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Abstract: The high spatio-temporal variability of soil moisture is the result of atmospheric 
forcing and redistribution processes related to terrain, soil, and vegetation characteristics. 
Despite this high variability, many field studies have shown that in the temporal domain 
soil moisture measured at specific locations is correlated to the mean soil moisture content 
over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) 
instruments are very sensitive to soil moisture it is hypothesized that the temporally stable 
soil moisture patterns are reflected in the radar backscatter measurements. To verify this 
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hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced 
Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in 
the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for 
relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear 
model coefficients can be estimated by considering the scattering properties of the terrain 
and vegetation and the soil moisture scaling properties. For both linear model coefficients, 
the relative error between observed and modelled values is less than 5 % and the 
coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and 
downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) 
and passive (SMOS, AMSR-E) instruments. 

Keywords:  Soil moisture, SAR, backscatter, scaling, temporal stability 
 

1. Introduction 

Soil moisture is highly variable in space and time. Soil moisture patterns are spatially organized 
phenomena, influenced by geology and topography, land cover and climate [1]. Within a few meters 
soil moisture can vary as much as within a distance of kilometres [2]. In the temporal domain the soil 
moisture of the top part of a soil profile, which is directly exposed to the influences of the atmosphere, 
can vary significantly over hours [3]. Several studies showed that soil moisture variations in space and 
time can be related to a small scale and a large scale component [4]. The small scale component leads 
to local variations in soil moisture due to soil properties, land cover attributes and local topography. 
This small scale component acts in the range of tens of meters spatially and in the range of a few days 
temporally [5]. The large scale component is related to atmospheric forcings, namely precipitation and 
evaporation processes. Based on extensive in-situ data sets in Russia, Vinnikov et al. [6] observed 
spatial correlation lengths of soil moisture in the order of 400 – 800 km caused by atmospheric forcing. 
These findings are supported by [4] reporting spatial correlation lengths in the order of several hundred 
kilometres for test sites in Russia, Mongolia, China and Illinois, USA. 

As a result of large scale atmospheric forcing, temporal soil moisture variations can be expected to 
be similar across different spatial scales, from meters to hundreds of kilometres. At local scale these 
atmospheric-driven temporal variations are modulated by small-scale hydrologic processes related to 
terrain, soil, and vegetation characteristics. Experimental work based on in-situ soil moisture 
measurements has demonstrated that spatial soil moisture patterns tend to persist in time and that 
therefore soil moisture measured at single in-situ stations is often highly correlated with the mean soil 
moisture content over an area. This observation has been exploited by the temporal stability concept 
proposed by Vachaud et al. [7] to identify stations that have a similar absolute value and temporal 
trend as the mean soil moisture content over an area. In other words, temporal stability of spatial soil 
moisture patterns allow one to estimate the areal mean soil moisture from point measurements. 
Conversely, it should be possible to go the opposite way to estimate local scale soil moisture from 
areal measurements delivered by remote sensing. 
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The questions of whether, where and how coarse resolution satellite data can be used at finer scales 
are important because, within the next few years, only coarse resolution (25-50 km) soil moisture data 
derived from spaceborne radiometer and scatterometer systems can be expected to be operationally 
available [8]. Global soil moisture products are already available from the Advanced Microwave 
Scanning Radiometer (AMSR-E) [9] and from the Advanced Scatterometer (ASCAT) onboard of the 
Meteorological Operational (METOP) satellite series [10]. The Soil Moisture and Ocean Salinity 
(SMOS) satellite is planned to be launched in 2008 [11]. The spatial resolution is 25 km for ASCAT, 
43 km for SMOS, and 56 km for AMSR-E (C-band). For soil moisture retrieval at finer spatial scales, 
Synthetic Aperture Radar (SAR) may be used. However, scientific and technological breakthroughs 
are still needed for the operational use of SAR [12]. 

Given that soil moisture has an important influence on radar backscatter measurements at all spatial 
scales, it is hypothesized that temporally stable soil moisture patterns lead to temporally stable radar 
backscatter patterns. To verify this hypothesis, long-term backscatter time series acquired by the 
Advanced Synthetic Aperture Radar (ASAR) flown on board of the European satellite ENVISAT are 
analysed in this paper. ASAR can be operated in Wide Swath (WS) mode to cover a much wider swath 
(swath width of 405 km) than in conventional strip-map mode (swath width of 100 km). In this way, 
large areas can be more frequently imaged and long backscatter time series can be more easily 
constructed. 

2. Theory 

2.1. Temporal Stability of Soil Moisture 

The concept of temporal stability was introduced by [7] as a practical means of reducing a large 
ground-based soil moisture measurement network to a few representative sites. On a more fundamental 
level, the temporal stability concept is important because it suggests that spatial soil moisture patterns 
persist in time. The existence of time stability was confirmed by many studies [13], although 
hydrological processes such as topographically driven lateral redistribution of soil moisture may create 
a lack of time stability [14]. 

