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 Transforming growth factor- �  (TGF- � ) controls pro-
liferation, differentiation, and the function of many types 
of cells. By these activities, TGF- �  plays a pivotal role in 
development, tissue homeostasis and tumor formation. 
The multiple actions of TGF- �  also influence the func-
tion of the innate and acquired immune system. In this 
brief review, we describe the functional role of TGF- �  in 
bacterial meningitis.

  Bacterial Meningitis 

 At present, approximately 1.2 million cases of bacte-
rial meningitis are estimated to occur annually world-
wide resulting in 135,000 deaths. Bacterial meningitis is 
now a top 10 infectious cause of death worldwide and 
about half of the survivors have neurological sequelae of 
the disease. Despite antimicrobial agents and intensive 
care medicine, mortality and morbidity have remained 
high. With the introduction of  Haemophilus influenzae  
conjugate vaccines in the United States and Western Eu-
rope,  Streptococcus pneumoniae  and  Neisseria  meningit-
ides have become the major causes of bacterial meningitis 
in these regions. The mortality rate associated with pneu-
mococcal meningitis is about 20–35%  [1]  versus 15–30% 

 Key Words 
 Chemotaxis  �  Leukocytes  �  Endothelium  �  Vasculitis  �  
Inflammation 

 Abstract 
 Project 6 of the NCCR ‘Neural Plasticity and Repair’ focuses 
on mechanisms of immunity and tissue damage in autoim-
mune and infectious diseases of the central nervous system 
(CNS). In one of the subprojects, the influence of transform-
ing growth factor- �  (TGF- � ) on the immune reactivity of the 
CNS was investigated. In mice with  Streptococcus pneumoni-
ae- induced meningitis, a deletion of TGF- �  receptor II on 
leukocytes is found to enhance recruitment of neutrophils 
to the site of infection and to promote bacterial clearance. 
The improved host defense against  S. pneumoniae  was as-
sociated with an almost complete prevention of meningitis-
induced vasculitis, a major intracranial complication leading 
to brain damage. The data show that endogenous TGF- �  
suppresses host defense against bacterial infection in the 
CNS. This contrasts with findings from other body compart-
ments that suggested that TGF- �  is a powerful chemotactic 
cytokine and increases microbial clearance. 
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for  Listeria monocytogenes . An analysis of 87 consecutive 
cases that were treated in the Department of Neurology, 
Klinikum Grosshadern in Munich showed intracerebral 
complications to occur in 75% with seizures (28%), arte-
rial cerebrovascular complications (22%), venous com-
plications (10%), diffuse brain edema (29%), and hydro-
cephalus (16%)  [2] .

  Clearance of bacteria in the central nervous system 
(CNS) which depends on a functional phagocyte sys-
tem – polymorphonuclear neutrophils (PMN) and 
monocytes/macrophages – is limited due to low comple-
ment-mediated opsonic activity in the cerebrospinal flu-
id (CSF) and low complement C4 and C3 concentrations 
 [3] . In meningitis, inflammation is seen in the meninges 
and leads to parenchymal damage in the brain and spinal 
cord, as evidenced by endothelial injury, increased vas-
cular permeability, brain edema and neuronal damage. 
Bacterial cell wall components and toxins (released dur-
ing antibiotic-induced or bacterial autolysis) enter into 
the CSF compartment and reach the interstitium of the 
CNS by paravascular fluid circulation. Besides the infec-
tious pathogens, vascular damage and neurotoxicity are 
also caused by the host defense system. Recognition of 
microbial constituents is mediated through pattern rec-
ognition receptors of which Toll-like receptors (TLRs) 
are key participants  [4] . TLRs recognize structural mo-
tifs referred to as pathogen-associated molecular pat-
terns on the pathogens, a process initiating activation of 
PMN, monocyte-macrophages and natural killer cells. 
As a consequence, innate immunity results in the pro-
duction of chemokines and proinflammatory cytokines 
[e.g. tumor necrosis factor (TNF- � ), interleukin (IL)-1 
and IL-6], which initiate endothelial cell damage, re-
cruitment of PMN and monocytes into the meninges 
and CNS tissue, activation of both astrocytes and mi-
croglia cells, and neuronal damage. TLR2 recognizes the 
pneumococcal cell wall molecule lipoteichoic acid where-
as TLR4 acts as a ligand for the pneumococcal cytotoxin 
pneumolysin [references in ref.  5] . Mice that lack either 
TLR2, TLR4 or their downstream adaptor protein my-
eloid differentiation factor 88 show reduced CSF PMN 
pleocytosis, less inflammation but severely impaired 
bacterial clearance  [5] . The production of TNF- � , IL-1 
and of the PMN chemokines MIP-2 and KC was signifi-
cantly diminished  [5] . Recent studies using anti-IL-6 an-
tibodies and IL-6 gene knockout mice showed IL-6 to 
inhibit migration of PMN into the CNS but to promote 
vascular permeability, brain edema formation and rise 
in intracranial pressure  [6] . In the breakdown of the 
blood-brain barrier nitric oxide plays a decisive role by 

