
TITLE: A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based

agriculture

AUTHORS: Dejun Li et al

This article is provided by the author(s) and Teagasc T-Stór in accordance with publisher policies.

Please cite the published version.

The correct citation is available in the T-Stór record for this article.

NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Environmental

Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural

formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been

made to this work since it was submitted for publication. A definitive version was subsequently published in Journal

of Environmental Management, (2013), vol 128, pages 893-903. DOI 10.1016/j.jenvman.2013.06.026

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by T-Stór
This item is made available to you under the Creative Commons Attribution-Non commercial-No Derivatives
1

3.0 License.

https://core.ac.uk/display/16431838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/


2

A review of nitrous oxide mitigation by farm nitrogen management in

temperate grassland-based agriculture

Dejun Lia, b, c, *

dejunl@gmail.com

Catherine J. Watsond

Mingjia Yanc

Stan Lalore

Rashid Rafiquef

Bernard Hydeg

Gary Lanigane

Karl G. Richardse

Nicholas M. Holdenc

James Humphreysb

aKey Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical

Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China

bLivestock Systems Research Department, Animal and Grassland Research and Innovation Centre,

Teagasc, Moorepark, Fermoy, Co. Cork, Ireland

c UCD School of Biosystems Engineering, University College Dublin, Ireland

dAgriculture, Food and Environmental Science Division, Agri-Food and Biosciences Institute,

Belfast, Northern Ireland

mailto:catherine.watson@afbini.gov.uk


3

eEnvironment Soils and Land Use Research Department, Environment Crops and Land Use Research

Programme, Teagasc, Johnstown Castle, Wexford, Co. Wexford, Ireland

fDepartment of Microbiology and Plant Biology, the University of Oklahoma, Norman, Oklahoma,

the United States of America

gEnvironmental Protection Agency, Monaghan, Ireland

*Corresponding author. Key Laboratory of Agro-ecological Processes in Subtropical Region,

Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Tel.: +86 731 84615204; fax: +86 731 84612685.



4

Abstract

Nitrous oxide (N2O) emission from grassland-based agriculture is an important source of

atmospheric N2O. It is hence crucial to explore various solutions including farm nitrogen (N)

management to mitigate N2O emissions without sacrificing farm profitability and food supply. This

paper reviews major N management practices to lower N2O emission from grassland-based

agriculture. Restricted grazing by reducing grazing time is an effective way to decrease N2O

emissions from excreta patches. Balancing the protein-to-energy ratios in the diets of ruminants can

also decrease N2O emissions from excreta patches. Among the managements of synthetic fertilizer

N application, only adjusting fertilizer N rate and slow-released fertilizers are proven to be effective

in lowering N2O emissions. Use of bedding materials may increase N2O emissions from animal

houses. Manure storage as slurry, manipulating slurry pH to values lower than 6 and storage as solid

manure under anaerobic conditions help to reduce N2O emissions during manure storage stage. For

manure land application, N2O emissions can be mitigated by reducing manure N inputs to levels

that satisfy grass needs. Use of nitrification inhibitors can substantially lower N2O emissions

associated with applications of fertilizers and manures and from urine patches. N2O emissions from

legume based grasslands are generally lower than fertilizer-based systems. In conclusion, effective

measures should be taken at each step during N flow or combined options should be used in order to

mitigate N2O emission at the farm level.

Keywords: Nitrous oxide; mitigation options; temperate grassland; N management



5

1. Introduction

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) with a global warming potential 298

times higher than carbon dioxide (CO2) over a 100-year time horizon (Solomon et al., 2007). It is

the third most important anthropogenic GHG and contributed about 6.0% to the overall global

radiative forcing in 2011 (WMO, 2012). In addition, N2O currently is the single most important

stratospheric ozone-depleting substance and is expected to remain the largest throughout the 21st

century (Ravishankara et al., 2009). Global average mixing ratio of N2O has been increasing with a

rate of 0.78 ppb yr-1 over the past 10 years (WMO, 2012). The mitigation of N2O emissions has

been regarded as one of the major choices to combat climate change and has received much

attention (Reay et al., 2012; Smith et al., 2012).

The challenges for mitigating N2O emissions are substantially different from those for CO2 and

methane (CH4) because on one hand about 90% of anthropogenic N2O emissions are from the

agricultural sector while on the other hand nitrogen (N) is essential for food production (IPCC, 2007;

Davidson, 2012). The increase in N2O emissions from agriculture is largely induced by the elevated

N inputs via synthetic fertilizer N or manure (Davidson, 2009). However, to meet the nutritional

needs of a growing human population more N inputs to agriculture are likely needed (Davidson,

2012). N2O is produced mainly by two biological processes during N cycling, i.e., nitrification and

denitrification, which is stimulated by N surplus between N input and crop demand (Smith et al.,

2008). N2O emissions are supposed to be reduced by increasing N use efficiency (NUE, percentage

of applied N taken up by the crop), which seldom exceeds 50% (Davidson, 2012). N management

to increase NUE has been recognized as an effective way to mitigate N2O emissions from

agriculture (Smith et al., 2008).
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Globally, grassland-based agriculture is the major part in agriculture sector with permanent

pastures responsible for 68% of all the agricultural land (FAO, 2009). Synthetic fertilizer N and

manure are widely used to sustain farm productivity in intensively or semi-intensively managed

grassland systems. In extensively managed grasslands a large proportion of N2O emissions are from

excreta deposited by grazing livestock, mostly from urine patches. In New Zealand and Australia,

for example, where extensive grassland management is characterised as year-round grazing of

grass-clover pastures and very low input of fertilizer N, direct N2O emissions from excreta recycled

to the soil surface by grazing livestock contributed between 50% and 60% of the direct N2O

emissions and up to 80% when indirect emissions (from NH3 volatilization and NO3
- leaching) are

included (de Klein et al., 2001; deKlein et al., 2005). The second largest source, fertilizer N,

contributed no more than 15% (de Klein et al., 2008). In more intensive managed systems with

greater reliance on inputs of fertilizer N, the contribution of excreta recycled by grazing livestock

can also be considerable. For example, in the Netherlands, Schils et al. (2005) reported that N

recycled by grazing livestock accounted for 44% of total N2O emissions compared to 22% from

fertilizer N, 14% from soil and 11% from manure management in an intensive grassland-based

dairy production system receiving total annual inorganic N inputs of 275 kg ha-1. Indirect emissions

of N2O from leached nitrate and from volatilized NH3 accounted for 9% of total emissions (Schils et

al., 2005).