Let us consider a soil moisture network with n measurement sites. The mean soil moisture content 
over the region, θr, at time tj is estimated by 

( ) ( )jii

n

i
pjr tyx

n
t ,,1

1
∑
=

= θθ  
(1)

where θp is an in-situ soil moisture measurement at point P with coordinates (xi, yi). The 
measurement scale of the in-situ sensors is denoted here as point scale because the measurements are 
only representative of a small area ranging from about 0.1 to 10 dm2 depending on the employed 
measurement technique (see [15] for a discussion of different in-situ measurement techniques). For 
identifying the most representative soil moisture stations [7] used the relative difference between point 
scale and regional scale soil moisture 



Sensors 2008, 8                            
 

1177

( ) ( )
( )jr

jrjiip
ji t

ttyx
θ

θθ
δ

−
=

,,
,  

 (2)

and calculated the mean and standard deviation of δi,j over time. While the mean of δi,j informs us if 
location (xi, yi) is in general drier, wetter or about the same as the regional soil moisture value, the 
standard deviation of δi,j tells us how well θp reflects the temporal trend of θr. Low values of the 
standard deviation of δi,j indicate a high time stability of the spatial soil moisture patterns, implying a 
strong correlation of point scale and regional scale soil moisture time series. Temporal stability can 
thus also be assessed using the temporal correlation coefficient between point scale and regional scale 
soil moisture [16, 17]. For example, Cosh et al. [13] found that the temporal correlation (R2) of station 
soil moisture with the regional mean over the 610 km2 Little Washita Watershed located in Oklahoma, 
USA, was larger than 0.75 for the majority of the sites. Grayson and Western [14] found R2 values of 
more than 0.9 in the 10.5 ha Tarrawarra catchment near Melbourne, Australia. 

Given temporally stable soil moisture patterns, time-invariant relationships can be used for 
estimating regional soil moisture θr from point scale measurements θp, a process commonly referred to 
as “upscaling”. De Lannoy et al. [18] tested different upscaling methods at a 21 ha site situated in 
Maryland, USA, and found that a simple linear relationship provided good results. This observation 
was also made by Baup et al. [19] at a 1 km2 large Sahelian site located in the Gourma region in Mali. 
Not only in in-situ measurements but also in hydrologic simulations such relationships have been 
observed. For example, [20] investigated the temporal stability of soil moisture patterns at different 
spatial scales using hydrological model simulations for a mesoscale catchment (75000 km²) and found 
that a linear model was well suited to describe the relationship between 1 km² and 40 x 40 km² soil 
moisture fields. One can hence write 

( ) ( ) ( ) ( )jiipiirpiirpjr tyxyxdyxct ,,,, θθ +=  (3)

where crp and drp are location specific coefficients that depend on the soil, topography and 
vegetation. The subscripts of the two coefficients indicate the two scales and their sequence indicates 
the direction of scaling (from point to regional scale). The coefficients crp and drp can be estimated for 
each site within a soil moisture network area, whereas the suitability of this linear model can be 
expressed in terms of the correlation coefficient and the standard error of estimate (SEE). 

Instead of confining equation (3) to a few sample points P within a measurement network, it is now 
applied to any arbitrary point (x, y) situated within a region R of size Ar: 

( ) ( ) ( ) ( ) ( )tyxyxdyxcydxdtyx
A

t prprpp
r

r ,,,,,,1 θθθ +=′′′′= ∫∫
R

 (4)

In subareas of region R where large-scale atmospheric forcing has a dominant control on soil 
moisture, the upscaling model (4) is expected to give good results. On the other hand, at points (x, y) 
dominated by small-scale hydrologic processes (e.g. high groundwater tables) the relationship is 
expected to be poor. By re-arranging equation (4) one obtains the downscaling equation 
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( ) ( ) ( ) ( )tyxdyxctyx rprprp θθ ,,,, +=  (5)

where the reverse sequence of the subscripts now indicates that the soil moisture content at point  
(x, y) is estimated from the regional value θr. The downscaling coefficients cpr and dpr are related to the 
upscaling coefficients crp and drp by:  

rp

rp
pr d

c
c −=  (6)

rp
pr d

d 1
=  (7)

Estimates of the regional soil moisture content θr at time t may come from remote sensing or from 
soil-vegetation-atmosphere transfer models. If, additionally, spatially explicit estimates of the 
coefficients cpr and dpr are available, then it is possible to infer small-scale soil moisture patterns using 
the downscaling equation (5). 

2.2. Temporal Stability of Radar Backscatter 

Over bare soil and moderately vegetated terrain, radar backscatter is sensitive to soil moisture. In 
such areas it can be expected that the temporal persistence of soil moisture patterns is reflected in the 
spatio-temporal behaviour of the radar backscattering coefficient. For a better quantitative 
understanding of this effect, a model relating backscatter across two spatial scales is derived in the 
following. 

Radar backscatter from land surfaces is a complex function of sensor parameters (frequency, 
polarization, incidence angle) and external factors given by the dielectric (soil moisture, vegetation 
water content) and geometric (surface roughness, plant structure) properties of the imaged terrain [21]. 
Backscatter from rough soil surfaces and vegetation canopies can be modelled starting from Maxwell’s 
equations [22, 23]. Unfortunately, many of the available theoretical models have failed to produce 
results that are in good agreement with observations, as discussed for the case of bare soil backscatter 
models by [24-26]. In contrast, simple change detection techniques have provided more promising soil 
moisture retrievals as an extensive review of microwave remote sensing methods for soil moisture 
retrieval has shown [12]. Fortunately, such change detection models are sufficient for the discussion of 
temporal stability patterns because only the temporal variability of the radar signal needs to be 
explicitly modelled for that purpose. 

