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Abstract

Anomaly Detection on Social Data

Dai Hanbo

The advent of online social media including Facebook, Twitter, Flickr and Youtube

has drawn massive attention in recent years. These online platforms generate mas-

sive data capturing the behavior of multiple types of human actors as they interact

with one another and with resources such as pictures, books and videos. Unfortu-

nately, the openness of these platforms often leaves them highly susceptible to abuse

by suspicious entities such as spammers. It therefore becomes increasingly impor-

tant to automatically identify these suspicious entities and eliminate their threats.

We call these suspicious entities anomalies in social data, as they often hold differ-

ent agenda comparing to normal ones and manifest anomalous behaviors.

In this dissertation, we are interested in two kinds of anomalous behaviors in

social data, namely the unusual coalition among a collection of entities and the

unusual conflicting opinions among entities. The two kinds of anomalous behaviors

lead us to define two types of anomalies, namely, anomaly collections of the same

entity type and anomalous nodes of different entity types in bipartite graphs.

This dissertation introduces two anomaly collection definitions, namely, Extreme

Rank Anomalous Collection (or ERAC) and Coherent Anomaly Collection (or CAC).

An ERAC is a set of entities that cluster toward the top or bottom ranks, when all

entities in the population are ranked on certain features. We propose a statistical

model to quantify the anomalousness of an ERAC, and present the exact as well as

heuristic algorithms for finding top-K ERACs. We then propose the follow-up prob-

lem of expanding top-K ERACs to anomalous supersets. We apply the algorithms

for ERAC detection and expansion on both synthetic and real-life datasets, includ-

ing a web spam, an IMDB and a Chinese online forum dataset. Results show that



our algorithms achieve higher precisions compared to existing spam and anomaly

detection methods.

CAC is defined based on ERAC, emphasizing the coherence among members of

an ERAC. As top-K ERACs are often overlapping with each other, for applications

where disjoint anomaly collections are of interest, we propose to find top-K disjoint

CACs with exact and heuristic algorithms. Experiments on both synthetic and real-

life datasets, including a Twitter, a web spam, and a Chinese online forum dataset

show that our approach discovers not only injected anomaly collections in synthetic

datasets but also real-life coherent collections of hashtag spammer, web spammers

and opinion spammers which are hard to detect by clustering-based methods.

We detect the second type of anomalies in a bipartite graph, where nodes in one

partite represent human actors, nodes in the other partite represent resources, and

edges carry the agreeing and disagreeing opinions from human actors to resources.

The anomalousness of nodes in one partite depends on that of their connected nodes

in the other partite. Previous studies have shown that this mutual dependency can be

positive or negative. We integrate both mutual dependency principles to model the

anomalous behavior of nodes. We formulate our principles and design an iterative

algorithm to simultaneously compute the anomaly scores of nodes in both partites.

Our method is applied on synthetic graphs and the results show that our algorithm

outperforms existing ones with only positive or negative mutual dependency princi-

ples. Results on two real-life datasets, namely Goodreads and Buzzcity, show that

our method is able to detect suspected spammed books in Goodreads and fraudu-

lent publishers in mobile advertising networks with higher precision than existing

approaches.
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Chapter 1

Introduction

1.1 Motivations

In recent years, the boom of online social media including Facebook, Twitter, Flickr

and Youtube, has provided an unprecedented degree of freedom for ordinary users to

engage in online social interactions and generate content. As a result, these online

platforms generate enormous amount of social data every day. These social data

often capture the behaviors of human actors as they interact with one another and

with content resources. For example, people make friends in Facebook, follow other

people in Twitter, share and tag pictures in Flickr, share and comment on videos in

Youtube.

On one hand, online platforms facilitate interactions among multiple types of

entities. On the other hand, the openness of platforms leaves the interactions highly

susceptible to abuse, and even worse, the sheer volume of the generated data makes

it infeasible to manually inspect their veracity. To find trustworthy information in

online social data, it is increasingly important to automatically identify suspicious

entities with unusual behavior. These entities can be either human actors e.g., spam-

mers and fraudulent reviewers or resources e.g., spammed products or URLs.

Example 1. Figure 1.1 shows an example of spamming reviewers in the setting

of user-rating-products. Five users (represented by s1 to s5) and three products

(represented by t1 to t3) with the edges carrying ratings on a scale of 5. Users in

1



s1 s2 s3 s4 s5

t1 t2 t3

users

products

5 5 5 5 5 1 5 1 1

Figure 1.1: A toy example of five users rating three products.

{s1,s2,s3} are normal users who like products t1 and t2. s2 also thinks that product

t3 is very good. However, products t2 and t3 that are given high ratings by normal

users are given very low ratings by s4 and s5, who are possibly two spammers hired

to demote t2 and t3.

In order to influence public opinion, spammers rarely operate with just a single

account. Instead, they typically employ multiple accounts to collectively promote

or demote certain targets, such as a URL or a product.

Example 2. For example, in Twitter, a group of users may collaboratively spam

on popular hashtags to promote their websites or businesses. Their strategy is to

post a large number of tweets containing both their advertisement content and the

popular hashtags, so that other users querying any of these hashtags would see their

spamming tweets. These activities are classified as spamming according to Twitter’s

rules1. Figure 1.2 shows three collections S1, S2 and S3 of real spammers in Twitter

detected by our approach. As the unusually high usage of popular hashtags offers

a clue for finding these spammers, we rank all the users in descending order by

the number of times they used a hashtag. Here we show four popular hashtags

(#london, #hongkong, #philipines and #mongolia), and the 34 top-ranked users out

of 1899 for each hashtag. We observe that members of the three identified spammer

collections are highly consistent in their heavy usage of the same set of hashtags.

In contrast, for users in the blank cells in the top positions of each feature, despite

their heavy hashtag usage, they are not found to be spammers because their usage

1http://support.twitter.com/articles/18311-the-twitter-rules
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e15e11e13 e14 e7 e9 e10 e5 e4 e6 e8 .........f3: # philippines

e15e11 e13e14 e12 e7 e9 e10 e4 e6 e2 e3 e1 .........f2: # hongkong

e3 e1 e2 .........f1: # london

e7 e9 e10 e5 e6 e4 e8 .........f4: # mongolia

Figure 1.2: Three collections of real Twitter users ranked in descending order (left
to right) by the usage frequency of four hashtags (labeled as f1 to f4).

patterns do not appear to be shared by other users. After reading through relevant

tweets, we find that members of each collection post tweets with no real content

other than a large number of hashtags appended with short URLs. It turns out that

S1 promotes travel guidance books for various cities including London and Hong

Kong, corresponding to the hashtags they use for spamming. S2 and S3 promote the

same pornography website in Brazil.

Example 3. In an online marketplace, normal sellers would gradually accumulate

their credit ratings by selling products to many normal buyers. However, a suspi-

cious seller can create many low-price transactions with other “accomplice” buyer

accounts in a short time to gain credibility, before performing fraud transactions

involving large sums of money. This kind of fraudulent users with their unusual

coalition with other accomplice accounts are prominent in many C2C and B2C

business platforms [CW04] [PCWF07].

These aforementioned Example 1, Example 2 and Example 3 of suspicious enti-

ties are anomalies in social data. In general, an anomaly is a data instance or subset

of data instances which appears to be inconsistent with the remainder set of data

[BL94]. Since anomalies can pose serious threats to the ecosystem of online social

platforms, it is very important to detect them.

1.2 Research Objectives

Unlike many research topics on social data that have been well studied, including

community detection, evolution analysis and link inference, the problem of anomaly

detection in social data is still in its infancy [Agg11]. Nevertheless, this problem

is related to fraud detection in e-commerce data [PCWF07], spammer detection in

3



online review data [MLG12] and anomaly detection in graphs in general [SQCF05]

[AMF10].

Different from existing work, in this dissertation, we design unsupervised frame-

works to mine anomalies in social data by their anomalous behaviors. As anoma-

lous entities in social data often hold different agenda compared to normal ones,

their unusual behaviors would give them away.

We focus on two types of anomalous behaviors in social data, namely, the un-

usual coalition among a collection of entities and the unusual conflict of opinions

among human actors towards the same resource. Utilizing these anomalous behav-

iors, we are able to detect anomaly collections of the same entity type and node

anomalies representing different types of entities in social data. Specifically, Exam-

ple 2 shows unusual coalition, where user accounts of the same anomaly collection

in Twitter hijack the same set of popular hashtags. Utilizing this kind of anomalous

behavior, we are able to detect anomaly collections. On the other hand, Example 1

illustrates the conflicting views between {s4} and {s1,s2,s3} towards t2, as well as

those between {s2} and {s4,s5} towards t3. With this kind of anomalous behavior,

we can detect node anomalies representing entities of different types in bipartite

graphs.

1.2.1 Detecting Anomaly Collections

Anomalous behavior of unusual coalition is prominent in social data as shown in

Example 2 and Example 3. To detect anomaly collections of unusual coalition, we

propose two anomaly collection definitions Extreme Rank Anomalous Collection( or

ERAC) and Coherent Anomaly Collection (or CAC). Our novel anomaly definitions

capturing the unusual coalitions is based on extreme rank, i.e., the members of

an anomaly collection are consistently extremely ranked across multiple features.