During the past two decades, a few reviews about N2O mitigation or N losses related to

grassland-based agriculture systems have been conducted, including N2O mitigation from herbivore

production systems (Schils et al., 2011), GHG and NH3 emissions from organic mixed crop-dairy

systems (Novak et al., 2011), GHG emissions from manure management (Chadwick et al., 2011),

NH3 and N2O emissions with different manure application methods (Webb et al., 2010). In this
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review, major choices of N management on grassland farms were evaluated with respect to their

effectiveness to mitigate N2O emissions. The knowledge synthesized in the review will be useful

for identifying potential cost-effective and sustainable ways to mitigate N2O emissions from

grassland-based agriculture under temperate conditions.

2. Mechanisms underlying nitrous oxide emissions from grassland

The emission of N2O arises from microbial nitrification and denitrification of inorganic N in

the soil, which in turn is derived from excreta deposited by grazing livestock, application of

synthetic fertilizers and manures, and biological N fixation (BNF) (Fig. 1). Nitrification consists of

two steps, NH4
+ oxidation to NO2

- and NO2
- oxidation to NO3

-, carried out by ammonium-oxidizers

and nitrite-oxidizers, respectively (Ward, 2000). Denitrification is the anaerobic microbial reduction

of NO3
- to dinitrogen (N2). During the denitrification process, NO3

- is successively reduced to NO2
-,

NO, N2O and finally dinitrogen (N2). Since N2O is an intermediate during denitrification, it can be

both produced and consumed. Nitrification and denitrification are tightly coupled since NO2
- or

NO3
- produced during nitrification can be utilized by denitrifiers and this coupling can take place in

soils where favourable conditions for both nitrification and denitrification are present in

neighbouring microhabitats (Wrage et al., 2001). However, under oxygen (O2) limiting conditions,

NH4
+ may be oxidized to NO2

- and then sequentially reduced to NO, N2O and N2. This process,

which is carried out by autotrophic ammonium-oxidizers is termed nitrifier denitrification (Wrage et

al., 2001). The relationships between nitrification, denitrification and nitrifier denitrification are

shown in Fig. 1. In addition to the above micro-organism mediated processes, some abiotic

processes (mostly chemodenitrification) may also contribute to the production of N2O under certain
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conditions (Williams et al., 1992). Current evidence indicates that most of the N2O evolved from

soils is produced by biological processes and that little is produced by chemodenitrification

(Bremner, 1997).

3. Potential N2O mitigation options by farm N management

3.1 Options to lower N2O emissions from excreta patches

Urine and dung patches on grasslands represent high (up to more than 1000 kg N ha-1), random

and very local additions of N and readily available carbon (C) that can create optimal conditions for

N2O production (van Groenigen et al., 2005). It was estimated that between 0.1 and 3.8% of

urine-N and between 0.1 and 0.7% of the dung-N is emitted to the atmosphere as N2O (Oenema et

al., 1997). In countries that depend economically to a large extent on livestock farming, these fluxes 

are major contribution to the national GHG budget. It is therefore imperative to seek measures

lower N2O emissions from excreta patches.

3.1.1 Restricted grazing

Restricting grazing has been proposed as an option to reduce N2O and other GHG emissions

(Oenema et al., 2001; Schils et al., 2006; de Klein et al. 2006; Luo et al. 2008). This management

tactic involves a reduction in grazing time or livestock number, each of which results in decreased

dung and urine deposition. Therefore there is a great potential to lower N2O emissions via decrease

in excreta deposition to pasture. In Ireland, there has been a 14% reduction in GHG emissions
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associated with dung and urine deposited by grazing livestock since 1998, mainly due to decreased

livestock numbers, particularly sheep, arising from the policy of extensification driven by the

Common Agricultural Policy (CAP) (Humphreys, 2008). Although both N2O and GHG emissions

could be mitigated by decreased livestock numbers, this option would mean a profound decrease in

the farm profitability. In addition, the growing human population requires continuing increase in

animal protein consumption, as it was projected that animal numbers will increase by 40% between

2000 and 2030 (Oenema et al., 2005). So reducing numbers of animals to lower N2O emissions is

unlikely to be acceptable.

A compromise way to restrict grazing is to reduce grazing time within a year. With this practice,

animals are kept off grazing paddocks and kept on stand-off/feed pads or in animal houses at a

period when it leads to greatest N losses, so excreta deposition is reduced (Luo et al., 2010). This

practice provides opportunity for controlling N losses, as the animal excreta is collected and can be

applied evenly to the pasture at targeted rates and optimum time when the risk for N losses is

minimal (van der Meer, 2008). Recent research by Kennedy et al. (2009) has shown that dairy cows

given restricted access time (9 h per day) to pasture under unfavourable conditions for grazing had

similar pasture intake and milk production to that of unrestricted dairy cows. In the study, restricted

cows were kept indoors and did not receive alternative feed to replace the grazed pasture. Excreta

generated indoors were collected, stored and applied mechanically under favourable conditions for

herbage production. When slurry is applied mechanically it is generally more evenly distributed

than when it is deposited by grazing animals; hence, the N contained within the slurry is used with

greater efficiency and accordingly with less N2O loss. There is an economic incentive to impose this

management practice during periods when soils are vulnerable to poaching damage and there is a

spin-off benefit in terms of N2O emissions. Reductions in total direct and indirect N2O emissions of
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7 to 11% have been reported when conventional grazing management was partially replaced by

restricted grazing during the wetter months of the year in New Zealand (de Klein et al., 2006; Luo

et al., 2008b).

3.1.2 Dietary manipulation or additives

There is an exponential relationship between N intake and N excretion in urine (Ledgard et al.,

2009). Ruminants on lush spring pasture commonly ingest protein in excess of their requirements,

but are usually energy limited, resulting in higher ruminal ammonia concentrations being excreted

in the urine as urea (Whitehead, 1995). Therefore, balancing the protein-to-energy ratios in the diets

of ruminants is important in minimizing the N2O emissions resulting from excess urinary N

excretion (Eckard et al., 2010). Dairy cows fed a 14% crude protein (CP) diet excreted 45% less

urinary N than did dairy cows fed a 19% CP diet (Misselbrook et al., 2005). To reduce the N

content in the diet has been proposed as the most efficient way to reduce the amount of excreta N,

whilst maintaining animal production (Ledgard, 2001; de Klein et al., 2005). The premise of this

practice is that pasture typically contains an excess of protein relative to animal requirements and

supplements with a low protein concentration (e.g. maize silage) can increase efficiency of N 

utilization (Kebreab et al., 2001). With this practice, low-protein forage such as maize silage is

normally used to reduce dietary N concentration so that to increase N use efficiency and reduce

environmental N emissions (Luo et al., 2008a). By reducing the protein content of supplement feed,

a 20% reduction in estimated N excretion to urine and faeces was achieved (Nielsen et al., 2003).