Change detection methods rest upon the idea that reference images representing dry soil conditions 
are subtracted from each radar image to implicitly account for surface roughness and land cover 
patterns [27, 28]. One formulation of the change detection method is [29]: 

( ) ( ) ( ) ( )tyxtyxStyxtyx dry ,,,,,,,, 00 θσσ +=  (8)

where σ 0
dry is the backscattering coefficient observed under completely dry soil conditions 

expressed in decibels, and S is the sensitivity of the backscattering coefficient σ 0 to changes in soil 
moisture θ. In change detection, the soil moisture content is conveniently expressed in terms of the 
degree of saturation which is the volume of water present in the soil relative to the volume of pores 



Sensors 2008, 8                            
 

1179

[30]. It ranges from zero in dry soil to unity (or 100 %) in a completely saturated soil. The two 
parameters σ 0

dry and S depend on surface roughness and vegetation conditions. σ 0
dry typically 

increases with increasing surface roughness and vegetation biomass and S decreases with increasing 
vegetation opacity. While S generally varies over time reflecting changes in vegetation phenological 
state, surface roughness is generally assumed to be constant. 

While soil moisture θ may vary within minutes to hours due to rainfall, the backscatter parameters 
σ 0

dry and S vary in general more slowly in the order of days to months reflecting changes in vegetation 
phenology. Therefore, within time periods [t-Δt/2, t+Δt/2] of duration Δt, σ 0

dry and S may in a first 
approximation be treated as constants. To remind us of the much slower temporal variability of σ 0

dry 
and S compared to θ and σ 0, the time t within the brackets of σ 0

dry and S was written as t  in equation 
(8). This notation only serves to facilitate the interpretation of equations derived in the following, but 
has no implications from a physical point of view, i.e. tt = . The implication of treating σ 0

dry and S as 
constants within a time period [t-Δt/2, t+Δt/2] is that phenomena occurring within this time period and 
having a strong effect on σ 0

dry and S appear as “noise”. Examples for such noise-like effects are 
farming activities such as harvesting or ploughing which lead to rapid changes in σ 0

dry and S, 
particularly at small scales. 

The change detection model (8) has successfully been applied to coarse-resolution (50 km) ERS 
scatterometer measurements on a global scale [31]. Several validation studies have confirmed its 
applicability to different climate- and vegetation zones [32-35]. At finer spatial scales, [36] used this 
model to retrieve 1 km soil moisture maps from ENVISAT ASAR Global Monitoring (GM) images 
over the southern African continent. Change detection approaches have also been successfully applied 
to airborne radar measurements, such as recently demonstrated for L-band airborne radar observations 
acquired during the 1999 Southern Great Plains (SPG99) experiment [37] and the 2002 Soil Moisture 
Experiment (SMEX02) [38]. 

For the discussion of spatio-temporal trends two spatial scales are considered, one denoted by local 
scale and one by regional scale. The local scale is represented by an area L of size Al which is chosen 
here to be the pixel size of a Synthetic Aperture Radar (SAR) image. The regional scale is, as before, 
represented by the region R of size Ar. It is assumed that the region R is much larger than the local 
area L, i.e. Ar >> Al. The change detection model given in equation (8) is now applied at both scales: 

( ) ( ) ( ) ( )tyxtyxStyxtyx llldryl ,,,,,,,, 0
,

0 θσσ +=  (9)

( ) ( ) ( ) ( )ttStt rrrdryr θσσ += 0
,

0  (10)

where the subscripts l and r indicate the spatial scales of the different variables. Equations (9) and 
(10) can be coupled if a relationship between local and regional scale soil moisture can be established. 
The mean soil moisture content of the local area L centered at the coordinates (x, y) is given by 

( ) ( )∫∫ ′′′′=
L

ydxdtyx
A

tyx p
l

l ,,1,, θθ  (11)

By substituting the downscaling equation (5) into (11)  
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( ) ( ) ( ) ( )( )∫∫ ′′′′+′′=
L

ydxdtyxdyxc
A

tyx rprpr
l

l θθ ,,1,,  (12)

and pulling θr(t) in front of the integral, one obtains a linear model equivalent to equation (5), but 
this time connecting local L and regional R scale: 

( ) ( ) ( ) ( )tyxdyxctyx rlrlrl θθ ,,,, +=  (13)

where 

( ) ( )∫∫ ′′′′=
L

ydxdyxc
A

yxc pr
l

lr ,1,  (14)

( ) ( )∫∫ ′′′′=
L

ydxdyxd
A

yxd pr
l

lr ,1,  (15)

Using equation (12) it is now straight forward to establish a relationship between σ 0
l and σ 0

r. By 
combining equations (9), (10) and (12) one obtains 

( ) ( ) ( ) ( )ttyxbtyxatyx rl
00 ,,,,,, σσ +=  (16)

where the coefficients a and b are given by 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tyxSyxct
tS

tyxSyxdtyxtyxa llrrdry
r

l
lrldry ,,,,,,,,,, 0

,
0

, +−= σσ  (17)

( ) ( ) ( )
( )tS

tyxSyxdtyxb
r

l
lr

,,,,, =  (18)

This derivation suggests that the backscattering coefficients at local and regional scale are linearly 
related, whereas the linear model coefficients a and b depend on parameters which are constant in time 
or slowly changing (see equations (17) and (18)). For any local area L centered at the coordinates 
(x, y), a and b can thus be calculated from SAR images acquired during time periods [t-Δt/2, t+Δt/2] 
within which σ 0

dry and S are relatively stable. Recalling that σ 0
dry and S change over time due to 

vegetation phenology, the coefficients a and b should follow the growth and decay of vegetation. The 
coefficients a and b are expected to vary more strongly in space due to the fact that the soil moisture 
scaling coefficients (clr and dlr) and the backscatter model parameters (σ 0

dry,l and Sl) are sensitive to 
land cover, topography and surface roughness. 

