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We study the elasticity of random fiber networks. Starting from a microscopic picture of the nonaffine
deformation fields, we calculate the macroscopic elastic moduli both in a scaling theory and a self-
consistent effective medium theory. By relating nonaffinity to the low-energy excitations of the network
(‘‘floppy modes’’), we achieve a detailed characterization of the nonaffine deformations present in fibrous
networks.
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Materials as different as granular matter, colloidal sus-
pensions, or lithospheric block systems share the common
property that they may exist in a highly fragile state [1,2].
While, in principle, able to withstand static shear stresses,
small changes in the loading conditions may lead to large
scale structural rearrangements or even to the complete
fluidization of the material [2–4]. To understand the ex-
traordinary mechanical properties of these systems, new
concepts have to be developed that go beyond the applica-
tion of classical elasticity theory and that sufficiently re-
flect the presence of the microstructure [5]. One example is
the ‘‘stress-only’’ approach to the elasticity of granular
materials [6], where the elimination of the kinematic de-
grees of freedom accounts for the infinite stiffness of the
grains. This seems to capture the inhomogeneous distribu-
tion of stresses in the sample and their concentration along
the so-called force chains [7]. In jammed systems of soft
spheres, on the other hand, fragility has recently been
shown to directly affect the deformation response of the
system. While it may induce anomalous deformation fields
that strongly deviate from the expectations of homogene-
ous elasticity (‘‘nonaffine’’ deformations) [8], it may also
lead to a proliferation of low-frequency vibrational states
far beyond the usual Debye behavior of ordinary solids [9].
It has been argued that these low-energy vibrations derive
from a set of zero-frequency modes (floppy modes) that are
present just below the jamming threshold [10] and relate to
the ability of the structure to internally rearrange without
any change in its potential energy. This concept of floppy
modes has also been used in connection with elastic per-
colation networks where the fragile state is reached by
diluting a certain fraction of nearest-neighbor contacts. In
these systems, constraint-counting arguments may be used
to determine the percolation transition at which the system
loses its rigidity [11].

Here our focus is on a particular class of heterogeneous
networks composed of cross-linked fibers. These systems
have recently been suggested as model systems for study-
ing the mechanical properties of paper sheets [12] or
biological networks of semiflexible polymers [13,14].

While these networks are known to have a rigidity perco-
lation transition at low densities [15,16], we show here that
even networks in the high-density regime in many ways
resemble the behavior of fragile matter, despite the fact that
they are far away from the percolation threshold. We
identify the relevant floppy modes and highlight their
importance for understanding the macroscopic elasticity
of the network. In particular, we will be able to explain the
occurrence of an anomalous intermediate scaling regime
observed in recent simulations [15,17,18]. In this regime,
the shear modulus was found to depend on density (mea-
sured relative to the percolation threshold) as G� ���

with a fractional exponent as large as � � 6:67 [15]. Also,
highly nonaffine deformations [17,19] as well as inhomo-
geneous distribution of stresses in the network have been
found. Heuristic nonaffinity measures have been devised
[17,19]; however, little is known about the actual nature of
the deformations present. While the expression ‘‘nonaf-
fine’’ is exclusively used to signal the absence of conven-
tional homogeneous elasticity, scarce positive
characterization of nonaffine deformations has been
achieved up to now [20]. This Letter tries to fill this gap
by characterizing in detail the nonaffine deformation field
present in fibrous networks. By relating nonaffinity to the
floppy modes of the structure, we can, starting from a
microscopic picture, calculate the macroscopic elastic
moduli in both a scaling theory and a self-consistent ef-
fective medium theory. In analogy with the affine theory of
rubber elasticity for flexible polymer gels, our approach
might very well serve as a second paradigm to understand
the elasticity of microstructured materials. Because of the
proximity to the fragile state, it might also be of relevance
to force transmission in granular media and to the phe-
nomenon of jamming.