The limited information available supports the efficiency of such management practices on total

N2O emissions from whole farm systems. For example, total N2O emission from the dairy farm
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systems consisted of a maize supplementation system with a stocking rate of 3.8 cows ha−1 of

grazed pasture with maize silage brought in was slightly lower than a control system with a stocking

rate of 3.0 cows ha−1 of grazed pasture; but the N2O emission per kg of milk production from the

maize supplementation was 22% lower than that from the control system (Luo et al., 2008a).

A controversial option of dietary manipulation is to use hippuric acid, which is a ruminant urine

constituent. Ruminants fed with protein rich feeds have been shown to have higher urinary hippuric

acid concentrations than ruminants with lower protein diets, so that the concentration of hippuric

acid in urine may be changed by manipulating pasture species composition (Clough et al., 2009).

Several laboratory-based studies reported significant decline (48-54%) in cumulative N2O

emissions from synthetic urine by hippuric acid addition (van Groenigen et al., 2005; Kool et al.,

2006). However, according to a field study, increasing hippuric acid addition in bovine urine had no

effect on N2O mitigation (Clough et al., 2009). Further studies are needed to determine the potential

of hippuric acid as an option for N2O mitigation.

Supplementing a diuretic in the form of salt (NaCl) to a cow’s diet has been suggested as a

potential mitigation option to reduce N loss as N2O and nitrate due to increase in the spread of urine,

thereby diluting the rate of urinary-N and increasing plant uptake of N (Ledgard et al., 2007).

However the results are not consistent between laboratory and field experiments. N2O emission was

reduced only in laboratory study but not in field study (van Groenigen et al., 2006). More

assessments are needed for this option.

3.2. Management of synthetic fertilizer N application
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Synthetic fertilizer N application in agriculture is one of the important factors leading to the

rapid increase of atmospheric N2O concentration in recent decades (Davidson, 2009). Fertilizer N

rate, type, timing, and placement have all been proposed to influence N2O flux from agricultural

soils (Millar et al., 2010) and provide potential for emission abatement (Smith et al., 2007).

Nevertheless, only fertilizer N rate is used to calculate national N2O emissions regardless of

fertilizer N type, timing and placement for the IPCC guidelines (IPCC, 2006).

3.2.1 Fertilizer N type

Major fertilizer N types include anhydrous ammonia, ammonium-based fertilizers, ammonium

nitrate, calcium ammonium nitrate, nitrate-based fertilizers, ammonium phosphates, urea,

urea-ammonium nitrate (Bouwman et al., 2002). Fertilizer N type has been reported to affect soil

N2O emissions (Bouwman et al., 2002; Venterea et al., 2005). N2O emissions were 2–4 times

greater from treatment amended with anhydrous ammonia than from those amended with urea

ammonium nitrate and broadcast urea in a cropland study (Venterea et al., 2005). Bouwman et al.

(2002) reported that nitrate based fertilizers resulted in significantly lower emissions of N2O than

ammonium based fertilizers based on analysis of a global data set. In another data synthesis,

Stehfest and Bouwman (2006) concluded there was no significant difference among most fertilizer

types in terms of N2O emissions. Since the effect of fertilizer type on N2O emission may be

confounded, and since very limited studies have been conducted to compare the responses of N2O

emission to fertilizer type while keeping the same for other factors, more studies are needed before

any solid conclusions are drawn.
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A new form of fertilizer N type has emerged recently to enhance the efficiency of fertilizer N,

i.e., slow-released fertilizers which are defined as a fertilizer that release (convert to a

plant-available form) their plant nutrients at a slower rate relative to a “reference soluble” product

(Hall, 2005). From the perspective of N2O mitigation, only the effectiveness of polymer-coated

fertilizers (PCFs) have been tested in several studies among the slow-release fertilizers (Akiyama et

al., 2010). A comprehensive analysis showed that PCFs significantly reduced N2O emissions by

14% to 58% with an average of 35% (Akiyama et al., 2010). However, most of the existing studies

were conducted in cropland, whether PCFs have similar efficiency in reducing N2O emissions

needed further evaluation.

3.2.2. Timing of fertilization

Synchronous timing of fertilizer N application with plant N demand is an important measure to

improve N use efficiency (NUE) and thus reduce N loss to the environment (Crews et al., 2005).

However, measures for synchronizing N supply are often aimed to reduce N loss via NH3

volatilization and nitrate leaching, which in total account for up to 50% of N inputs. Limited data

are available to show whether synchrony of nitrogen supply declines soil N2O emission from

grassland. Based on studies in cropland, it seems that improving NUE cannot consistently reduce

N2O emissions (Phillips et al., 2009), probably because the practices that improve NUE by reducing

NH3 and/or NO3
– losses may make more N available in the soil for both N uptake in crops and soil

N2O production (Venterea et al., 2012). In conclusion, current evidence does not support

synchronous timing of fertilizer N application is an effective way to decrease soil N2O emission.

3.2.3. Fertilizer N placement
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Very few studies have been conducted to investigate the effect of fertilizer placement on soil

N2O emission for grassland. The studies in cropland show that fertilizer placement affects soil N2O

emission (Liu et al., 2006; Venterea et al., 2008; van Kessel et al., 2013). A meta-analysis shows

that placement of fertilizer N (>5 cm depth) can be an effective strategy for mitigating N2O

emissions in no-tillage and reduced tillage systems, especially in humid climatic conditions (van

Kessel et al., 2013). The underlying mechanism is that both nitrification and denitrification potential

tend to decrease rapidly with depth in no-tillage soils, and hence deep N placement may simply

decrease the supply of inorganic N substrates within the most biologically active zone where they

can be converted to N2O via nitrification and/or denitrification (van Kessel et al., 2013). However,

whether this practice is effective in grassland needs further investigation.

3.2.4. Fertilizer N rate

Among the many practices of fertilizer N management, fertilizer N rate is likely most

straightforward in affecting soil N2O emission. Reducing the N rate is perhaps the only practice that

has broad consensus as being generally reliable for reducing N2O emissions (Venterea et al., 2012).