2.3. Estimation of Soil Moisture Scaling Coefficients 

As discussed, the coefficients a and b of the backscatter scaling model (16) can be computed from 
SAR image time series for selected time periods [t-Δt/2, t+Δt/2]. When for the same time period also 
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estimates of the dry backscatter reference and the sensitivity can be extracted from the SAR images 
then the soil moisture scaling coefficients clr and dlr can be calculated after re-arranging equations (17) 
and (18): 

( ) ( ) ( ) ( ) ( )
( )tyxS

tyxttyxbtyxa
yxc

l

ldryrdry
lr ,,

,,,,,,
,

0
,

0
, σσ −+

=  
(19)

( ) ( ) ( )
( )tyxS

tStyxbyxd
l

r
lr ,,

,,, =  (20)

While the coefficient clr would tell us if a local area L is in general drier or wetter than the 
surrounding region R, the coefficient dlr provides information about the relative magnitude of soil 
moisture changes. Because of the time-invariance of the coefficients clr and dlr, the result of solving 
equations (19) and (20) should be independent of the selected time period [t-Δt/2, t+Δt/2]. 

3. Test Site and Satellite Data 

3.1. Test Site 

The test site is a region of 4200 km2 that surrounds the 1285 km2 REMEDHUS network area 
located in the centre of the Duero basin, Spain, where the University of Salamanca has been operating 
in-situ soil moisture stations since 1999 (Figure 1) [39]. 

  

Figure 1. Study area. The left map shows the land cover and location of the in-situ soil moisture 
stations within the REMEDHUS network located in the Duero Basin, Spain. The right map shows a 

false-colour Landsat image (bands 4, 3, 2) of the area. 
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The area is characterized by a Mediterranean climate with mean annual precipitation of 385 mm 
and mean annual evapotranspiration of around 908 mm. The geological substrate mainly consists of 
sandstones, conglomerates and fluvial deposits. The soils within the test site area are dominated by 
sandy textures. The area is intensively used for farming. The main crops are cereals and grapes. A 
network of 20 permanent time domain reflectometry (TDR) soil moisture stations is spread over the 
test site area. At each station two-wire TDR probes (Tektronix 1512C) were installed at 5 cm, 25 cm, 
50 cm and 100 cm depths. Only the values taken at 5 cm were used in this study. Comprehensive 
laboratory analyses of soil samples were carried out to calibrate the TDR measurements and to assess 
soil properties at each station (texture, porosity, etc.). After the calibration phase, readings have been 
taken fortnightly since spring 1999. The land cover map and the location of the TDR stations are 
shown in Figure 1. 

The network has repeatedly served for soil moisture process studies [39, 40] and for validating 
remotely sensed soil moisture data [8, 41]. It will be one of the European validation sites for the Soil 
Moisture and Ocean Salinity (SMOS) mission [42]. 

3.2. Satellite Data 

Backscatter time series can be obtained from SAR instruments that are capable of acquiring 
imagery with a high spatial resolution independent of cloud cover and light conditions. However, 
many spaceborne SAR systems are characterized by short duty cycles (acquisition time per satellite 
orbit) and small swath width (< 100 km). Therefore, long and dense time series of several dozens or 
more SAR images covering the same area are generally not available. Coverage can be much improved 
by increasing the duty cycle and/or by using ScanSAR technology to image a wide swath [43]. The 
improved coverage however comes at the expense of a lower spatial and radiometric resolution. 

For this study, ScanSAR data acquired by the European satellite ENVISAT have been used. 
ENVISAT was launched on February 28, 2002 by the European Space Agency and circles the earth in 
a polar 35-days repeat orbit at an altitude of around 800 km and an inclination of 98.5°. The satellite 
carries the Advanced Synthetic Aperture Radar (ASAR) which is operated at a frequency of 5.331 
GHz (C-band). ASAR has two ScanSAR modes which cover a swath of 405 km width [44]. The first 
ScanSAR mode is the Wide Swath (WS) mode with a spatial resolution of 150 m, a radiometric 
accuracy of < 0.6 dB and a maximum duty cycle of 30 %. The second one is the Global Monitoring 
(GM) mode with a spatial resolution of 1 km, a radiometric accuracy of about 1.5 dB and a duty cycle 
of 100 %. For this investigation, 73 vertically polarised ASAR WS images have been acquired over the 
REMEDHUS network in the years 2003 to 2006. 

4. Methods 

4.1. Pre-Processing of ASAR Data 

Pre-processing of the ASAR WS data consisted of several steps including georeferencing, 
radiometric calibration and normalisation. ASAR data require georeferencing with respect to earth 
curvature and terrain for further processing [45]. The radiometric calibration of SAR images has to 
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involve corrections for the scattering area, the antenna gain pattern and the range spread loss. As the 
study area shows little topographic variation, the GTOPO30 digital elevation model (improved with 
SRTM data) proved sufficient for geocoding of the WS data. In the normalisation step the effects on 
the backscatter due to varying incidence angle and distance from sensor (near and far range) are 
removed [46]. Because of the limited incidence angle range of ASAR WS images (20-40°), a linear 
model has proven sufficient to extrapolate backscatter measurements to a reference angle of 30° 

( ) ( ) ( )3030 00 −−= ϑβϑσσ  (21)

where ϑ is the local incidence angle. Similar to [47] and [48] the slope β was estimated by fitting 
equation (21) to all 73 backscatter measurements taken over one location (pixel). 

