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The shape of semiflexible polymer rings is studied over their whole range of flexibility. Investigating
the joint distribution of asphericity and the nature of asphericity as well as their respective averages, we
find two distinct shape regimes depending on the flexibility of the polymer. For a small perimeter to
persistence length the fluctuating rings exhibit only planar, elliptical configurations. At higher flexibilities
three-dimensional, crumpled structures arise. Analytic calculations confirm the qualitative behavior of the
averaged shape parameters and the elliptical shape in the stiff regime.
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It is a well-known fact dating back to 1934 that the shape
of a flexible coil is overall prolate [1]. From the isotropy of
space, the intuitive expectation would be a spherically
symmetric conformation. However, this idea implies rota-
tional averaging and, in fact, entropy is maximized for a
single trajectory of a polymer if the number of segments in
each direction is inhomogeneous.

After a series of theoretical investigations, based on both
analyses [2–4] and simulations [5,6], only with the onset
of single molecule techniques, experiments could prove the
asymmetric shape of a flexible polymer [7,8] and address
the relevance of a polymer’s shape in biology. The overall
shape of a polymer is important for its mobility in hetero-
geneous media such as cytoplasm and the depletion forces
between larger complexes in polymer solution [9,10]. For
the transcription of viral genome or plasmids, the shape of
its DNA might enhance or reduce the accessibility for
enzymes depending on the spatial distance between DNA
segments [11]. DNA as many biopolymers is semiflexible,
behaving like a thermally fluctuating elastic rod on length
scales of the order of its persistence length. Considering the
shape of viral DNA and plasmids, this limit is applicable
and deserves investigation. In fact, most of the short ge-
nomes as well as plasmids are circular, yielding an even
stronger constraint for the polymer’s shape. To obtain a
complete picture for any circular DNA, it is desirable to
understand the shape of semiflexible rings as their flexibil-
ity is varied. A polymer’s shape is well characterized by the
asphericity [2] as the deviation from spherical symmetry.
The degree of prolateness or oblateness is captured by the
independent nature of asphericity [5]. Measurements of
both their mean values give a good indication of how the
average outline looks, but fail to reflect the total ensemble
of configurations that can only be accessed via the shape
parameter’s distribution.

We employ Monte Carlo simulations to study the shape
of semiflexible polymer rings over a large range of flexi-
bility. To give a complete picture of the polymer’s change
of shape as its flexibility increases, the joint distribution of
asphericity and nature of asphericity as well as their re-

spective averages will be presented. We find two different
shape regimes. In the first, the flexibilities are small, re-
sulting in dominantly planar polymer ring configurations.
In the second, at large flexibilities, crumpled three-
dimensional (3D) structures prevail. In both the stiff and
the flexible limit analytic calculations explain the observed
behavior.

Characterizations of the shape of a polymer’s trajectory
fr�s�g, s 2 �0; L�, are based on the radius of gyration,
primarily a measure for the spatial extent. Generalizing
to a radius of gyration tensor Q,

 Qij �
1

L

Z
dsri�s�rj�s� �

1

L2

Z
dsri�s�

Z
d~srj�~s�; (1)

the eigenvalues �i of the tensor describe the spatial extent
along each principal axis. Measuring the variance of the
eigenvalues, the deviation from a fully symmetric object is
obtained, denoted asphericity, �. Furthermore, prolateness
or oblateness of the object is specified by the nature of
asphericity, �, measuring the skewness of the eigenvalues.
Choosing the normalization such that the quantities are
independent of the total length, the asphericity of a poly-
mer is defined by [2]

 � �
3

2

TrQ̂2

�TrQ�2
; (2)

where Q̂ij � Qij � �ijTrQ=3. The nature of asphericity is
given by [5]

 � �
4 detQ̂

�23 TrQ̂2�3=2
: (3)

