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Pulmonary diseases associated with inhalation of envi-
ronmental or occupational particulates can be endpoints
of a chronic inflammatory process in which alveolar mac-
rophages (AM) play a pivotal role [1]. Figure 1 shows a
‘smiling’ human AM found in a bronchoalveolar lavage
specimen [2]. AM are located in the alveolus, persistently
exposed to pollute air, and serve as a first line of defense
against inhaled soluble and particulate matter [3]. The
biological processes involved in particulate-induced acti-
vation of AM include interactions of particulates with the
cell membrane, subsequent stimulation of signal trans-
duction pathways, activation of gene transcription, gener-
ation of reactive oxygen and nitrogen species, and secre-
tion of proinflammatory mediators. Numerous studies
have shown that different types of inhaled particulates
can elicit diverse cellular and molecular responses in
AM.

Localized on the epithelial surface within the alveolar
surfactant film, AM have a unique position in the body
[4–6]. AM are the only macrophages in the body that are
exposed to an aerobic environment with an O2 partial
pressure of about 100 Torr. AM have a rate of respiration
at rest an order of magnitude greater than other cells [7].
AM play a complex and central role in regulating the

Fig. 1. ‘Smiling’ alveolar macrophage. A photomicrograph of a bron-
choalveolar lavage specimen shows a human alveolar macrophage
with a segmented nucleus (Giemsa stain, !400; Copyright© 1998
Massachusetts Medical Society. All rights preserved) [2].

immune response [4]. Their responsibility in host defense
is manifold, including clearance and phagocytosis of in-
haled particulates, accessory cell function in immune
responses, and recruitment and activation of other in-
flammatory cells. To follow these duties adequately, AM
are able to move to regions where they are needed, to pha-
gocytose, and to release a broad armamentarium of me-
diators, such as reactive oxygen and nitrogen species,
cytokines, chemokines, eicosanoids, and complement fac-
tors [8].
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Fig. 2. Murine RAW-264.7 macrophage attempting ‘frustrated’
phagocytosis of a long (120 Ìm) mineral fiber (unpublished observa-
tion). A A light microscopic image shows two large vacuoles (arrows)
localized in close vicinity of both the fiber (asterisk) and the plasma
membrane. A second fiber (arrow head) appears to be just attached to
the macrophage surface, without inducing a phagocytic response.
B A fluorescence microscopic image after staining of the cells with
LysoSensorTM Yellow/Blue DND-160, a fluorescent pH indicator
that partitions into acidic organelles, demonstrates low pH (!5) in
these vacuoles, suggesting formation of ‘giant’ (phago)lysosomes.

Phagocytosis and Clearance of Inhaled
Particulates

Phagocytosis of particulates comprises a number of
integrated steps, including opsonization, chemotaxis, at-
tachment to the cell membrane, and engulfment of the
particulate [4]. The recruitment of AM to the sites where
asbestos fibers deposit in the lung depends on the ability
of asbestos fibers to activate complement to form the che-
moattractant C5a [9]. Other types of particulates, such as

titanium dioxide, are only poorly effective to cause C5a
generation and, therefore, are only rarely phagocytosed by
AM [10]. Particulates can interact with the cell membrane
either directly or indirectly through opsonization. The
ability of AM to phagocytose opsonized particulates is
mediated by surface receptors, in particular by Fc recep-
tors and complement receptors [11]. Unopsonized mate-
rial will be ingested by interaction with scavenger-type
receptors [12, 13]. It has been suggested that the ingestion
of opsonized particulates via Fc receptors activates AM to
release inflammatory cytokines and reactive oxygen spe-
cies. This process consequently results in pulmonary in-
flammation, whereas the phagocytosis of unopsonized
particulates induces only minimal activation of AM [14].
‘Frustrated’ or attempted phagocytosis of long mineral
fibers (fig. 2) can lead to the release of great amounts of
reactive oxygen species by AM over a prolonged period of
time [15].

Particulate-loaded AM have to be cleared from the
lung. The predominant mechanism is the transport of
AM with their ingested particulates up the conducting
airways [4]. Studies have also suggested that a proportion
of particulates remains sequestered in AM for extended
periods, presumably as a consequence of ‘redistribution’
of particulates among AM [16]. This might happen as
the result of exocytosis of particulates or by release of
particulates from lysed senescent AM and subsequent
phagocytosis by new AM. Although the clearance mecha-
nisms are comparable among humans and rodents, the
macrophage-mediated clearance in humans is about an
order of magnitude lower than in mice, hamsters, and
rats [17]. We have observed differences in the phagocytic
response of AM from rats and hamster, two rodent spe-
cies that are well-known for their disparate pulmonary
response to inhaled particulates. A significantly higher
percentage of rat AM than of hamster AM underwent
frustrated phagocytosis of mineral fibers, associated with
a greater release of reactive oxygen species by rat AM
compared to hamster AM. In contrast, a higher percent-
age of hamster AM than of rat AM completely phagocy-
tosed mineral fibers [18], which may result in a better
clearance of inhaled mineral fibers from hamster lungs
than from rat lungs. High lung burden with particulates
contributes to the phenomenon of particle ‘overload’ [4]
that ends in the impairment of AM to translocate to the
mucociliary escalator [19]. Interestingly enough, also
high concentrations of innocuous particulates contribute
to increased AM accumulation, sustained inflammation,
and enhanced cell proliferation [20]. In addition to trans-
location of particle-loaded AM up to the conducting air-
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ways, intracellular dissolution of particulates plays a sub-
stantial role in lung clearance [21].