As the ERAC definition does not capture the coherence in the unusual behavior

of members in an anomaly collection, we propose CAC to emphasize the shared

anomalous behavior patterns among members, modeled by information theory.

For applications where entities are likely to participate in multiple anomalous

collections, we propose to detect top-K ERACs. As top-K ERACs are often over-
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lapping with each other, for applications where disjoint anomaly collections are of

interest, we propose to find top-K disjoint CACs. For both detection problems, exact

and heuristic algorithms are proposed with pruning techniques.

Existing anomaly detection approaches fall short in detecting aforementioned

anomaly collections because they either focus on single point anomalies, or they

are not optimized to detect collections by behaviors of unusual coalition among

members of a collection[CBK09].

1.2.2 Detecting Node Anomalies in Graphs

Social data can be modeled as bipartite graphs with multiple types of entities (hu-

man actors and resources), including users-rating-products in online marketplaces,

users-clicking-webpages on the World Wide Web and users-referring-users in social

network platforms. Human actors in these social data often manifest anomalous be-

haviors such as expressing unusual conflicting views towards resources.

In Example 1, we observe that edge (s4, t2) and edge (s2, t3) do not agree with

the majority opinion on target nodes t2 and t3 respectively. We can see that s1, s2

and s3 are normal users who like products t1 and t2, but s4 and s5 are possibly two

spammers hired to demote t2 and t3.

In general, anomalous nodes are the minority and are inconsistent with the rest of

the nodes in the same partite. However, we cannot judge a node by its edges alone,

instead we should also involve the linked nodes in the other partite. For instance, in

Example 1 we cannot say s2 is anomalous simply because he gives t3 a rating of 5,

which is a minority in all the ratings {1,1,5} given to t3. In fact, it is natural for s2,

a normal node, to give a minority rating to t3, which is demoted by spammers.

Therefore, in bipartite graphs, the anomalousness of nodes in one partite of-

ten depends on that of their connected nodes in the other partite. Previous studies

[Kle99] [WXLY11] [LLW08] have shown that this mutual dependency can be pos-

itive (the anomalousness of a node in one partite increases or decreases along with

that of its connected nodes in the other partite) or negative (the anomalousness of a

node in one partite rises or falls in opposite direction to that of its connected nodes
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in the other partite).

In this dissertation, we unify both positive and negative mutual dependency re-

lationships in an unsupervised framework to detect anomalous nodes in bipartite

graphs. This is the first work that integrates both mutual dependency principles to

model the anomalous behaviors of nodes that cannot be identified by either principle

alone.

1.3 Contributions

1.3.1 Novel Anomaly Definition Based on Anomalous Behavior

Extreme Rank Anomalous Collection. We propose Extreme Rank Anomalous

Collection or ERAC to describe a set of entities clustered at the top or bottom ranks

of certain features. We propose a statistical model to measure the anomalousness of

a collection by how extremely ranked it is with respect to any feature set.

Coherent Anomaly Collections. We propose the concept of Coherent Anomaly

Collection or CAC based on ERAC with additional coherence criteria on the mem-

bers of an anomaly collection. We design coherence checking method based on the

idea of matrix encoding cost from information theory.

Node Anomaly in Bipartite Graph. We propose a new definition of node anomaly

in bipartite graph by the anomalous behavior of unusual conflict of opinions among

human actors towards resources.

1.3.2 Algorithms for Detecting Anomalies

ERAC Detection. We propose the problem of detecting top-K ERACs and develop

both exact and heuristic algorithms with different pruning strategies, assuming a

predefined ERAC size limit.

ERAC Expansion. We propose the problem of expanding the detected ERACs to

uncover their supersets that are more anomalous. We design greedy algorithms to
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solve the ERAC expansion problem without having to specify the size limit.

CAC Detection. We propose the problem of mining top-K disjoint CACs. We

introduce an exact and a heuristic algorithms utilizing the properties of the p-values

without the constraint on CAC size.

Node Anomaly Detection. We consider both the positive and negative mutual de-

pendencies of anomalousness between nodes in bipartite graphs and design an iter-

ative algorithm to define the anomaly scores of source and target nodes. We prove

that with our algorithm, the rankings of source and target nodes converge.

1.3.3 Extensive Evaluation by Experiments.

On ERAC Algorithms. We design experiments to study the performance of our

proposed ERAC algorithms for both ERAC detection and expansion problems in

four datasets. Specifically, in synthetic datasets, both ERAC detection and expan-

sion algorithms demonstrate high precisions. For the web spam dataset, both ERAC

detection and expansion algorithms discover web spammer collections with higher

precisions than existing approaches. For the IMDB dataset, both ERAC detection

and expansion algorithms identify unusual actor collections that are not easily iden-

tified by clustering-based methods. For the Chinese online forum dataset, our ERAC

detection algorithm identifies suspicious water army spammer collections agreed

by human evaluators. ERAC expansion algorithm successfully reveals two larger

spammer collections with different spamming behaviors.

On CAC Algorithms. We design synthetic data generation algorithms and study

the performance of our CAC detection algorithm on synthetic data with existing

baselines. The results show that our heuristic algorithm are both effective and effi-

cient. We also apply our CAC detection algorithm on Twitter data to detect hashtag

spammer collections, on a web spam dataset to detect groups of spamming web-

sites, and on a Chinese online forum data to detect opinion spammer collections.

The results on all real life datasets show that we are able to discover meaningful

and informative spammer collections which are otherwise hard to find by existing
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approaches.

On Node Anomaly Detection Algorithms. We generate synthetic bipartite graphs

and compare our model with competitors that incorporate either positive or negative

mutual dependency principle. Experiment results show that our model achieves

much higher precision. We apply our model on two real life datasets: Goodreads

and Buzzcity. The results show that we can identify suspected spamming users and

spammed books in Goodreads. For the Buzzcity data with labeled ground truth,

we also identify fraudulent IP addresses along with the fraudulent advertisement

publishers in Buzzcity with higher precision than existing approaches.

1.4 Dissertation Organization

The following chapters of this dissertation are organized as follows:

• Chapter 2 reviews the existing studies on anomaly detections including point

anomaly detection and collective anomaly detection, followed by existing

work on detecting anomalies on graphs.

• Chapter 3 proposes the concept of Extreme Rank Anomalous Collection (or

ERAC) and addresses the ERAC detection along with the follow-up ERAC

expansion problems.

• Chapter 4 proposes the concept of Cohesive Anomaly Collection (or CAC)

based on ERAC and addresses the problem of detecting CACs.

• Chapter 5 addresses the problem of detecting anomalous nodes in graph data

with a novel iterative algorithm.

• In Chapter 6, we present our conclusions on the research results of this dis-

sertation and an overview of future research directions.
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Chapter 2

Related Work

In this chapter, we give an overview of the existing studies in the literature of

anomaly detection. An anomaly is a data instance or subset of data instances which

appears to be inconsistent with the remainder of that set of data [BL94]. It is also

referred to as outlier, exception, peculiarity, and surprise [BL94].

An anomaly can be classified as point anomaly or collective anomaly. A point

anomaly refers to an individual data instance that is inconsistent w.r.t. the rest of the

data, whereas a collective anomaly or an anomaly collection refers to a collection

of data instances that is inconsistent w.r.t. the rest of the data. Various techniques

has been developed in various domains and on different types of datasets.

We first introduce the existing studies on detecting point anomalies, followed by

those on detecting collective anomalies. We lastly focus on the work done in finding

anomalies on graphs. For each type of existing studies, we compare them with our

proposed approaches in this dissertation.

2.1 Point Anomaly Detection

Most of the studies on anomaly detection focus on point anomalies [CBK09], us-

ing a variety of approaches including classification-based, nearest-neighbor-based

[BKNS00], statistical-based [BL94] and clustering-based approaches [EKSX96]

and [GRS99]. Here we describe some representatives of each approach.
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Classification-based.

The classification-based approach assumes that a classifier can be learnt from train-

ing data with ground truth of normal or anomalous instances to distinguish between

normal and anomalous classes. [CDG+07] uses decision tree to predict whether a

web host is a spammer based on predefined web host linkage features and content

features. The ground truth of the spammers are manually labeled by Yahoo. The re-

sults show that decision tree achieves high precision. Other classification techniques

including Bayesian Networks [WMCW03], Support Vector Machines [HLV03] and

Rule Based [Agg05] are also applied to detecting disease outbreaks, and system call

intrusions.

The biggest disadvantage of classification-based approach is that they require

accurate labels for normal or abnormal classes, which are often not available.

Nearest-neighbor-based.

The nearest-neighbor-based approaches assume normal data instances occur in dense

neighborhoods, while anomalies occur far from their closest neighbors. [KN98]

calculates the anomaly score of a data instance by counting the number of near-

est neighbors that are not more than d distance apart from the given data instance.

[BKNS00] assigns the Local Outlier Factor to data instances, which is the ratio of

average local density of the k nearest neighbors of the instance and the local density

of the data instance itself.

These approaches are unsupervised and do not assume any generative distri-

bution of the data. However, their assumption of anomalies may not be true for

anomaly collections, which are locally dense.

Statistical-based.