The Intergovernmental Panel on Climate Change (IPCC) suggests a default linear emission factor of

1% for fertilizer N application, regardless of the rate of application (IPCC, 2006). For the few N2O

response experiments in which more than two levels of N were applied, N2O flux in response to

increasing N rates has been described by both linear (Halvorson et al., 2008) and nonlinear

functions (Bouwman et al., 2002; McSwiney et al., 2005; Kim et al., 2010; Hoben et al., 2011;

Rafique et al., 2011). These studies suggested that N2O fluxes were found to increase exponentially

with increasing N rate for both grassland and cropland when multiple N rates were used. N2O

emissions changed slightly when fertilizer N inputs were below a certain level, but increased
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rapidly above that level, or high rates of N fertilization led to increasing rates of N2O loss without

economic gains in yield. For example, in a study of cropland, N2O fluxes were moderately low (ca.

20 g N2O-N ha−1 day−1) at levels of N rates up to 101 kg N ha−1, where grain yields were maximized,

after which fluxes more than doubled (to >50 g N2O-N ha−1 day−1) (McSwiney et al., 2005).

Similarly, in another study with multiple sites and N rates, the two N fertilizer rates above those

recommended for maximum economic return (135 kg N ha−1), average N2O fluxes were 43%

(18 g N2O–N ha−1 day−1) and 115% (26 g N2O–N ha−1 day−1) higher than were fluxes at the

recommended rate, respectively, but the corn grain yield only increased by 2% and 6%, respectively

(Hoben et al., 2011). Although these examples were for cropland, the responses of N2O emission to

N rates for grassland are most likely similar. Overall, the above examples highlight the potential to

lower agricultural N2O fluxes with no or little yield penalty by reducing N fertilizer inputs to levels

that just satisfy crop needs.

3.3. Manure management

Globally, manure production and use contribute more N2O to the atmosphere than synthetic

fertilizer N (Davidson, 2009). The input of synthetic fertilizers on farms can be minimized, in part,

by manure recycle within the farm (Fig. 1), i.e., by keeping a lower farm-scale N balance (or

farm-gate N surplus), the difference between whole farm N inputs and outputs (Schröder et al., 2003).

In general, a lower farm-gate surplus will result in lower losses of N2O from a farm. For example,

Schils et al. (2006) reported that a decrease in surplus N of 1 g kg-1 milk lowered GHG emissions

by approximately 29 g CO2-eq kg-1 milk. Similarly, Olesen et al. (2006) reported that GHG
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emissions were found to decrease linearly with increasing farm N efficiency (-16.5 kg CO2-eq MJ-1

per % increase in efficiency).

N2O and other greenhouse gases can be produced and emitted at each stage of the ‘manure

management continuum’, i.e., the livestock building, manure storage, manure treatment and manure

spreading to land (Chadwick et al., 2011). Although all N losses represent potential N2O emissions,

we will focus on direct N2O emission from the ‘manure management continuum’. Other N losses

and GHG emission related to manure management are referred to some comprehensive reviews

(Rotz, 2004; Webb et al., 2010; Chadwick et al., 2011; Novak et al., 2011).

3.3.1. N2O emissions during manure collection stage

Manure is normally collected from animal houses and standing yards. Few studies have been

conducted to measure N2O emissions from hard standing areas. The limited evidence shows very

low or no N2O emissions at these areas due to predominantly anaerobic conditions (Ellis et al., 2001;

Misselbrook et al., 2001).

N2O emissions from animal houses depend on whether bedding materials are used. The

slurry/faeces/urine remains in a predominantly anaerobic state with little opportunity for the NH4
+

to be nitrified, therefore little or no N2O emissions are likely to occur from such systems (Zhang et

al., 2005). By comparing N2O and NH3 emissions from cattle and pigs housed in slurry-based and

straw bedded buildings, Thorman et al. (2003) reported that there were little or no N2O emissions

from slurry-based cattle or pig buildings, whist there were N2O emissions from cattle housed with

straw bedding (4-5 mg N m-2 d-1). Much higher emissions may occur from deep litter systems,

especially mechanical mixing of deep litter is involved (Groenestein et al., 1996). However,

uncertainties remain. For example, Amon et al. (2001) reported there was no significant difference
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between slurry-based and straw-based stall systems for dairy cows in N2O emissions.

3.3.2 N2O emissions during manure storage

There is evidence showing that N2O and other GHG emissions during manure storage stage are

greater than emissions after manure application (Amon et al., 2006; Clemens et al., 2006). Manure

can either be stored as slurry (liquid) in lagoons or aboveground tanks or stored as solid manure in

heaps, but manure is normally stored as slurry for intensive systems. For example, in Europe,

livestock slurry is stored in 20–40 m diameter storage tanks with or without coverage, or in lagoons;

in the United States and Canada, slurry is handled in stores or alternatively the slurry is diluted with

water to encourage decomposition of the solids and pumped into anaerobic lagoons (Petersen et al.,

2006). N2O emission from slurry/liquid manure is normally lower than from solid manure during

storage (Sommer et al., 2000; Berg et al., 2006; IPCC, 2006). For example, the IPCC default

emission factors for slurry/liquid manure and solid manure are 0.1% and 2%, respectively (IPCC,

2006). However, the potential for methane emission from liquid manure is larger than from solid

manure. For example, the emission factors proposed in the IPCC methodology for conversion of

digestible organic carbon to methane are 1–2% for solid storage, 39–72% for slurry storage or

extended pit storage, and up to 100% for manure stored in anaerobic lagoons (IPCC, 2000).

3.3.2.1 Slurry storage and treatment

N2O emission from slurry stored without surface cover is very low due to limited

transformation of ammonium to nitrate under anaerobic conditions so that the subsequent

denitrification is also very low. Stored slurry with a surface layer of straw or natural crust may be a
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source of N2O emissions (Sommer et al., 2000; Berg et al., 2006; VanderZaag et al., 2009). This is

because the presence of a surface crust can provide aerobic conditions in the crust and hence

nitrification can occur with N2O generation (Sommer et al., 2000). Manipulating (via addition of

inorganic or organic acid) the balance between ammonia and ammonium by lowering the pH value

of slurry below 6.0 is an effective measure to reduce emissions of N2O and CH4 and NH3 as well

(Berg et al., 2006).

