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The coexistence of competing species is, due to unavoidable fluctuations, always transient. In this

Letter, we investigate the ultimate survival probabilities characterizing different species in cyclic

competition. We show that they often obey a surprisingly simple, though nontrivial behavior. Within a

model where coexistence is neutrally stable, we demonstrate a robust zero-one law: When the interactions

between the three species are (generically) asymmetric, the ‘‘weakest’’ species survives at a probability

that tends to one for large population sizes, while the other two are guaranteed to extinction. We

rationalize our findings from stochastic simulations by an analytic approach.
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Ecological systems are composed of a large number of
different interacting species [1]. Competition between
them basically affects the probability of an individual’s
reproduction as well as their death. However, such birth
and death processes also possess a considerable degree of
stochasticity, which induces fluctuations that ultimately
result in species extinction [2,3]. In this respect, further
understanding of the conditions and mechanisms that en-
able the huge observed biodiversity is the subject of a large
body of work in contemporary theoretical ecology and
biological physics. It involves the challenging problems
of characterizing out-of-equilibrium steady states in the
presence of intrinsic fluctuations [4], nonlinearities [5], as
well as nontrivial interaction networks [6]. Recent experi-
ments on colicinogenic microbes have proven the impor-
tance of cyclic, ‘‘rock-paper-scissors-like,’’ competition
[7]. Such cyclic dynamics also governs, e.g., certain lizard
populations [8] and coral reef invertebrates [9]. Theoretical
studies have mainly focussed on identifying conditions
under which cyclic competition leads to maintained diver-
sity, employing, e.g., a time-scale framework to distinguish
stable from unstable coexistence [10]. A supporting role of
self-forming spatial patterns has been underlined generally
[10–12], although in certain situations it may not be nec-
essary [13] or occasionally even harmful [14].

In contrast, little is known about the fingerprints of
extinction; e.g., in the E.coli experiments [7], when the
population is well-mixed, a strain which is resistant to the
poison without producing toxin itself remains as the only
survivor after a short transient. Is this behavior robust? If
so, why does one species reliably outcompete the other
two, although all three species together display cyclic
dynamics, where each outcompetes another but is itself
beaten by the remaining one? What is the influence of
unavoidable fluctuations?

In this Letter, we approach these ecologically important
and physically insightful questions by investigating cyclic
competition of three interacting species, referred to as A,B,

and C. Aiming at a broad and general applicability of our
model and results, we consider the following simplified,
paradigmatic interactions:

AþB!kA AþA; BþC!kB BþB; CþA!kC CþC: (1)

Hereby, A outperforms B at a rate kA, while B beats C
which outcompetes A in turn, at rates kB, kC, respectively.
Recently, it has been shown that a population of N such
interacting individuals eventually ends up in one of the
(absorbing) states where only one species survives [15,16].
The mean time T for extinction is proportional to the
system size N, T � N, indicating that extinction is solely
driven by fluctuations [15,16]. Therefore, which species
survives is subject to a random process. If the interaction
rates are equal, i.e., the three species are symmetric, all
have an equal chance of surviving.
Here, we investigate the generic case where the compet-

ing species do not obey a symmetry. To gain intuition for
the system’s behavior, we discuss predictions by the rate
equations (RE) first. The RE describe the deterministic
time evolution of the densities a, b, and c of the three
species, as may arise when fluctuations are negligible, e.g.,
when the population size N is large. For the reactions (1),
the RE are given by

_a ¼ aðkAb� kCcÞ; _b ¼ bðkBc� kAaÞ;
_c ¼ cðkCa� kBbÞ:

(2)

They conserve the number N of interacting individuals: the
densities fulfill the relation aþ bþ c ¼ 1, spanning the
simplex S3 as the phase space (see Fig. 1). Its corners
represent three absorbing fixed points, where only one
species remains. In addition, Eqs. (2) possess a reactive
fixed point F, located at ða�; b�; c�Þ ¼ ðkB; kC; kAÞ=ðkA þ
kB þ kCÞ, which corresponds to species coexistence. In the
following, we use the time-scale normalization condition
kB þ kC þ kA ¼ 1. Therewith, the parameter space,
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spanned by the rates kA, kB, kC, also adopts the form of the
simplex S3; see the lower parts of Figs. 2.

