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Self-arrangement of individuals into spatial patterns often accompanies and promotes species diversity
in ecological systems. Here, we investigate pattern formation arising from cyclic dominance of three
species, operating near a bifurcation point. In its vicinity, an Eckhaus instability occurs, leading to
convectively unstable ‘‘blurred’’ patterns. At the bifurcation point, stochastic effects dominate and induce
counterintuitive effects on diversity: Large patterns, emerging for medium values of individuals’ mobility,
lead to rapid species extinction, while small patterns (low mobility) promote diversity, and high mobilities
render spatial structures irrelevant. We provide a quantitative analysis of these phenomena, employing a
complex Ginzburg-Landau equation.
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Biodiverse ecosystems comprise complex interactions
of a large number of individuals and species leading to rich
spatiotemporal community structures [1]. Much effort in
theoretical and biological physics is currently devoted to
qualitative and quantitative understanding of basic mecha-
nisms that maintain their diversity. Hereby, within exem-
plary models, the formation of dynamic spatial patterns has
been identified as a key promoter [2–5]. In particular, the
crucial influence of self-organized patterns on biodiversity
has been demonstrated in recent experimental studies [6],
employing three bacterial strains that display cyclic com-
petition. The latter is metaphorically described by the
game ‘‘rock-paper-scissors’’ where rock smashes scissors,
scissors cut paper, and paper wraps rock in turn. Such
nonhierarchichal dynamics has also been found in, e.g.,
lizard populations in California [7] and coral reef inverte-
brates [8]. For the three bacterial strains, and for low
microbes’ motility, cyclic dominance leads to the stable
coexistence of all three strains through self-formation of
spatial patterns [6]. In contrast, stirring the system, as can
also result from high motilities of the individuals, destroys
the spatial structures and the strain coexistence [6].

Here, from theoretical studies, we show that cyclic
competition of species can lead to highly nontrivial spatial
patterns as well as counterintuitive effects on biodiversity.
Investigating cyclic dynamics near a (degenerate) bifurca-
tion, we find that pattern formation is only weak and
mainly influenced by stochastic effects. Namely, in a pro-
totypical model where three species compete cyclically,
and the deterministic rate equations (RE) for the densities’
time evolution predict weakly instable coexistence (near or
at neutral stability), we demonstrate the generic formation
of convectively instable spiral waves. The instability of the
latter appears as a ‘‘blurring’’ of the spirals and is the
stronger the closer the RE operate near the bifurcation
point, i.e., near the parameter point where the RE predict
neutral stability. Consequently, patterns take shape only
weakly and allow for major influence of stochasticity. This
effect is most pronounced at the bifurcation point; there,

noise remains as the only source of pattern formation.
Furthermore, at the bifurcation point, we uncover a coun-
terintuitive destabilizing effect of patterns on the stability
of coexistence. Similar to what has been found in other
studies, see Refs. [5,6,9–11] and references therein, for
low individuals’ mobility, the size of the emerging spatial
structures lies much below the size of the ecosystem and
allows for stable coexistence of all species. However, we
show that a mobility exceeding a first critical value leads to
rapid extinction of species with only one surviving. This
scenario is connected to weakly formed patterns that span
over the whole system, revealing the antagonistic character
of such large patterns on biodiversity. Only when mobility
lies above a second threshold, a third, effectively well-
mixed regime emerges. There, patterns and spatial corre-
lations do not form and the fate of species diversity is
determined by the character of the species competitions
alone.

We design a spatial and stochastic model of cyclically
competing populations in the following way. Individuals of
three species A, B, and C populate a square lattice, such
that each site is occupied by one individual or left empty.
Each agent can interact with its four nearest neighbors by
either exchanging positions at a rate � (individuals are
mobile), or by cyclic competition. The latter interactions
are described in the language of chemical reactions; ge-
nerically, we consider:

 AB!
1
AA; BC!

1
BB; CA!

1
CC; (1)

 AB!
�
A�; BC!

�
B�; CA!

�
C�; (2)

 A �!
�
AA; B �!

�
BB; C �!