The asphericity takes values 0 � � � 1, where � � 0
corresponds to a spherically symmetric object. For � �
1, the polymer is fully extended, forming a rigid rod. The
nature of asphericity is bounded between �1 � � � 1.
� � �1 is obtained for a fully oblate object such as a disk,
while � � 1 is the result for a prolate object as a rigid rod.
As the asphericity and the nature of asphericity are inde-
pendent, a joint distribution yields a thorough classification
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of stochastic objects such as thermally fluctuating poly-
mers. For reasons of comparison, we will adopt the pa-
rameters ��2

����
�
p
2�0;2� and �� arccos�=32�0;�=3�

for the joint distribution defined by Cannon et al. [5].
Those parameters are directly connected to the eigen-

values of the radius of gyration tensor by �1 �
���1� � cos����, �2 � ���1� � cos��� 2�=3��, and �3 �
���1� � cos��� 2�=3��, where �1 	 �2 	 �3 and �� de-
notes the mean eigenvalue. Using these relations, the shape
diagram presented in Fig. 1 is constructed. In the region of
both large � and large �, one eigenvalue becomes negative,
excluding these parameter sets for real structures. Along
the solid line separating the excluded conformations from
possible ones, at least one eigenvalue is zero. Hence, the
solid line represents all planar configurations ranging from
the fully oblate geometry of a rigid ring with � � �=3 via
elliptical shapes to the fully prolate structure of a rigid rod
at � � 0. Below the solid line, 3D conformations are
exhibited as all eigenvalues are now greater than zero.
The shape is rather oblate for � > �=6 or comparatively
prolate for � < �=6 as illustrated by the ellipsoids enclos-
ing a polymer’s trajectory. Towards smaller �, the structure
becomes less and less aspherical resulting in a spherically
symmetric conformation for � � 0.

For flexible open polymers the shape distribution is
known to be almost exclusively prolate and highly aspheri-
cal being peaked around � � �=40 and � � 1:55 [5] as
indicated by the diamond in Fig. 1. However, the confor-
mation of a rigid ring lies just at the opposite end of the
shape diagram at � � �=3 and � � 1. As the states of a
highly flexible ring polymer can be assumed to be similar
to those of flexible open polymers, a strong crossover
between a stiff and a flexible regime seems inevitable.

Heuristically, we may argue that the shape of the tight
fluctuating ring in the stiff limit is expected to be domi-
nated by the first modes since higher modes are almost not
thermally excited. Both the first in-plane ‘‘breathing’’
mode and the first transverse bending mode yield an ellip-
tical conformation as can be illustrated by deforming a
strip of paper connected to form a ring. Although the ring
rotates in space when fluctuating, the elliptical shape itself
remains planar, being oblate for small eccentricities and
becoming prolate for large eccentricities of the ellipse.
Towards the flexible limit also higher modes are excited
resulting in a crossover to the flexible regime where the
conformations are three dimensional and crumpled as ex-
pected for a closed random walk.

The METROPOLIS Monte Carlo method was employed to
simulate a discretized semiflexible ring of total length L
and persistence length lp. The ring is described as a poly-
gon composed of N tethers of fixed length a � �L=��

sin��=N� and direction t. The energy assigned to an
individual configuration is given by the elastic energy, E �
NkBT�lp=L�

PN
i�1�1� titi�1�, imposing periodic bound-

ary conditions, tN�1� t1. New conformations are achieved
by pivot moves [12], performing 106 Monte Carlo steps per
segment. Measured expectation values of the mean square
diameter hD2i were in accordance with analytical expres-
sions [13] up to the estimated statistical error. The effect of
self-avoidance is neglected, as its impact on the shape of
even flexible polymers was shown to be only of the order of
1% [2].