4.2. Analysis of Soil Moisture Scaling Properties 

The soil moisture scaling properties of the REMEDHUS network were studied by [49] and [40] by 
calculating the mean and standard deviation of the relative difference δi,j as given by equation (2). This 
analysis demonstrated the high degree of persistence of spatial soil moisture patterns within the 
REMEDHUS network. This suggests that the time-invariant scaling equations as given by (3) and (5) 
are applicable. To verify this hypothesis, the fit of the time-invariant downscaling equation (5) is 
investigated by means of a linear regression analysis between paired data (θr, θp) extracted from the 
REMEDHUS data base. To allow a direct comparison with parameters derived from ASAR, all soil 
moisture values are expressed in degree of saturation, i.e. relative θp is computed by dividing 
volumetric soil moisture values by the total water capacity (which is known for each station). Regional 
soil moisture θr is then estimated by averaging all in-situ soil moisture measurements within the test 
area according to equation (1). The accuracy of the downscaling model (5) is described by the 
coefficient of determination R2 and the standard error of the estimate (SEE) which is the standard 
deviation of the residuals. 

4.3. Analysis of Backscatter Scaling Properties 

The theoretical discussion in section 2 suggested that within a time period [t-Δt/2, t+Δt/2], local and 
regional scale backscatter measurements are linearly related according to equation (16). It is straight 
forward to validate this prediction from SAR image time series for selected time periods, provided that 
a sufficient number of images are available for the statistical analysis within these periods. The 
regional backscatter values were generated by averaging the normalized ASAR backscatter data over a 
rectangular window of 60 x 70 km2. The local scale is 150 m which corresponds to the spatial 
resolution of ASAR WS mode. By performing a linear regression analysis for each 150 m pixel across 
the images from the selected time period, the spatial patterns of the model coefficients a and b are 
obtained. In addition, the uncertainty intervals of a and b, the coefficient of determination R2, and the 
standard error of estimate (SEE) are calculated. To study seasonal vegetation effects, the linear 
regression was performed for each month based on ASAR data from all years (2003-2006). To make 
sure that at least 20 images were available for the regression, a relative long time window of Δt = 5 
months had to be chosen, i.e. the results for May represent the mean conditions for the period March to 
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July. The effect of this long time window is to suppress changes taking place at daily to weekly time 
scales, but it should nevertheless be possible to distinguish the main vegetation periods. 

At this stage, the parameters describing the fit of the linear backscatter scaling model (16) are 
known. These empirical results are sufficient for accepting or rejecting the main hypothesis of this 
study that temporally stable soil moisture patterns lead to temporally stable backscatter patterns. 
However, it is also of interest to investigate how well the model developed in section 2.2. can predict 
the backscatter scaling coefficients a and b. As can be seen in equations (17) and (18) six parameters 
are needed for calculating a and b: the two soil moisture downscaling coefficients, clr and dlr, and the 
dry backscatter reference value σ 0

dry and the sensitivity S at local and regional scale respectively. The 
local scale backscatter model parameters are estimated from the SAR image time series by calculating 
the mean and standard deviation of σ 0

l for each 150 m pixel and by setting: 

( )04 ll StDevS σ⋅=  (22)

( )000
, 2 llldry StDev σσσ ⋅−=  (23)

where the brackets indicate the mean. If σ 0
l is normally distributed, about 95 % of all values are 

within the interval defined by the dry backscatter reference value σ 0
dry and the sensitivity Sl. Even 

though this definition is somewhat arbitrary it was preferred over selecting individual images as dry 
respectively wet reference values because it was not possible to identify ASAR acquisitions where the 
entire area was dry respectively wet. The regional scale backscatter parameters are obtained by simply 
averaging Sl and σ 0

dry,l over the entire study area. While estimates of Sl and σ 0
dry,l are now available 

for the entire study area, the detailed spatial patterns of clr and dlr are not known. However, on average, 
clr must be equal to zero and dlr equal to one if relative soil moisture averages linearly. Therefore, the 
following model represents a first approximation to the coefficients a and b: 

( ) ( ) ( )
( ) ( )t
tS

tyxStyxtyxa rdry
r

l
ldry

0
,

0
,

,,,,,, σσ −≈  (24)

( ) ( )
( )tS

tyxStyxb
r

l ,,,, ≈  (25)

The modelled parameters were then compared to the observed values of a and b. The accuracy of 
the prediction is assessed by the coefficient of determination R2 and the root mean square error 
(RMSE). 

4.4. Estimation of Soil Moisture Scaling Properties from ASAR 

The soil moisture scaling parameters clr and dlr are calculated according to equations (19) and (20) 
based on the ASAR image time series. The retrieved maps of clr and dlr are assessed using the land 
cover information available for the REMEDHUS area. Also, clr and dlr are compared to cpr and dpr 
derived from the in-situ measurements despite the apparent mismatch of spatial scales. 
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5. Results and Discussion 

5.1. Soil moisture scaling properties from in-situ measurements 

Soil moisture data from the 20 soil probes installed at 5 cm of the REMEDHUS network are plotted 
in time together with the spatial mean in Figure 2. It can be seen that the temporal variation of the soil 
moisture values at individual stations to a large extent follows that of the mean soil moisture. 
However, the absolute values and dynamic ranges differ from station to station. These observations are 
confirmed by Figure 3 which shows scatter plots of point scale soil moisture, θp, versus regional scale 
soil moisture, θr, for three selected stations of the REMEDHUS network. One can see that a linear 
downscaling model as given by equation (5) is quite appropriate for describing the soil moisture 
scaling properties. The results for all TDR stations are summarized in Table 1. It is found that the 
coefficient of determination is in general relatively high with a mean value of 0.75. The standard error 
of estimate is on average only 5 % relative soil moisture. Therefore it can be concluded that the linear 
downscaling model (5) is well suited for connecting the point scale P to the regional scale R. By 
mathematical deduction it is also possible to confirm the suitability of equation (13) to connect the 
local (L) and regional (R) scale (section 2.2.). 