The RE (2) predict neutral stability of species coexis-
tence, as they obey the following constant of motion:

R � akBbkCckA ; (3)

which does not change in the course of the deterministic
time evolution. Similar to the energy in classical mechan-
ics, R singles out closed orbits surrounding the coexistence
fixed point F; see Fig. 1. These orbits, as well as F, are
neutrally stable to fluctuations; stochastic trajectories fol-
low the cyclic behavior of the deterministic orbits to a
certain degree, while at the same time performing a ran-
dom walk between them. Eventually they reach the bound-
ary of the phase space and are then driven to one of the
absorbing fixed points (cf. Fig. 1).

We have performed extensive computer simulations to
determine the influence of the reaction rates kA, kB, kC as
well as the system size N on the probabilities Psurv for each
species to survive. To this end, we have evolved the system
with initial coexistence, until extinction of two species
occurred; the average outcome over many such runs de-
fined the survival probabilities. Typically, the system has
initially been in a state corresponding to the center of the
simplex. However, altering this starting point is not rele-
vant for the results, as we show below.

What is the influence of the population size N on the
survival behavior? To answer this question, first, we con-
sider the smallest population where all three species can
‘‘coexist,’’ namely, N ¼ 3. In this case, Psurv depend line-
arly on the reaction rates; see Fig. 2(a). For such a small
system, the master equation describing the stochastic pro-
cesses (1) can be solved exactly. Only the state where
individuals of each species is present corresponds to coex-

istence, the other states lie on the absorbing boundary. A
single process therefore immediately leads to extinction
and determines which species survives. The resulting sur-
vival probability for species A reads PA

surv ¼ kB; the others
follow analogously. A ‘‘law of stay out’’ arises: The spe-
cies that is least frequently engaged in interactions (for
species A, interactions occur at rates kA and kC) has the
highest chance to survive. In contrast to what emerges for
large populations, see below, this law is not strict. If kB
denotes the largest of the interaction rates, species A is not
guaranteed to survive, but possesses the highest
probability.
Large populations, about N > 100, display a contrasting

‘‘law of the weakest,’’ which determines the surviving
species [17]. Namely, for reaction rates fulfilling kA <
kB, kC, species A has the highest probability of surviving,
although A may be considered as the ‘‘weakest’’ species:
Its reproduction occurs at rate kA and is thus the slowest of
the three competing species. This nontrivial law has pre-
viously been described, as a nonstrict one, in Ref. [17].
Here we show that, surprisingly, this law becomes strict in
the limit of large population sizes, N ! 1 [see Fig. 2(b)
for the situationN ¼ 10 000]. In this limit, PA

surv ! 1 in the
region kA < kB, kC, and P

A
surv ! 0 otherwise; a ‘‘zero-one’’

behavior arises. Three regions emerge in parameter space,
depicted in the lower part of Fig. 2(b). In each region, one
distinct species is guaranteed to survive, while the others
go extinct.
The transition from the law of stay out to the law of the

weakest happens gradually upon increasing the system
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FIG. 2 (color online). The survival probabilities for A (blue/
dark gray areas), B (green/medium gray areas), and C (red/light
gray areas), obtained from stochastic simulations as averages
over 10 000 samples. (a) A small system, N ¼ 3, leads to a law
of stay out and linear dependences of Psurv on the reaction rates.
(b) Large populations, here for N ¼ 10 000, are governed by a
law of the weakest and obey, in the limit N ! 1, a zero-one
behavior.
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FIG. 1 (color online). The phase space S3. We show the
reactive fixed point F, the center Z, as well as a stochastic
trajectory (red/light gray lines). It eventually deviates from the
outermost deterministic orbit (black lines) and reaches the
absorbing boundary. For the distances �A, �B, and �C (blue/
dark gray lines) see the text. Parameters are ðkA; kB; kCÞ ¼
ð0:2; 0:4; 0:4Þ and N ¼ 36.
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size. From our stochastic simulations, small populations,
around N < 20, are governed by the law of stay out
(although strictly valid only for N ¼ 3). Intermediate sce-
narios emerge for medium populations, about 20<N <
100, while survival in large ones, N > 100, is predomi-
nantly determined by the law of the weakest.