Several slurry treatment options, including slurry dilution, slurry additives, slurry aeration,

slurry separation and anaerobic digestion are usually used to reduce slurry dry matter concentration

in order to insure evenly distribution of nutrient after application (Amon et al., 2006). Although

NH3 emissions may be lowered from the treated slurry, their efficiency in decreasing N2O emission

has not been well investigated. Amon et al. (2006) compared N2O emissions from slurry which was

treated with different methods (Table 1). N2O emissions were increased by separation, digestion,

straw cover and aeration (Table 1). Fangueiro et al. (2008) studied N2O emission from five cattle

slurry fractions with distinct characteristics obtained using a combined separation process (screw

press + chemically enhanced settling using polyacrylamide (PAM)). In contrast, significant N2O

emissions were observed only in the untreated slurry and liquid fractions of the separated slurry.

Separation of slurry produces a solid fraction that is stored in manure heaps before being used as a

fertilizer in crop production (Hansen et al., 2006).

Biogas treatment of animal manures is an upcoming technology because it is a way of

producing renewable energy (biogas). However, little is known about effects of this management

strategy on GHG emissions during fermentation (anaerobic digestion), storage, and field application 

of the substrates compared to untreated slurries (Clemens et al., 2006). The results are not consistent

in terms of whether anaerobic digestion can reduce N2O emission during slurry storage or
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application. In a study, N2O emission from storage of anaerobically digested slurry was lower in

winter but higher in summer relative to untreated slurry; and there was no difference between slurry

types after application in their N2O emissions (Clemens et al., 2006). Another study reported higher

N2O emission from anaerobically digested slurry (Amon et al., 2006).

Biological aerobic treatment is widely and is regarded as a necessary way to remove N from the

slurry as N2 in order to protect water courses (Beline et al., 1999). The treatment results in a

concentrated sludge (15% of original volume) suitable for land spreading and an effluent (85% of

original volume) that can be used as irrigation or discharged to the sewer system (Willers et al.,

1996; Loyon et al., 2007). In addition to N2, higher emission rates of N2O (up to 13%) and NH3 (up

to 40% of total N) may also be emitted from aerobically treated slurry dependent on the aeration

rate and temperature (Willers et al., 1996; Beline et al., 1999). In contrast, Loyon et al. (2007)

reported that aerobic treatment (using an intermittent aeration) decreased NH3 emission by 30-68%

and N2O emission by 55% relative to untreated manure.

3.3.2.2 Solid manure storage and treatment

Solid manure heaps may be significant sources of N2O emissions (Chadwick et al., 1999).

Maintaining anaerobic manure conditions can significantly reduce N2O emissions from solid

manure storage heaps (Chadwick et al., 2011). For example, emissions of NH3, N2O, and CH4 were

reduced by 12%, 99%, and 88%, respectively, when the manure heap was covered with an airtight

material relative to the uncovered heap (Hansen et al., 2006). N2O losses were lower from the

composted farmyard manure than from the anaerobically stacked manure (Amon et al., 2001).

Compaction of manure in storage may also reduce N2O emissions by creating anaerobic conditions

thus inhibiting nitrification. The inhibition of nitrification will prevent the formation of NO3
- and
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hence there will be no losses of N2O via denitrification (Chadwick, 2005). Chadwick (2005)

observed that compaction and covering also significantly reduced N2O emissions from cattle

manure by ca. 30%. However, the compaction may increase the potential for CH4 emissions

(Chadwick, 2005).

Straw is often used as additive during solid manure storage. The effect of straw addition in

lowering N2O emissions is not consistent (Brown et al., 2000; Sommer et al., 2000; Yamulki, 2006).

Yamulki (2006) showed that straw addition to farm yard manure reduced the mean cumulative N2O

emission by ca. 40% relative to conventional manure heaps with the emissions of N2O accounting

for up to 0.3% and 0.7% of the total initial N in the straw-used and conventional heaps, respectively.

In addition, straw addition reduced CH4 emissions (Yamulki, 2006). In contrast, N2O emissions

increased by 2 times from solid dairy manure amended with chopped straw to water contents of 70,

75, and 80% relative to the unamended samples (Brown et al., 2000).

3.3.3 Manure application

N2O emissions following manure application to grassland have been reported by many studies

(Chadwick et al., 2000; Velthof et al., 2003; Fangueiro et al., 2008; van der Meer, 2008; Luo et al.,

2010; Chadwick et al., 2011). These studies indicated that N2O emissions from manure application

may also be affected by manure type, timing, rates or placements of application. The efficiency of

timing and rates in mitigating N2O emissions following manure application should be similar to

fertilizer N application.

The effects of manure type on N2O emissions are not consistent and dependent on soil

conditions, N and C content in manure, and application period (Chadwick et al., 2011). Clemens et

al. (2006) reported that there was no difference between slurry types after application in their N2O
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emissions. Chadwick et al. (2000) compared N2O emissions following application of pig slurry and

dairy cow slurry at equal volume in April, July and October. They found that cumulative N2O

emissions were greater following application of dairy cow slurry than pig slurry in April, but

significantly greater N2O emissions resulted from pig slurry-treated plots than dairy cow

slurry-treated plots in July and October. These results indicate that manure type may not be

regarded as a major factor affecting N2O emissions following manure application.

Solid manures can only be broadcast on the surface of grassland (Chadwick et al., 2011), but

there are four main types of slurry application systems (Misselbrook et al., 2002), i.e., (a) surface

broadcast - uniform covering of slurry across the crop; (b) band spreading - slurry placed in discrete

bands on the crop by trailing hoses; (c) trailing shoe - slurry placed in discrete bands on the soil

surface below the crop canopy; (d) injection - slurry placed in shallow, open slots or deep, closed

slots within the soil. These manure application techniques were originally developed to reduce N

losses via NH3 (Webb et al., 2010). Their efficiency in reducing emissions of N2O and other GHG

emissions have not been well studied. According to a recent review (Webb et al., 2010),

reduced-NH3 application techniques may increase emissions of N2O, while placement of effluent

below the soil surface by injection or aeration resulted in elevated CH4 emissions (Sistani et al.,

2010). Therefore, the direct and indirect emissions of N2O and other GHG should be assessed. In

addition, the results are not consistent even in the same study. For example, Sistani et al. (2010)

compared N2O and other GHG emissions from a control, an inorganic fertilizer treatment receiving

179 kg N ha−1 as urea–NH4NO3 (UAN), and three swine effluent application methods (surface

application, direct injection, and application in combination with soil aeration) that received a target

rate of 200 kg N ha−1 in two consecutive years. In year one, N2O emissions were similar for the

UAN, surface effluent, and aeration effluent treatments (with an average of 0.72 g N2O m−2) but
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higher than the injection treatment (0.47 g N2O m−2). However the pattern was reversed in year two,

with the injection treatment emitting 0.82 g N2O m−2 and the remaining N source treatments

emitting an average of 0.36 g N2O m−2. These results demonstrate that climatic conditions and

application method need consideration when evaluating the impact of liquid manure management

on GHG emissions (Sistani et al., 2010).