 

Figure 2. Relative soil moisture measured at 5 cm depth at 20 time domain reflectometry (TDR) 
stations within the REMEDHUS network and their mean (bold black diamonds) in the period 2003-

2005. 

Table 1 also shows that both downscaling coefficients vary over a relatively large range (cpr 
from -0.1 to 0.1 and dpr from 0.34 to 2.03). In particular, the large variability of dpr implies that the 
results are not easily comparable to the parameters of the classical temporal stability analysis as 
proposed by [7], because the latter only considers the mean and standard deviation of the relative 
difference (also shown in Table 1). Overall, the results are well in line with findings of other authors 
[13, 14, 18, 19]. 
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Figure 3. Scatter plots of point versus regional scale soil moisture (5 cm) for three selected stations of 
the REMEDHUS network. 

Table 1. Soil scaling parameters computed from the relative soil moisture data collected at 20 stations 
of the REMEDHUS network: soil composition, mean relative difference δi,j , standard deviation from 
the mean relative difference Stdev (δi,j), soil moisture downscaling coefficients cpr and dpr, coefficient 

of determination (R2), and standard error of the estimate (SEE). 
    In-situ ASAR 

Station Sand (%) Silt (%) Clay (%) δi,j [%] Stdev (δi,j) cpr dpr R2 SEE clr dlr 

E10 75.1 16.4 8.5 -47.50 9.26 -0.04 1.43 0.69 0.09 0.03 0.93 

F6 67.2 13.7 19.1 -32.60 18.32 0.02 2.03 0.79 0.10 0.01 0.97 

F11 81.5 12.0 6.5 -29.89 18.13 -0.04 0.93 0.89 0.03 -0.02 1.03 

H7 85.1 9.6 5.3 -27.76 26.17 0.10 0.34 0.49 0.03 0.02 0.96 

H11 79.7 10.2 10.1 -27.13 27.17 0.03 1.26 0.75 0.07 -0.02 1.04 

H13 70.4 11.5 18.2 -22.98 14.88 0.02 0.77 0.69 0.05 -0.08 1.16 

I3 90.2 6.3 3.5 -18.28 15.37 0.01 1.08 0.78 0.05 -0.02 1.04 

I6 89.8 5.9 4.3 -16.38 37.73 0.06 0.85 0.73 0.05 0.08 0.83 

J3 85.1 11.3 3.7 -16.27 20.45 0.00 0.73 0.57 0.06 0.02 0.96 

J12 60.9 16.9 22.2 -14.99 20.66 0.03 1.38 0.85 0.05 0.02 0.97 

J14 66.8 21.0 12.2 -12.12 23.17 -0.02 0.90 0.84 0.04 -0.09 1.18 

K4 87.1 9.3 3.6 -8.48 19.47 0.02 0.61 0.65 0.04 -0.03 1.05 

K10 91.2 5.7 3.1 5.54 22.37 -0.04 0.86 0.77 0.04 -0.06 1.13 

L3 82.3 6.4 11.3 9.85 25.04 0.03 0.80 0.77 0.04 0.02 0.95 

L7 46.8 20.8 32.4 14.79 12.17 -0.03 0.94 0.49 0.09 -0.06 1.13 

M5 81.6 8.3 10.1 18.02 16.12 0.00 1.17 0.89 0.04 0.06 0.88 

M9 49.8 24.9 25.3 29.04 39.59 0.01 1.10 0.92 0.03 -0.07 1.15 

N9 62.5 16.8 20.8 38.26 43.75 -0.07 1.09 0.82 0.05 -0.05 1.10 

O7 78.8 13.5 7.7 48.70 25.93 0.00 0.51 0.84 0.02 0.00 1.01 

Q8 86.1 5.7 8.3 110.78 46.90 -0.10 1.22 0.81 0.06 0.28 0.44 

Mean 75.9 12.3 11.8 0.03 24.13 0.00 1.00 0.75 0.05 0.00 1.00 

Stdev 13.1 5.6 8.4 36.41 10.40 0.05 0.37 0.12 0.02 0.08 0.16 
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5.2. Backscatter scaling properties observed by ASAR 

A first impression about the relationship between local and regional backscatter can be obtained 
from scatter plots such as shown in Figure 4. All 73 ASAR images were used to create these plots. 
Instrument noise, radar speckle, inaccuracies in the incidence normalisation, agricultural farming 
practices and seasonal vegetation effects all add to an increasing spread of the point cloud. 
Nevertheless, one can see that there is a comparably strong correlation between σ 0

l and σ 0
r for areas 

covered by low vegetation, which progressively becomes weaker with increasing vegetation biomass. 
Over urban areas backscatter is high and relatively stable. This is in agreement with equations (16) and 
(18) which show that the relationship between σ 0

l and σ 0
r is primarily controlled by the local 

sensitivity of σ 0 to soil moisture. 