Statistical techniques have also been applied to discover point anomalies on the as-

sumption that normal entities occur in high probability regions of a statistical model,

while anomalies occur in the low probability regions. This technique utilizes sta-

tistical inference tests to determine if an entity is generated by the statistical model

[BL94]. For example, Grubb’s test and the student’s t-test have been applied under

the assumption that the data is generated by a Gaussian distribution. If the assump-

tions regarding the underlying data distribution hold true, statistical techniques pro-
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vide a statistically justifiable solution for anomaly detection. Unfortunately, these

assumptions often do not hold, especially for high dimensional data.

Clustering-based.

The assumption taken by the clustering-based approach to detect point anomalies is,

normal data instances belong to a cluster in the data, while anomalies either do not

belong to any cluster. Based on this assumption, several clustering algorithms that

do not require every data to belong to a cluster are developed including DBSCAN

[SEKX98] and Findout [YSZ02]. However, they are not optimized for detecting

anomalies but treating anomaly detection as a by product of clustering.

2.2 Collective Anomaly Detection

Since all these point anomaly detection approaches assume that anomalies appear

in sparse regions or are far away from the normal entities, true anomalous col-

lections that are dense or are close to the normal entities may escape detection.

There are a few existing studies on detecting anomaly collections. They are mostly

classification-based or statistical-based or clustering-based. Our proposed approaches

for detecting ERAC and CAC belong to the category of collective anomaly detec-

tion.

Classification-based.

[DSN08] detects anomaly collections of relational records in categorical datasets

with a supervised approach, assuming non-anomalous data points are labeled. Mod-

els are learned from the training data using Bayesian networks with no anomalies,

and a set of records are flagged as an anomaly collection if they are individually

anomalous, sharing the same value for a subset of features, and the number of

records in the set is significantly larger than expected. However, due to the large

amount of records in real datasets, it is not easy to get the ground truth of normal

records. Furthermore, in many applications, members in an anomaly collection are

not individually anomalous in the first place, and they may only have similar, instead

of the same, values for a subset of features.

The work in [DSN08] is extended to detect a group of anomalous objects in
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[KJD09]. A bayesian network is learned from the labeled normal data and another

bayesian network of the same structure but different parameters is also learned and

assumed to generate outliers. However, since anomaly collections are often of small

sizes, their outlier generation model trained would suffer from over-fitting.

Statistical-based.

[ACCD11] uses a statistical model to detect in a network an anomaly collection in

which the node features have a different distribution than the rest of the nodes. The

work assumes there is only one anomalous cluster in the network, and each node is

assumed to have one feature.

Clustering-based.

[LTZ10] detects anomaly collections by a data structure called isolation forest. The

work assumes that after data points are projected to some hyperplane, the anoma-

lous points follow one distribution while the normal points follow a different dis-

tribution. The two distributions are further assumed to be separable by minimizing

their dispersions. However, the validity of these assumptions is arguable especially

for datasets with multiple similar extreme patterns. Furthermore, the anomaly score

is defined on point level instead of on collection level, which is not suitable for

finding collections with shared extreme behavior.

Other work on detecting anomalous clusters includes [DXLL09], [HXD03] and

[LTS04]. They assume that normal entities belong to large and dense clusters,

whereas outliers form small or sparse clusters. Thus they apply a clustering algo-

rithm on the data set, and declare small clusters that are below some size threshold

as anomalous clusters. In [DXLL09] and [HXD03], small clusters are the smaller

ones that together constitute less than 10% of the population. In [LTS04], the thresh-

old is half of the average cluster size. These approaches also require a threshold for

the size of anomalous clusters, which is not trivial to set. Furthermore, the small

clusters identified do not necessarily exhibit extreme behavior like the spammer

clusters.

Other approaches.

[MLW+11] and [MLG12] detect collections of product review spammers in Ama-

zon. This work assumes each group of spam reviewers must have worked together
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on at least certain number of products and uses frequent pattern mining to find

candidate spam collections. However, it does not model the collective extreme be-

haviors, which in fact is a very common nature of spammer collections. [BXG+13]

finds collections of “like” spammers in Facebook by searching for near bipartite-

cores. However, they do not model coherent extreme behaviors in general.

Other work models the problem using burst detection [Kle02] and change-point

detection [TY06], where formal models are proposed to study the normal behavior

of a collections of data points on data streams or time series data. The collection

of data points that are not necessarily generated by these models are declared as

anomalies.

Comparison with our proposed approaches.

All above mentioned existing approaches are in general not specifically designed for

detecting anomalous collections with abnormal behaviors such as extreme collective

behaviors, which are prominent in online social networks. Our proposed ERAC and

CAC detection approaches are able to identify collections of anomalous coalition

behaviors with much higher precision.

2.3 Anomaly Detection on Graph data

Few anomaly detection studies focus on graph data. A graph anomaly is a data in-

stance which appears to be inconsistent with the remainder of the data. One unique

characteristics of graph data is that it contains graph structure, of which anomaly

detection approaches should take good advantage.

Existing studies on graph anomalies mostly adopt two paradigms for factoring

in the graph structure. One is extracting graph structure and then applying gen-

eral anomaly detection method, whereas the other is directly exploiting the mutual

dependencies among different types of nodes through links in graphs.

Structural feature based.

In [AMF10], a node is considered as anomalous if its neighborhood significantly

differs from those of others. They focus on four types of node anomalies charac-

terized by the 1-hop neighborhood (Egonet) in weighted graphs. The neighborhood
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of a node is summarized by pairs of neighborhood features including the number

of edges vs. the number of nodes in an egonet, which are assumed to follow power

law distribution. The nodes whose neighborhoods deviate from the fitted power law

curve are flagged as node anomalies.

[LC08] detects node anomalies in semantic graphs. The neighborhood of a node

is summarized by paths of various length. A node is an anomaly if it carries ab-

normal semantic paths, which is discovered by the standard distance based anomaly

detection techniques.

Anomalous subgraph patterns are studied in [NC03]. The basic assumption is

that anomalies induce irregularities in the information content of the graph. They

further assume regularities or normal patterns are the best substructures pattern in

terms of Minimum Description Length (MDL) from information theory. Subgraph

outliers are the ones experiencing less compressions by best substructure patterns.

In [SQCF05], node anomaly in bipartite graph is studied. A source/target node

is anomalous if the average similarity of its 1 hop neighbors are low. For exam-

ple, authors publish in conferences of different research communities (clusters) are

anomalous. The similarity of nodes are then computed using random walk.

Mutual dependency based.

There are also studies investigating mutual dependency of different types of nodes

in graphs, to discover anomalous nodes in graph data.

[Kle99] proposes HITS with the concepts of authority and hub and uses the mu-

tual reinforcement principle to rank webpages. The assumption is that a good au-

thority is linked by many good hubs and a good hub links to many good authorities.

[YHY07] also uses mutual reinforcement principle to study the veracity of informa-

tion on the web. This work assumes a web site is trustworthy if it provides many

pieces of true information, and a piece of information is likely to be true if it is

provided by many trustworthy web sites.

Salient terms and sentences are identified using positive mutual dependency prin-

ciple in [Zha02]. They assume a term has high saliency score if it appears in many

sentences with high saliency scores and a sentence has high saliency score if it
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contains many terms with high saliency scores. [WLLH08] extends the model in

[Zha02] and proposes mutual reinforcement chain of document, sentence and terms.

In [BLZ+09], users, questions and answers in the community question answering

setting are modeled as three types of nodes. Coupled multiple mutual reinforcing

relationships among the three types of nodes are utilized to detect high-quality an-

swers, questions, and users. [WXLY11] finds suspicious reviewers in constructed

review graph with three types of nodes including reviewers, reviews and stores by

mutual dependency principle. Specifically, a reviewer is more trustworthy if (s)he

has written more honest reviews, a store is more reliable if it has more positive re-

views from trustworthy reviewers, and a review is more honest if it is supported

by many other honest reviews. The trustworthiness of reviewers, the honesty of

reviews, and the reliability of stores are iteratively computed and thus the spam

reviews are detected.

[LLW08] uses negative mutual dependency principle to detect biased users and

controversial products in evaluation systems. A reviewer is more biased if he devi-

ates more on less controversial objects and an object is more controversial if there

is greater deviation by less biased reviewers.

Comparison with our proposed approaches.

We differ from the aforementioned structural feature based studies as we do not

extract graph structure to numerical values, but utilize directly the graph structure

to propagate the anomaly scores of both partites. Furthermore, in a bipartite graph,

we detect anomalies in both partites simultaneously.

Moreover, the mutual dependency principles of the existing work can be sum-

marized as positive [Zha02] [WLLH08] [BLZ+09] (the anomalousness of a node in

one partite increases or decreases along with that of its connected nodes in the other

partite) or negative [LLW08] (the anomalousness of a node in one partite rises or

falls in opposite direction to that of its connected nodes in the other partite). Our

framework is different from existing work as it incorporates both positive and nega-

tive mutual dependency principles and manages to identify node anomalies that are

undetectable by either mutual dependency principle alone.
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2.4 Summary

In this chapter, we describe existing studies on point anomaly detection, collective

anomaly detection and node anomaly detection on graphs, which are related to our

approaches proposed in this dissertation. For each type of existing work, we briefly

analyze their ideas, techniques and applications. Furthermore, we describe the ad-

vantages of our approaches proposed in the following chapters compared to these

existing ones.
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Chapter 3

Detecting Extreme Rank Anomaly

Collections

3.1 Introduction

When entities are ranked by a set of features, a small subset of the entities could

cluster at the top or bottom ranks of some of these features. We call such an entity

subset an extreme rank anomaly collection or ERAC.