We have confirmed that the law of the weakest becomes
strict for N ! 1 by computing the survival probability for
different population sizes N. For illustration, let us focus
on a one-dimensional section through the two-dimensional
parameter space, connecting a region where A is weakest to
another one where B is weakest. Results are shown in
Fig. 3; they demonstrate that the transition between A
and B survival, at the ‘‘critical’’ parameter value where
both regions meet, becomes sharp when increasing the
population size, resulting in a discontinuous transition.

Further evidence for a sharp transition in the survival
probabilities, i.e., a zero-one behavior, comes from an
analytical approach which we have developed. It describes
the survival probabilities for large systems, where only the
last part of the stochastic time evolution, shortly before
extinction, is relevant. Indeed, in large systems, the sto-
chastic trajectories exhibit only small fluctuations, and
closely follow the deterministic orbits, performing many
turns around the reactive fixed point F (see Fig. 1).
Eventually, they deviate from an ‘‘outermost’’ determinis-
tic orbit, shown in black in Fig. 1, and hit the absorbing
boundary. Then, the system is driven to one of the absorb-
ing states. Which one is reached depends on which edge of
phase space the trajectory had reached before; each edge
leads to one distinct uniform state.

For asymmetric reaction rates, the fixed point is shifted
from the center Z of the phase space towards one of the
three edges, i.e., into one of the three domains shown in
Fig. 1. All deterministic surrounding orbits are changed in
the same way, squeezing in the direction of one edge.

Intuitively, the absorbing state which is reached from this
edge has the highest probability of being hit, as the distance
from the outermost deterministic orbit towards this edge is
shortest. Indeed, this behavior has been validated by the
above presented stochastic simulations.
Let us formalize the above considerations. We define the

outermost deterministic orbit as the one orbit that is only a
distance of 1=N, i.e., one discrete, elementary step apart
from its closest edge. The distance of this outermost orbit
to the edge that induces the survival of species A is termed
�A; the distances �B and �C are defined analogously. Now,
in the parameter region kA < kB, kC, where A has the
highest survival probability, the distance �A is smallest,
and therefore �A ¼ 1=N. The other two distances can be
obtained via the conserved quantity R, Eq. (3). For this
purpose, in the following, we consider the (most interest-
ing) situation where the differences between the reaction
rates kA, kB, kC are small. The outermost orbit then runs
through the point c ¼ �A ¼ 1=N and a � b � 1=2, yield-
ing its constant of motion

Ro:O ¼ 1

NkA

1

2kBþkC
: (4)

If we perform the same calculation at the point where the
outermost orbit lies closest to the edge leading to the
survival of species B, C, respectively, we obtain

Ro:O ¼ �kB
B

1

2kCþkA
and Ro:O ¼ �

kC
C

1

2kBþkA
; (5)

respectively. Equating these expressions yields

�B ¼ 2ðkA�kB=kBÞN�ðkA=kBÞ

and �C ¼ 2ðkA�kC=kCÞN�ðkA=kCÞ:
(6)

Most important for our purpose is the scaling of the
distances �B, �C in the population size N. Residing within
the regime kA < kB, kC, we notice from Eqs. (6) that both
�A and �B decrease slower than 1=N. Consequently, the
number of discrete steps that separate the outermost orbit
from these two edges, given by N�B, N�C, respectively,
tend, for large populations, to infinity. Note that the same
does not apply to �A, which we keep fixed at 1=N. Below,
we show how this scaling leads to the zero-one behavior of
the survival probabilities.
The probability for deviating from the outermost orbit