�
CC: (3)

Reactions (1) describe consumption of an individual by
another of a predominant species, and immediate repro-
duction of the latter. Cyclic dominance appears as A con-
sumes B and reproduces, while B preys on C and C feeds
on A in turn. We consider the most symmetric version
where all species are symmetric, and fix the time scale
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by setting the rates for these reactions to one. Reactions (2)
encode solely consumption, leaving an empty site�. These
reactions occur at a rate �, and are decoupled from repro-
duction, Eqs. (3), which happens at a rate �. Note that
reactions (1) and (3) describe two different mechanisms of
reproduction, both of which are important for ecological
systems. In (1), an individual reproduces when having
consumed a prey, due to thereby increased fitness. In
contrast, in reactions (3) reproduction depends solely on
the availability of empty space.

The RE encode the deterministic behavior of these re-
actions in the well-mixed scenario. Dependent on the type
of reactions, they can yield stable, unstable, or neutrally
stable diversity. For the above defined model, with ~x �
�a; b; c� denoting the densities of the three distinct species
and � � a� b� c the total density, the RE read,

 @txi � xi���1� �� � xi�1 � �1� ��xi�2� 	Ai: (4)

Hereby, the indices are understood as modulo 3. These
equations have been analyzed by May and Leonard [12]
and also appear in theoretical descriptions of the Kuppers-
Lortz instability [13,14]. Generically, Eqs. (4) possess an
unstable internal fixed point as well as heteroclinic orbits,
where the system cycles between states with nearly only
one species, leading to rapid extinction of all but one
species when stochastic effects are included. A degenerate
bifurcation emerges at � � � � 0, i.e., when only the
reactions (1) are present. In this situation, neutrally stable
orbits surround an internal fixed point, being neutrally
stable as well [12,15]. Finite-size fluctuations invalidate
the neutral stability and induce extinction of two species
after a characteristic time T which is proportional to the
system size N [15]. In the following, we investigate the
system’s behavior in the vicinity of this bifurcation point;
for illustration, we consider equal selection and reproduc-
tion rates � � �.

In the spatial model, mobility of individuals, stemming
from random local exchanges, leads to their diffusion on
the lattice with a diffusion constant D � 2�N�1 [16,17].
Employing a continuum limit of large systems, N ! 1
with diffusivity D kept fixed, the stochastic spatial system
becomes describable by stochastic partial differential
equations (SPDE), see Refs. [17]; they read

 @txi � Dr2xi �Ai �
X
j

Cij�j: (5)

In these equations, a term Dr2 describes individuals’
diffusion on the lattice; it reveals that the size of possible
spatial structures is proportional to

����
D
p

[17]. The nonlinear
terms Ai coincide with those of the RE (4) and take
interactions into account. Noise terms, stemming from a
system-size expansion [18,19] are added which scale as the
square root of N. In Eqs. (5), �i denote uncorrelated
Gaussian noise, and correlations are accounted for by
CCT . The matrix C is thereby not uniquely determined.
While CCT is symmetric, C appears, in general, asymmetric

without physical significance; we choose

 C �
1

4
�������
6N
p

2
����
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���������������
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B@

1
CA: (6)

We have numerically solved the SPDE (5) using open
software from the XmdS project [20]. Snapshots of the
resulting steady states, for low diffusivity and rates �
approaching the bifurcation point � � 0, are shown in
Fig. 1. All three species coexist in a stable manner, through
the formation of spatial patterns. Large values of � [see
� � 5 in Fig. 1(a)] yield a dominant contribution of the
selection and reproduction events (2) and (3), and en-
tangled rotating spirals form, similar to the structures
reported in Refs. [5,17]. At lower values, these spirals
appear blurred, while their wavelength increases. The blur-
ring intensifies upon lowering �; at the bifurcation point
(� � 0) patterns take shape only extremely weakly and
appear to be of predominantly stochastic nature.