ERACs are prominent in many real-life applications. For example, in online

marketplaces, a fraudulent user may create many low-price transactions with other

“accomplice” accounts in a short time to gain credibility, before performing fraud

transactions involving large sums of money [CW04] [PCWF07]. Consequently,

they are likely to rank at extreme positions with respect to features such as average

number of transactions and transaction rate.

Web spammers are good examples of ERACs as well. As reported in [FMN04],

[CDG+07] and [GGMP04], web spammers adopt many spamming strategies to

boost rankings of their pages in search queries. One strategy used is to stuff the

pages with popular keywords and anchor texts that are unrelated to one another.

Web spammers may also generate pages from similar templates on the fly in order

to perform “link spam”. As a result, when measured by these features such as the

number of popular keywords or the number of anchor texts in webpages, spam-
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Figure 3.1: An example of ERAC. 30 entities {e0, ...,e29} are ranked according to
each 3 features { f0, f1, f2}. In this example, {e5,e7,e12} is an ERAC

mer hosts consistently demonstrate very extreme behaviors and form an identifiable

anomalous collection, in contrast to normal web hosts.

To illustrate, suppose we have 30 web hosts {e0, ...,e29} as shown in Figure 3.1.

The three host features { f0, f1, f2} reflect the aforementioned spamming strategies:

f0 represents the average number of popular keywords, f1 is the variance of the

word count, and f2 captures the average ratio of anchor text to normal text. For

each feature, we rank all the web hosts in descending order by their feature values.

We can then identify {e5,e7,e12} as an ERAC because all of its entities appear at

the top positions on features f0 and f2, and at the bottom positions on feature f1.

The fact that e5, e7 and e12 collectively display extreme behaviors across the three

features is strong evidence that they are likely to be web spammers.

Existing anomaly detection approaches fall short in the above applications be-

cause they either focus on single point anomalies, or they are not optimized to detect

collections with extreme characteristics. Note that a set of single point anomalies

does not always form an extreme rank anomaly collection, because not every en-

tity in an ERAC appears at extreme positions. For example, in Figure 3.1, e12 is

not very extreme by itself although it is part of an extreme rank anomaly collection

{e5,e7,e12}. In contrast, e8 appears at extreme positions on all three features, but

it does not form an extreme cluster with any other entities. Our problem therefore

cannot be solved by simply grouping the single point anomalies found by existing

approaches.

We propose to model ERAC by the hypergeometric distribution. The anoma-

lousness of an ERAC is quantified by a statistical p-value that captures the follow-

ing general principles — A collection is more anomalous if: (I) It contains a larger

number of entities that are ranked at extreme positions on some feature(s); and (II)
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Its entities are consistently ranked at extreme positions across more features.

Due to the large number of ERACs of various sizes, we first tackle the ERAC

Detection problem of discovering top-K ERACs with a predefined size limit, which

is set to small values for efficiency reasons.

Nevertheless, after being offered with the top ERACs of a predefined size, users

may want to see the most anomalous supersets of some detected top-K ERACs.

For example, in the web spam case, users may find the detected ERAC {e5,e7,e12}
of interest as they have the common spamming strategy of using lots of popular

keywords, with very little variance on the word count, and high fraction of anchor

text. It is natural to ask, can we detect the superset of this ERAC that are even more

anomalous with similar sets of spamming strategies? Therefore, we also propose

the ERAC Expansion problem to uncover the supersets of the detected ERACs

that are more anomalous than the original top-K ones. Unlike the ERAC detection

problem, ERAC expansion is done without predefined size constraints.

The rest of the chapter is organized as follows. After introducing the problem

formulation in Section 3.2, Section 3.3 presents our ERAC detection algorithms for

both independent and dependent feature sets. Section 3.4 describes our ERAC ex-

pansion algorithms. Section 3.6, Section 3.7, Section 3.8 and Section 3.9 report

on experiments on both ERAC detection and expansion. Finally, Section 3.10 con-

cludes the chapter.

This chapter is based on our publication in SIAM International Conference on

Data Mining (SDM 2012) [DZLP12b].

3.2 Extreme Rank Anomaly Collection

In this section, we start by introducing related concepts regarding the anomalous-

ness or extremity of a collection on a single feature. We then describe the anoma-

lousness definition for multiple features. We also formally define ERAC and ERAC

detection problem here in this section. The frequently used notations are summa-

rized in Table 3.2.1.

Let E denote the universal entity set, and F a set of features. For an entity
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Notation Meaning Notation Meaning
E the universal entity set F a feature set { f}
S an entity collection r an extremity index

rank f (e) the ranking of e w.r.t. f S f (r) entities in S within r on f
p f (S,r) p-value of S w.r.t. r on f p̂ f (S) S’ representative p-value on f
r f (S) representative r of S on f

Table 3.1: Notations

e ∈ E, e. f denotes the value of e for feature f ∈ F . Entities can be ranked with

respect to any feature. rank f (e) denotes the rank of entity e in E w.r.t. feature f ,

which is simplified to rank(e) when the context is clear. For example, in Figure

3.1, rank(e8) = 1 and rank(e7) = 30 on feature f1, assuming all feature values are

distinct.

An entity may lie in top or bottom rank positions on different features. For the

purpose of exposition, the following discussion focuses on the top rank position

case. Our analysis extends readily to the bottom rank position case.

3.2.1 Measuring Anomalousness for A Single Feature

We begin by measuring how anomalous an entity collection is w.r.t. a single feature.

Our approach is based on the following principle: on a given feature f , an entity

collection S is more anomalous, or more extremely ranked, if more entities in S

appear in extreme regions of the ranked list of the universal entity set E w.r.t. f .

Given a set of entities S, a feature f , we use an extremity index r to refer to an

extreme region, and use S f (r) to denote the set of entities in S which appear in the

top r rank positions w.r.t. feature f ,

S f (r) = {e | ∀e ∈ S,rank f (e)≤ r}

Continuing the example in Figure 3.1, for S = {e5,e7} and r = 2, we have S f0(r) =

{e5}. Similarly, for S = E and extremity index r = 3, E f1(r) = {e8,e2,e14}. Note

that |E f (r)|= r when the entities have distinct feature values. Where there is a tie,

|E f (r)| may be larger than r.

The extremity of any given entity collection S ⊂ E can be derived based on

|S f (r)|, which is in fact |S∩E f (r)|. In general, if we randomly pick |S| entities
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from |E| entities, the number of entities in S that also belong to top or bottom r

of the entity list, (i.e., E f (r)) follows the hypergeometric distribution. Intuitively,

we can imagine there are totally |E| balls with r balls of red and |E| − r balls of

black. We draw |S| number of balls from this |E| balls and the number of times

we get red balls follows the hypergeometric distribution. Thus the probability of

observing |S f (r)| common entities shared by S and E f (r) can be computed as in the

hypergeometric distribution as follows:

prob(|S f (r)|, |E|, |E f (r)|, |S|) =

(|E f (r)|
|S f (r)|

) · (|E|−|E f (r)|
|S|−|S f (r)|

)
(|E|
|S|

)

We now define the p-value1 of S w.r.t. extremity index r and feature f , denoted as

p f (S,r), as the probability of observing at least |S f (r)| common entities between a

random collection of size |S| and E f (r).

p f (S,r) =
min(|E f (r)|,|S|)

∑
i=|S f (r)|

prob(i, |E|, |E f (r)|, |S|)

Thus, a given S leads to different p-values with different r. For any given r and f ,

the smaller the p-value of S, the more extremely ranked S is w.r.t. r. Therefore,

among all the choices of r, we pick the one which gives the smallest p-value. This

particular r measures the maximum extremity of ranking that S could possibly have,

which is by our definition also the maximum anomalousness of S w.r.t. f . Formally,

we call this r the representative extremity index of S w.r.t. f , which is denoted as

r f (S) and defined as follows,

r f (S) = argmin0<r<|E|/2 p f (S,r)

The choice of r ranges from 1 to less than half of the population of E, because we

now focus on the top rank position case. The bottom rank position case can be

derived similarly.

Correspondingly, the representative p-value of S w.r.t. f is defined as p̂ f (S) =

p f (S,r f (S)).

1The p-value defined here is the right ended p-value of the hypergeometric distribution. The right
ended p-value is used instead of the left ended one because in our case the more (instead of less for
the left ended case) S overlaps with E f (r), the more extremely ranked S is w.r.t. f .
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Referring to Figure 3.1, for S = {e5,e7}, r = 2 and r′ = 4, we have |S f0(r)| =
1 and |S f0(r

′)| = 2. Moreover, p f0(S,r) = ∑min(2,2)
i=1 prob(i,30,2,2) = 0.131 and

p f0(S,r′) = ∑min(4,2)
i=2 prob(i,30,4,2) = 0.013. As p f0(S, r′) < p f0(S,r), r′ better

represents how extremely ranked S is than r does for f0. Suppose r f0(S) = r′ = 4,

we have the representative p-value of S w.r.t. f0 as p̂ f0({e5,e7})) = 0.013.