The two-dimensional fiber network we consider is de-
fined by randomly placing N elastic fibers of length lf on a
plane of area A � L2 such that both the position and
orientation are uniformly distributed. We consider the
fiber-fiber intersections to be perfectly rigid but freely
rotatable cross-links that do not allow for relative sliding
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of the filaments. The randomness entails a distribution of
angles ���0; �� between two intersecting filaments

 P��� �
sin���

2
; (1)

while distances between neighboring intersections, the
segment lengths ls, follow an exponential distribution [21]

 P�ls� � hlsi
�1e�ls=hlsi: (2)

The mean segment length hlsi is inversely related to the line
density � � Nlf=A as hlsi � �=2�. The segments are
modeled as classical beams with cross-section radius r
and bending rigidity �. Loaded along their axis (‘‘stretch-
ing’’), such slender rods have a rather high stiffness
kk�ls� � 4�=lsr

2, while they are much softer with respect
to transverse deformations k?�ls� � 3�=l3s (‘‘bending’’).
Numerical simulations for the effective shear modulus G
of this network have identified a crossover scaling scenario
characterized by a length scale � � lf���lf��	 and 	 �
2:84 [15] that mediates the transition between two drasti-
cally different elastic regimes. For fiber radius r	 �, the
system is in an affine regime where the elastic response is
dominated mainly by stretching deformations homogene-
ously distributed throughout the sample. The modulus in
this regime is simply proportional to the typical stretching
stiffness Gaff / kk�hlsi� and independent of the fiber length
lf. This is in marked contrast to the second regime at r

�. There, only nonaffine bending deformations are excited,
and the modulus shows a strong dependence on fiber length
Gna / k?�hlsi��lf=hlsi�

��3. Using renormalization-group
language, the parameters r and lf may be viewed as scaling
fields (measured in units of the ‘‘lattice constant’’ hlsi). The
stretching dominated regime may then be characterized by
an (affine) fixed point at lf ! 1 and finite radius r � 0.
On the other hand, the (nonaffine) fixed point of the bend-
ing dominated regime is obtained by first letting r! 0 and
then performing lf ! 1. This suggests that the elastic
properties in the latter regime may be analyzed at vanish-
ing radius r � 0, that is, by putting the system on the stable
manifold of the fixed point.

In the following, we will exploit this limit to calculate
the modulus Gna in the nonaffine regime. Central to the
analysis is the recognition that in this limit the ratio of
bending to stretching stiffness k?=kk / r2 tends to zero
and bending deformations become increasingly soft. We
thus obtain the much simpler problem of a central-force
network. However, as only two fibers may intersect at a
cross-link, the coordination is z < 4 [22] and rigid regions
may not percolate through the system [23,24]. This implies
that, on a macroscopic level, the elastic moduli will be
zero, while microscopically displacements can be chosen
such that segment lengths need not be changed. These are
the floppy modes of the structure that entail the fragility of
the network in the bending dominated regime. It has been
argued that a critical coordination of zc � 4 is necessary to

give the network rigidity [24]. This value defines the ‘‘iso-
static’’ point, which in our network corresponds to taking
the limit lf ! 1. Thus, we arrive at the conclusion that
isostaticity and the onset of rigidity seem to be intimately
connected to the fixed point governing the nonaffine re-
gime. While it is usually not possible to deduce the specific
form of the floppy modes, the fibrous architecture allows
for their straightforward construction (see Fig. 1). In a first
step, we perform an arbitrary axial displacement �z of a
given (primary) fiber as a whole. This, of course, will also
affect the crossing (secondary) fibers such that the lengths
of interconnecting segments change. In a second step,
therefore, one has to account for the length constraints on
these segments by introducing cross-link deflections �yi �
��z cot�i transverse to the contour of the primary fiber. As
a result, all segment lengths remain unchanged to first
order in �z [25]. The construction is, therefore, suitable
to describe the linear response properties of the network,
while at the same time it offers an explanation for the
stiffening behavior found in fully nonlinear simulations
[19,26]. Any finite strain necessarily leads to the energeti-
cally more expensive stretching of bonds and, therefore, to
an increase of the modulus.

