of the
systems [2]. The models pertaining to this latter class
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fail nevertheless to offer a quantitative determination of
the system’s dynamics due to their inherent qualitative
nature.

Probabilistic Boolean networks (PBNs) were introduced
in 2002 by Shmulevich et al. as an extension of the
Boolean Network concept and as an alternative for mod-
elling gene regulatory networks [3]. PBNs combine the
rule-based modelling of a BN, as introduced by Kauff-
man [4-7], with uncertainty principles, e.g., as described
by a Markov chain [8]. In terms of applications, anal-
ogously to the case of traditional BNs, the qualitative
nature of state and time in a PBN framework allows
for modelling of large-scale networks. The integrated
stochastic properties of PBNs additionally enable semi-
quantitative properties to be extracted. Existing analytic
methods on PBNs allow for gaining a better under-
standing of how biological systems behave, and offer
in addition the means to compare to traditional BNs.
Examples are the calculation of influences which rep-
resent the quantitative strength of interaction between
certain genes [3], or the determination of steady-state
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distributions to quantitatively predict the activity of cer-
tain genes in steady state [8].

It has been shown in the past years that the use of
PBNs in the biological field is not limited to the molecu-
lar level, but also can potentially be linked to applications
in clinic. To name a few, Tay et al. constructed a PBN
to demonstrate the interplay between dengue virus and
different cytokines which mediate the course of disease
in dengue haemorrhagic fever (DHF) [9]. Ma et al. pro-
cessed functional Magnetic Resonance Imaging (fMRI)
signals to infer a brain connectivity network comparing
between Parkinson’s disease patients and healthy subjects
[10]. Even though the research efforts on PBNs in this
direction are just sprouting, the results from such PBN
studies can provide a first clue on a disease’s etiology and
progression. As PBNs are highly flexible for data integra-
tion and as there exist a number of computational tools
for PBN analysis, PBN is a suitable modelling approach
to integrate information and derive knowledge from omic
scale data which should in turn facilitate a physician’s
decision-making process in clinic.

For the past decade, PBNs were the object of extensive
studies, both theoretical and applied. Among theoretical
topics, there are steady-state distribution, e.g., [11-13],
network construction and inference, e.g., [14-16], net-
work intervention and control, e.g., [17-19]. Several minor
topics were investigated as well, including reachability
analysis [20] or sensitivity analysis [21]. Other studies
dealt with PBNs in biological systems at multi-level such
as gene regulatory networks [22-24], signal transduction
networks [25], metabolic networks [26], and also physi-
ological networks [9,10] which could potentially link to
medicine as previously mentioned. In parallel, a number
of computational tools which facilitate the modelling and
analysis of PBNs are also continuously developed [27-29].
Given the continuous development in this area due to
the broad on-going range of research on PBNs, we offer
a state-of-the-art overview on this modelling framework.
A comparison of PBN to other graphical probabilistic
modelling approaches is also enclosed, specifically with
respect to Bayesian networks. Last but not least, a view
of the theoretical and applied research on PBNs as mod-
els for the study of multi-level biomedical networks is
included.

In order to provide a coherent overview of the recent
advances on PBN, we start with several theoretical
aspects, organised as follows: an introduction to PBNs and
associated dynamics are given in Section ‘Introduction to
probabilistic Boolean networks and their dynamics’, the
construction and inference of PBNs as models for gene
regulatory networks are presented in Section ‘Construc-
tion and inference of PBNs as models of gene regulatory
networks’, structural intervention and external control are
discussed in Section ‘Structural intervention and con-

trol of PBNs’, ending with the relationship between PBNs
and other probabilistic graphical models in Section ‘Rela-
tionship between PBNs and other probabilistic graphical
models’. Later, in Section ‘PBN applications in biological
and biomedical studies’ we present a broad summary of
PBN applications as a representation of biological net-
works followed by a discussion on the future applications
of PBN in Systems Biology and Systems Biomedicine. A
short conclusion is given in Section ‘Conclusion’.

Introduction to probabilistic Boolean networks
and their dynamics
Boolean networks
A Boolean Network (BN) G(V , F), as originally introduced
by Kauffman [4-7], is defined as a set of binary-valued
variables (nodes) V = {x1, x2, . . . , xn} and a vector of
Boolean functions f = (f1, . . . , fn). At each updating
epoch, referred to as time point t (t = 0, 1, 2, . . .), the
state of the network is defined by the vector x(t) =
(x1(t), x2(t), . . . , xn(t)), where xi(t) is the value of variable
xi at time t, i.e., xi(t) ∈ {0, 1} (i = 1, 2, . . . , n). For each
variable xi there exists a predictor set {xi1 , xi2 , . . . , xik(i)}
and a Boolean predictor function (or simply predictor) fi
being the i-th element of f that determines the value of xi
at the next time point, i.e.,

xi(t + 1) = fi(xi1(t), xi2(t), . . . , xik(i) (t)), (1)

where 1 ≤ i1 < i2 < · · · < ik(i) ≤ n. Since
the predictor functions of f are time-homogenous, the
notation can be simplified by writing fi(xi1 , xi2 , . . . , xik(i) ).
Without loss of generality, k(i) can be defined to be
a constant equal to n for all i by introducing ficti-
tious variables in each function: the variable xi is ficti-
tious for a function f if f (x1, . . . , xi−1, 0, xi+1, . . . , xn) =
f (x1, . . . , xi−1, 1, xi+1, . . . , xn) for all possible values of
x1, . . . , xi−1, xi+1, . . . , xn. A variable that is not fictitious is
referred to as essential. The k(i) elements of the predictor
set {xi1 , xi2 , . . . , xik(i)} are referred to as the essential pre-
dictors of variable xi. The vector f of predictor functions
constitutes the network transition function (or simply the
network function). The network function f determines the
time evolution of the states of the Boolean network, i.e.,
x(t + 1) = f (x(t)). Thus, the BN’s dynamics is determin-
istic. The only potential uncertainty is in the selection of
the initial starting state of the network.

Given an initial state, within a finite number of steps,
the BN will transition into a fixed state or a set of states
through which it will repeatedly cycle forever. In the first
case, each such fixed state is called a singleton attractor,
whereas in the second case, the set of states is referred to
as a cyclic attractor. An attractor is either a singleton or
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a cyclic attractor. The number of transitions required to
return to a given state in an attractor is the cycle length of
that attractor. The attractor structure of the BN is deter-
mined by the particular combination of singleton and
cyclic attractors, and by the cycle lengths of the cyclic
attractors. The states within an attractor are called attrac-
tor states. Non-attractor states are called transient and are
visited at most once on any network trajectory. The states
that lead into an attractor constitute its basin of attrac-
tion. The basins form a partition of the state space of the
BN. For example, in Figure 1 the state transition diagrams
of four different Boolean networks with three variables
are given (in fact all these Boolean networks constitute a
probabilistic Boolean network — the framework of prob-
abilistic Boolean networks is presented in Section ‘5’). For
each of these networks attractor states and transient states

are indicated and the cyclic- and singleton attractors are
given.

A Boolean Network with perturbations (BNp) is a BN
with an introduced positive probability for which, at any
transition, the network can depart from its current tra-
jectory into a randomly chosen state, which becomes an
initial state of a new trajectory. Formally, the perturba-
tion mechanism is modelled by introducing a parameter
p, 0 < p < 1, and a so-called perturbation vector γ =
(γ1, γ2, . . . , γn), where γ1, γ2, . . . , γn are independent and
identically distributed (i.i.d.) binary-valued random vari-
ables a such that Pr{γi = 1} = p, and Pr{γi = 0} = 1 − p,
for all i = 1, 2, . . . , n. For every transition step of the net-
work a new realisation of the perturbation vector is given.
If x(t) ∈ {0, 1}n is the state of the network at time t, then
the next state x(t + 1) is given by either f (x(t)) or by
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Figure 1 State transition diagrams of the four constituent Boolean networks of the PBN in Figure 2. For each constituent BN the attractor
states and the transitions between them are indicated with solid circles and arrows, respectively. The remaining transitions and transient states are
indicated with dashed arrows and circles, respectively. (a) The constituent BN of the PBN in Figure 2corresponding to transition function f 1. There is
only one attractor, i.e., {011, 111}, which is a cyclic attractor. (b) The constituent BN of the PBN in Figure 2 corresponding to transition function f 2.
There are two cyclic attractors: {011, 111}, {001, 101} and one singleton attractor: {110}. (c) The constituent BN of the PBN in Figure 2 corresponding
to transition function f 3. {001, 110, 111} is the cyclic attractor. (d) The constituent BN of the PBN in Figure 2corresponding to transition function f 4.
There are two attractors: a cyclic one, i.e., {001, 111} and a singleton one, i.e., {110}.
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x(t) ⊕ γ (t), where ⊕ is component-wise addition modulo
2 and γ (t) ∈ {0, 1}n is the realisation of the perturbation
vector for the current transition. The choice of the state
transition rule depends on the current realisation of the
perturbation vector. Two cases are distinguished: either
γ (t) = 0 or at least one component of γ (t) is 1, i.e.,
γ (t) �= 0. In the first case, which happens with probability
(1 − p)n, the next state is given by f (x(t)). In the second
case, given with probability 1 − (1 − p)n, the next state
is determined as x(t) ⊕ γ (t): if γi = 1, then xi changes
its value; otherwise it does not (i = 1, 2, . . . , n). Since
γ (t) �= 0, at least one of the nodes flips its value.

The attractors of a Boolean network characterise its
long-run behaviour [8]. However, if random perturbations
are incorporated, the network can escape the attractors.
In particular, perturbations allow the system to reach
any of its states from any current state in one transi-
tion. In consequence, the dynamics of the BNp is given
by an ergodic Markov chain [30], b having a unique sta-
tionary distribution which simultaneously is its steady-
state (limiting) distribution. The steady-state probability
distribution, where each state is assigned a non-zero
probability, characterises the long-run behaviour of the
BNp. Nevertheless, if perturbation probability is very
small, the network will remain in the attractors of the orig-
inal network for most of the time, meaning that attractor
states will carry most of the steady-state probability mass
[8]. In this way the attractor states remain significant for
the description of the long-run behaviour of a Boolean
network after adding perturbations. Thus, a BNp inherits
the attractor-basin structure from the original BN; how-
ever, once an attractor has been reached, the network
remains in it until a perturbation occurs that throws the
network out of it [31].

Probabilistic Boolean networks
PBNs were introduced in order to overcome the deter-
ministic rigidity of BNs [3,32,33], originally as a model for
gene regulatory networks. A PBN consists of a finite col-
lection of BNs, each defined by a fixed network function,
and a probability distribution that governs the switching
between these BNs.