Generation of Reactive Nitrogen and Oxygen
Species

Reactive oxygen and nitrogen species have been impli-
cated in the pathogenesis of particulate-mediated pulmo-
nary diseases [22]. Enhanced or prolonged production
and release of reactive oxygen and nitrogen species by AM
can result in direct lung tissue damage by lipid peroxida-
tion, inactivation of enzymes, and DNA oxidation [23].
Indirectly, reactive oxygen species can activate signal
transduction pathways via kinases and transcription fac-
tors [24]. These processes result in a complex cascade of
events that may contribute to the development of pulmo-
nary disorders.

Upon phagocytosis, various particulates, including ti-
tanium dioxide [25], quartz [26], carbon black [25], asbes-
tos fibers [27], and synthetic vitreous fibers [28] induce
AM to release reactive oxygen species by activating the
NADPH oxidase. Inhaled particulates can be modified by
components of the alveolar lining fluid which may alter
the bioactivity of the particulates. AM release significant-
ly greater amounts of superoxide anions upon exposure to
IgG-opsonized silica particulates compared to uncoated
silica particulates [29]. Similarly, coating of asbestos and
various synthetic vitreous fibers with immunoglobulin
enhances the release of reactive oxygen species by AM
[28].

There is an increasing body of evidence that exposure
to asbestos fibers induces the release of reactive nitrogen
species by AM. Kagan and coworkers reported that the
number of inducible nitric oxide synthase (iNOS)-posi-
tive AM increased and that the production of the stable
oxidation product of nitric oxide, nitrite, was significantly
enhanced by AM upon in vivo and in vitro exposure to
crocidolite and chrysotile fibers [30, 31]. Moreover, the
levels of nitrite and nitrate were elevated in culture
medium of AM exposed to crocidolite and chrysotile
fibers, along with an increased steady-state mRNA level
of iNOS, but without detectable iNOS protein levels [32].
Others observed that exposure to chrysotile, but not to
crocidolite and amosite fibers induced nitric oxide forma-
tion by AM [33]. Exposure to crystalline silica, carbonyl
iron, coal mine dusts, and titanium dioxide has also been
shown to result in iNOS mRNA and protein expression as
well as enhanced production of nitric oxide by AM [34,
35].

Release of Cytokines and Eicosanoids

AM are able to release a broad spectrum of proinflam-
matory cytokines that are able to mediate the recruitment
and activation of other inflammatory cells, stimulation of
eicosanoid biosynthesis, and cell proliferation and growth
[36]. A crucial role in the development of respiratory fail-
ure has been linked to tumor necrosis factor-· (TNF-·),
interleukin-1 (IL-1), and interleukin-6 (IL-6). Several in-
vestigators demonstrated that AM produce enhanced lev-
els of TNF-· upon in vivo and in vitro exposure to fibro-
genic particulates, such as chrysotile and crocidolite as-
bestos, silica particulates, and coal mine dusts [37, 38]. In
contrast, titanium dioxide particulates, very short asbes-
tos fiber preparations, and diesel dust had no effect on
TNF-· production by AM [26, 38]. Conflicting data have
been reported for the particulate-induced generation of
IL-1 and IL-6 in vivo and in vitro. Whereas Lemaire and
Quellet [38] found an enhanced release of IL-1 and IL-6
by AM upon intratracheal instillation of asbestos fibers,
others reported that neither asbestos fibers nor silica or
titanium dioxide affected the production of IL-1 and IL-6
by AM in vitro [26, 37].

In the pathogenesis of particulate-induced lung dis-
eases, other AM-derived cytokines may also be involved,
such as macrophage inflammatory proteins 1 and 2 (MIP-
1, MIP-2) [14] and interleukin-8 (IL-8) [39]. In addition to
TNF-· and IL-1, which are well-known macrophage-
derived growth factors [40], particulate-exposed AM also
release platelet-derived growth factor (PDGF) [41] and
fibroblast growth factor (FGF) [42], secretory products
that cause enhanced proliferation of fibroblasts. Fibro-
nectin, another growth-regulating protein, has also been
shown to be produced by AM upon exposure to asbestos,
quartz, and coal mine dusts [43].