These observations can be analytically understood by
employing a complex Ginzburg-Landau equation (CGLE).
Although the RE (4) operate in a three-dimensional phase
space, spanned by the densities a, b, and c, trajectories
quickly relax to a two-dimensional invariant manifold [17].
On the latter, expanding the RE to third order around the
unstable reactive fixed point (and ignoring higher nonline-
arities) results in the normal form of the Hopf bifurcation
[17]. The corresponding SPDE, upon ignoring noise, may
be cast into the form of a CGLE, where a complex variable
z encodes the densities’ deviations from the internal fixed
point, see Refs. [17]:

 @tz � D�z� �c1 � i!�z� c2�1� ic3�jzj
2z: (7)

The coefficients !, c1, c2, and c3 are rational func-
tions of the parameter � and given by ! �

��
3
p

8 ��� 2�,

FIG. 1 (color online). Snapshots of the biodiverse state for
D � 1
 10�5. (a) For large rates �, entangled and stable spiral
waves form. (b) A convective (Eckhaus) instability occurs at
�E � 2; below this value, the spiral patterns blur. (c) At the
bifurcation point � � 0, only very weak spatial modulations
emerge; we have amplified them by a factor of 2 for better
visibility. The snapshots stem from numerical solution of the
SPDE (5) with initially homogeneous densities a � b � c �
1=4.
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c1 �
�
8 , c2 � � 73�7�2�27��27��20�2

90�7�2�27��27�
, and c3 �

1
� 


9
��
3
p
���2��23�2�63���1��

73�7�2�27��27��20�2 . As main characteristics, near the

bifurcation point, i.e., �� 1, they asymptotically behave
as ! � const:, c1  c2  �, and c3  1=�. The vanishing
of c1 and c2 at the bifurcation point reflects the neutral
stability of the fixed point and the surrounding closed
orbits.

A CGLE is accurate in the vicinity of a supercritical
Hopf bifurcation. In our case, Eq. (7) is only approximate:
the RE (4) do not exhibit a Hopf bifurcation, but a degen-
erate bifurcation where heteroclinic orbits turn into a fam-
ily of nestled, neutrally stable orbits. In the following, we
show that the CGLE (7) nevertheless provides a reliable
description of the system. However, ignoring higher non-
linearities induces certain quantitative deviations from nu-
merical findings, as discussed below.

Rotating spiral waves constitute a generic solution to the
CGLE, and the spreading velocities, frequencies, and
wavelengths can be calculated analytically [21]. As an
example, the wavelength follows as � � 2�c3

�����������
D=c1

p
�1���������������

1� c2
3

q
��1. Comparing these analytic values to numerical

ones, we have found that the former exceed the latter by a
factor of 1.55, which we attribute to higher (ignored)
nonlinearities. Reducing the analytical result by this con-
stant factor yields an excellent agreement, see Fig. 2.

The CGLE (7) predicts an Eckhaus instability. Namely,
the spirals are only stable against longitudinal long-wave

perturbations if the Eckhaus criterion 1� 2
1�c2

3Q
2

1�Q2 > 0 is

fulfilled, with the rescaled wave vector Q � 2�
�����������
D=c1

p
=�,

see Ref. [21]. In our case, this condition translates into � >
�E, with the value �anal

E � 1:43. Above �E, the spirals are
absolutely stable, while for values of � below �E, they
exhibit convective instabilities: a localized perturbation
grows but travels away. The instabilities result in the blur-
ring seen in Fig. 1 and originate in the only weak instability
of the RE’s internal fixed point. Numerically, the value of
�E may be determined by analyzing the influence of per-
turbations, as we describe in the supplementary material
[22]. A value �E � 2 is found, which exceeds the analyti-
cal one at a factor 1.4. As for the wavelength, we attribute
this deviation to the fact that the CGLE (7) is only a (third-
order) approximation to the full nonlinear terms appearing
in the SPDE (5).

Upon approaching the bifurcation point, i.e., when �!
0, the spirals’ wavelength, as predicted by the CGLE (7),
diverges: to leading order in 1=�, we calculate �asympt �

4�
�������������
2D=�

p
, such that �asympt ! 1 when �! 0. However,

in this limit, the blurring due to the convective instability
dominates over the instability of the RE (which indeed
vanishes at the bifurcation point), such that the spiral
waves are no longer relevant. Computation of spatial cor-
relation functions [23] and the resulting correlation length
lcorr (where spatial correlations have decayed to 1=e of
their maximal value) shows that, for � < 0:001, lcorr is no

longer proportional to the (diverging) wavelength, but
appears to approach a constant value lc

����
D
p

, see Fig. 2.
The spatial structures emerging at the bifurcation point are
extremely weak, c.f. Fig. 1(c), and should be caused by
fluctuations alone, as the RE do not yield an instability
there. Determining the value lc requires understanding of
these fluctuation-driven patterns, and may be the subject of
future studies.