The identified modes take the form of localized excita-
tions that affect only single filaments and their immediate
surroundings. By superposition, we may therefore con-
struct a displacement field that allows the calculation of
macroscopic quantities such as the elastic moduli. To
achieve this, we need to know the typical magnitude of
displacements �z of a given fiber relative to its surround-
ings, the crossing secondary fibers. Since �z is defined on
the scale of the complete fiber, we do not expect any
dependence on average segment length hlsi, such that �z /
lf remains as the only conceivable possibility. Alterna-
tively, one may obtain the same result by assuming that
the individual fiber centers follow the macroscopic strain

δz

y

θ

z

y

FIG. 1 (color online). Construction of a floppy mode by axial
displacement �z of the primary fiber (drawn horizontally) and
subsequent transverse deflection �y � ��z cot� of the cross-links
to restore the segment lengths on the secondary fibers (dashed
lines, possible to first order in �z). Initial cross-link positions are
marked as black squares, final configurations as green circles.
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field in an affine way. Then relative displacements of
centers of neighboring fibers would be proportional to their
typical distance. This is of the order filament length lf and
again �z / lf. Note, however, that the assumption of affine
displacement of the fiber centers cannot be literally true for
fibers intersecting at very small angles �! 0. To avoid a
diverging transverse deflection �yi � ��z cot�! 1, the
two fibers will most likely not experience any relative
motion at all and �z! 0. Truly affine displacements
can, therefore, be established only on scales larger than
the filament length. It should also be clear that the assump-
tion of affine displacements of the fiber centers is different
from the usual approach of assigning affine deformations
on the scale of the single segment. The latter would lead to
deformations �aff / ls, proportional to the length ls of the
segment. Instead, axial displacements of the fiber as a
whole are, by construction of the floppy mode, directly
translated into nonaffine deformations �na / lf, which do
not depend on the length of the segment.

Restoring the radius r to its finite value, the floppy
modes acquire energy and lead to bending of the fibers.
A segment of length ls will then typically store the energy
wb�ls� ’ ��

2
na=l

3
s ’ �l

2
f=l

3
s . By averaging over the segment

length distribution Eq. (2), one may calculate the average
bending energy hWbi, stored in a fiber consisting of n ’ �lf
segments,

 hWbi ’ �lf
Z 1
lmin

dlsP�ls�
��2

na

l3s
: (3)

We assume the integral to be regularized by a lower cutoff
length lmin that we now determine in a self-consistent
manner. Physically, lmin corresponds to the shortest seg-
ments along the fiber that contribute to the elastic energy.
Even though we know [see Eq. (2)] that arbitrarily short
segments do exist, their high bending stiffness k?�ls� / l�3

s
makes their deformation increasingly expensive. Segments
with length ls < lmin will, therefore, be able to relax from
their floppy mode deformation �na, thereby reducing their
bending energy from wb�lmin� to nearly zero. However, due
to the length constraints, this relaxation necessarily leads to
the movement of an entire secondary fiber and to the
excitation of a floppy mode there. By balancing wb�lmin� �
hWbi, this gives lmin ’ 1=�2lf and for the average bending
energy of a single fiber hWbi ’ �=lf��lf�6. This implies for
the modulus Gna ’ �=lfhWbi / �

7, which compares well
with the simulation result of � � 6:67. What is more, by
equating the energy hWbi with hWsi ’ �lfr

�2 valid in the
affine stretching regime, one can also infer the crossover
exponent 	 � 3.

In summary, we have succeeded in explaining the elas-
ticity of the bending dominated regime starting from the
microscopic picture of the floppy modes that characterize
directly the deformation field deep inside the nonaffine
regime. Alternatively, one might try to understand the

emergent nonaffinity in a perturbative approach that con-
siders deviations from an affine reference state. Such a line
of reasoning has recently been suggested in Ref. [18],
where nonaffine boundary layers, growing from the fila-
ment ends, are assumed to perturb the perfect affine order.
However, comparing with their simulation data, the au-
thors could not confirm the scaling picture unambiguously
and acknowledged the need for further numerical as well as
improved theoretical work [18]. Thus, nonaffine elasticity
in fibrous networks appears to be intrinsically a nonpertur-
bative strong-coupling phenomenon for which the floppy
mode picture provides the correct low-energy excitations.
As we will explicitly show next, one particular strength of
our approach is that the scaling picture can readily be
extended to a full theory that self-consistently calculates
the modulus in a nonaffine effective medium theory.