Formally, a probabilistic Boolean network G(V ,F) is
defined by a set of binary-valued variables (nodes)c V =
{x1, x2, . . . , xn} and a list of sets F = (F1, F2, . . . , Fn). For
i = 1, 2, . . . , n the set Fi is given as {f (i)

1 , f (i)
2 , . . . , f (i)

l(i)},
where f (i)

j , 1 ≤ j ≤ l(i), is a possible Boolean predictor
function for the variable xi, with l(i) the number of pos-
sible predictors for xi. In general, each node xi can have
l(i) different sets of essential predictors, each specified for
a particular predictor function in Fi. A realisation of the
PBN at a given instant of time is determined by a vec-
tor of predictor functions, where the ith element of that

vector contains the function selected at that time point
for xi. For a PBN with N realisations there are N possible
network transition functions f 1, f 2, . . . , f N of the form
f l = (f (1)

l1 , f (2)

l2 , . . . , f (n)

ln ), l = 1, 2, . . . , N , 1 ≤ lj ≤ l(j),
f (j)
lj ∈ Fj, and j = 1, 2, . . . , n. Each network function f l

defines a constituent Boolean network, or context, of the
PBN.

Let f = (f (1), f (2), . . . , f (n)) be a random vector taking
values in F1 × F2 × · · · × Fn; in other words, f is a random
vector that acquires as value any of the realisations of the
PBN. The probability that the predictor f (i)

j , 1 ≤ j ≤ l(i),
is selected to determine the value of xi is given by

c(i)
j = Pr{f (i) = f (i)

j } =
∑

l:f (i)
li

=f (i)
j

Pr{f = f l}. (2)

It follows that
∑l(i)

j=1 c(i)
j = 1. The PBN is said to be

independent if the random variables f (1), f (2), . . . , f (n) are
independent. Assuming independence, there are N =∏n

i=1 l(i) realisations (constituent BNs) of the PBN and the
probability distribution on f governing the selection of a
particular realisation is given by Pr{f = f l} = ∏n

i=1 c(i)
li .

An example of a PBN with three nodes is given in
Figure2.

At each time point of the PBN’s evolution, a decision
is made whether to switch the constituent network. This
is modelled with a binary random variable ξ : if ξ =
0, then the current constituent network is preserved; if
ξ = 1, then a context is randomly selected from all the
constituent networks in accordance with the probability
distribution of f . Notice that this definition implies that
there are two mutually exclusive ways in which the context
may remain unchanged: 1) either ξ = 0 or 2) ξ = 1 and
the current network is reselected. The functional switch-
ing probability q = Pr(ξ = 1) is a system parameter. Two
cases are distinguished in the literature: if q = 1, then
a switch is made at each updating epoch; if q < 1, then
the PBN’s evolution in consecutive time points proceeds
in accordance with a given constituent BN until the ran-
dom variable ξ calls for a switch. If q = 1, as originally
introduced in [32], the PBN is said to be instantaneously
random; if q < 1, it is said to be context-sensitive. The
former models uncertainty in model selection, the lat-
ter models the situation where the model is affected by
latent variables outside the model [34]. As an example let
us consider the PBN given in Figure 2. Let the PBN be
instantaneously random, i.e., q = 1. The four constituent
BNs associated with the four transition functions f 1, f 2,
f 3, and f 4, are given in Figure 1. Further, let us assume
that the initial state is the state 101 and that the con-
secutive realisations are f 1, f 2, f 4, f 3, f 2, f 2, f 3, f 4, f 4, . . ..
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x 1x 2x 3 f (1)
1 f (2)

1 f (2)
2 f (3)

1 f (3)
2

000 0 1 0 1 1
001 1 0 1 0 1
010 1 0 0 1 0
011 1 1 1 1 1
100 0 0 1 0 1
101 0 0 1 1 1
110 1 1 1 1 0
111 0 1 0 1 1

c( i )
j 1 0.3 0.7 0.4 0.6

101

100

111

110

011

001000

010

A =

0 c3 + c4 0 c1 + c2 0 0 0 0
0 0 0 0 c1 c2 c3 c4

0 0 0 0 c2 + c4 c1 + c3 0 0
0 0 0 0 0 0 0 1
c1 c2 c3 c4 0 0 0 0
0 c1 + c2 0 c3 + c4 0 0 0 0
0 0 0 0 0 0 c2 + c4 c1 + c3

0 c3 + c4 0 c1 + c2 0 0 0 0

Figure 2 An example of truth table, state transition diagram, and transition probability matrix of a PBN. The truth table, the state transition
diagram, and the transition probability matrix A of a PBN without perturbations consisting of three variables V = {x1, x2, x3} and F = (F1, F2, F3),
where F1 = {f (1)

1 }, F2 = {f (2)
1 , f (2)

2 }, and F3 = {f (3)
1 , f (3)

2 }. Since there is one predictor function for node x1 and two predictors for nodes x2 and x3,

there are 1 · 2 · 2 = 4 realisations of the PBN given by four network transition functions f 1 = (f (1)
1 , f (2)

1 , f (3)
1 ), f 2 = (f (1)

1 , f (2)
1 , f (3)

2 ),

f 3 = (f (1)
1 , f (2)

2 , f (3)
1 ), and f 4 = (f (1)

1 , f (2)
2 , f (3)

2 ) with associated probabilities c1 = 0.12, c2 = 0.18, c3 = 0.28, and c4 = 0.42, respectively. For example,

c3 = c(1)
1 · c(2)

2 · c(3)
1 = 1 · 0.7 · 0.4 = 0.28. The edges in the state transition diagram are labelled with the transition probabilities. As can be seen from

the state transition diagram, the underlying Markov chain is irreducible and aperiodic, thus ergodic. The steady-state (limiting) distribution for the
chosen ci values, i = 1..4, is given by [ 7

1609 , 3640
14481 , 49

4827 , 716
4827 , 175

4827 , 238
4827 , 2548

14481 , 4696
14481 ] (the states are considered in the lexicographical order from 000

to 111).

Then, the corresponding time evolution of the PBN (tra-
jectory) is given by the following sequence of state tran-
sitions: 101 → 001 → 110 → 110 → 111 → 011 →
111 → 001 → 100 → 011 → . . .. Irrespective of which
constituent network (realisation) is selected next, the con-
secutive state in the trajectory is going to be 111 as the
probability of moving from 011 to 111 is c1+c2+c3+c4 =1.

A Probabilistic Boolean Network with perturbations
(PBNp) is the variant of the PBN framework in which
each constituent network is a BNp with a common per-
turbation probability parameter p, 0 < p < 1, and a
perturbation vector γ . If x(t) ∈ {0, 1}n is the current state
of the network and γ (t) = 0, then the next state of the
network is determined according to the current network
function f l, i.e., x(t + 1) = f l(x(t)). If x(t) ∈ {0, 1}n is
the current state and γ (t) �= 0, then x(t + 1) = x(t) ⊕
γ (t). Whereas a context switch in a PBNp corresponds
to a change in latent variables, resulting in a structural
change in the functions that govern the PBNp, a random
perturbation reflects a transient value change that leaves
the network wiring unmodified, as for example in the
case of gene activation or inactivation caused by external
stimuli such as stress conditions or small molecule
inhibitors [8].

The relationship between the four frameworks, i.e.,
Boolean networks, Boolean networks with perturbations,
probabilistic Boolean networks, and probabilistic Boolean
networks with perturbations is schematically depicted in
Figure 3.

Dynamics of PBNs
A Boolean network with perturbations can be viewed as
a homogenous irreducible Markov chain Xt , with state
space X = {0, 1}n, where n is the number of nodes in the
BNp. Let Py(x) = Pr[ Xt0+1 = x|Xt0 = y] be the Markov
chain transition probability from state y to state x at any
instant t0. This probability is a weighted sum of two tran-
sition probabilities, one for the BN, with probability (1 −
p)n, and the other for the perturbations, with probability
1 − (1 − p)n, i.e.,

Py(x) = 1[f (y)=x](1−p)n+(1−1[x=y])pη(x,y)(1−p)n−η(x,y),
(3)

where p is the perturbation probability, 1 is the indicator
function (1[P] = 1 if the proposition P is true, and 1[P] = 0
otherwise), and η(x, y) is the Hamming distance between
the binary vectors x and y.
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Figure 3 Relationships between the frameworks of Boolean and
probabilistic Boolean networks. A Boolean network (BN) can be
converted to a Boolean network with perturbations (BNp) by
introducing a probability parameter p, 0 < p < 1, and a perturbation
vector (γ ). A probabilistic Boolean network (PBN) is built upon a
number of constituent BNs and a probability distribution governing
the choice of the Boolean network in accordance with which the next
transition is made. Analogically, a PBN can be converted to a
probabilistic Boolean network with perturbations (PBNp) by
introducing a probability parameter p, 0 < p < 1, and a perturbation
vector (γ ). A probabilistic Boolean network (PBN) is built upon a
number of constituent BNps and a probability distribution governing
the choice of the BNp in accordance with which the next transition is
made.

The Markov chain Xt is ergodic, which follows from
the fact that it is aperiodic, irreducible, and defined on
a finite state space. In other words, it possesses a unique
stationary distribution, being simultaneously its steady-
state (limiting) distribution. If P(t)

y (x) is the probability
that the system transitions from y to x in t time steps, i.e.,
P(t)

y (x) = Pr[ Xt0+t = x|Xt0 = y], then the steady-state
distribution π of Xt is defined by π(x) = limt→∞ P(t)

k (x)

for any initial state k ∈ X . For a set of states B ⊆ X the
steady-state probability is given by π(B) = ∑

x∈B π(x) =
limt→∞ P(t)

k (B) for any initial state k ∈ X . For exam-
ple, the steady-state distribution of the Markov chain
given by the transition probability matrix in Figure 2 is
[ 7

1609 , 3640
14481 , 49

4827 , 716
4827 , 175

4827 , 238
4827 , 2548

14481 , 4696
14481 ] (the states

are considered in the lexicographical order from 000 to
111).

In the case of a probabilistic Boolean network, the tran-
sition probabilities Py(x) of the underlying Markov chain
Xt depend on the probability of selecting a network tran-
sition function f k , k = 1, 2, . . . , N , that determines the
transition from y to x i.e.,

Py(x) = Pr[ Xt+1 = x|Xt = y] =
N∑

k=1
1[f k(y)=x]·Pr{f = f k},

(4)

where N, as before, is the number of constituent BNs and f
is a random vector determining the PBN’s realisation. Let-
ting x and y range all states in X , the transition probability
matrix A of size 2n × 2n can be formed and expressed as

A =
N∑

k=1
Ak · Pr{f = f k}, (5)

where Ak is the transition matrix corresponding to the
k-th constituent BN.

Now, adding perturbations with probability p makes
the underlying finite-space Markov chain Xt of the PBNp
aperiodic and irreducible, hence ergodic. This allows the
network dynamics of a PBNp to be studied with the use
of the rich theory of ergodic Markov chains [30]. In par-
ticular, in the case of instantaneously random PBNps, the
transition probability matrix Ã is given by

Ã = (1 − p)n · A + P̃, (6)

where P̃ is the perturbation matrix of the form

P̃y,x = (1 − 1[x=y])pη(x,y)(1 − p)n−η(x,y), (7)

where, as before, 1 is the indicator function and η is the
Hamming distance. As in the case of BNps, the ergod-
icy of the underlying Markov chain ensures the existence
of the unique stationary distribution being the limiting
distribution of the chain.