and performing an elementary step towards the absorbing
boundary of the phase space is, for small differences in the
reaction rates, approximately constant along the orbit; let
us denote it by p < 1. Now, the probability of leaving the
outermost orbit and reaching the edge leading to the sur-
vival of species B is given by the probability of N�B such
subsequent elementary steps, and therefore reads pN�B .
Analogously, we obtain pN�A and pN�C as the probabilities
for reaching the edges connected to A and C, respectively.
Consequently, the survival probabilities of the different
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FIG. 3 (color online). The limit of large populations. We show
the survival probabilities of A (open symbols) and B (filled
symbols) depending on kB, for kC ¼ 0:35 and different system
sizes: N ¼ 24 (red squares), 100 (blue circles), and 10 000
(black triangles). A sharpened transition emerges at k�B ¼
0:325 where the A- and B-dominated regions meet. Our analyti-
cal prediction, Eq. (7) is shown for p ¼ 0:7 and N ¼ 10 000
(dashed line).
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species are given by the corresponding normalized proba-
bilities:

P A
surv ¼ pN�A

pN�A þ pN�B þ pN�C
; (7)

PB
surv and PC

surv follow analogously. The above found scal-
ing, N�B, N�C ! 1 upon N ! 1, while N�A ¼ 1, imply
that for large populations PA

surv ! 1, PB
surv ! 0, PC

surv ! 0,
and therefore the zero-one behavior emerges. Note that
these results have been derived from assuming kA < kB,
kC; different species survive in the other regions of the
parameter space. The overall sigmoidal form of Eq. (7) and
the associated width agrees well with numerical findings
for large systems; see Fig. 3. However, deviations do occur
in the more detailed shape of the survival probability. We
attribute them to the approximations we made when deriv-
ing Eq. (7), namely, that we have treated the escape step
probability p along the outermost orbit as well as the
latter’s distances to the different edges as constant.

Symmetries between species alter the survival probabil-
ities. If all interaction rates are identical, all species clearly
have the same chance of 1=3 to survive, and if two rates
coincide, the corresponding two species can both have a
chance 1=2 of remaining.

The above analysis suggests that the survival probabil-
ities do not depend on the starting point, as long as the
latter is not too close to the absorbing boundary. Indeed,
extinction occurs due to deviations from the outermost
orbit; any initial state therein will induce the same behav-
ior. This expectation has been confirmed by simulations.

The dependence of the extinction behavior solely on
temporally late deviations from the outermost orbit is
reminiscent of ‘‘tail events’’ in probability theory [18],
which induce the celebrated zero-one law originally by
Kolmogorov [18]. While this law cannot be directly ap-
plied to the present situation, mainly due to the finite
number of steps in each of the trajectories discussed
here, further investigations along these lines seem promis-
ing to deepen our understanding of zero-one behaviors.

We have derived the zero-one behavior of the survival
probabilities, accompanied by a strict law of the weakest,
for a cyclic population model that, deterministically, ex-
hibits neutrally stable coexistence. However, the above
analysis based on scaling arguments allows us to immedi-
ately generalize the obtained results to the case where
coexistence is (deterministically) stable. Then, stochastic
trajectories are attracted to the reactive fixed point, with
rare large deviations. Again, extinction is determined by
the behavior of trajectories close to the absorbing bound-
ary, such that an analogous analysis as derived above holds.
However, the latter is much harder to test numerically.
Deterministically stable coexistence induces a mean ex-
tinction time, which increases exponentially in the system
size [19], such that computation of the survival probabili-
ties in large systems is hardly feasible.

We conclude by relating our results to the E.coli experi-
ments [7] mentioned in the beginning. Identifying A with
the sensitive, B with the resistant, and C with the colicino-
genic strain, we uncover the relation kC � kA > kB [C can
kill A (fast) and reproduce, while A and B can only repro-
duce if a neighboring bacterium dies (slow). kA and kB are
then proportional to the reproduction rate differences of A
and B, respective of B and C. The measured data [7] leads
to kA > kB]. The resistant strain B is thus weakest and,
according to the law of the weakest, survives, in agreement
with experimental observations [7].
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