For high mobilities, the system becomes effectively
well mixed, and solely the stability of the RE’s internal
fixed point determines whether species diversity will be
maintained or not [24]. In contrast, when mobility lies
below a threshold value, spatial patterns can form and
help to enable stable species diversity [5]. In the following,
we show that, at the bifurcation, patterns can have even
different, highly nontrivial impact on biodiversity.

Fluctuations unavoidably lead to ultimate extinction of
species [5]. However, transient coexistence can last very
long. For this reason, we have proposed a scheme to differ-
entiate stable from unstable diversity which is based on
time scales. In brief, neutral stability leads to a mean
extinction time T which is proportional to the system
size N [15,25]. We therefore consider the asymptotic limit
N ! 1, and define a situation where T=N ! 1 as stable
diversity (extinction takes very long), while T=N ! 0
corresponds to unstable diversity (extinction is fast).

We have applied this concept to determine the influence
of mobility on diversity’s stability at the bifurcation point
� � 0. From stochastic simulations of the reactions (1)
with nearest-neighbor exchanges on lattices of increasing
size N, we have computed the extinction probability Pext

that, starting at a random initial state with equal densities of
A, B, and C, two species have gone extinct after a waiting
time t � N. Results are shown in Fig. 3, where three
different mobility regimes emerge. For low mobilities
(around D � 0:001), Pext approaches 0 for increasing N,

FIG. 2 (color online). The dependence of the wavelength � on
the rate �. Analytical predictions from the CGLE (7) (divided by
a factor 1.55), red (solid) line, are compared to numerical results
(�). For � < �E � 2 spirals are convectively instable. When
approaching the bifurcation point, �! 0, computation of the
correlation length (�) shows that the spatial structures are no
longer determined by the (diverging) wavelength, but reach a
constant size lc, see text.
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implying T=N ! 1. In this regime, coexistence is there-
fore stable, as has previously been observed for vanishing
mobility, see [11] and references therein. For intermediate
mobilities around D � 0:007, the opposite behavior
emerges: Pext tends to 1, such that T=N ! 0 and coexis-
tence is unstable. High mobilities, around D � 0:5, yield
an asymptotic value of Pext of about 0.53, independent of
N, and thus neutral stability [5] (the precise value of Pext

depends on the choice of t N). Critical mobility values
separate these three regimes. Namely, with increasing N,
the transition from the stable to the unstable regime be-
comes sharp at a value D�1�c �3:5
10�3. The unstable re-
gime verges on the neutrally stable one around D�2�c � 0:2,
where Pext reaches 0.53. Our data do not reveal whether a
sharp transition or a crossover results when N ! 1.

In summary, we have quantitatively analyzed the emer-
gence of blurred (convectively instable) spiral waves near a
bifurcation point of cyclic dynamics. This bifurcation point
is characterized by neutrally stable, cycling orbits pre-
dicted by the corresponding RE (4). There, spatial struc-
tures are predominantly determined by noise. These
patterns have an ambiguous impact on maintaining the
coexistence of the interacting species. Low individuals’
mobility, corresponding to small patterns, promotes diver-
sity, as has already been observed in previous studies
[5,6,11]. However, medium values of mobility, inducing
relatively large patterns, lead to rapid species extinction.
Only for high mobilities, spatial patterns have no influence,
and, being at the bifurcation point, neutrally stable coex-
istence emerges. Further investigations of the destabilizing
influence of spatial patterns at medium mobilities are
required for a general understanding of the effects of
spatial degrees of freedom on the coexistence of mobile
individuals. Also, such studies will shed further light on the

role of noise that becomes a major player in pattern for-
mation at bifurcation points.
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