By definition, the set of attractors of a PBN is the union
of the sets of attractors of the constituent networks [8].
Notice that whereas in a BN two attractors cannot inter-
sect, attractors from different contexts can intersect in
the case of a PBN. Similarly as in the case of Boolean
networks, attractors play a major role in the characterisa-
tion of the long-run behaviour of a probabilistic Boolean
network. If, however, perturbations are incorporated, the
long-run behaviour of the network is characterised by its
steady-state distribution. Nevertheless, if both the switch-
ing and perturbation probabilities are very small, then the
attractors still carry most of the steady-state probability
mass [8]. From a biological point of view attractors of such
networks are interesting as they can be given a clear bio-
logical interpretation: they can be used to model cellular
states [31]. For example, in the context of gene regulatory
networks, it is believed that attractors can be interpreted
as cellular phenotypes [7,8]. Thus, the long-run behaviour
of the network given by its steady-state probabilities is
of a special interest. Specifically, the attractor steady-
state probabilities, i.e., π(A), where A is an attractor, are
important. There are a number of approaches towards the
determination and analysis of the steady-state distribution
of a PBNp. We review them shortly.

First, one approach to the steady-state analysis is to con-
struct the state transition matrix in some form or another
and then apply some numerical methods, e.g., iterative,
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decompositional or projection methods [35]. A transi-
tion matrix based approach in which the sparse transition
matrix is constructed in an efficient way and the so-
called power method, which is applied to compute the
steady-state probability distribution, is proposed in [36].
Unfortunately, the size of the state space grows expo-
nentially in the number of nodes (genes) and becomes
prohibitive for matrix-based numerical analysis of larger
networks [11]. In [12], an approximation method for com-
puting the steady-state probability distribution of a PBNp
is derived from the approach of [36]. This method neglects
some constituent BNps with very small probabilities dur-
ing the construction of the transition probability matrix.
An error analysis is given to demonstrate the effective-
ness of this approach. Further, in [13] and [37] a matrix
perturbation method for computing the steady-state
probability distribution of PBNps is proposed together
with its approximation variant. The proposed meth-
ods make use of certain properties of the perturbation
matrix, P̃.

Second, Markov chain Monte Carlo methods [38] rep-
resent a feasible alternative to numerical matrix-based
methods for obtaining steady-state distributions. Given an
ergodic Markov chain, a Monte Carlo simulation method
has been proposed: the probability of being in state x in
the long run can be estimated empirically by simulating
the network for a sufficiently long time and by count-
ing the percentage of time the chain spends in that state
regardless of the starting state [8]. A set of examples of
Monte Carlo simulations from the PBN example in Figure
2 is shown in Figure 4. However, the question that remains
is how to judge whether the simulation time is sufficiently
long? The key factor here is the convergence, which in the
case of a PBNp is known to depend to a large extent on
the perturbation probability p [11]. Several approaches for
determining the number of iterations necessary to achieve
convergence were developed. A typical class consists of
methods based on the second-largest eigenvalue of the
transitions probability matrix, but due to reasons already
mentioned above, these approaches can be impractical
for larger networks. Another method utilises the so-called
minorisation condition for Markov chains [39] to provide
a priori bounds on the number of iterations. However, the
usefulness of this approach is also limited (see [11] for
details). There exist a number of methods for empirically
diagnosing convergence to the steady-state distribution
[40,41]. In [11] two of them are considered: one, based
on the Kolmogorov-Smirnov test, a nonparametric test
for the equality of continuous, one-dimensional proba-
bility distributions, and, second, the approach proposed
in [42] which reduces the study of convergence of the
chain to the investigation of the convergence of a two-
state Markov chain. For illustration of application of these
approaches to PBNs, we refer to [11] where the joint

steady-state probabilities of combinations between two
genes in human glioma gene expression data set were
analysed.

Finally, as shown in [31], analytical expressions for the
attractor steady-state probabilities can be derived both
for BNps and PBNps. The obtained formulas are fur-
ther exploited to propose an approximate steady-state
computation algorithm.

We just shortly mention here that in the case of
probabilistic Boolean networks without perturbations the
dynamics is given by a Markov chain that does not nec-
essarily be ergodic, specifically the Markov chain may
contain more than one so-called ergodic set of states, also
referred to as a closed, irreducible set of states in the lit-
erature. An ergodic set of states C in a Markov chain
is defined as a set of states where all states communi-
cate and no state outside C is reachable from any state
in Cd. The notion of an ergodic set of the correspond-
ing Markov chain in probabilistic Boolean networks is the
stochastic analogue of the notion of an attractor in stan-
dard Boolean networks [32]. Notice, however, that the
ergodic sets and the attractors of a PBN or PBNp may dif-
fer. In the case of probabilistic Boolean networks without
perturbations where the underlying Markov chain con-
tains more than one ergodic set, considering the ergodic
sets rather than the attractors may be more significant
for understanding the long-run behaviour of the net-
work. For example, in the context of modelling biolog-
ical processes with PBNs, cellular phenotypes may in
fact be represented by the ergodic sets. For more details
see [32,43,44].

A number of other issues related to probabilistic
Boolean network dynamics have been considered in the
literature. We briefly list them here. In [45,46], the
ordering of network switching and state transitions in
context-sensitive PBNs are considered and its influence on
the steady-state probability distributions is investigated.
Algorithms for enumeration of attractors in probabilistic
Boolean networks are discussed in [47]. Stability and sta-
bilisation issues of PBNs are covered in [48]. Further, net-
work transformations from one to another without losing
some crucial properties, e.g., the steady-state probability
distribution, are considered in [49]. For this purpose the
concepts of homomorphisms and ε-homomorphisms for
probabilistic regulatory networks, in particular PBNs, are
developed.

Construction and inference of PBNs as models of
gene regulatory networks
One approach to the dynamical modelling of gene regula-
tion is based on the construction and analysis of network
models. Generally, in the study of dynamical systems,
long-run behaviour characteristics are of utter impor-
tance and their determination is a main aspect of system
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Figure 4 Dynamical simulations of node x2 of the example network in Figure 2, with initial state k = 000. (a) Dynamics of x2 governed by
the constituent BN corresponding to the transition function f 1, where c1 = 1, c2 = c3 = c4 = 0. Starting from 000 the periodic attractor {011, 111}
is reached. The probability of {x2 = 1} given by the stationary distribution is 1. (b) Dynamics of x2 governed by the constituent BN corresponding to
the transition function f 4, where c4 = 1, c1 = c2 = c3 = 0. Starting from 000 the periodic attractor {001, 111} is reached. The probability of {x2 = 1}
given by the stationary distribution related to the reached attractor, i.e., [ 0, 1

2 , 0, 0, 0, 0, 0, 1
2 ] (the states are considered in the lexicographical order), is

0.5. (c,d) Examples of x2 dynamics in the full PBN as given in Figure 2. Starting from 000 different trajectories are obtained for different simulation
runs. The underlying Markov chain is ergodic and a unique stationary distribution, being the steady state (limiting) distribution, exists therefore. The
steady state probability of {x2 = 1} is 0.66.

analysis. Reversely, the task of constructing a network
possessing a specific set of properties is a subject of sys-
tem synthesis. However, this inverse problem is usually
ill-posed, i.e., there may be many models, or none, with
the given properties [50]. Here we concentrate on the
problem of inference from data in the framework of prob-
abilistic Boolean networks, an inverse problem in which
a network is constructed relative to some relationship
with the available data. An outline of the workflow in
network inference in the PBN framework is shown in
Figure 5.

A data-driven approach for model construction con-
sists of inferring the model structure and model param-
eters from measurement data, which in the case of gene
regulation most commonly are gene expression measure-
ments obtained with microarray technology. However,
such data are continuous in nature. Thus, prior to the
inference of Boolean or other discrete-type models (e.g.,
ternary) the measurements are usually discretised. The
most common discretisation is binary (0 or 1) or ternary
(usually -1, 0, 1) [8]. Discretisation is often justified as
biological systems commonly exhibit switch-like on/off

behaviour. Moreover, there are also a number of prag-
matic reasons for quantising the measurements, e.g., it
reduces the level of model complexity implying less com-
putation and lower data requirements for model identi-
fication, provides a certain level of robustness to noise
in the data, and has been shown to substantially reduce
error rates in microarray-based classification [8,51-53]. A
number of methods for discretisation of gene expression
data exist, many of them having their origin in signal pro-
cessing. One approach to quantisation was proposed in
[54]: given some thresholds τ1 < τ2 < . . . (e.g., cor-
responding to limiting cases of a sigmoidal response), a
multilevel discrete variable x is defined as x = ϕ(x) = rk
for τk < x ≤ τk+1. As mentioned in [8], the thresh-
olds can either come from prior knowledge or be chosen
automatically from the data. In fact, there are various
ways for optimal selection of the thresholds τk . One of
the most popular methods is the Lloyd-Max quantizer,
which amounts to minimising a so-called mean square
quantisation error, see [55] for details. Approaches spe-
cific to binarising gene expression data can be found
in [56-58]. Recently, Hopfensitz et al. [58] proposed a
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Microarray data 
(steady-state, time-course)

Binary {0,1} Ternary{-1,0,1} or 
other discrete values

Inferred PBNs

Binarisationor 
discretisation

Regularisation

Identify constituent Boolean 
networks

Heuristic approach

Determine predictor 
probability

Feature: permanently alter the 
underlying network structure 
with minimal structural 
modification

Existing methods: approaches 
based on genetic algorithm; 
one-bit predictor function 
perturbation; function 
perturbation based on general 
perturbation theory in Markov 
chains, such as the SMV 
formula.

Feature: apply external 
perturbation to modulate the 
network dynamic, possibly via 
auxiliary input variables

Existing methods: random gene 
perturbation; finite-horizon 
control for modifying  the 
network dynamic over a 
transient period of time; 
infinite-horizon control to 
change the steady-state 
distribution.

Structural intervention External control

Goal: to increase the probability of reaching 
desirable states in an inferred PBN 

Figure 5 An outline of the workflow in network inference and control in the PBN framework. Microarray data, either from steady-state or
time-course measurements, are typically binarised or discretised into discrete values. A heuristic approach, such as using genetic algorithms, is
generally applied to identify constituent Boolean networks of the inferred PBN. Regularisation methods can be further applied to improve the
accuracy of the inference with use of prior information on the network structure or dynamical rules. A number of well-established methods are
subsequently applied to determine the predictor probability of each constituent Boolean network, thus the PBN is inferred. The inferred PBN can
subsequently be perturbed with the methods on structural intervention or external control. The goal of network control is to increase the
probability of reaching desirable states in the corresponding PBN.

new approach to binarisation which incorporates mea-
surements at multiple resolutions. The method, called
Binarization across Multiple Scales, is based on the com-
putation of a series of step functions, detection of the
strongest discontinuity in each step function and the esti-
mation of the location and variation of the strongest
discontinuities. Two variants of the method are proposed
which differ in the approach towards the calculation of
the series of step functions. The proposed method allows
thresholds determination even with limited number of
samples and simultaneously provides a measure of thresh-
old validity – the latter can further be used to restrict

network inference only to measurements yielding rele-
vant thresholds. An example of application of binarisation
to real data in the context of modelling with PBNs can
be found in [10], where a brain connectivity network of
Parkinson’s disease is analysed. Binarisation is performed
on fMRI real-valued data along the method recently
proposed in [59].