Statistically, the representative p-value reflects how anomalous (i.e. extremely

ranked) a collection S is w.r.t. a particular feature f . The smaller the representative

p-value, the more anomalous the collection is. For example, in Figure 3.1, we

compare S = {e5,e7} with S′ = {e7,e12} by their representative p-values for f0.

p̂ f0({e7, e12}) = p f0({e7,e12}) = 0.023. Since p̂ f0({e5,e7}) = 0.013 is smaller than

p̂ f0({e7,e12}), we conclude that {e5,e7} is more anomalous than {e7,e12} w.r.t. f0;

this is intuitive as {e5,e7} sits more towards the top positions than {e7,e12} on f0.

Note that the p-value measures directly at the collection level, which is different

from measuring on the entity level followed by aggregating across the individual

measures.

We are now ready to give our definition for an Extreme Rank Anomaly Collection.

Definition 1. [Extreme Rank Anomaly Collection (ERAC)] Given a universal en-

tity set E and an entity set S s.t. S⊂ E,1 < |S|< |E|/2, a set of independent features

F and a threshold α, we say S is an Extreme Rank Anomaly Collection w.r.t. F if

(I) ∃FS ⊆ F such that |FS|> 1 and ∀ f ∈ FS, p̂ f (S)≤ α; (II) 1 < |S|< |E|/2.

The definition of ERAC is based on a global null hypothesis of multiple hypoth-

esis tests, where each test is associated with one feature. We say S is anomalous

w.r.t. F , if the derived p-values are smaller than a predefined significance level2 α

in at least two tests.

Note that when we reject the null hypothesis and say that S is anomalous, S may

not be significant for every feature. We call FS the significant features of S.

We impose the condition 1 < |S| < |E|/2, as an anomalous collection should

2In order to control the type 1 error (false positive), the significance level for each individual
test should be adjusted. Our model can accommodate all existing adjustment techniques including
Bonferroni Correction, Holm-Bonferroni and Westfall-Young step-down. We adopt the Bonferroni
Correction [Dun55] to adjust the significance level to α/|F | to be conservative. For example, assum-
ing 0.05 is the intended significance level for each single test, α would be set to 0.05/|F |.
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contain more than one entity and yet remain the minority of the population.

The definition also requires a set of independent features F . We define the de-

pendency of any two features f , f ′ ∈ F based on the statistic of Kendall Tau rank

correlation coefficient [Ken48].

dep( f , f ′) =
|3(nc−nd)|√

|E| · (|E|−1) · (2|E|+5)/2

Where nc is the number of concordant pairs of entities and nd is the number of

discordant pairs of entities in the entity lists of f and f ′. 3

3.2.2 Measuring Anomalousness for Multiple Features

To measure how extreme an entity collection is ranked on a set of features, we gen-

eralize our principle as follows: For a given independent feature set F, a collection

is more anomalous if it is extremely ranked for more features in the given feature

set.

As the representative p-value measures how anomalous an ERAC is for a single

feature, we define the anomaly score of an ERAC S for F as the product of the

representative p-values for all the significant features in F . As the probability value

tends to be very small, we take the log form:

Ω(S,F) =− ∑
f∈FS

log p̂ f (S)

This definition is consistent with the principle that the more features S is extremely

ranked against, the more anomalous it is.

With the anomaly score defined, we can now formulate our ERAC detection prob-

lem as follows:

Definition 2. [ERAC Detection Problem] Given an entity universe set E, an inde-

pendent feature set F, a target collection size N (N < |E|/2) and K, find the top-K

most anomalous Extreme Rank Anomalous Collections of size at most N.

3As the dependency statistic follows the standard normal distribution, we just need to compute
the z-score value λ corresponding to any given significance level of a two tailed test. For example,
if the significance level is 0.05, the z-score is 1.96. Therefore, given f and f ′, if the dep( f , f ′) score
is not greater than λ, then f and f ′ are independent of each other.
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As there are potentially large number of ERACs in a large population E, we

focus on the top-K ERACs. We require a predefined size limit N of small values, as

the anomalous collections are by definition the minority in the population anyway.

We do not require the elements in different extreme rank anomaly collections to be

mutually exclusive, as many entities may join different anomalous collections with

different extreme behaviors. Therefore, a larger K may reveal additional extreme

patterns that are less anomalous.

3.3 ERAC Detection Algorithms

To find the top-K ERACs of size at most N, a naive way is to enumerate all collec-

tions of size up to N, sort them by anomaly score in decreasing order, and return

those with the top-K ranks. This approach is infeasible as the search space is expo-

nential in the size of E, i.e.,
(|E|

2

)
+ ...+

(|E|
N

)
. Therefore we propose a bottom-up

approach that successively generates larger ERAC candidates from smaller ones,

maintaining a current top-K list and pruning unpromising growth paths whenever

possible.

Out of this approach arise two main challenges. (I) How to generate candidates

from the current set of ERACs of smaller sizes? We adopt a classic approach used in

the Apriori Algorithm [AS94] to generate candidates for frequent item-sets. Can-

didates are generated level by level from single entities to collections of size N. To

generate a collection of size n+1, we only combine two collections of size n shar-

ing the same first n−1 entities, assuming that entities in each collection are sorted

alphabetically; this has been shown to ensure unique generation of each candidate

collection. (II) How to prune unnecessary growth paths and generate fewer candi-

dates? A crucial technique used in Apriori is to prune any current candidate from

future consideration whenever it is found to fall below the threshold set by the last

collection in the current top-K list, thus avoiding potentially traversing of the entire

exponential search space.

Unfortunately, in general, the anomaly score of ERAC does not enjoy this down-

ward closure property to support the standard pruning strategy in top-K computa-
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tion. Specifically, for any collection S, even when the anomaly score Ω(S,F) is less

than the least one in the current top-K list, we cannot conclude that for all super-sets

S′ of S, the anomaly score Ω(S′,F)≤Ω(S,F) and therefore safely prune S. The ab-

sence of this monotonicity on the anomaly score poses a difficulty to our bottom-up

search approach. It seems that we would actually have to keep all collections of size

n to generate candidates of size n + 1 to guarantee the completeness of the mining

result.

To tackle this problem, we develop an exact algorithm in Section 3.3.1 and two

heuristic algorithms in Section 3.3.2 and 3.3.3. The more general case of dependent

features is discussed in Section 3.3.4.

3.3.1 An Exact Algorithm ERAC E

Given a collection S, despite the absence of monotonicity on the anomaly score

which precludes setting an upper-bound on Ω(S′) for all super-sets S′ of S, it is

possible to derive an upper-bound on Ω(S′) for those super-sets of S of a given size

n. We denote this upper-bound with size-constraint n as Ω̂(S,F,n), which will be

formally defined shortly. Intuitively, the most anomalous super-set S′ of S can be

formed by adding to S exactly |S′|− |S| entities which are ranked the most extreme

positions.

Formally, given a collection S, size n, (|S| < n ≤ |E|/2), and a feature f , the

most anomalous super-set of S is denoted as Ŝn, and defined as Ŝn( f ) = S∪ S∗,

where |S∗|= n−|S| and ∀e′ ∈ S∗,∀e ∈ E \ Ŝn,rank f (e′)≤ rank f (e).

To illustrate with the example in Figure 3.1, suppose S = {e5,e12}. Assuming

no tie in ranking, we have Ŝ4( f0) = {e16,e5,e24,e12} because, on f0, e16 and e24 are

the two entities ranked the most extreme in the top positions, excluding the entities

already in S.

Accordingly, given F and S, the upper-bound with size-constraint n for S is de-

fined as:

Ω̂(S,F,n) =− ∑
f∈F

log p̂ f (Ŝn( f ))

Before we present the theorem to show that Ω̂(S,F,n) thus defined indeed repre-
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sents the upper-bound on the anomaly score of all super-sets of S of size n, we first

introduce a property of p-value that is needed to establish the theorem.

Property 1. Given any feature f , collections S and S′ and extremity indices r and

r′, if |S|= |S′|, |E f (r)|= |E f (r′)| and |S f (r)|> |S′f (r′)|, then p f (S,r) < p f (S′,r′).

Proof. p f (S,r) = ∑
min(|E f (r)|,|S|)
i=|S f (r)| prob(i, |E|, |E f (r)|, |S|) and p f (S′,r′) =

∑
min(|E f (r′)|,|S′|)
i=|S′f (r′)|

prob(i, |E|, |E f (r′)|, |S′|). Since |S| = |S′|, |E f (r)| = |E f (r′)| and

|S f (r)|> |S′f (r′)|, p f (S′,r′)= p f (S,r)+∑
|S f (r)|−1
i=|S′f (r′)|

prob(i, |E|, |E f (r)|, |S|). As prob(i,

|E|, |E f (r)|, |S|) > 0, we have p f (S,r) < p f (S′,r′).