To set up the theory, we consider a single filament
together with its cross-links that provide the coupling to
the medium. The energy of this assembly consists of two
parts. First, the bending energy of the primary fiber

 Wb�y�z�� �
�
2

Z �@2y

@z2

�
2
dz; (4)

due to a transverse deflection y�z�. A second stretching
energy contribution arises whenever a cross-link deflection
yi � y�zi� differs from its prescribed value �yi � ��z cot�i
and may be written in the form of an harmonic confining
potential Ws�yi� �

1
2 ki�yi � �yi�

2 that acts individually on
each of the n ’ �lf cross-links. It allows the filament to
reduce its own energy at the cost of deforming the elastic
matrix into which it is imbedded. Performing a configura-
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FIG. 2 (color online). Graphical solution of Eqs. (5) and (6) for
various numbers n of cross-links obtained by calculating the
intersection between the left side of the equation hWilhs (bisect-
ing line, dashed curve) with the right side hWirhs (solid curves).
The different curves for a given n correspond to ensembles of
varying size. They seem to diverge in the limit hWirhs 	 hWilhs.
In fact, there (and only there) the averaging procedure is ill-
defined [26]. Inset: Resulting dependence of hWi on n.
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tional average h:i over cross-link positions zi and orienta-
tions �i, we obtain the average elastic energy stored in a
single fiber as

 hWi �
�

min
y�z�

�
Wb�y�z�� �

Xn
i�1

ki
2
�yi � �yi�2

��
: (5)

To solve the model, we further need to specify the stiff-
ness ki � k��i� of the medium that relates to the relaxation
mode of a cross-link on the primary filament from its
floppy mode deflection. As we have argued above, any
relaxation of this kind must act as axial displacement on a
secondary fiber, thus exciting a new floppy mode there.
The energy scale associated with this is hWi such that we
can write

 k��i� � 2hWi
sin2��i�

�z2 ; (6)

where the angular dependence derives from the projection
onto the axis of the secondary filament. Equations (5) and
(6) represent a closed set of equations to calculate the
configurationally averaged deformation energy hWi as a
function of the number of cross-links n. In implementing
this scheme, we have generated ensembles of filaments
with a distribution of cross-linking angles as given by
Eq. (1) and segment lengths according to Eq. (2). Note
that there is no free parameter in this calculation. The
equations are solved graphically in Fig. 2 by plotting
both sides of Eq. (5) as a function of hWi. The point of
intersection, which solves the equation, is shown in the
inset as a function of the number of cross-links n. For the
same parameter window as used in the network simulations
[15], it yields the scaling behavior of hWi / n5:75. This
implies for the modulus the exponent of � � 6:75, which
improves upon the simple scaling picture presented above
and provides a very accurate calculation of the scaling
exponent �.

In conclusion, we have succeeded in deriving the macro-
scopic elasticity of random fibrous networks starting from
a microscopic description of the displacement field in a
manner that does not rely on the notion of affine deforma-
tions. We have given a floppy mode construction that may
be applied to any two- or three-dimensional network with
fibrous architecture, for example, paper or biological net-
works of semiflexible filaments. It may also be shown to be
relevant to systems where the constraint of straight fibers is
relaxed [26]. The unusually strong density dependence of
the modulus found here is a consequence of the exponen-
tial segment length distribution Eq. (2) and the presence of
the length scale lmin. While identification of the floppy
modes has been recognized to be highly important for a
description of force transmission in granular media or the
jamming transition in colloidal systems, one can rarely
give the exact form of these zero-energy excitations. On
the contrary, we have achieved an explicit construction of

the floppy modes that can be put in the form of localized
elementary excitations affecting only single filaments and
their immediate surroundings.
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