 

Figure 4. Scatter plots of local versus regional scale backscatter for four selected points representative 
of the land cover classes cropland, herbaceous plants, forest, and urban area. 

Because of the important role of Sl for explaining the backscatter scaling properties for different 
land cover classes, it is expected that a and b vary seasonally depending on vegetation status. 
However, a comparison of a and b values computed for all months with a 5-months moving window 
does not reveal a clear seasonal pattern. As Figure 5 shows for two representative sites, the temporal 
variability of a and b lies within the limits of their uncertainty. One explanation is that it is the ratio of 
local and regional scale sensitivity Sl/Sr, which enters equations (17) and (18), and not the local 
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sensitive Sl alone. Also, seasonal changes in the dry backscatter reference do not appear to be 
important because a is related to the difference of local scale and regional scale σ 0

dry. Another 
explanation is that in the incidence angle range from 20 to 40°, the effects of vegetation phenology on 
the C-band backscatter measurements is in general much weaker than the soil moisture signal. A 
previous analysis of ERS scatterometer measurements over the REMEDHUS network has shown that 
the sensitivity of backscatter to soil moisture at an incidence angle of 40° is approximately 5 dB in 
summer and 6 dB in winter, i.e. vegetation contributes only 1 dB to the total temporal signal at 
regional scale [41].  

 

Figure 5. Seasonal behaviour of the backscatter scaling coefficient a and b derived from ASAR image 
time series for a cropland and a forest site. The error bar corresponds to ±2 times the standard error. 

Because of this absence of seasonal effects in a and b, Equation (16) can be written as: 

( ) ( ) ( ) ( )tyxbyxatyx rl
00 ,,,, σσ +=  (26)

All further calculations will therefore be based on all available ASAR WS images. 
Spatial images of the coefficient of determination (R2) and the standard error of estimate (SEE) of 

the linear backscatter scaling model (16) are shown in Figure 6. As expected, R2 in general is high 
over agricultural areas and other sparsely vegetated terrain with values up to about 0.8. The correlation 
decreases with increasing vegetation density and becomes smaller than 0.2 over dense forests and 
urban areas. The standard error of estimate shows very similar spatial patterns. Over areas 
characterised by relatively stable backscatter (and hence low R2) SEE may be as low as 0.6 dB which 
corresponds to the noise of the ASAR Wide Swath measurements. With decreasing vegetation density 
SEE increases. One important reason for this is that over bare or sparsely vegetated terrain, backscatter 
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shows a pronounced incidence angle dependency. Therefore, uncertainties related to the normalisation 
equation (21) have a stronger effect on the accuracy of σ 0(30) over these areas compared to more 
densely vegetated areas. Also, agricultural activities such as ploughing or harvesting may cause 
outliers. Nevertheless, SEE does not exceed 2 dB even over agricultural fields characterised by a steep 
σ 0(ϑ) curve. Therefore, it is concluded that the linear time-invariant backscatter model (26) is well 
suited for describing the spatio-temporal behaviour of radar backscatter across different spatial scales. 
This also corroborates the finding from the analysis of the in-situ measurements that spatial soil 
moisture patterns in general exhibit a high degree of temporal persistence. 

 

Figure 6. Coefficient of determination R2 (left) and standard error of estimate (SEE) expressed in 
decibels (right) of the linear backscatter scaling model. The forest and settlement polygons from the 

land cover map are overlain over the images for orientation purposes. 

5.3. Backscatter scaling coefficients 

As expected, the backscatter scaling parameters a and b derived from the ASAR WS images show a 
pronounced spatial pattern (Figure 7 left). Forests, shrubs and more dense herbaceous plants in the 
vicinity of small streams can be distinguished from cropland. Settlements show a similar behaviour as 
dense vegetation. To check the validity of the backscatter scaling model as developed in section 2.2., 
the sensitivity and dry backscatter reference were calculated according to equations (22) and (23) 
based on all 73 ASAR images. The assumption is that also S and σ 0

dry can in a first approximation be 
treated as constants at both scales. Equations (24) and (25) thus simplify to 

( ) ( ) ( ) 0
,

0
,

,,, rdry
r

l
ldry S

yxSyxyxa σσ −≈  (27)

( ) ( )
r

l

S
yxSyxb ,, ≈  (28)

Figure 8 shows that the sensitivity ranges from about 3 dB for forests and settlements to values 
exceeding 12 dB for some agricultural fields. Disregarding settlements, the spatial pattern of Sl thus 
conveys a good impression of the spatial distribution of vegetation in the study area. Despite being 
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more strongly influenced by surface roughness, also the dry backscatter reference reflects vegetation 
patterns well, with values ranging from -16 dB for agricultural fields up to -8 dB for forests and 
settlements. Based on these two parameters, the backscatter scaling coefficients a and b can be 
calculated according to models (26) and (27). The modelled values are compared to the observed ones 
in Figure 7. One can see that the spatial patterns of both scaling coefficients are very well reproduced 
by this model, although the dynamic range of the modelled a and b images is somewhat smaller.  

 

Figure 7.  Comparison of observed (left) and modelled (right) backscatter scaling coefficients a (top) 
and b (bottom). The parameter b is unitless and a is expressed in decibels. 