Property 1 can be explained as, with all other parameters kept constant, the larger

the number of entities in S that fall into the extreme positions, the smaller the p-value

is. Now we have Theorem 1.

Theorem 1. Given S, 0 < |S| < |E|/2, ∀S′ such that S ⊂ S′ and |S′| < |E|/2, we

have Ω(S′,F)≤ Ω̂(S,F, |S′|)

Proof. Suppose S and S′ are two collections s.t. S ⊂ S′. To prove Ω(S′,F) =

−∑ f∈F log p̂ f (S′) ≤ Ω̂(S,F, |S′|) = −∑ f∈F log p̂ f (Ŝ|S′|( f )), we need to show that

for any f , p̂ f (S′)≥ p̂ f (Ŝ|S′|( f )). Let Ŝ denote Ŝ|S′|( f ).

Since |Ŝ|= |S′|, E f (r f (S′)) = E f (r f (S′)) and |Ŝ∩E f (r f (S′))| ≥ |S′∩E f (r f (S′))|.
According to Property 1, we have p f (S′,r f (S′))≥ p f (Ŝ,r f (S′)). By definition, ∀0 <

r < |E|/2, p f (Ŝ,r f (Ŝ)) ≤ p f (Ŝ,r). So we have p f (Ŝ,r f (Ŝ)) ≤ p f (Ŝ,r f (S′)). Thus

p f (Ŝ,r f (S′)) ≥ p f (Ŝ,r f (Ŝ)). Therefore, p f (S′,r f (S′)) ≥ p f (Ŝ|S′|( f ), r f (Ŝ|S′|( f ))),

and Ω(S′,F)≤ Ω̂(S,F, |S′|).

Based on the upper-bound with size-constraint, we propose an exact algorithm

that incorporates the following pruning strategy. At any time in the bottom-up

search process, there are three data structures in the system: (I) the current top-

K list; (II) the set of ERACs of size n, which are used to generate candidates of size

n+1; and (III) the set of single entities which have yet to grow into any collection.

Denote Ωt as the anomaly score of the least anomalous collection in the current

top-K list.
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Pruning Technique 1. In generating candidates of size n+1, only those collections

S with anomaly score upper-bound for size-constraint n + 1, i.e., Ω̂(S,F,n + 1),

larger than Ωt are grown.

Why is this pruning strategy sound? Observe that due to the absence of down-

ward closure property, a standard Apriori-style bottom-up search cannot drop any

collection S even if its anomaly score falls below Ωt . On the other hand, the upper-

bound derived directly from the size N, i.e., Ω̂(S,F,N), would almost always prevail

over Ωt , leaving us with little pruning power. In contrast, with our pruning strategy,

the upper-bound is computed with a size-constraint which increases in tandem with

the size of candidates being generated. Consequently, (I) when the size is small, an

upper-bound with the same small size-constraint is more likely to fall below Ωt ; (II)

as the size grows, Ωt increases monotonically as well, continually pushing the bar

higher for the upper-bound to beat. This accounts for the greater pruning power of

our method. The ERAC E algorithm for computing top-K ERACs of size up to N is

shown in Algorithm 1, followed by a running example in Table 3.2 to illustrate the

pruning techniques applied on the example in Figure 3.2.

Algorithm 1 ERAC E for independent features
Input: E, F , K, N
Output: Top-K ERACs: S∗
{S∗ is implemented by a priority queue of max length K. Ωt is the smallest anomaly
score of collections in S∗, and is set to zero if S∗ = /0. S(i) is the current selected
collections of size i, implemented by a hash tree.}

1: n = 1; S∗ = /0; S(i) = /0, for i = 1..N; S= {{e} | e ∈ E}
2: while S 6= /0 && n < N do
3: update S∗ by elements in S {Ωt is updated accordingly}
4: S= {{e} | e ∈ E}−S(1)
5: for i = 1 to n do
6: S = {S ∈ S | Ω̂(S,F,n + 1) > Ωt} {S now keeps the set of eligible

collections}
7: S(i) = S∪S(i)
8: S = join(S(i),S(i)) {generate new candidates of size i + 1, and up-

date S∗ accordingly by elements in S}
9: n++

10: return S∗

Step 6 of Algorithm 1 applies Theorem 1 in excluding from S those collections

with upper-bounds smaller than the threshold. Moreover, through join(), the super-

sets of collections with anomaly score upper-bounds smaller than the threshold are
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e16 e5 e24 e7 e12 e17 e13 e0 e3e18 .....e19 e21 e14 e15e6

Figure 3.2: Top 15 entities ranked according to f0 in Figure 3.1

n S(i) S∗ (Ωt)
1 S(1) = {{e16},{e5},{e24},{e7},{e12}} {{e16}} (3.4)
2 S(1): same as above {{e16,e5}}
S(2) = {{e16,e5},{e16,e24},{e16,e7}, (6.08)
{e16,e12},{e5,e24},{e5,e7},{e5,e12},
{e24,e7},{e24,e12},{e7,e12}}

3 S(1): same as above {{e16,e5,e24}}
S(2): same as above (8.31)
S(3) = {{e16,e5,e24},{e16,e5,e7},
{e5,e24,e7}}

Table 3.2: Algorithm 1 running on the example shown in Figure 3.2

excluded from S. The join(S(i),S(i)) function compute S1
⊗

S2 for each (S1,S2)

pair derived from S(i), where the operation
⊗

combines two size-i collections with

identical i−1 elements to a size-(i+1) collection (and is implemented similarly as

in the Apriori Algorithm [AS94]).

Running Example. Figure 3.2 shows the top 15 entities ranked by f0 out of a

universe of 30 entities. Suppose K = 1 and N= 3. Table 3.2 shows the execution of

Algorithm 1 with the changes in S(i), S∗ and Ωt .

When n = 1, S∗ is updated to keep the current most anomalous collection after

Step 3: {e16}. Ωt is updated to Ω({e16},{ f0}) =− log p̂({e16}) = 3.40. At Step 4,

since S(1) = /0, S contains all the singular sets. At Step 6, the set of selected col-

lections of size 1 is S= {{e16},{e5},{e24},{e7},{e12}} by comparing their upper-

bounds and Ωt . {e18} is not eligible as Ω̂({e18},{ f0},2) = − log p̂({e16,e18}) =

3.37 < Ωt . In Step 8, we get S containing 10 collections. When n = 2, S∗ is up-

dated to {{e16,e5}} and Ωt = Ω({e16,e5},{ f0}) =6.08. S contains the remaining

singular collections from {e18} to {e15} in the ranked list. This time i goes from 1

to 2. When i = 1, at Step 6, the algorithm tries to pick out the previous leftover sin-

gular entities that may be selected to generate collections of size 3. However, even

Ω̂({e18},{ f0},3) = − log p̂({e16,e5,e18}) = 5.31 < Ωt , meaning none of them is

selected for now. When i = 2, in Step 6, we get S= {{e16,e5},{e16,e24}, {e16,e7},

{e5,e24}, {e5,e7}, {e24,e7}}. After Step 8, S= {{e16,e5,e24}, {e16,e5,e7}, {e5,e24,e7}}.
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Finally, we get the top-1 ERAC of size no greater than 3 on feature f0: {e16,e5,e24}
with anomaly score 8.31. Note that if we had set N = 6, previous leftover singular

entities e18 would be selected and the corresponding nodes in the lattice tree would

be grown from level 1 to level 6. For simplicity, we only show the results for N = 3.

In this example, a standard Apriori algorithm without Pruning Strategy 1 would

have to traverse the entire search space of all the candidates up to size 3, visiting

altogether
(15

1

)
+

(15
2

)
+

(15
3

)
=575 nodes in the search lattice, due to the absence of

downward closure property. In comparison, we only visit 5+10+3=18 nodes in total,

saving the visit to 96% of the nodes even in this small example.

Efficient Anomaly Score Computation. By the definition of Ω(S,F), for a given

S and each feature f ∈ F , we need to compute p̂ f (S), which is decided by the repre-

sentative extremity index of S w.r.t f . The naive approach to find this representative

extremity index would examine all |E|/2 possible indices. However, the following

property of the p-value allows us to avoid checking all the extremity indices.

Property 2. Given any feature f , collections S and S′, and extremity indices r and

r′, if |S|= |S′|, |S f (r)|= |S′f (r′)| and |E f (r)|> |E f (r′)|, then p f (S,r) > p f (S′,r′).