3.4 Use of nitrification inhibitors to lower N2O emission from urine patch, application of

synthetic fertilizer or manure

Nitrification inhibitors (NIs) are compounds that delay the bacterial oxidation of ammonium to

nitrite by depressing the activity of Nitrosomonas bacteria in the soil (Macadam et al., 2003;

Watson et al., 2009). The most extensively studied NIs are dicyandiamide (DCD), 3,4-dimethyl

pyrazole phosphate (DMPP) and nitrapyrin (Watson et al., 2009). As nitrate is the substrate for

denitrification, the use of NIs along with ammonium based fertilizers, have the potential to reduce

N2O emissions from both nitrification and denitrification.

A series of studies have shown that both N2O emissions and NO3
- leaching from urine patches

and application of fertilizer or manure can be significantly mitigated by treating grazed pasture soil

with NIs including DCD and DMPP (Di et al., 2008; Qiu et al., 2010; de Klein et al., 2011; Di et al.,

2012). In a study covering four different soils under different climatic and management conditions,

N2O emissions from urine patches were declined by 61-73% with an average of 70% (Di et al.,

2007). Recent studies in Ireland have shown that DCD can reduce N2O emissions by between 49 to

70% from urine patches (Dennis et al., 2008; Selbie et al., 2010) and from slurry applied to

grassland soils (Cahalan et al., 2010). In addition, DCD could reduce NO3
- leaching from urine
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patches by 68-76% (Di et al., 2004; Di et al., 2005). Dennis et al. (2010) reported that nitrate

leaching from urine patches was reduced by up to 45% through the use of DCD on free draining

soils in Ireland. In New Zealand, Monaghan et al. (2009) showed that application of granular DCD

lowered NO3
- leaching by 21 to 56% from hydrologically isolated dairy pastures over a 4-year study.

Ledgard et al. (2008) tested a novel approach to supplement animals with the NIs during the main N

loss period in such a way that the NIs would be excreted by the animals, principally in the urine.

Their study highlights the potential for using direct administration of N process inhibitors to grazing

animals to reduce environmental N emissions from urine patches in pasture systems. However,

despite the high recovery of DCD in urine (>85%), there is a potential of metabolic residues of the

inhibitors in the animals. It is still not clear whether the metabolic residues in animal products are

detrimental to human health.

Akiyama et al. (2010) evaluated the effectiveness of NIs on N2O emissions using meta-analysis,

and found that (i) NIs significantly reduced N2O emissions (mean: -38%, 95% confidence interval:

-44% to -31%) compared with those of conventional fertilizers and their effectiveness was

relatively consistent across the various types of inhibitors and land uses; (ii) NIs were effective in

reducing N2O emission from both synthetic fertilizer N and organic fertilizers; and (iii) the efficacy

was higher for grassland (-54%, -60% to -43%) than for upland fields (-34%, -43% to -26%) and

paddy fields (-30%, -39% to -18%). In 2008, DCD was reported to have decreased New Zealand’s

N2O emissions by 40.8 Gg CO2-eq, a 0.1% decrease in total agricultural N2O emissions (Anon,

2010). Due to the effectiveness of NIs in the decrease of both direct and indirect N2O emissions in

New Zealand, they were considered an effective measure to lower N2O emissions from agricultural

soils by the IPCC Fourth Assessment Report (IPCC, 2007).

Despite the effectiveness in lowering N2O emissions, some side effects have been reported for
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NIs. Use of NIs extended retention of N in the NH4
+ form in the soils, and hence they have the

potential to increase NH3 volatilization, despite some studies reported DCD reduced NH3

volatilization by 28-38% from urine patches (Zaman et al., 2012) A meta-analysis reveals that there

is significance increase in NH3 loss (by 0.3-25.0%) in both pasture and cropping soils after NIs

application, especially for the soils with higher pH and lower cation exchange capacity (Kim et al.,

2012).

There are some additional costs associated with using NIs. Subbarao et al. (2006) estimated that

using nitrapyrin or DCD added about 25 to 30% to the cost of fertilizer N. Hence, Monaghan et al.

(2009) suggested that in the absence of substantial herbage yield benefits, the cost of using

inhibitors such as DCD was not economical unless farmers received carbon credit payments for the

reduction in N2O emissions. Under current circumstances the cost of NIs is the main factor limiting

their widespread use (Subbarao et al., 2006). For NIs to be more widely adopted, they will need to

be competitively priced.

3.5 Use of biological N fixation in association with forage legumes as an alternative to N

fertilizer

3.5.1 N supply by biological N fixation

Biological N fixation (BNF) in association with forage legumes provides an alternative N

source for grasslands. White clover is the main legume in pastures and meadows of temperate

regions and is adapted to survive in a range of grassland environments, while other legumes are of

less importance (Rochon et al., 2004). Most often, white clover is grown with companion grasses.
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In pasture-based farming systems in Australia and New Zealand, N2 fixation by white clover was

the main source of N input (Ledgard et al., 2001). Average biological N2 fixation in grazed

permanent clover/grass pastures in temperate regions of the world has been reported to be 80 to 100

kg N ha-1 yr-1 (range 10 to 270 kg N ha-1yr-1) (Davies et al., 1996; Ledgard, 2001). This fixed N

becomes available slowly over time to the grass in pastures after it is released into soil via exudates

from living legume roots, by mineralization of senesced legume tissues and in excreta after

consumption by grazing animals (Ledgard et al., 2009).

Rising costs of fertilizer N and environmental regulations governing stocking densities and

fertilizer N use on farms is increasing interest in the use of white clover in grassland. In a recent

review, Andrews et al. (2007) concluded that herbage and milk production from white clover-based

pastures (perennial ryegrass with 20% white clover in herbage DM on an annual basis) are likely to be

similar to that from a perennial ryegrass pasture receiving annual input of 200 kg ha-1 of fertilizer N

and around 70% of that obtained with perennial ryegrass receiving annual input of 350 to 400 kg ha-1

of fertilizer N. In many countries in the northwest of Europe, these very high rates of fertilizer N input

are no longer permissible due to regulations associated with the Nitrates Directive

(European-Council, 1991). For example, in Ireland under Statutory Instruments (SI) No. 101 (Anon,

2009) the stocking density on dairy farms is limited to 2 dairy cows per hectare and, under these

circumstances fertilizer N input should not exceed approximately 200 kg ha-1. Subject to certain

conditions farmers can seek derogation from these limits up to a maximum permissible fertilizer N

input of approximately 279 kg ha-1 (Anon, 2009). Similar or lower maximum allowable rates pertain

in Northern Ireland, the Netherlands, Denmark and Germany (Humphreys, 2008).