One of the most straightforward inferential approaches
is the consistency problem (also referred to as the extension
problem), that entails a search for a rule from experimental
data [8,60-62]. The problem amounts to finding in a spec-
ified class of Boolean functions one that complies with
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two given sets of “true" and “false" Boolean vectors, i.e.,
a function that takes the value 1 for each of the “true"
vectors and 0 for each of the “false" vectors.

In the case of real experimental data, a consistent exten-
sion may not exist either due to measurement noise or
due to some underlying latent factors or other external
influences not considered in the model [8]. In such case
instead of searching for a consistent extension a Boolean
function that minimises the number of misclassifications
(errors) is considered. This problem is known as the
best-fit extension problem [61] and is computationally
more difficult than the consistency problem, since the
latter is a special case of the former.

The application of PBN for modelling of large-scale
networks is often impeded by limited sample sizes of
experimental data. As mentioned in [63], main challenges
in automated network reconstruction arise from the expo-
nential growth of possible model topologies for increasing
network size, the high level of variability in measured
data often characterised by low signal to noise ratios, and
the usually large number of different components that
are measured versus relatively small number of differ-
ent observations under changing conditions, e.g., number
of time points or perturbations of the biological system.
Together these problems lead to non-identifiability and
over-fitting of models [63]. In such cases any prior infor-
mation on the network structure or dynamical rules is
likely to improve the accuracy of the inference [8,64].
This information usually pertains to model complexity
and is used to penalise excessively complex models. For
this purpose, the so-called regularisation methods can
be employed. The most popular regularisation assump-
tion in gene regulatory modelling is that the inferred
models should be sparse, i.e., the number of regulators
acting on a gene is low [65-68] or that the node degree
in biological networks is often power law distributed,
with only few highly-connected genes, and most genes
having small number of interaction partners [63,69]. Reg-
ularisation is a well-established inference approach in the
framework of Bayesian networks (see, e.g., [63,70,71]) and
can be also used in the framework of BNs and PBNs.
For example, in the case of inference of Boolean net-
works, the so-called sensitivity regularisation method has
been proposed [64]. Due to limited sets of data, the
estimates of the errors of a given model in the best-
fit extension problem, which themselves depend on the
measurements, may be highly variable [64]. The regu-
larisation is built on the observation that the expecta-
tion of the state transition error generally depends on
a number of terms, among others the sensitivity devi-
ation which is a difference in the sensitivities of the
original and the inferred networks. In consequence, as
argued in [64], the sensitivity deviation can be incorpo-
rated as an additional penalty term to the best-fit objective

function, reflecting the hypothesis that the best inference
should have a small error in both state transition and
sensitivity.

In order to infer a PBN, strong candidates for regu-
lar Boolean networks need to be identified first. This
can be performed with generic methods mentioned in
[72] such as literature data compilation, the gene associ-
ation networks approach [73,74] or by applying a heuris-
tic approach, e.g., a genetic algorithm, which searches
through the model space to find good candidates for
the network structure with respect to a specified fitness
function. Next, the candidates’ predictor functions are
combined into a set of network transition functions for the
PBN. An example of PBN model selection using heuristics
can be found in [75].

A common strategy for determining the predictor prob-
abilities relies on the coefficient of determination (CoD)
between target and predictor genes [8,32,72,76]. The CoD
is a measure of relative decrease in error from estimat-
ing transcriptional levels of a target gene via the levels
of its predictor genes rather than the best possible pre-
diction in the absence of predictor genes [8]. The CoDs
can be then translated to the predictor probabilities. How-
ever, as pointed out in [77], for each gene, the maximum
number of possible predictors as well as the number of
their corresponding probabilities is equal to 22n , where
n is the number of nodes. This implies that the number
of parameters in the PBN model is O(n22n

)e. Therefore,
the applicability of the CoD approach is significantly lim-
ited due to the model complexity or imprecisions owing
to insufficient data sample size. This hindrance is often
surpassed by imposing some constraints on the maximum
size of admissible predictors for each gene.

In [50] the authors consider the attractor inverse prob-
lem, that involves designing Boolean networks given
attractor and connectivity information. Two algorithms
for solving this problem are proposed. They are based
on two assumptions on the biological reality: first, the
biological stability, i.e., that most of the steady-state prob-
ability mass is concentrated in the attractors and, second,
the biological tendency to stably occupy a given state,
i.e., attractors are singleton attractor cycles consisting of
a single state. The first algorithm operates directly on the
truth table, while taking into account simultaneously the
information on the attractors and predictor sets. There is
however no control on the level-set structure. The sec-
ond algorithm works on the state transition diagram that
satisfies the design requirements on attractor and level-
set structures and checks whether the associated truth
table has predictor sets that agree with the design goals.
The proposed algorithms can be further used in a pro-
cedure for designing PBN from data. In the approach
described in [50], a collection of BNs is generated by
the first algorithm, then some of the BNs are selected
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based on the basin sizes criterion and combined in a
PBN whose steady-state distribution closely matches the
observed data frequency distribution. This design pro-
cedure has been applied to gene-expression profiles in a
study of 31 malignant melanoma samples in [50].

An inverse PBN construction approach is also described
in [78]. This work relies on expressing the probabil-
ity transition matrix as a weighted sum of Boolean
network matrices. A heuristic algorithm with O(m2n)

complexity is proposed, where n, m stand for the
number of genes, respectively the number of non-zero
entries in the transition matrix. The authors also intro-
duce an entropy based probabilistic extension, both
algorithms being analysed against random transition
matrices.

Usually, the optimal predictor for a gene will not be
perfect as there will be inconsistencies in the data. In
[79] it is proposed to model these inconsistencies in
a way that mimics context changes in genomic regu-
lation, with the intention to view data inconsistencies
as caused by latent variables. The inference procedure
of [79] results in PBNs whose contexts model the data
in such a way that they are consistent within each
context. The key criterion for network design is that
the distribution of data states agrees with the distribu-
tion of expected long-term state observations for the
system.

The probabilities of the system being in a particular
context and the number of constituent networks are deter-
mined by the data. The approach of [79] can be seen as
imposing a structure on a probabilistic Boolean network
that resolves inconsistencies in the data arising from mix-
ing of data from several contexts. It should be noted that
in this approach the contexts are determined directly by
the data, whereas in [32] and [80] constituent networks
depend on the number of high-CoD predictor sets or
high Bayes-score predictor sets, respectively, and these
in turn depend on the designer’s choice of a threshold.
Moreover, the number of constituent networks is deter-
mined by how inconsistencies appear in the data, not
the number of states appearing in the data (see [8] for
an example). The contextual-design method of [79] has
been applied to expression profiles for melanoma genetic
network.

We just mention here that also information theoretic
approaches were considered for inference of PBN from
data. Probably the most widely studied methods are based
on the minimum description length (MDL) principle [81].
Descriptions of inference algorithms that utilise this prin-
ciple can be found, e.g., in [8,82,83].

The manner of inference depends on the kind of exper-
imental data available. There are two cases: 1) time-series
data and 2) steady-state data. We proceed with presenting
them briefly.

Time-course measurements
It is assumed that the available data are a single temporal
sequence of network states. In this case, given a suffi-
ciently long sequence of observations, the goal is to infer
a PBN that is one of plausible candidates to have gener-
ated the data. Usually, an inference procedure for this type
of problem constructs a network that is to some extent
consistent with the observed sequence.

In [84,85], the inference in case of context-sensitive
PBNs with perturbations is considered, where the proba-
bility of switching from the current constituent Boolean
network to a different one is assumed to be small. The
proposed inference procedure consists of three main
steps: first, identification of subsequences in the tempo-
ral data sequence that correspond to constituent Boolean
networks with use of so-called ‘purity functions’; sec-
ond, determination of essential predictors for each subse-
quence by applying an inference procedure based on the
transition counting matrix and a proposed cost function;
finally, inference of perturbation, switching, and selec-
tion probabilities. However, the amount of temporal data
needed for inference with this approach is huge, especially
due to the perturbation and switching probabilities: if they
are very small, then long periods of time are needed to
escape attractors and if they are large, estimation accu-
racy is harmed. As stated in [85], if one does not wish to
infer the perturbation, switching, and selection probabili-
ties, then constituent-network connectivity can be discov-
ered with decent accuracy for relatively small time-course
sequences.

A more practical way of inferring PBN parameters
from time-course measurements is presented in [77]. The
authors propose a multivariate Markov chain model to
infer the genetic network, develop techniques for esti-
mating the model parameters and provide an efficient
method of estimating PBN parameters from their multi-
variate Markov chain model. The proposed technique has
been tested with synthetic data as well as applied to gene
expression data of yeast.

Further, in [86] the problem of PBN context estimation
from time-course data is considered. The inference is con-
sidered with respect to minimising both the conditional
and unconditional mean-square error (MSE). The author
proposes a novel state-space signal model for discrete-
time Boolean dynamical systems, which includes as spe-
cial cases distinct Boolean models, one of them being
the PBN model. A Boolean Kalman Filter algorithm is
employed to provide the optimal PBN context switch-
ing inference procedure in accordance to minimisation of
MSE.

Steady-state data
Here we consider a long-run inverse problem in the
context of probabilistic Boolean networks as models for
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gene regulation. On one hand, in the case of microarray-
based gene-expression studies it is often assumed that
the data are obtained by sampling from a steady state.
On the other hand, attractors represent the essential
long-run behaviour of the modelled system [31]. Thus,
in the modelling framework of Boolean networks it is
expected that the observed data states are mostly the
attractor states of a model network. In consequence, much
of the steady-state distribution mass of the model net-
work should lie in the states observed in the sample
data [50,80,87]. In the case of Boolean networks with
perturbations or probabilistic Boolean networks with per-
turbations, the underlying dynamical system is an ergodic
Markov chain, hence possesses a steady-state distribution.
However, by imposing some mild stability constraints that
reflect biological state stability, also in these frameworks
most of the steady-state probability mass is carried by the
attractors [31].

There are however inherent limitations to the con-
struction of dynamical systems from steady-state data.
Although the steady-state behaviour restricts the net-
work dynamics, it does not determine the steady-state
behaviour: there may be a collection of compatible net-
works with a given attractor structure. In particular, it
does not determine the Boolean network’s basin structure.
As a consequence, obtaining good inference relative to the
attractor structure does not necessary entail valid infer-
ence with respect to the steady-state distribution as the
steady-state probabilities of attractor states depend on the
basin structure [50,80]. In fact building a dynamical model
from steady-state data is a kind of over-fitting [88].