The change of shape as the flexibility increases is best
studied when analyzing the shape distribution at different
flexibilities as plotted in Fig. 2. We distinguish between a
stiff regime exemplified by L=lp � 1, 4 and a flexible
regime represented by L=lp � 16, 32. The geometry of a
ring induces an apparent stiffening of the fluctuating poly-
mer to approximately 5 times its unconstrained flexibility
[13]. Therefore, even L=lp � 4 belongs to the stiff limit.
By comparison with the shape diagram in Fig. 1 polymer
ring configurations in the stiff regime are identified to be
almost exclusively planar ranging from totally oblate to
comparatively prolate shapes. In the flexible regime,
crumpled structures that fill 3D space dominate the broader
configuration space. The distribution changes from rimlike
being strongly peaked in the asphericity to lenslike with the
major weight on prolate and highly aspherical conforma-
tions, although less rodlike than observed for open poly-
mers. In agreement with experimental observations [7,8],
the distribution of shapes is very broad, yielding also very
extended conformation close to � � 2.

In between the two asymptotic shape regimes a cross-
over is observed represented by L=lp � 8 in Fig. 2. During
this crossover both crumpled, 3D configurations and planar
structures are almost equally probable, yielding the largest
spread of well-occupied conformations in the configura-
tion space. Beyond the stiff regime in Fig. 2 the mean of

FIG. 1 (color online). The overall shape of polymer configu-
rations depending on the asphericity � and the nature of aspher-
icity �. Along the solid line the structures are planar;
configurations beyond that line are excluded as they do not
correspond to real structures. The diamond indicates the peak
in the distribution of flexible open polymers. The sequences of
circles and triangles denote the mean shapes of open and ring
polymers at integer flexibilities starting from L=lp � 0 at �0; 2�
and at ��=3; 1�, respectively.
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each single shape parameter deviates from the states with
the largest joint probability, showing its limitation in iden-
tifying a polymer’s configurations. Identification of the
conformations and insight into the width and the form of

the density of states are only attainable by the distribution
of the shape parameters, highlighting their importance for
studying polymer shapes.

Investigating the mean asphericity and the mean nature
of asphericity, qualitative arguments can be quantified and
compared to previous results in the limit of infinite flexi-
bility. The change of both shape parameters on increasing
flexibility L=lp is depicted in Fig. 3. For a rigid ring, the
asphericity is given by � � 0:25, being fully oblate: � �
�1. Up to L=lp � 5 both asphericity and the nature of
asphericity grow linearly with the flexibility, obeying
h�istiff � 0:25� 0:01L=lp, h�istiff � �1� 0:3L=lp. This
linear dependence classifying the stiff regime is explained
by the shape of an ellipse whose axes grow and shrink with
the square root of the flexibility, respectively, as will be
discussed in the next paragraph. A similar scaling argu-
ment has been given by Camacho et al. [14] analyzing
planar rings. Beyond this stiff regime a maximum of the
mean asphericity is reached. Increasing the flexibility fur-
ther, higher modes become accessible. These undulations
contract particularly the major axis of the ‘‘ellipse,’’ de-
creasing the variance of the eigenvalues of the radius of
gyration tensor and hence yielding a declining asphericity.
The asphericity approaches the exact value for an infinitely
flexible polymer ring, a closed Gaussian chain, h�ifl;c �
0:2464, derived by Diehl and Eisenriegler [3] in a power
law with exponent � � �1:3. Compared with a flexible
open polymer with h�ifl;o � 0:396�5� [5], a polymer ring is
much more spherical. Analytic calculations based on a
perturbation expansion of a closed Gaussian chain for finite
flexibility forecast a positive correction in first order [15],

FIG. 3 (color online). Monte Carlo simulation data for the
mean asphericity h�i and the mean nature of asphericity h�i
versus increasing flexibility L=lp. Both grow linearly with rais-
ing flexibility for tight rings (solid line). Then, h�i saturates at a
prolate shape, while the asphericity decreases in a power law
(dashed line). Error bars are of the size of the symbols.