modulating adhesiveness of PMN through inhibition of 
 �  2 -integrin expression. Impaired nitric oxide synthesis 
in mice with a deletion of the inducible nitric oxide syn-
thase (iNOS) results in aggravated CSF pleocytosis  [7] . 
The extent of the inflammatory process is limited by 
counterregulatory cytokines, namely IL-10 and TGF- � , 
which deactivate neutrophils and macrophages. These 
cytokines interfere with production of neurotoxic mol-
ecules by phagocytes, which include radical oxygen in-
termediates, nitric oxide and proteases such as matrix 
metalloproteinases (MMP). MMP8 and MMP9 are up-
regulated in the CSF in meningitis, MMP9 concentra-
tions being higher in patients with secondary brain dam-
age than in those who show complete recovery  [8] . Be-
sides MMP9, also high levels of the nitric oxide-induced 
oxidant peroxynitrite in the CSF are associated with an 
unfavorable outcome  [9] . One of the pathways of oxi-
dant-induced CNS damage includes poly(ADP ribose) 
polymerase, its deletion in mice improving the clinical 
score of meningitis  [10] .

  TGF- �  and Immune Response 

 TGF- �  is part of the TGF- �  superfamily, with addi-
tional members including bone morphogenetic proteins, 
activins and growth differentiation factors. From the 
three homologous TGF- �  isoforms in mammals, it is 
TGF- �  1  that is predominantly expressed in cells of the 
macrophage lineage such as microglia, whereas TGF- �  2  
and TGF- �  3  are produced by astrocytes and neurons  [11, 
12] . TGF- �  is secreted as a homodimer noncovalently 
bound to the latency-associated protein. TGF- �  latency-
associated protein may complex latent TGF- � -binding 
protein-1 via disulfide bonds. The active molecule needs 
to be released from latency-associated protein to mediate 
its functions via TGF- �  receptor I (TGF- � RI) ALK-5 and 
TGF- �  receptor II (TGF- � RII). The latter binds TGF- �  
with high affinity ( fig. 1 ). In the case of TGF- �  2 , binding 
to this receptor requires the presence of TGF- � RIII, a 
membrane-bound betaglycan. Signaling is initiated 
upon binding of TGF- �  dimers to the tetrameric ALK-5 
and TGF- � RII, which leads to activation of TGF- � RI 
and thereafter phosphorylation of intracellular SMAD2 
and SMAD3 [for review, see ref.  13] . TGF- �  regulates T-
cell survival, inhibits perforin and Fas ligand expression 
on CD8 T cells and converts CD4+, CD25– T cells into 
FoxP3 expressing regulatory T cells. Expression of a 
dominant negative form of TGF- � RII in CD4+ cells 
blocks TGF- �  signaling in these cells and is associated 
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with an uncontrolled CD4+ T-cell-mediated inflamma-
tory reaction with vasculitis and perivascular cell infil-
trates  [14, 15] .