 

Figure 8. Sensitivity (left) and dry backscatter reference (right). The unit of both parameters is 
decibels. 
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This can be more clearly observed in Figure 9 which shows scatter plots between observed and 
modelled coefficients. The smaller dynamic range is likely related to the fact that clr was set equal to 
zero and dlr equal to one in order to obtain the simplified models (24) and (25). Nevertheless, the high 
correlation between the observed and modelled coefficients (R2 = 0.86 for both a and b based on 
67645 data points) and the low root mean square error (0.73 dB for a and 0.095 for b, which 
corresponds to a relative error of about 5 % in both cases) clearly show that the backscatter scaling 
model developed in section 2.2. describes the main physical phenomena very well. 

 

Figure 9. Scatterplots of observed and modelled backscatter scaling coefficients a (left) and b (right). 

5.4. Soil moisture scaling parameters derived from ASAR 

Having confirmed the validity of the backscatter scaling model, equations (19) and (20) can be used 
to estimate the soil moisture scaling coefficients clr and dlr from the ASAR WS image time series. 
Again, all parameters of the equations are assumed to be constant in time: 

( ) ( ) ( ) ( )
( )yxS

yxyxbyxa
yxc

l

ldryrdry
lr ,

,,,
,

0
,

0
, σσ −+

=  
(29)

( ) ( ) ( )yxS
Syxbyxd

l

r
lr ,

,, =  (30)

The retrieved maps of clr and dlr are shown in Figure 10. One can see that clr tends to be positive for 
forests and settlements and predominantly negative over the agricultural areas. Similar but inverted 
patterns are observed in dlr which takes on values below one for dense vegetation and settlements and 
values above one for agricultural land. These results suggests that in forests and more dense 
vegetation, surface soil moisture conditions are less variable compared to the surrounding agricultural 
land. Within the agricultural area, clr and dlr show comparably little spatial variation, with the 
exception of some agricultural fields. These outliers may be related to irrigation, which is applied in 
the study area and cause clr to reach higher and dlr to reach lower values comparable to non-irrigated 
fields. An example of the irrigation effect on coefficients clr and dlr is observed at the ASAR pixel 
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closest to the REMEDHUS station Q8 (Table 1). Thus, this measurement was excluded from further 
statistical comparisons. Equally, it is not unlikely that irrigation is responsible for the behaviour of clr 
and dlr in and near settlements. 

 

Figure 10. Soil moisture scaling parameters clr (left) and dlr (right) derived from ASAR image time 
series. 

Finally, the ASAR derived backscatter scaling coefficients are compared to the ones derived from 
the in-situ measurements. Due to the scale mismatch (0.1 to 10 dm2 for the in-situ measurements 
versus 2.25 ha for the ASAR WS pixels) and the differences in size and orientation of the ASAR pixel 
and the agricultural fields makes the comparison problematic. In fact, there is no correlation between 
dpr from the in-situ measurements and dlr from ASAR. One can see from Figure 11 that dpr is 
characterised by much larger dynamic range compared to dlr which is expected when going from point 
to local scale. Nevertheless, Figure 11 (left) also shows that there is weak but statistical significant 
relationship between cpr from the in-situ measurements and clr from ASAR (R = 0.44 and RMSE = 
0.0492). 

 

Figure 11. Scatterplots of soil moisture scaling coefficients derived from in-situ measurements and 
from ASAR. The left plot shows the comparison between cpr (in-situ) and clr (ASAR) and the right the 

comparison between dpr (in-situ) and dlr (ASAR). 
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6. Conclusions 

The spatio-temporal distribution of soil moisture is the result of highly non-linear atmospheric and 
hydrological processes. Similarly, backscatter observed by radar instruments is a complex function of 
vegetation and soil parameters. Yet, quite regular spatio-temporal patterns emerge out of these non-
linear processes. This study demonstrates that temporally stable soil moisture patterns lead to 
temporally stable radar backscatter patterns. This means that time-invariant relationships can be used 
for connecting soil moisture and radar backscatter measurements across different spatial scales. The 
analysis of in-situ soil moisture measurements and ASAR image time series acquired over the 
REMEDHUS network located in the Duero basin, Spain, showed that simple linear time-invariant 
models can be used to predict soil moisture and radar backscatter at point and local scales based on 
regional observations, and vice versa. 

To gain a better understanding of the underlying physical phenomena, a model was developed to 
explain the magnitude of the observed backscatter scaling coefficients a and b based on the scattering 
properties of the terrain and vegetation. A comparison of observed and modelled coefficients yielded a 
high correlation (R2 = 0.86) and a low relative error of 5 % for both parameters respectively. This 
suggests that the model captures the main physical effects well. The model was subsequently used to 
estimate soil moisture scaling parameters clr and dlr from the ASAR data. The results are plausible in 
that the spatial variations in the ASAR derived scaling coefficients can be explained by vegetation. 
Also, the comparison of clr and dlr with the respective scaling parameters cpr and dpr derived from the 
in-situ observations showed a weak but significant correlation between clr and cpr. However, more in-
situ observations are required for a more quantitative comparison of the scaling coefficients obtained 
by the two methods, in particular from forests. 

An important application of the methods developed in this study lies in the interpretation of coarse 
resolution soil moisture data derived from METOP ASCAT at sub-pixel level. By analysing long 
ENVISAT ASAR image time series it is possible to identify those sub-pixel areas that contribute to the 
soil moisture signal observed by ASCAT. Furthermore, ASAR retrieved scaling coefficients may be 
used for downscaling ASCAT soil moisture data. Because active and passive microwave 
measurements deal, in principle, with the same physical phenomena [50], these methods should also be 
of relevance for passive microwave instruments such as AMSR-E and SMOS. 
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