3.5.2 N2O emissions from legume based grasslands
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Although some early studies show that several Rhizobium species, in the free-living form, in

legume root nodules or as isolated bacteroids can denitrify nitrate and release N2O (Rochette et al.,

2005), recent studies suggest that direct N2O emission from BNF per se is negligible (Rochette et

al., 2005; Carter et al., 2006; Zhong et al., 2009). The N2O emissions induced by the growth of

legume crops/forages may be estimated solely as a function of the above-ground and below-ground

N inputs from crop residues (Rochette et al., 2005; Carter et al., 2006; IPCC, 2006; Li et al., 2011).

Accordingly N2O emissions from legume-based grasslands are much lower than fertilized

grasslands. For example, Some study reported up to 5-fold of more N2O emission from heavily N

fertilized grasslands than from their legume-based counterparts (Ruzjerez et al., 1994). A data

synthesis indicates that the average soil N2O emissions from field-grown legumes, N fertilized grass

pastures and crops, and unfertilized soils are 1.29, 3.22 and 1.20 kg N ha-1 yr-1, respectively (Jensen

et al., 2012). Therefore N2O emissions from grass legume mixes are only slightly greater than

background emissions (Rochette et al., 2005; Jensen et al., 2012). However soil N2O emissions for

legume-based pastures grazed by animals will be significantly increased due to excreta patches. For

eample, soil N2O emissions from white clover/ryegrass systems receiving no fertilizer N or 58 kg

fertilizer-N ha-1 yr-1 were found to be only 16-19% lower relative to a grass/fertilizer system (226

kg N ha-1 yr-1) (Li et al., 2011).

Furthermore, N2O emissions may be indirectly lowered by legume-based systems. It allows

dairy farmers to achieve the same net income at lower stocking densities compared with a higher

stocked system reliant on high inputs of fertilizer N (Table 2). A lower stocking density means less N

cycling within the system and lower urine deposition, which is a major source of N2O emission as

aforementioned. Although limited studies have conducted to compare nitrate leaching or NH3
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volatilization in legume and fertilizer-based systems, the current evidence suggests that N losses via

these two pathways may be lowered in legume-based systems (Crews et al., 2004). Therefore

indirect N2O emission from these N losses can be reduced. A study shows that nitrate leaching was

reduced by 48% to 76% when fertilizer N was replaced by alfalfa (Medicago sativa) (Owens et al.,

1994). Similarly, NH3 volatilization from legume residues was found to be much lower (Larsson et

al., 1998).

Total GHG emissions have been reported to been substantially lowered by legume-based

systems. An LCA analysis shows that GHG emissions from white clover-based dairy production

systems (80-99 kg N ha-1 yr-1 with stocking densities of 1.8-2.2) are 11% to 23% lower than

fertilizer-based systems (180-353 kg N ha-1 yr-1 with stocking densities of 2.0-2.5) in Ireland (Yan

et al., 2013) Similarly, GHG emissions per kg of milk from a grass/fertilizer system (160 kg N ha-1)

were found to be 12% higher than from a clover/ryegrass system receiving no fertilizer N in New

Zealand (Ledgard et al., 2009). Schils et al. (2005) used a farm level approach to compare GHG

emissions from grass/fertilizer and grass/clover farms. Compared to a grass/fertilizer-N system, the

GHG emissions (excluding carbon sequestration) from a grass/clover farm were 23% lower per ha

and 11% lower per kg milk.

There is substantial economic benefit to replacing synthetic fertilizer N by BFN in grasslands

(Rochon et al., 2004; Andrews et al., 2007; Humphreys et al., 2012). It is likely that fertilizer N

costs will continue to increase relative to farm gate product prices (Humphreys et al., 2012). Under

these circumstances the economics of using white clover become increasingly favourable, offering

substantial potential to lower GHG emissions, if its use were to become widespread on farms.

3.6 Combined options to mitigate N2O emission



28

Efficiencies of each option in lowering N2O emissions are presented in Table 3. At each stage

of farm N flow, there are options to lower N2O emissions. Although single option of N management

has the potential to lower N2O emission, the mitigation capacity is relatively small. In some cases,

the decrease of N2O emission in one step of the N flow (Figure 1) may be offset by increased N2O

losses in another step. For example, restricted grazing by keeping animals off grazing paddocks and

on stand-off/feed pads or in animal houses can efficiently lower N2O emission from the grazing

paddocks due to excreta deposition. However, this decrease may be offset if manure is not

effectively managed during in-house or storage stage. In other words, effective measures should be

taken at each step during N flow or combined options should be used in order to mitigate N2O

emission at the farm level.

So far few studies have been conducted to investigate the effectiveness of combined options in

lowering N2O emission. Nevertheless, according to the limited available evidence, the effectiveness

of the combined options to mitigate N2O emission may not be simply additive of individual options.

For example, N2O emission was lowered by 39, 41 and 55% from restricted grazing, DCD

application and their combination in a pasture of New Zealand (Luo et al., 2010). Quantitative

analysis of N flows and N2O losses in dairy farming systems reveal that the implementation of a

package of measures to improve N management may reduce N2O emissions from dairy farming

systems by up to 70% (Velthof et al., 1997). Vallejo et al. (2005) showed that addition of

dicyandiamide reduced N2O emissions from 2.95% to 0.50% of applied N when injected into soil

in a Mediterranean climate. The above studies show that the combined options were more effective

in mitigating N2O emission than individual option but the decrease in N2O emission by the

combined options was lower than the total decrease of N2O emission by the individual options.

More studies are undoubtedly needed to investigate the effectiveness of combined options in
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mitigate N2O emission.

4. Conclusions

The efficiencies of major N management options in mitigating N2O emissions from

grassland-based agriculture are reviewed:

(1) Restricted grazing by reducing grazing time is an effective way to decrease N2O emissions

from excreta patches. Balancing the protein-to-energy ratios in the diets of ruminants can

also decrease N2O emissions from excreta patches.

(2) Among the managements of synthetic fertilizer N application, only adjusting fertilizer N

rate and use of slow-released fertilizers are proven to be effective in lowering N2O

emissions form grasslands.