FIG. 2 (color online). The distribution of asphericity � and the
nature of asphericity � at different levels of flexibility. For tight
rings, L=lp < 5, planar conformations dominate, while the con-
figurations become truly 3D beyond L=lp of the order of 10. The
crosses indicate mean and variance of each single shape parame-
ter deviating from the most probable state. Note the change of
the color scaling as the distribution spreads out.
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and, hence, explain why the asphericity approaches its
Gaussian limit from above. Also for two-dimensional poly-
mer rings our analytic arguments predict a linear increase
of the asphericity in the stiff limit and a monotonic de-
crease in the flexible limit explaining the nonmonotonic
behavior of the shape parameter observed in previous
simulations in two dimensions [14,16]. Experiments found
a slight increase of the asphericity versus L=lp in the
flexible regime for linear DNA [7] not to be justified
with our predictions of the shape of semiflexible polymers
discarding for the sake of simplicity additional DNA ef-
fects, such as twist, nicks, or supercoils. Although DNA
rings make up a huge field of biological processes where
shape matters, resolving their 3D shapes is a challenge due
to their small size and rate of change. Ring polymers of
larger persistence length lp such as cytoskeletal filaments
as in [17] or mesoscopic polymer materials are feasible to
measure our results. The nature of asphericity increases
monotonically saturating at a value of h�ifl;c � 0:53 at
L=lp � 15, being less prolate than flexible open polymers
with h�ifl;o � 0:745 [5]. Towards the Gaussian limit the
sequences of averaged shape parameters of ring and open
polymer as depicted in Fig. 1 can neither cross nor depart
from each other. Therefore, both their h�i approach their
limiting value monotonically. Overall, the geometric con-
straint induces a bias towards more spherical and oblate
structures.

The linear growth of h�i and h�i for tight rings is
analytically predictable based on the assumption of a pla-
nar shape. Because of the first bending modes, the ring of
radius Rc becomes an ellipse, where the major and minor
axes are the radius Rc increased and decreased, respec-
tively, by

���������
hr2
?i

q
, the amplitude of the undulations of a

weakly bending rod. In the weakly bending limit fluctua-
tions parallel to the average axis of the contour are second
order to undulations perpendicular, resulting in the ap-
proximate bending energy E � 1

2 kBTlp
R
L
0 dsr

00
?�s�

2, and

yielding
���������
hr2
?i

q
� �R3=2

c l�1=2
p [14,18,19], where � denotes

a numerical constant. Hence, the asphericity and the nature
of asphericity are equated in the limit of small flexibilities
L=lp, where the first modes truly dominate

 �ellipse � 0:25� 2�L=lp �O��L=lp�2�; (4)

 �ellipse � �1� 54�L=lp �O��L=lp�2�: (5)

These analytic results forecast the observed behavior.
In conclusion, we have employed the joint distribution

of asphericity and the nature of asphericity and their re-
spective means as well as analytic arguments to show that
the shape of semiflexible polymer rings exhibits two dis-
tinct regimes depending on their flexibility. Tight rings are
planar ‘‘ellipses,’’ while flexible rings are 3D, crumpled
structures. These two regimes may have implications for a
variety of biological processes such as the flow behavior or
the accessibility of DNA rings to enzymes. As the shape of

stiff, elliptical rings may not be considerably changed by
hydrodynamic forces since they will behave as rigid disks,
rings in the flexible regime may undergo tumbling motion
with alternating collapse and stretching as observed for
flexible open polymers [20]. Similarly, the time it takes an
enzyme to find its assigned binding site on a DNA strand
should be larger if the DNA conformation is planar, as the
enzyme cannot easily travel to DNA segments separated
afar along the backbone by 3D diffusion as in coiled up 3D
structures. In this context of opposed behavior in the two
shape regimes, polymers in the crossover region where
both shapes are equally probable may show striking prop-
erties. Depending on the manner in which a polymer
changes between a planar and a crumpled shape, e.g.,
randomly or following a particular trajectory, and its time
scale, a broad variety of biological functionality can
emerge. The characterization of a semiflexible polymer
by its shape can therefore enable a coarse-grained model-
ing of complex biological processes.
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