Although the CoD has been used for inference of PBNs
from steady-state data in [32], a fundamental problem is
that the CoD cannot provide information on the direc-
tion of prediction without time-course data. The resulting
bidirectional relationships can affect the inferred graph
topology by introducing spurious connections. Moreover,
they can lead to inference of spurious attractor cycles that
do not correspond to any biological state [8]. As a conse-
quence, this suppressed the use of the CoD as a inference
method for steady-state data.

The inference methods that replaced the CoD approach
are primarily based on the attractor structure [50,79] or
graph topology [89]. In the former case, the key concern
is to infer an attractor structure close to that of the true
network. In the latter case, the focus is on the agree-
ment between graph connections, e.g., as measured by
the Hamming distance between the regulatory graphs [8].
In [16], an approach that achieves both preservation of
attractor structure and connectivity based on strong gene
prediction has been proposed.

Another approach to the problem of constructing gene
regulatory networks from expression data using the PBNs
framework is proposed in [90]. The key element of this

method is a non-linear regression technique based on
reversible-jump Markov chain Monte Carlo (MCMC)
annealing for predictor design. The network construc-
tion algorithm consists of the following stages. First, for
each target gene xi (i = 1, 2, . . . , n) in the network of
n genes a collection of predictor sets is determined by
applying a clustering technique based on mutual informa-
tion minimisation. Optimisation f is performed with use
of the simulated annealing procedure. This step reduces
the class of different predictor functions available for
each target gene. Next, each predictor set is used to
model a predictor function f (i)

k by a perceptron con-
sisting of both a linear and a nonlinear term, where
k = 1, 2, . . . , l(i), with l(i) the number of predictor sets
found in the previous step for target gene xi. A reversible
MCMC technique is used to calculate the model order
and the parameters. Finally, the CoD is used to compute
the probability of selecting different predictors for each
gene. For a detailed description of this algorithm and its
application to data on transcription levels in the context
of investigating responsiveness to genotoxic stresses see
[90]. It should be noticed that the proposed reversible-
jump MCMC model for predictor design extends the
binary nature of PBNs allowing for a more general model
containing non-Boolean predictor functions that operate
on variables with any finite number of possible discrete
values [72].

As an alternative to the technique of [90], a fully
Bayesian approach (without the use of CoD) for con-
structing probabilistic gene regulatory networks, with an
emphasis for network topology, is proposed in [80]. In
this approach, the predictor sets of each target gene are
computed, the corresponding predictors are determined,
and the associated probabilities, based on the nonlinear
perceptron model of [90], are calculated by relying on
a reversible jump MCMC. Then, a MCMC method is
used to search for the network configurations that max-
imise the Bayesian scores to construct the network. As
stated in [8], this method produces models whose steady-
state distribution contains attractors that are either iden-
tical or very similar to the states observed in the data.
Moreover, many of the attractors are singleton attractors,
which reflect the biological propensity to stably occupy
a given state. The approach of [90] has been applied to
gene-expression profiles resulting from the study of 31
malignant melanoma samples presented in [91].

In [92] the inverse problem of constructing instanta-
neously random PBNs from a given stationary distribution
and a set of given Boolean networks is considered. Due
to large size of this problem, it is formulated in terms of
constrained least squares and a heuristic method based on
Conjugate Gradient is proposed as a solution.

In [93], the inverse problem of PBNs with perturba-
tions is considered, where a modified Newton method is
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proposed for computing the perturbation probability p
where the transition probability matrix Ã and the steady-
state probability of the PBNp x̃ are known. The new
algorithm makes use of certain properties of the set of
steady-state nonlinear equations, i.e., Ãx̃ − x̃ = 0, with
p as the unknown variable. Considering these proper-
ties improves the computational efficiency with respect
to a direct approach in which every of the 2n equations
(n being the number of nodes) is solved and common
solutions are reported.

Structural intervention and control of PBNs
Using PBNs for the modelling and analysis of biological
systems can lead to a deeper understanding of the dynam-
ics and behaviour of these systems (see Section ‘Dynamics
of PBNs’), paving the way for different methods used for
system structure inference and data measurement (see
Section ‘Construction and inference of PBNs as models
of gene regulatory networks’). Another major objective of
such studies is to predict the effect a perturbation or an
intervention has on the system structure, e.g., allowing to
identify potential targets for therapeutic intervention in
diseases such as cancer. Intervention strategies in PBNs,
e.g., as to change the long-run behavior of networks in
order to decrease the probability of entering some unde-
sired state, rely on two different kinds of direction –
structural intervention [8,33] and external control [8,18].
While the first approach can alter the underlying network
structure permanently, the second one uses external con-
trol to modulate the network dynamics. A classification of
network control methods in the PBN framework is shown
in Figure 5.

Structural intervention
The problem of performing a structural intervention in
a PBN looks at how the steady-state probability of cer-
tain states can be changed with only minimal structural
modifications [8,33]. A more formal description is offered
in the following. Given a PBN and two subsets A and
B of its states, the associated steady-state probabilities
π(A), π(B), have to be modified such as to approach some
given values λA, respectively λB. This can be achieved by
replacing the predictor function fik (of gene i in context
k) with a new function gik , while keeping all other net-
work parameters unchanged. We denote the steady-state
distribution of the resulting PBN as μ. Then, it is possi-
ble to interpret the problem as an optimisation one: given
the state sets A, B, and two values λA ≥ 0, λB ≥ 0,
with λA + λB ≤ 1, find a context k, a gene i, and a func-
tion gik to replace fik , such as to minimises ε(A, B) =|
μ(A) − λA | + | μ(B) − λB |, with respect to all contexts,
genes, and predictor functions. Note that A and B can
be used to represent both desirable as well as undesirable
states. While this approach allows changing one predictor

function at a time, a generalisation can be made by allow-
ing a number of predictor functions or by adding more
constraints on the selected functions, only to give a few
examples.

Shmulevich et al. [33] proposed using genetic algo-
rithms to deal with the above optimisation problem.
Later, Xiao and Dougherty [94] provided a construc-
tive algorithm for structural intervention and applied it
to a WNT5A network. The proposed algorithm focuses
on the impact one-bit predictor function perturbations
have on state transitions and attractors. Their approach,
however, does not directly characterise the steady-
state distribution changes that result from (structural)
perturbations of a given probability. In order to solve this
problem, Qian and Dougherty [95] derived a formal char-
acterisation of optimal structural intervention, based on
the general perturbation theory in finite Markov chains.
Specifically, they gave an analytical solution for comput-
ing the perturbed steady-state distribution by looking at
function perturbations. Their work mainly focused on
one-bit function (or rank-1 matrix) perturbations, imply-
ing that for more general perturbations, one needs to
consider an iterative approach. The associated complexity
of such an approach is of O(23n), where n is the num-
ber of genes in the network. Their results have been
applied to a WNT5A network and a mammalian cell
cycle related network, respectively. More recently, Qian
et al. [96] extended their previous result in [95] to a
more efficient solution that uses the Sherman-Morrison-
Woodury (SMW) formula [97] to deal with rank-k matrix
perturbations. Thus, they managed to reduce the com-
putational complexity of the approach from O(23n) to
O(k3), where k 
 2n (k is much smaller than 2n).
The application of the derived structural intervention
method to a mutated mammalian cell cycle network
shows that the intervention strategy can identify the
main targets to stop uncontrolled cell growth in the
network.

Qian and Dougherty [98] also looked at how long-run
sensitivity analysis can be used in PBNs, in terms of
difference between steady-state distributions before and
after perturbation, and with respect to different elements
of the network, e.g., probabilistic parameters, regulatory
functions, etc.

External control
While structural intervention focuses on a permanent
change in the network dynamics, external control relies on
Markov decision processes theory for driving a network
out of an undesired state, i.e. as to reach a more desirable
one [8,18].

The first approach to deal with PBNs was proposed by
Shmulevich et al. [18]. They studied the impact of ran-
dom gene perturbations g on the long-run behavior of a



Trairatphisan et al. Cell Communication and Signaling 2013, 11:46 Page 14 of 25
http://www.biosignaling.com/content/11/1/46

network. The main idea of Shmulevich et al. [18] is to
construct a formulation of the state-transition probability
that relies on the probability of a gene perturbation and on
Boolean functions for finding bounds for the steady-state
probability. Their particularly interesting finding is that
these states (which in terms of mean first-passage times
(MFPT) are easy to reach from other states) are more sta-
ble with respect to random gene perturbations. In gene
regulatory networks, it is important to identify what genes
are more likely to lead the network into a desirable state
when perturbed. MFPT naturally captures this idea – a
few other methods developed by Shmulevich et al. [18]
work, for example, by maximising the probability to enter
some particular state in some fixed maximum amount
of time, or by minimising the time needed to reach
that state.

Gene perturbation works by single flips of a gene’s
state, providing a natural platform for external interven-
tion control via auxiliary input variables. It makes sense
from a biological perspective, for example, to model aux-
iliary treatments in cancer such as radiation. The value
of these variables can be thus chosen such as to make
the probabilistic distribution vector of the PBN evolve in
some desired manner.

More formally, given a PBN with n genes and k
control inputs, u1, u2, . . . , uk , the vector u(t) =
(u1(t), u2(t), . . . , uk(t)) is used to denote the values of all
control inputs at a given time step t. Let P denote the tran-
sition probability matrix of the PBN, evolving according
to w(t+1) = w(t)·P(u(t)). It is obvious to see that, at each
time step t, P depends not only on the initial probability
distribution vector, but also on the values of the control
inputs. External control is essentially about making the
network evolve in some desired manner by choosing, at
each time step, input control values. The sequence of con-
trol inputs, referred to as a control policy or strategy, can
be associated to a cost function which has to be minimised
over the entire class of allowed policies. Such functions
capture the cost and benefit of using interventions, and
are normally application dependent. For the sake of sim-
plicity, we use Jω(z(0)) to denote the cost with respect to
a control policy ω and an initial state z(0). Then, an opti-
mal PBN control problem can be defined as a search for a
control policy ω that minimises the cost Jω(z(0)). External
control in PBNs can be classified into the following two
groups.

Finite-horizon external control
The finite-horizon external control problem is about mod-
ifying over a transient period of time the network dynam-
ics of some given PBN, without changing its steady-state
distribution. In other words, external control is only
applied over a finite number of M time steps, using
policies of the form ω = (μ0, μ1, . . . , μM−1). The first

optimal finite control formulation in PBNs, and a solu-
tion based on Dynamic Programming [99], were given by
Datta et al. [100]. Working assumptions implied known
transition probabilities and horizon length, later removed
in [101] by making use of measurements, thought to be
related to the underlying Markov chain states of the PBN.
Pal et al. [17] extended the results of Datta et al. [100,101]
to context-sensitive PBNs with perturbation. The results
have been used to devise a control strategy that
reduces the WNT5A gene’s action in affecting biological
regulation.