Proof. Suppose |E f (r)|= |E f (r′)|+1 = r0 +1 and |S f (r)|= |S′f (r′)|= i0, then we

have 1− p f (S,r) = ∑i0−1
i=0

(r0+1
i )·(|E|−r0−1

|S|−i )
(|E||S|)

. Thus (1− p f (S,r)) ·(|E||S|
)

= ∑i0−1
i=0

(r0+1
i

) ·
(|E|−r0−1

|S|−i

)
. According to Pascal’s triangle, (1− p f (S,r))·(|E||S|

)
= ∑i0−1

i=0 (
(r0

i

)
+

( r0
i−1

)
)·

(|E|−r0−1
|S|−i

)
= ∑i0−1

i=0
(r0

i

)·(|E|−r0−1
|S|−i

)
+∑i0−1−1

i=0
(r0

i

)·(|E|−r0−1
|S|−i−1

)
. Similarly, (1− p f (S′,r′))·(|E|

|S|
)

= ∑i0−1
i=0

(r0
i

) · (|E|−r0
|S|−i

)
. According to Pascal’s triangle, (1− p f (S′,r′)) ·

(|E|
|S|

)
=

∑i0−1
i=0

(r0
i

) · ((|E|−r0−1
|S|−i

)
+

(|E|−r0−1
|S|−i−1

)
) = ∑i0−1

i=0
(r0

i

) ·(|E|−r0−1
|S|−i

)
+∑i0−1

i=0
(r0

i

) ·(|E|−r0−1
|S|−i−1

)

= (1− p f (S,r)) · (|E||S|
)
+

( r0
i0−1

) · ( |E|−r0−1
|S|−(i0−1)−1

)
. Thus, p f (S,r) = p f (S′,r′) +

( r0
i0−1)·(

|E|−r0−1
|S|−(i0−1)−1)
(|E||S|)

= p f (S′,r′) +
(|E f (r)|−1
|S f (r)|−1)·(

|E|−|E f (r)|
|S|−|S f (r)|)

(|E||S|)
. Generally, for any given E f (r)

and |E f (r′) such that |E f (r)|> |E f (r′)|, p f (S,r) = p f (S′,r′) +

∑
|E f (r)|−|E f (r′)|−1
j=0

(|E f (r)|−1− j
|S f (r)|−1 )·(|E|−|E f (r)|+ j

|S|−|S f (r)| )

(|E||S|)
. As ∑

|E f (r)|−|E f (r′)|−1
j=0

(|E f (r)|−1− j
|S f (r)|−1 )·(|E|−|E f (r)|+ j

|S|−|S f (r)| )

(|E||S|)
>

0, we hence have p f (S,r) > p f (S′,r′).

Property 2 suggests that with all the other parameters kept constant, the smaller

the extremity index, the smaller the p-value is.
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With Property 2, we need to check only those extremity indices corresponding

to the ranking of each entity in S. For example, in Figure 3.1, for S = {e5,e7} and

f0, we just check r = 2 and r′ = 4; the other extremity indices can be skipped. Take

r′′ = 3 for example, as |S f0(r
′′)|= |S f0(r)| but |E f (r′′)|= 3 > |E f (r)|= 2, according

to Property 2, we have p f0(S,r) < p f0(S,r′′). Thus, we do not need to consider r′′.

Similarly, all other extremity indices that do not correspond to the rank of any entity

in S can be proven to have larger p-values than the extremity index corresponding

to the rank of some entity in S. Therefore, to compute the representative p-value

p̂ f (S) for each f ∈ F , we examine only O(|S|) extremity indices instead of O(|E|).

Time Complexity. As proposed in [Wu93], the p-value p f (S,r) can be calculated

in O(min(|E f (r)|, |S|)) steps by recursion and factorial acceleration. Thus, the total

time complexity of computing Ω(S,F) is O(|S|2 · |F |), assuming min(|E f (r)|, |S|) =

|S|. Similarly, by definition the time complexity of Ω̂() is on the same order as

Ω(S,F). Step 6 takes O(|S| ·n2 · |F |). Step 8 can be implemented by a hash tree and

thus is of O(|S(i)|2). The size of S(i) is data dependent, which in the worse case

is |E|i. Let |S| denote the average size of S(i) for all i and all n. The running time

of the “for” loop is of O(|S|2 + |S| · n3 · |F |). Therefore, the total running time of

Algorithm 1 is of O(|S|2 + |S| ·N4 · |F |).

3.3.2 A Naive Heuristic Algorithm: ERAC N

The number of seeds selected in Step 6 of the ERAC E algorithm may be large

and it may grow exponentially as the collection size increases. To further prune the

potential candidates, we take the naive heuristic that only the top-m most anomalous

potential candidates are selected as seeds to generate the collections of larger sizes.

With this heuristic, we add one more step: “S= top m · |E| most anomalous col-

lections in S ” after Step 6 in Algorithm 1 with 0 < m < 1. We thus obtain ERAC N,

a naive heuristic algorithm to detect top-K ERACs with independent feature set with

m as an additional parameter.

Since the naive heuristic fixes the number of seeds for collections of all sizes,

it is expected to be much faster than the exact algorithm. Suppose on average we
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have m · |E| number of collections producing at most (m · |E|)2 potential candidates

in the join() step, the running time of the “for” loop is of O(m2 · |E|2 + |E| ·n3 · |F |).
Therefore, the time complexity of the heuristic algorithm is O(m2 · |E|2 + |E| ·N4 ·
|F |). The choice of m, which directly affects running time and the anomalousness

of the top-K results, will be studied in the experiment sections.

3.3.3 A More Sophisticated Heuristic Algorithm: ERAC H

Since the bound given in Section 3.3.1 could be rather loose and gives little pruning

power, and the assumption taken in the naive heuristic may be too strong and miss

many anomalous ERACs, we now show a more sophisticated pruning technique that

exploits our Apriori-style candidate generation.

Suppose we are at the stage of generating candidates of size n, and we know these

candidates have anomaly scores that are no smaller than x. Now if we are examining

two size-(n−1) collections S1 and S2, and conclude from our computation that the

upper-bound on the anomaly score of the resultant collection from combining S1

and S2 is still less than x, then it is unnecessary to combine them.

As stated in Section 3.2, the p-value of a given collection S is determined by the

extremity index r (r < |E|/2) and the number of entities in S that appear in E f (r),

denoted as i. For any given p-value and size n, we can express the underlying i

and r according to the p-value formula by denoting the p-value as p f (i,r,n), or just

p(i,r,n) when the context is clear.

Let Sx be the ERAC realizing x (i.e., Ω(Sx,F) = x). Since the anomaly score is

the sum of the negative logarithm of the representative p-values for every feature,

we want to derive for each feature f ∈ F , the corresponding representative p-value

p f (ix,rx,n) for Sx. From there, we check whether, for feature f , combining S1 and

S2 will achieve a representative p-value that is even smaller than p f (ix,rx,n). If so,

combining S1 and S2 will achieve a higher anomaly score than x. We will discuss

how to decompose x into a set of p-values later in this section. For now, we assume

p f (ix,rx,n) is known for any f .

Our task is to compute, for any given feature f , the bound on the representative
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p-value of the resultant collection from combining S1 and S2, and compare against

p f (ix,rx,n).

We first examine the following p-value Property 3.

Property 3. Given any feature f , collections S and S′ and extremity indexes r and

r′, if |S f (r)|= |S′f (r′)|, |E f (r)|= |E f (r′)| and |S|> |S′|, then p f (S,r) > p f (S′,r′).

Since as far as the hypergeometric distribution is concerned, the role of |S f (r)|
and |E f (r)| are interchangeable [Har65], Property 3 can be proven similarly to Prop-

erty 2. Property 3 suggests that with all the other parameters kept constant, the

smaller the collection size, the smaller the p-value is.

We now show the following Lemma stating that the combination of S1 and S2

is warranted, i.e., the resultant collection’s p-value is smaller than p f (ix,rx,n), only

when each of them has a p-value that is at most p(ix−1,rx,n−1).

Lemma 1. For any feature f , given any representative p-value p(i,r,n) of some

collection S of size n, the representative p-values of S’s subsets of size n− 1 that

generate S is at most p(i−1,r,n−1).

Proof. Let S1 and S2 denote the generating subsets of S. We have |S1|= |S2|= n−1,

|S1 ∩ S2| = |S1| − 1, |S1 − S2| = 1 and S1 ∪ S2 = S. According to the definition

of p(i,r,n), S has i entities in E(r). Hence S1 and S2 must have either i or i− 1

entities in E(r). Therefore, S1 and S2 must have p-value of either p(i−1,r,n−1) or

p(i,r,n−1). According to Property 3, we know that p(i−1,r,n−1)≥ p(i,r,n−1).

Hence, p(i− 1,r,n− 1) is the largest possible p-value among S1 and S2, since the

representative p-value is smaller than or equal to p(i−1,r,n−1) by definition. We

therefore prove that the upper-bound on the representative p-values of S’s subsets of

size n−1 that generate S (i.e. S1 and S2) is p(i−1,r,n−1).

An illustration of Lemma 1 is as follows. Suppose |E| = 30, there exists a col-

lection S of size n = 4 whose representative p-value indicates that it has 3 members

(i.e., i = 3) ranked among the top 8 (i.e., r = 8). Thus we have p(3,8,4) = 0.048. A

collection (e.g., S1) that can generate S must have at least 2 entities ranked among
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the top 8. This means p(i− 1,r,n− 1) = p(2,8,3) =0.166 must be one of the p-

values of S1. By definition, S1’s representative p-value is therefore no greater than

p(2,8,3), which we conclude to be the upper-bound.

Investigating deeper into the relationship between p(i,r,n) and p(i−1,r,n−1),

we arrive at the following:

Property 4. p(i1−1,r1,n−1)− p(i1,r1,n) = n−i1+1
n · prob(i1−1, |E|,r1,n).