  Role of TGF- �  in Innate Immunity in Bacterial 
Infections 

 Cells of the mononuclear phagocyte system and PMN 
mediate the innate immune response in bacterial infec-
tions. In  S. pneumoniae  infection, phagocytosis is mainly 
mediated by complement which interacts with CR3 and 
in part with CR1, CR2 and CR4. Neutrophil activation 
during phagocytosis of microbes leads to respiratory 
burst and production of radical oxygen intermediates by 
the NADPH oxidase of phagocytic cells. Protective mi-
crobicidal activity is mediated by radical oxygen interme-
diates and granule proteases including elastase and ca-
thepsin G  [16] . Activation of PMN and monocyte-mac-
rophages results in the secretion of chemokines and 
cytokines, which recruit further phagocytes into the tis-
sue and boost the inflammatory reaction. Recognition 
and uptake of apoptotic cells lead to TGF- �  production 
by phagocytes, a process which depends on the presence 
of phosphatidyl serine in the cell membrane  [17] . The 
classical view is that TGF- �  counteracts the inflamma-
tory response. 

  TGF- �  suppresses: (1) the interferon- � -induced mac-
rophage activation including the CIITA-dependent in-
duction of class II MHC antigens; (2) the production of 
expression of the proinflammatory cytokines IL-1 � , IL-6 
and TNF- �  in activated microglia; (3) the production of 
MMP and of chemokines (MIP-1 � , MIP-2) which are im-
portant in migration and chemoattraction of phagocytes 
to the site of infection; (4) the formation of oxidative re-
sponse and thereby killing of intracellular bacteria; (5) 
the expression of the scavenger receptors CD3  �   and SR-A 
and of CD14; (6) myeloid differentiation factor 88-depen-
dent TLR signaling, FcRI and FcRIII; (7) iNOS expres-
sion, thereby no production by phagocytes, and (8) IL-1-
induced signaling by enhancing production of the IL-1 
receptor antagonist.

  These effects of TGF- �  prevent both recognition and 
degradation of bacteria and interfere with microbe-in-
duced proinflammatory activation of phagocytes  [18–
28] . Moreover, TGF- �  inhibits lipopolysaccharide-in-
duced septic shock in the mouse  [29] . The effect of TGF-
 �  also includes down-regulation of CD14 and binds the 
lipid A moiety of lipopolysaccharide, lipoteichoic acid 
and mycobacterial lipoarabinomannan. It is of note that 

CD14 activates the c-Jun N-terminal kinase, which is in-
volved in expression of TNF- � , a major mediator of sep-
tic shock  [21] . TGF- �  inhibits TNF- �  and MIP-2 produc-
tion through the crosstalk between mitogen-activated 
protein kinase, specifically ERK-dependent inhibition of 
p38 mitogen-activated protein kinase caused by up-regu-
lation of MKP-1  [30] .

  The picture of the function of TGF- �  on cells of the 
macrophage lineage changes when analyzing the effect of 
the cytokine on peripheral blood monocytes. TGF- �  is 
chemotactic for monocytes and activates the cells to ex-
press adhesion molecules (LFA-1, VLA-3, VLA-5) and Fc-
 � RIII, and to secrete IL-1 and TNF- �  [for review, see ref. 
 31] . Thus, TGF- �  deactivates tissue macrophages but ac-
tivates blood monocytes. Similar to monocytes, TGF- �  is 
also a potent chemoattractant for PMN. The complexity 
of actions of TGF- �  on PMN, however, becomes evident 
when TGF- �  is tested on endothelial cells. TGF- �  inhib-
its migration through TNF- � -activated endothelial cells 
in vitro and down-regulates E-selectin and VCAM-1 ex-
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  Fig. 1.  TGF- �  signaling pathway and potential targets of inhibi-
tion. The activated TGF- � RI/II complex recruits and phosphory-
lates the transcription factors Smad2/3, which bind Smad4 and 
translocate into the nucleus where they activate the transcription 
of target genes. Inhibitory Smad7 prevents activation of Smad2/3 
by TGF- � RI. Disruption of the signaling pathway by anti-TGF- �  
and anti-TGF- �  receptor antibodies, TGF- �  decoy molecules and 
TGF- �  serine/threonine kinase blockers. 
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pression  [32, 33] . Mice with double-deficient P- and E-
selectins display a severe impairment of PMN influx into 
the meninges  [34] .