Optimal finite-horizon dynamic programming based
control, assuming a fixed number of time steps M and
a fixed number of controls k, has a computational com-
plexity of O(22n

), where n is the number of genes in the
network. Namely, the problem is limited by the size of
the network as one needs to compute the transition prob-
ability matrix. In particular, Akutsu et al. [102] proved
that the problem is NP-hard.h Chen and Ching [103] used
dynamic programming in conjunction with state reduc-
tion techniques [104,105] to find an optimal control policy
for large PBNs. They managed to reduce the computation
complexity to O(| R |), where | R | is the number of states
after state reduction.

Kobayashi and Hiraishi [106] proposed an integer pro-
gramming based approach that avoids computing the
probability matrix in optimal finite-horizon control. Later,
they extended their work to context-sensitive PBNs
[107,108], focusing on the lower and upper bounds of the
cost function. Furthermore, Kobayashi and Hiraishi [109]
proposed a polynomial optimisation approach where a
PBN is first transformed into a polynomial system, sub-
sequently allowing to reduce the optimal control to a
polynomial optimisation problem. In the above papers,
only small examples are used to illustrate the proposed
approaches.

Ching et al. [110] looked at hard constraints for an upper
bound on the number of controls, and proposed a novel
approach that requires minimising the distance between
terminal and desirable states. They also gave a method to
reduce the computational cost of the problem by using
an approximation technique [12]. Cong et al. [111] made
one step further by considering the case of multiple hard
constraints, i.e., the maximum numbers of times each
control method can be applied, developing an algorithm
capable of finding all optimal control policies. A heuris-
tic approach was developed by the same authors in order
to deal with large size networks [111]. A different and
more efficient algorithm, using integer linear program-
ming with hard constraints, was presented later by Chen
et al. [112]. The WNT5A network is a typical example
used in [111,112].

Instead of minimising the cost, Liu et al. [113] investi-
gated the problem of how control can be used to reach
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desirable network states, with maximal probability and
within a certain time. Later, Liu [19] imposed another
new criterion for the optimal design of PBN control
policies, namely the expected average time required to
transform undesired states into desirable ones. In both
papers, the optimal control problem can be solved by
minimising the MFPT of discrete-time Markov decision
processes.

The controllability problem of PBNs was studied by
Li and Sun [114]. A semi-tensor product of matrices, as
described in their work, allows to convert a probabilistic
Boolean control network into a discrete time system. They
provided some conditions for the controllability of PBNs
via either open or closed loop control.

Infinite-horizon external control
Infinite-horizon external control implies working with
external auxiliary variables, over an infinite period of time,
the steady-state distribution being also changed. Policies
in this case have the form of ω = (μ0, μ1, . . .).

In the finite-horizon case, the optimal control policy
is calculated by (essentially) using a backward dynamic
programming algorithm, ending once the initial state is
reached. However, this approach cannot be applied to
infinite-horizon control directly due to the non-existence
of a termination state in the finite-horizon case, poten-
tially leading to an infinite total cost. Pal et al. [115]
extended the earlier finite-horizon results to the infinite-
horizon case for context-sensitive PBNs. They solved
the above two problems by using the theory of average
expected costs and expected discounted cost criteria in
Markov decision processes. For applications, they consid-
ered a gene network containing the genes WNT5A, pirin,
S100P, RET1, MART1, HADHB, and STC2.

A robust control policy can be found in Pal et al.
[116], devised via a minimisation of the worst-case
cost over the uncertainty set, with uncertainty defined
with respect to the entries of the transition probability
matrix.

Due to the computational complexity of O(22n
), sev-

eral greedy algorithms have been proposed in the lit-
erature. Vahedi et al. [117] developed a greedy control
policy that uses MFPT. Their main idea is to reduce
the risk of entering undesirable states by increasing (or
decreasing) the time needed to enter such a state (or,
respectively a desirable state). Performance of the MFPT-
based algorithm was studied on a few synthetic PBNs
and a PBN obtained from a melanoma gene-expression
dataset, where the abundance of messenger RNA for
the gene WNT5A was found to be highly discriminating
between cells with properties associated with high or low
metastatic competence. Later, three different greedy con-
trol policies were proposed by Qian et al. [118], using the
steady-state probability mass. The first one explores the

structural information of a basin of attractors in order
to reduce the steady-state probability mass for undesir-
able states, while the remaining two policies regard the
shift in the steady-state probability mass of undesirable
states as a criterion when applying control. The identi-
fied three policies, together with the one based on MFPT
[117], were evaluated on a large number (around 1000) of
randomly generated networks and a mammalian cell cycle
network [119].

Some types of cancer therapies like chemotherapy, are
given in cycles with each treatment being followed by a
recovery period. Vahedi et al. [120] showed how an opti-
mal cyclic control policy can be devised for PBNs. Yousefi
et al. [121] extended the results in [120] to obtain opti-
mal control policies for the class of cyclic therapeutic
methods where interventions have a fixed-length dura-
tion of effectiveness. Both of the two approaches [120,121]
were applied to derive optimal cyclic policies to control
the behavior of regulatory models of the mammalian cell
cycle network [119]. While the goal of control policies
is to reduce the steady-state probability mass of unde-
sirable states, in practice it is also important to limit
collateral damage, to consider when designing control
policies. Based on this observation, Qian and Dougherty
[122] developed two new phenotypically-constrained con-
trol policies by investigating their effects on the long-run
behaviour of the network. The newly proposed policies
were examined on a reduced network of 10 nodes. The
network was obtained from gene expression data collected
for the study of metastatic melanoma (e.g, see [91]).

Relationship between PBNs and other probabilistic
graphical models
Probabilistic graphical models, commonly applied in com-
putational biology for network reconstruction, provide
the means for representing complex joint distributions.
Examples include PBNs, Bayesian networks and their vari-
ants, e.g., dynamic and hierarchical Bayesian networks,
hidden Markov models, factor graphs, Markov random
fields, conditional random fields, Markov logic networks,
etc. In this section we discuss the relationship between
the two of them which are usually employed to deal with
system dynamics: the PBNs and the dynamic Bayesian
networks, the latter generalising hidden Markov models.

A Bayesian network is essentially a graphical, com-
pact representation of a joint probability distribution.
The Bayesian network consists of two elements. First, a
directed acyclic graph (DAG) where the vertices of the
graph represent random variables and the directed edges
or lack thereof encodes the so-called Markovian assump-
tion, which states that each variable is independent of its
non-descendants, given its parents [8,123]. Second, a set
of local conditional probability distributions for each ver-
tex, given its parents in the graph. By the chain rule of
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probabilities, the joint probability distribution on the ran-
dom variables in the graph can be decomposed into a
product of the local conditional probabilities, i.e., if there
are n random variables Xi, i = 1, 2, . . . , n and Pa(Xi)
denotes the parents of Xi in the graph, then the joint
probability distribution factors as

Pr(X1, X2, . . . , Xn) =
n∏

i=1
Pr(Xi|Pa(Xi)). (8)

Two different Bayesian networks can encode the same
set of independencies. Such networks are said to be equiv-
alent. Equivalent networks cannot be distinguished when
inferring the network from measurement data. One way
to bypass this difficulty is to perform targeted interven-
tion experiments which can narrow the range of possible
network architectures.

Dynamic Bayesian networks (DBNs) are extensions of
Bayesian networks to the temporal domain and can be
used to model stochastic processes [70]. DBNs generalise
hidden Markov models and linear dynamical systems by
representing the conditional dependencies and indepen-
dencies between variables over time. Contrary to Bayesian
networks, DBNs can be used to model feedback rela-
tionships, a ubiquitous element in genetic regulation. In
comparison to PBNs, dynamic Bayesian networks support
the assignment of quantitative state values, making this
modelling approach more flexible to handle various types
of data. DBNs are broadly applied to represent biologi-
cal networks such as gene regulatory networks [124-127],
signal transduction networks, e.g., [128-130], metabolic
networks [131], as well as networks in physiology and
medicine [132-136].

As shown in [137], PBNs and binary-valued DBNs
whose initial and transition Bayesian networks are
assumed to have only within and between consecutive
slice connections, respectively, can represent the same
joint probability distribution over their common variables.
This is true both for independent as well as dependent
variants of PBNs. However, there are many statistically
equivalent PBNs that correspond to a DBN. On one hand,
the PBN framework can be considered as redundant from
the probabilistic point of view. On the other hand, it is
richer from the functional point of view because it models
the regulatory roles of different gene sets in more detail
than the conditional probabilities in DBNs [137]. The
conversion algorithms between the two modelling for-
malism are presented in [137], both for independent and
dependent PBNs. Also the extensions of standard PBNs
to context-sensitive PBNp is discussed. The perturbations
and context switching can be introduced in the DBN for-
malism by adding additional hidden nodes to the dynamic
Bayesian network, as shown in [137].

In terms of applications, it has been shown that both
the PBN and the DBN approaches principally have good
performance on the inference of gene regulatory networks
from microarray data [138]. In addition, the connection
between PBNs and DBNs makes it possible to apply the
advanced DBNs to PBNs tools and vice versa. For example,
an abundant collection of learning theory and algorithms
for DBNs already exists and methods for the analysis
of temporal behaviour of DBNs are already established.
These techniques can be tailored to be applied directly in
the context of PBNs. Conversely, the tool for controlling
the steady-state behaviour of the networks, tools for net-
work projection, node adjunction, resolution reduction as
well as efficient learning schemes can be applied to DBNs.

As presented in [139], PBNs and dynamic Bayesian
networks can be viewed as consisting of a probabilis-
tic (Markov chain) and of a (Boolean) logic component.
In the case of a dynamic Bayesian network, the proba-
bilistic component is defined by a conditional probability
chain rule and a Markov chain while the logic component
is given by propositional logic with structural require-
ments. As shown in [139], Bayesian networks, with their
hierarchical and dynamic variants, as well as probabilis-
tic Boolean networks, are all generalised by Markov logic
networks. The same separation of components applies.
For a Markov logic network, the probabilistic compo-
nent is a Markov random field and the logic compo-
nent is the first order logic. We refer to [139] for more
details on this framework, its applications in biology and
medicine as well as the relationship with Bayesian net-
works.

PBN applications in biological and biomedical
studies
PBN models for the representation of biological networks
Even though a significant part of the research on PBNs is
theoretical, a large number of applied studies on the use
of PBNs for various biological systems can be found in
the literature. This is particularly the case with inference
of models for molecular and physiological networks (from
prior knowledge or data), with subsequent model analysis
that leads to novel knowledge in biology and medicine.