Phagocytosis of inhaled particulates by AM triggers the
synthesis and release of arachidonic acid metabolites,
such as leukotriene B4 (LTB4) and prostaglandin E2

(PGE2). While both mediators are known to have chemo-
tactic activities, LTB4 stimulates the secretory response of
inflammatory cells, whereas PGE2 is considered to have
downregulatory effects on inflammatory cell function
[44]. There are a number of studies indicating that LTB4

produced by AM is closely associated with the inflamma-
tory response caused by inhalation of various particulates.
Koren et al. [44] demonstrated an increased LTB4 release
by AM upon in vitro exposure to silica, asbestos fibers,
and carbonyl iron. Others reported that asbestos fibers
induced an enhanced release of PGE2 as well as an
increased LTB4 production by AM in vitro [45, 46].
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Second Messengers and Transcription Factors

The activation of signal transduction pathways
through receptor-dependent mechanisms cause a change
in the level of second messengers with decisive effects on
cell function. The second messenger system comprises
several intracellular mediators, such as inositol trisphos-
phate, cyclic adenosine monophosphate, diacylglycerol,
and calcium. Alterations in the intracellular calcium con-
centration can mediate several calcium-dependent cellu-
lar events that may directly or indirectly affect cellular
physiological functions. Various studies indicated that
mineral particulates induce increases in the intracellular
calcium concentration. It has been demonstrated that
quartz [47], asbestos fibers [48], and synthetic vitreous
fibers [49] cause a dose- and time-dependent increase in
the intracellular calcium concentration in AM.

Upon exposure to particulates, AM can be induced to
release certain cytokines, growth factors, and radicals. In
many cases, the production of these mediators is associat-
ed with an earlier de novo synthesis of the molecules.
Gene transcription is regulated by transcription factors;
one well-known early response gene transcription factor is
nuclear factor-kappaB (NF-ÎB) that appears to be impor-
tant for the expression of many inflammation-associated
genes. Increased gene expression of IL-1, IL-6, and TNF-·
has been observed in AM exposed to asbestos fibers, die-
sel soot particles, and titanium dioxide along with an
enhancement of NF-ÎB gene transcription [50]. It has
been suggested that reactive oxygen species are implicated
in the activation of both NF-ÎB and another transcription
factor, activator protein-1 (AP-1) [50]. We and others
have demonstrated that exposure of rat AM to inhaled
toxicants induces increased intracellular production of
reactive oxygen species along with an activation of NF-ÎB
and AP-1 [51, 52].

Species Differences

Several animal models have been used to evaluate the
harmful potential of inhaled particulates. However, dif-
ferences have been identified in the way species respond
to inhaled particulates with the underlying reasons still
unknown [53]. If comparative studies are to be used to
predict biological responses in humans, then an improved
knowledge of species similarities and differences is essen-
tial. Investigations of Warheit and Hartsky [54] demon-
strated differences in the macrophage-mediated clearance
response to inhaled particulates among rats, mice, ham-

sters, and guinea pigs. Rat AM migrated best to comple-
ment-dependent chemotactic factors, and this was corre-
lated with an increased number and percentage of phago-
cytic macrophages upon exposure to carbonyl iron partic-
ulates in vivo. In contrast, hamster AM appeared to be
recruited to sites of particle deposition by a non-comple-
ment-mediated mechanism. Moreover, it has been sug-
gested that species variations in response to inhaled par-
ticulates may be related to differences in the size of AM
[36].

Our own studies demonstrated differences in the size
of AM from rats, hamsters, monkeys, and humans, indi-
cating that the number and size range of particulates
which can be phagocytosed by AM vary among the spe-
cies [55]. Likewise, we found species differences in the
antioxidative and oxidative capacity of AM from rats and
hamsters [56] and in the ability of AM to release nitric
oxide upon stimulation [57, 58]. Regarding the role nitric
oxide plays in the oxidative stress caused by inhaled par-
ticulates, such differences are suggested to contribute to
the disparate pulmonary response of rats and hamsters to
mineral fibers, diesel soot, and pure oxygen [53, 59, 60].

Summary

AM occupy a central role in host defense upon inhala-
tion of environmental and occupational particulates. The
functions of AM are manifold, including phagocytosis
and clearance of particulates, accessory cell function, and
recruitment and activation of other inflammatory cells.
The phagocytosis of particulates and the subsequent acti-
vation of signal transduction pathways in AM, such as
second messengers and transcription factors, lead to the
production of potent mediators, including reactive oxy-
gen and nitrogen species, cytokines (TNF-·, IL-1, and IL-
6), growth factors (PDGF and FGF), eicosanoids (LTB4

and PGE2), and several others substances. Uncontrolled
and prolonged production of these effector molecules by
AM can mediate tissue injury and might, therefore, con-
tribute to the pathogenesis of particulate-induced pulmo-
nary diseases.
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