(3) Use of bedding materials may increase N2O emissions from animal houses. Manure storage

as slurry, manipulating slurry pH to values lower than 6 and storage as solid manure under

anaerobic conditions help to reduce N2O emissions during manure storage stage. For

manure land application, N2O emissions can be mitigated after reducing manure N inputs to

levels that just satisfy crop needs.

(4) Nitrification inhibitors have been shown to substantially lower N2O emissions associated

with applications of fertilizers and manures and from urine deposited during grazing.

(5) N2O emissions from legume based grasslands are generally lower than fertilizer-based

systems. In addition, legume-based systems can be as profitable as conventional

fertilizer-N-based systems.
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Table 1. Net total N2O emissions during storage and after field application of differently treated 

dairy cattle slurry (given in g N2O per m3 slurry) (Amon et al., 2006)

Untreated Separated Digested Straw cover Aerated

Storage 20.2a 9.0b 28.5a 42.2* 49.3*

Storage-solid fraction 13.2

Field application 3.8a 6.4b 2.7a 10.3c 4.9b

Total emission 24.0 28.6 31.2 52.5 54.2

% Storage 84.2 77.6 91.3 80.4 91.0

% Application 15.8 22.4 8.7 19.6 9.0

Different superscripts indicate significant differences at p < 0.05 (separately for emissions during 

storage and after field application).

*No statistical comparison with untreated slurry was possible as the shape of the cumulated

emissions curve was different from untreated slurry and the t-test for differences in regression

parameters could not be applied.
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Table 2. The economic performance of systems of dairy production based on N-fertilized grass (FN)

and grass-white clover (WC) grassland including sales, variable and fixed costs, and gross and net

margin per ha (Humphreys et al., 2012).

System FN WC P value

Stocking density (LU ha-1) 2.8 2.04 <0.05

Fertilizer N (kg ha-1) 246 90 <0.001

Milk sales (€ ha-1) 3168 2875 <0.05

Total sales (€ ha-1) 3530 3205 <0.05

Fertilizer N (€ ha-1) 223 75 <0.001

Concentrate (€ ha-1) 312 275 NS

Contractor charges (€ ha-1) 299 253 <0.01

Total variable costs (€ ha-1) 1400 1146 <0.01

Gross margin (€ ha-1) 2131 2058 NS

Fixed costs (€ ha-1) 860 781 <0.05

Net margin (€ ha-1) 1271 1278 NS
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Table 3. Efficiency of farm N management options in lowering N2O emissions.

Options Efficiency Comments Refs

Excreta patch management

Reduced grazing

animal

+ Economically not

acceptable

Humphreys 2008

Reduced grazing time + Depend on grazing time de Klein et al., 2006; Luo et al.,

2008b

Dietary manipulation

with low-protein forage

+ Luo et al., 2008a; Nielsen et al.,

2003

Dietary manipulation

with salt

? Not supported by field study Van Groenigen et al., 2005; Kool

et al., 2006; Clough et al., 2009

Dietary manipulation

with hippuric acid

? Not supported by field study Ledgard et al., 2007; van

Groenigen et al., 2006

Apply with NIs + Di et al., 2007; Dennis et al., 2008;

Selbie et al., 2010

Fertilizer N management

Fertilizer N type -

PCFs

+ Akiyama et al., 2010

Fertilizer N type -

others

? Depending on timing and

site conditions

Bouwman et al., 2002; Stehfest

and Bouwman, 2006; Venterea et

al., 2005

Timing of fertilization ? Phillips et al., 2009; Venterea et

al., 2012

Fertilizer N placement ? Effective in cropland, but

needs test in grassland

Liu et al., 2006; Venterea et al.,

2008; van kessel et al., 2013

Fertilizer N rate + N2O emissions can be

mitigated after reducing N

fertilizer inputs to levels

that just satisfy crop needs

Bouwman et al., 2002; Halvorson

et al., 2008; Hoben et al., 2011;

McSwiney et al., 2005; Rafique et

al., 2011

Apply with NIs + Need additional cost Akiyama et al., 2010

Manure management

Use of bedding

materials

- Groenestein et al., 1996; Thorman

et al., 2003; Zhang et al., 2005

Storage as slurry + Need more space Sommer et al., 2000; Berg et al.,

2006; IPCC, 2006

Slurry storage - cover - Sommer et al., 2000; Berg et al.,

2006; VanderZaag et al., 2009

Slurry storage - lower

pH

+ Berg et al., 2006

Slurry storage -

treatment

? Amon et al., 2006; Beline et al.,

1999; Fangueiro et al., 2008;

Clemens et al., 2006; Loyon et al.,

2007; Willers et al., 1996
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Solid manure -

anaerobic conditions

+ Chadwick et al., 2011; Chadwick

et al., 2005; Hansen et al., 2006

Solid manure - Straw

addition

? Brown et al., 2000; Sommer et al.,

2000; Yamulki, 2006

Application - manure

type

? Clemens et al., 2006; Chadwick et

al., 2000

Application - rate + Similar to fertilizer N

Application - timing ? Similar to fertilizer N

Application - methods ? Webb et al., 2010; Sistani et al.,

2010; Chadwick et al., 2011

Application - with NIs + Need additional cost Akiyama et al., 2010

Use of biological N fixation

BNF + Li et al., 2011; Ruzjerez et al.,

1994; Rochette et al., 2005; Jensen

et al., 2012; Schils et al., 2005;

Yan et al., 2013

* PCFs denotes polymer-coated fertilizers

** “+”, “-” and “?” correspond positive, negative, and positive/negative efficiencies in lowering

N2O emissions, respectively.
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Figure legends:

Fig. 1. Nitrogen cycling in grassland based systems showing N2O production. Open arrows

represent soil N cycling processes (nitrification (1), denitrification (2) and nitrifier denitrification

(3)). Solid arrows denote the relative size and direction of the N flows. Percentages indicate the 

estimated transfer of N from one compartment to the other compartment (modified from Oenema et

al. (2005) and Wrage et al. (2001)). N2O production in soil also applies to the manure environment.

N losses other than N2O are not shown. BNF — Biological N fixation.
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Fig. 1. Nitrogen cycling in grassland based systems showing N2O production. Open arrows

represent soil N cycling processes (nitrification (1), denitrification (2) and nitrifier denitrification

(3)). Solid arrows denote the relative size and direction of the N flows. Percentages indicate the 

estimated transfer of N from one compartment to the other compartment (modified from Oenema et

al. (2005) and Wrage et al. (2001)). N2O production in soil also applies to the manure environment.

N losses other than N2O are not shown. BNF — Biological N fixation.