PBNs as models of gene regulatory networks
PBNs were originally developed as models for Gene Reg-
ulatory Networks (GRNs) [3,8]. As stated in [32], PBNs
1) incorporate rule-based dependencies between genes;
2) allow the systematic study of global network dynam-
ics; 3) are able to cope with uncertainty, both in the
data and model selection; and 4) permit the quantifica-
tion of the relative influence and sensitivity of genes in
their interactions with other genes. In the PBN modelling
framework, gene expression is quantised to two levels: ON
and OFF.
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The dynamical behaviour of PBNs can be used to model
many biologically meaningful phenomena, such as cellular
state dynamics possessing switch-like behaviour, hystere-
sis, stability, and etc. [32,140]. Often, the attractor cycles
are interpreted as functional states on physiological time
scales or as cellular phenotypes on developmental time-
scales [7,8]. This interpretation is fairly reasonable as most
cell types are characterised by stable recurrent patterns of
gene expression [31].

In the past years, there were several studies which suc-
cessfully applied PBNs for the construction of GRNs from
high-throughput gene expression microarray experiment
data. In 2006, Yu et al. inferred a GRN of the inter-
feron pathway in macrophages using time-course gene
expression data [22]. The optimal network was identi-
fied applying the CoD approach. It was shown that the
respective selection probabilities are varying for different
biological conditions, e.g., after interferon treatment or
after viral infection on macrophage, while the structure of
the constituent network, i.e., predictor functions, remains
stable. With a similar approach, Nguyen et al. inferred a
GRN of hepatocellular carcinoma from microarray data
and compared it to a network derived from control non-
cancerous samples [141]. They indicated that certain
genes in tumour samples show activity in steady-state
periods while there is no activity for these genes in the
control (non-cancerous) samples. This allowed to distin-
guish different gene regulatory processes being realized
with the same set of genes.

Hashimoto et al. modelled the cell cycle of budding
yeast by using context-sensitive PBNs [23]. They showed
that the switching behaviour from stationary G1 phase
to excited G1 phase in the PBN model is more frequent,
when compared to the stochastic model of Zhang et al.
[142]. Recently, Todd et al. identified the ergodic sets of
states in PBNs that correspond to each phase of the bud-
ding yeast cell cycle, which in turn correspond to the
cellular phenotypes [44]. The analysis of the dynamical
behaviour gave additional insights on yeast cell cycle regu-
lation, e.g., the yeast cell cycle network showed robustness
both to external variable environments and to certain per-
turbations such as nitrogen deprivation, where yeast cells
proceeded through one round of division and arrest at G1
phase without appreciable growth.

In 2011, Flöttmann et al. modelled the regulatory pro-
cesses that govern the production of induced Pluripotent
Stem (iPS) cells by considering the interplay between gene
expression, chromatin modification, and DNA methyla-
tion [24]. As there is no clear guideline on how to assign
Boolean functions to represent the interactions of each
gene, their PBN model was designed to work by repre-
senting uncertainty via two assignments. First, a number
of possible functions were assigned to the corresponding
nodes with different probabilities. Second, the influences

of certain nodes were split into separated Boolean func-
tions with varied selection probabilities. A flexibility was
thus allowed for choosing Boolean functions that fit the
experimental data. With their PBN model, an extensive
analysis was performed, allowing to demonstrate epige-
netic landscape changes from differentiated cells to iPS
cells as a function of time step. In addition, by looking at
model variants of the core iPS regulation, it was shown
that an increased chromatin modification rate could
improve reprogramming efficiency while faster changes in
DNA methylation could provide an enhanced rate though
at the price of trading-off efficiency.

PBN within signal transduction network and metabolic
network modelling
To date, there is no study which specifically applied
PBN as a stand-alone framework for modelling sig-
nal transduction or metabolic networks. Nevertheless,
PBN was combined with other algorithms or modelling
frameworks. Fertig et al. presented GESSA, Graphically
Extended Stochastic Simulation Algorithm, a mechanis-
tic hybrid model which integrates the network model
of cell signalling with pooled PBN to a differential
equation-based model of transcription and translation
computed by a stochastic simulation algorithm [25].
The cell signalling PBN model is generated by simu-
lating individual protein copies with the correspond-
ing state transitions updated according to the rules in
the PBN. The sum of the resulting molecular states
across copies, i.e., of each individual species, is com-
pared to the initial state, the difference being afterwards
returned and the cellular state being updated. GESSA
was applied to the study of the cell fate decision of val-
val precursor cells in C. elegans, where model predic-
tions matched the experimental results even for mini-
mal parameterisations of the PBN. It was thus shown
that PBN could be an essential component when flexi-
bility is needed in multi-level data integration and model
construction.

In metabolic modelling, Chandrasekaran et al. pre-
sented an automated algorithm for the Probabilistic Reg-
ulation of Metabolism (PROM), allowing to reconstruct
a probabilistic GRN integrated with a metabolic net-
work from high-throughput data[26]. PROM makes use of
conditional probabilities to model transcriptional regula-
tion, similar to the CoD concept in PBN inference. This
formalism permits the strength of transcription factor
(TF)-gene regulation as well as gene states to be rep-
resented in terms of probabilities. PROM was used to
generate a genome-scale integrative transcriptomic and
metabolomic network of Escherichia coli, where PROM
surpassed the state-of-the-art methods such as the regu-
latory flux balance analysis. PROM was also used to gen-
erate an integrative model of Mycobacterium tuberculosis.
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The results from the model analysis offered additional
details on known regulatory mechanisms and also helped
to uncover the function of less studied genes on metabolic
regulation.

Apart from these two studies, several other works also
made use of a probabilistic framework for analysing sig-
nal transduction and metabolic networks. Kaderali et al.,
for instance, developed an algorithm that reconstructs
signalling pathways from gene knockdown data (RNAi
data) [143]. In this work, pathway topologies are inferred
by using Bayesian networks with probabilistic Boolean
threshold functions. The algorithm was used to study
the Janus Kinase and Signal Transducers and Activators
of Transcription (JAK/STAT) pathway, correctly recon-
structing the core topology of the pathway along with
model variants. Similarly, Sauer et al. [144] used prob-
abilistic equations to determine flux ratios, allowing to
express the relative contribution of certain metabolites or
pathways as modulators in the network. This assignment
is more realistic than using flux absolute integer numbers,
given that the flux of each source can relatively contribute
to the production of certain metabolites.

PBN applications in the context of physiology
PBNs were also used in the recent years for studying net-
works in physiology, with a close link to medicine. Tay
et al. described a dengue hemorrhagic fever (DHF) infec-
tion model which contains the interplay between dengue
virus and different cytokines which are cross-regulated in
T-helper 1 (Th1) and Th2 cells [9]. In their work, a sin-
gle probabilistic Karnaugh-Map is generated, modelling
the inducement probability of each cell as to define the
overall influence of inducing nodes. Simulation results
matched clinical data for both synchronous and asyn-
chronous updating, with respect to the form and the
average duration-based attractors, respectively. In addi-
tion, by applying a genetic algorithm [145] to modulate
the DHF attractor basins to dengue fever (DF) basins (a
less severe form of DHF), Tay et al. also identified the
tumour growth factor beta (TGFβ), interleukine-8 (IL-8)
and IL-13, as sensitive intervention points.

Another example in this field can be found in the study
of Ma et al., where, based on functional Magnetic Reso-
nance Imaging (fMRI) data, the authors developed a brain
connectivity network model for Parkinson’s disease [10].
A method similar to the one of Yu et al. [22] was used
for probability inference selection, i.e., the calculation of
CoDs. Then the CoDs were subsequently used to gener-
ate an influence matrix representation of the brain sig-
nal connectivity among brain components. The obtained
results showed that a significant difference in connec-
tivity exists for many paired brain-components com-
paring between normal, Parkinson’s disease with drug,
and Parkinson’s disease with drug withdrawal conditions,

and this difference was expressed in terms of estimated
range of coefficient mean activity. This particular infor-
mation may allow to construct a new screening procedure
for Parkinson’s disease diagnose and to determine drug
trial responsiveness based on a non-invasive, fMRI-based
investigation in the future.

A certain number of the previously described (applied
research) articles on PBN have applications not only in
molecular biology, but also in physiology or medicine.
Only to name a few examples, being able to distinguish
among the regulatory networks of cancer and healthy
cells, as presented by Nguyen et al., could contribute to an
early detection of cancerous genes in susceptible popula-
tions [141]. A better understanding of dynamic processes
and the control of somatic cell programming, as proposed
by Fertig et al., may lead to a future use of iPS cells in cell
or tissue replacement therapies [25]. Last but not least,
the PROM algorithm, as introduced by Chandrasekaran
et al., is capable of predicting transcription factor drug
targets which are major hubs in the cellular network of
pathogenic organism such as Mycobacterium tuberculosis
[26]. A further development of drugs in this direction may
help in the treatment of different infectious diseases. This
new line of treatment could have a strong impact for third-
world countries where infectious diseases still remain a
major cause of death.

PBN for Systems Biology and Systems Biomedicine?
As previously discussed, the PBN framework is a topic of
intensive and continuous theoretical research with suc-
cessful applications in the biomedical area. To describe
and extend a vision on future PBNs’ applications, we sum-
marise additional arguments to support why this mod-
elling approach is suitable for future research in Systems
Biology and Systems Biomedicine.

Data integration
Different types of biological and clinical investigation
datasets, ranging from qualitative to high-throughput
quantitative experimental data, were successfully applied
in PBN inference and analysis. Yu et al. [22] and Nyugen et
al. [141], for instance, inferred GRNs of macrophages and
hepatocellular carcinoma using microarray gene expres-
sion data. Flöttmann et al. [24] built a comprehensive
epigenetic regulatory network of iPS cells based on gene
expression, chromatin modification and DNA methyla-
tion data generated from multiple high-throughput exper-
iments. Ma et al. applied voxel selection on fMRI clinical
data to capture the activities of each brain’s compartment
as the inputs for learning a functional brain connectivity
network [10].

We have recently shown that the normalised activity of
signalling proteins from quantitative western blot exper-
iment can be compared to the steady-state probability
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of certain molecule to be ON in instantaneously-random
PBNs. In an ergodic model, the activities of signalling
proteins, usually given by their phosphorylated forms nor-
malised to the maximal signal, could be correlated with
the steady-state probability distribution on the state space
of the PBN model. With this regard, PBN could support
the integration of semi-quantitative experimental data.
Apart from quantitative western blot data, the profiles
of signalling proteins from alternative experiments such
as enzyme-link immunosorbent assay (ELISA) and high-
throughput protein array data are also compatible with
this framework (publication submitted).

The PBN framework also allows for the description
and analysis of large-scale models, for instance as in
the case of a Boolean model of apoptosis of Schlatter
et al. [146]. Therein, a PBN model was derived from
the original literature-based BN consisting of 86 nodes
and 125 Boolean interactions. Quantitative experimental
data in this study were normalised to the maximal sig-
nals across experiments and were used as input data for
the PBN model. We analysed the strengths of canoni-
cal pathways and crosstalk interactions between different
signalling components among apoptotic and related sig-
nalling pathways through the identification of selection

probability. It was possible to obtain these via optimi-
sation. Thereby a curated signal transduction network
topology was derived. The resulting PBN demonstrates
the correlation between UVB irradiation, NFκB, caspase
3, and apoptotic activities in a semi-quantitative manner
which could not be demonstrated by the original BN. The
analysis pointed at an inconsistent caspase 3 measure-
ment, which shows no activity for high UVB irradiation
while significant apoptosis is measured (see Figure 6,
publication submitted).