  Disruption of TGF- � RII on Phagocytes Leads to 
Improved Bacterial Clearance 

 To delineate and define the role of TGF- �  in innate 
immunity to bacterial infections, we crossed TGF- 
� RII flox/flox  mice with LysCre mice, thereby obtaining 
mice lacking TGF- � RII on neutrophils and macrophages 
(phag-TGF- � RII –/–  mice). Given the chemotactic re-
sponse of TGF- �  on these cell types and their capacity to 
mediate vasospasm and vasculitis and thereby secondary 
brain damage, PMN recruitment in a bacterial meningi-
tis model may be impaired, thereby mitigating secondary 
brain damage. However, the opposite has been observed. 
Upon infection with  S. pneumoniae  PMN in CSF were 
two- to threefold higher in the phag-TGF- � RII –/–  mice 
compared to controls. The amount of bacteria in the CNS 
correlated with the number of PMN in the CNS and was 
reduced 140-fold in the phag-TGF- � RII –/–  mice ( fig. 2 ). 

Thus, in bacterial meningitis TGF- �  in its active form is 
produced in the course of the disease and inhibits at the 
level of PMN their migration into the CNS, a step re-
quired for successful elimination of  S. pneumoniae . 
Whether TGF- �  also counteracts phagocytosis and bac-
terial destruction by phagocytes remains open. However, 
since in phag-TGF- � RII –/–  mice a two- to threefold in-
crease of PMN in the CSF is paralleled by a 140-fold de-
crease of the bacterial load, it is possible that TGF- �  acts 
at two levels: the migration process of PMN and the 
phagocytosis and killing process executed by PMN.

  Impairment of PMN recruitment has been suggested 
in the following studies: (1) PMN adhesiveness to human 
umbilical vein endothelial cells is inhibited by TGF- � ; (2) 
TGF- �  coinjected intratracheally with lipopolysaccha-
ride impairs the acute neutrophilic inflammatory re-
sponse, and (3) injection of TGF- �  into MRL/n mice re-
duces the recruitment of PMN in the thioglycollate-stim-
ulated peritoneal exudate  [35–37] . A different view on the 
effect of TGF- �  on PMN recruitment has been reached in 
other experimental systems: (1) TGF- �  is chemotactic for 
PMN and monocytes in vitro; (2) mice with a targeted 
disruption of the SMAD 3 gene – SMAD 3 binds to TGF-
 �  receptors and mediate its signaling – impairs the che-
motactic response of mutated neutrophils towards TGF-
 � ; (3) injection of TGF- �  into knee joints of rats leads to 
extensive recruitment of PMN and monocytes  [38–41] , 
and (4) TGF- �  induces leukocyte recruitment and im-
proves microbial clearance when administered via intra-
bronchial routes to rats with  Escherichia coli  pneumonia 
 [42] . Our studies show unambiguously that in bacterial 
infections of the CNS, TGF- �  impairs rather than stimu-
lates PMN recruitment to the site of infection. In this con-
text, it is of note that TGF- �  1  is elevated in the CSF of 
children with acute bacterial meningitis  [43] . In this 
study, no correlation existed between TGF- �  1  levels and 
cell counts in the CSF on the one hand and between TGF-
 �  1  levels and subsequent development of neurologic se-
quelae on the other. However, only 5 out of 16 patients 
have developed major neurological complications. Thus, 
the number of patients is too small to allow a definite 
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  Fig. 2.  High numbers of leukocytes in CSF and low bacterial titers 
in the CNS of  S. pneumoniae- infected phag-TGF- � RII –/–  mice. 
The higher CSF leukocyte numbers are associated with reduced 
cerebellar bacterial titers, indicating an improved clearance of 
bacteria in phag-TGF- � RII –/–  mice. 

  Fig. 3.  Control mice infected with  S. pneumoniae  show wide-
spread cortical and subcortical leukocytoclastic lesions ( A ), which 
are only occasionally observed in phag-TGF- � RII –/–  mice ( B ). Im-
munohistology shows Gr1+ ( C ), CD11b+ ( D ), neutrophils (overlay 
 E ) in the meninges (arrowhead), in destroyed vessels (arrow) and 
in brain parenchyma of infected TGF- � RII flox/flox  mice ( C–F ).
 F  Nuclear stain with DAPI. 
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