Furthermore, the PBN framework has a good poten-
tial to describe cellular dynamics at multiple levels.
Hybrid PBN-related models could be applied, as previ-
ously described, e.g., in the studies of Fertig et al. and
Chandrasekaran et al. [25,26]. As reviewed in detail by
Gonçalves et al. [147], bridging layers towards an inte-
gration of signal transduction, regulation and metabolism
into mathematical models still posts many challenges as
each of the biological layer has their own distinct char-
acteristics and therefore is suitable for only a subset of
modelling approaches. To address such challenges, an
integrative hybrid model for flux balance analysis was pro-
posed, combining BN modelling for the gene regulatory
part, ODE modelling for the signal transduction part and

Normalised experimental data

NF-κB Caspase 3 Apoptosis

control
UVB_low
UVB_high

Boolean network (BN)

UVB_low [1]

0.
26

NF-κB [0]

Caspase 3 [1]

Apoptosis [1]

NF-κB [1]

Caspase 3 [0]

Apoptosis [0]

UVB_high [1]

Probabilistic Boolean network (PBN)

UVB_low [1]

NF-κB [0.11]

Caspase 3 [0.89]

Apoptosis [0.78]

NF-κB [0.36]

Caspase 3 [0.61]

Apoptosis [0.40]

UVB_high [1]

0.
46

0 1.
00

00 1.
00

0.
49

0
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flux balance analysis for the metabolic part. With this
regard, PBN could also be integrated as part of such a
hybrid model to describe GRNs and/or signalling net-
works to provide more details on modelling analysis and
interpretation comparing to traditional BNs.

Computational tools for PBN modelling and analysis
Several PBN modelling and analysis tools were continu-
ously developed over the past recent years. The BN/PBN
MATLAB-based toolbox, introduced by Lähdesmäki and
Shmulevich in 2003 [27], deals with the simulation, analy-
sis (network statistics, state transitions and distributions),
visualisation and intervention analysis of both BN and
PBN models. The toolbox was specifically designed for
GRN inference and it makes use of CoD calculations.
State transition probabilities and influence values (the
indicators for interactive effect for each pair of genes)
are subsequently calculated based on these calculated
CoDs. Ma et al. successfully applied the BN/PBN tool-
box to infer and analyse the brain connectivity network
of Parkinson’s disease patients, as previously described in
Section ‘PBN applications in the context of physiology’.

Hinkelmann et al. introduced ADAM (Analysis of
Discrete Models of biological systems using computer
Algebra) [28], a web-based tool for rapid steady-state
identification in various discrete model types. The tool
automatically converts discrete models into polynomial
dynamic systems, allowing to run computer-based alge-
bra analysis. For probabilistic networks, ADAM generates
a graph of all possible (local rule) updates, thus being
capable to build an enumeration of all steady states. Bool-
net, as introduced by Müssel et al., is an R-package for
the generation, modelling, reconstruction and analysis
of both synchronous and asynchronous BNs or PBNs
[29]. The toolbox features time-series (experimental data)
based network inference, e.g., making use of Markov chain
simulations for attractor identification with subsequent
visualisation and robustness analysis via network pertur-
bation or heuristic search and random walks. We have
recently developed optPBN, a MATLAB-based toolbox
for PBN optimisation based on the BN/PBN toolbox.
PBNs can easily be constructed from Boolean rule-based
models. The toolbox also provides a flexible platform
for data integration (e.g., to integrate data from multi-
ple experiments). Different algorithms can be used to
address the resulting optimisation problem. Thus, based
on normalised protein activity at steady-state data, one
can identify a curated model structure from different can-
didate models. Subsequent analysis on the curated PBN
can be performed in the BN/PBN toolbox (publication
submitted).

We also discuss a few different algorithms and tools
which are not specifically designed for PBN but with
a high potential for the analysis of PBNs. PROM, for

example, offers a mean to calculate the flux activities
of a metabolic network in a probabilistic manner based
on gene expression data [26]. Specifically, this gives rise
to the applicability of the PBN framework for metabolic
models. Recently, Terfve et al. introduced CellNOptR, a
flexible toolkit for training protein signalling networks
based on a multiple logic formalism [148]. CellNOptR
offers support for optimisation with respect to multiple
modelling frameworks, ranging from logical to ODE (logic
rule derived) models. Extending CellNOptR towards a
probabilistic modelling framework is also foreseen for
future work.

A perspective on potential applications of PBNs in a clinical
setting
It has been a decade since the completion of the Human
Genome Project in 2003 that initiated the era of bio-
logical and medical investigation in omic scales [149].
Due to technology advancements, the costs of genome
sequencing and high throughput biomedical investiga-
tions are exponentially decreased and they might become
part of the routine medical investigations in a fore-
seeable time frame [150]. Datasets from omics exper-
iments usually consist of large lists of numbers that
represent genes, transcripts, proteins, or metabolites
depending on the method applied. In the near future
all these methodologies might be applied together rou-
tinely, even in time series examinations. The major
problem with such data is their high complexity and
the need to make them interpretable by the medical
staff. Therefore, there is a strong demand for reason-
able computational approaches to integrate multidimen-
sional “big data" [151]. In addition, given the rich sets
of information from individual patients that physicians
will acquire, smart approaches are mandatory to trans-
late and simplify these large-scale biomedical data. Such
approaches should facilitate a physician’s decision-making
process to provide more accurate diagnosis and optimal
treatment.

For these fields we identify the PBN framework as
a powerful tool. Recent applications of PBN modelling
of gene regulatory and signalling networks have been
described in the previous section. As previously sum-
marised, PBNs allow an effective visualisation of GRN
models [9,10], allowing to represent gene function and
activity [152]. These efforts foster the understanding of
gene-gene interactions, consequences of aberrant gene
function and targeted perturbations of such networks,
as well as finding out the least adverse effects of per-
turbations [9,153]. PBNs allow for the integration of
information from large data sets and for inferring log-
ical relationships between genes/networks. This feature
is of particular benefit as many relationships and struc-
tural connections among genes are not known. Unknown
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relationships between transcripts and proteins can also
be assessed. In a therapeutic perspective PBNs could be
used in a disease-relevant context because many, fore-
most chronic diseases, share probably common under-
lying mechanisms that are not elucidated so far [154].
Using PBNs in the study of disease-related networks could
enable us to take genetic interactions into account and
associations could be generated to identify comorbidities
sharing common causative factors. Skahanenko et al. for
instance have applied Markov logic networks, a proba-
bilistic logic modelling approach in the same category as
PBN, to explore gene-phenotype associations. Whereas
traditional statistical methods are employed to identify
the marker that associates the most with an observed phe-
notype, Markov logic networks can be used to identify a
subset of markers that predicts the phenotype. Within this
method, the relationship between the genetic markers and
phenotype(s) can be hypothesised and modelled. All mod-
els can then be tested and their respective probability can
be derived [139].

In the context of a single, yet complex disease, the
study on brain connectivity in Parkinson’s disease by Ma
et al. [10] is a good example showing how a probabilistic
model such as PBN could translate large-scale biomedical
data into a potential application in clinic. fMRI princi-
pally measures blood oxygen level-dependent signals that
are correlated to the blood flow into different regions
of the brain, which in turn give physicians information
on the functional activity of specific areas of the brain
[155]. For some neurological disorders, such as Parkin-
son’s disease, the lesions mainly affect a specific area of
the brain such as basal ganglia, but have consequences
on the overall integrity of brain connectivity, especially
on the dopaminergic pathway-dependent motor and cog-
nitive control [156]. Therefore, considering the aetiology
and disease progression from only conventional MRI data
which demonstrate only structural information is cer-
tainly insufficient to yield a comprehensive understanding
on the course of disease. Considering diseases as net-
work perturbations [157], the PBN model from Ma et al.
demonstrated differences of brain connectivity networks
comparing healthy population and diseased cases with
and without medication. Such observations could pos-
sibly be further developed towards clinical biomarkers
which could then be added to physicians’ portfolio and in
turn facilitate diagnostic process, treatment design, and
follow-up strategy.

Generally, the incorporation of tentativeness and prob-
ability could be evolved into a valid concept in a clinical
setting, as routine medical investigation often provides no
conclusive data. Together with a comprehensive reduc-
tion and translation of large-scale and complex biomed-
ical data, the PBN framework might serve as a mean to
develop simplistic terms like a probability score for certain

condition, e.g., for having a disease or of being respon-
sive to treatment. Such a probabilistic score could serve
as a simple but powerful additional input for physicians
in order to improve their healthcare management. As a
whole, healthcare systems would benefit from reducing
costs related to unnecessary diagnostic investigations and
treatment failures.

Conclusion
Even though the concept of PBN for the modelling of
biological systems is still young compared to other mod-
elling approaches, a broad area of research activities on
this modelling approach such as network inference and
network control have been well-established and are con-
tinuously developed. For a meaningful comparison of dif-
ferent inference algorithms in the future, it is necessary
to quantify their performance. The prospective research
in the area of network inference is to develop a formal
framework for validation of network inference proce-
dures. Moreover, there is a demand for establishing the
properties of network inference procedures under vari-
ous conditions, e.g., model class, distance function, etc.
The current trend in structural intervention and exter-
nal control is to develop new methods to reduce their
computational complexity and to define the optimal con-
trol problems and find the corresponding optimal policies
for specific therapies. With its flexibility for data inte-
gration and the availability of supporting algorithms and
computational tools, PBN is one of the most suitable
modelling frameworks to describe and analyse complex
biological systems from molecular to physiological levels
with possible future application at clinical level.

Endnotes
aIn general, γ1, γ2, . . . , γn need not be independent and

identically distributed random variables, but for the
simplicity of presentation are assumed so.

bA state in a Markov chain is said to be ergodic if
returns to the state can occur at irregular times and the
state is positive recurrent. If all states in an (irreducible)
Markov chain are ergodic, then the chain itself is said to
be ergodic.

cIn a generalised PBN framework a network variable
can have any value in {0, 1, . . . , d − 1}, where d > 2.

dIn the graph-theoretical terminology the notion of an
ergodic set of states in a Markov chain corresponds to the
notion of a bottom strongly connected component in a
graph.

eIn computer science, the complexity of a function or
an algorithm is expressed or characterised using the big
O notation, namely, how the function or algorithm
responds to changes in its input size.

fOptimisation deals with a broad range of problems,
relying on, for example, convex programming, optimal
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control, combinatorial optimisation or evolutionary
computation paradigms; examples and additional
information can be found by referring to [158-165]

gA one-time gene perturbation changes the value of
one or more genes without modifying the rules or
probabilistic parameters of the network.

hIn computational complexity theory, NP-hard is
a class of problems that are at least as hard as the hardest
problems in NP (nondeterministic polynomial time).
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