Proof. According to the definition of p-value, p(i,r,n) = p(i− 1,r,n)− prob(i−
1, |E|,r,n). According to Property 3, p(i−1,r,n)= p(i−1,r,n−1)+

( n−1
i−1−1)·( |E|−n

r−(i−1))
(|E|r )

.

Thus, p(i,r,n) = p(i− 1,r,n− 1)+
( n−1

i−1−1)·( |E|−n
r−(i−1))

(|E|r )
− prob(i− 1, |E|,r,n). We have

p(i1−1,r1,n−1)− p(i1,r1,n) =−( n−1
i1−1−1)·( |E|−n

r1−(i1−1))
(|E|r1

)
+

( n
i1−1)·( |E|−n

r1−(i1−1))
(|E|r1

)

=−( n−1
i1−1−1)·( |E|−n

r1−(i1−1))
(|E|r1

)
+

(( n−1
i1−1)+( n−1

i1−1−1))·( |E|−n
r1−(i1−1))

(|E|r1
)

=
( n−1

i1−1)·( |E|−n
r1−(i1−1))

(|E|r1
)

=n−i1+1
n · prob(i1−1, |E|,r1,n).

It is important to note that the bound we derived is for the particular size-n collec-

tion S generated from combining its size-n−1 subsets S1 and S2. It does not general-

ize to the case where S1 and S2 are arbitrary collections of size n−1. For example,

p(1,2,3) = 0.284 > p(3,10,3) = 0.1053, but the collections of size 4 generated

from p(1,2,3) is of p(2,2,4) = 0.0315, which is smaller than p(4,10,4) = 0.043.

This suggests although p(i− 1,r,n− 1) is the upper-bound on collections of size

n− 1 for generating the particular collection of p(i,r,n), it may not be the upper-

bound for generating any collections that have a p-value smaller than p(i,r,n). We

need to carefully examine all possible relationships between different r and i.

For any i1, i2, r1 and r2, we have 9 possible cases chosen from {i1 < i2, i1 =

i2, i1 > i2}×{r1 < r2,r1 = r2,r1 > r2}. Given two representative p-values p(i1−
1,r1,n− 1) and p(i2− 1,r2,n− 1) of collections of size n− 1, and the condition

p(i1 − 1,r1,n− 1) > p(i2 − 1,r2,n− 1), there are 4 cases that do not satisfy the

condition. {i1 = i2}×{r1 = r2,r1 < r2} violates the condition according to Property

2. {i1 > i2}×{r1 = r2,r1 < r2} is not possible according to Property 1 and Property

2. The rest of the cases are addressed by the following two lemmas:
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Lemma 2. Given two representative p-values p(i1−1,r1, n−1) and p(i2−1,r2,n−
1) of collections of size n−1, and p(i1−1,r1,n−1) > p(i2−1,r2,n−1), if (i1 = i2

and r1 > r2) or (i1 < i2 and r1 = r2) or (i1 < i2 and r1 > r2), then p(i1,r1,n) >

p(i2,r2,n).

Proof. For i1 = i2 and r1 > r2, we have p(i1,r1,n) > p(i2,r2,n), according to Prop-

erty 2. For i1 < i2 and r1 = r2, we have p(i1,r1,n) > p(i2,r2,n), according to

Property 1. For i1 < i2 and r1 > r2, we have p(i1,r1,n) > p(i2,r2,n), according

to Property 1 and Property 2.

Lemma 3. Given two representative p-values p(i1−1,r1, n−1) and p(i2−1,r2,n−
1) of collections of size n−1, and p(i1−1,r1,n−1) > p(i2−1,r2,n−1), if (i1 < i2

and r1 < r2) or (i1 > i2 and r1 > r2) and (n− i1 + 1) · prob(i1 − 1, |E|,r1,n) <

(n− i2 +1) · prob(i2−1, |E|,r2,n), then p(i1,r1,n) > p(i2,r2,n).

Proof. According to Property 4, p(i1,r1,n)− p(i1−1,r1,n−1)=−n−i1+1
n · prob(i1−

1, |E|,r1,n). Similarly, p(i2,r2,n)− p(i2−1,r2,n−1)=−n−i2+1
n · prob(i2−1, |E|,r2,n).

Since (n− i1 + 1) · prob(i1−1, |E|,r1,n) < (n− i2 + 1) · prob(i2−1, |E|,r2,n), we

have p(i1,r1,n)− p(i1−1,r1,n−1) > p(i2,r2,n)− p(i2−1,r2,n−1). With p(i1−
1,r1,n−1) > p(i2−1,r2,n−1), we therefore have p(i1,r1,n) > p(i2,r2,n).

In Lemma 3, if we impose on i2 such that ∀r′, @i′< i2 with p(i′,r′,n)< p(i2,r2,n),

then for the case of i1 < i2 and r1 < r2, we always have p(i1,r1,n) > p(i2,r2,n) by

definition.

Therefore, according to Lemma 2 and Lemma 3, for a given representative p-

value x = p(ix,rx,n), such that @i′ < ix with p(i′,r′,n) < p(ix,rx,n) for any r′, we

can compute the lower-bound on the p-value of collections of size n− 1 by p(ix−
1,rx,n−1). Except for the case of i1 > ix, r1 > rx and p(ix−1,rx,n−1) < p(i1−
1,r1,n−1), we need to further check whether p(ix,rx,n) < p(i1−1,r1,n−1) still

holds. If it no longer holds, we need to increase our upper-bound from p(ix −
1,rx,n−1) to p(i1−1,r1,n−1). This guarantees the true upper-bound.

However, this additional checking is costly. We therefore heuristically take

p(ix−1,rx,n−1) as the upper-bound on p-value of collections of size n−1. With
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p(ix − 1,rx,n− 1), we take p(ix − 2,rx,n− 2) as the upper-bound on p-value of

collections of size n−2, and so on.

Thus, given an anomaly score x of any size-n collection and a collection size

n′,n′ < n, we define the lower-cut with score-size constraint (x,n) as

Ω∗(x,n,n′) =−∑ f∈F log p f (ix− (n−n′),rx,n′).

After computing these lower-cuts for collections of size n′ along each feature, we

sum the negative log values of the bounds to get a lower-cut on the anomaly score of

the collections; any collections of size n′ with anomaly score below this lower-cut

can be pruned as shown in the following pruning strategy.

Pruning Technique 2. Given an anomaly score threshold x for collections of size n,

and its correspondent representative p-value p f (ix,rx,n) for each feature f ∈ F, we

use p f (ix− (n−n′),rx,n′) to derive the lower-cut Ω∗(x,n,n′) and prune away any

collection of size n′,n′ < n, such that its anomaly score is smaller than Ω∗(x,n,n′).

Overall our heuristic algorithm works as follows. Given a size N, we first esti-

mate a threshold ΩN for collections of size N by the anomaly score of the collection

comprising the top-N anomalous singular entities, which is a valid candidate collec-

tion to start with. It is possible that this estimated initial bound ΩN is too aggressive

and is even higher than the true Ωt of the final top-K result. As remedy, we first run

with this initial ΩN to obtain a preliminary top-K result, then set the smaller one

between the initial ΩN and this preliminary Ωt as the new threshold ΩN to reboot

the algorithm.

With this new threshold ΩN and its correspondent set of p f (ix,rx,n), we compute

the sequence of lower-cuts Ω∗(ΩN ,N, i) for all levels 1≤ i < N. Another trick is that

in generating candidates of size n, it could be that the anomaly score of the least one

in the current top-K list (i.e., Ωt ) can provide a better cut, i.e., Ω∗(Ωt ,n + 1,n) >

Ω∗(ΩN ,N,n). Using the better cut, we can prune away current ERACs of size n

before trying to combine any two of them to generate candidates of size n+1. The

details are shown in Algorithm 2.

Running Example. Setting K = 1 and N= 3 again, we show how Algorithm 2 exe-

cutes on the example in Figure 3.2. The algorithm estimates ΩN as Ω({e16,e5,
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Algorithm 2 ERAC H for independent features
Input: E, F , K, N
Output: Top-K ERACs: S∗
{S∗ is implemented by a priority queue of max length K. Ωt is the smallest anomaly
score of collections in S∗, and is set to zero if S∗ = /0 }

1: n = 1; S∗ = /0; S= {{e} | e ∈ E}
2: ΩN = Ω(SN ,F), where SN is the union of the top-N anomalous elements in S.
3: repeat
4: Ω′

N = ΩN
5: for n = 1 to N−1 do
6: S= {S ∈ S |Ω(S,F) > max(Ω∗(ΩN ,N,n),Ω∗(Ωt ,n+1,n))}
7: S = join(S,S) {S∗ and Ωt are updated by elements in S whenever

necessary}
8: ΩN = Ωt
9: until ΩN ≥Ω′

N
10: return S∗

e24},{ f0}) = 8.31, since these three entities are the top-3 anomalous singular enti-

ties. When n = 1, the algorithm checks whether each collection of size 1 can beat

the current Ωt by Pruning Technique 2. As Ω∗(8.31,3,1) = − log p(1,3,1), only

{e16},{e5} and {e24} are selected to generate collections of size 2. After the join

step, S = {{e16,e5},{e16,e24},{e5,e24}}. The algorithm goes on to find {e16,e5}
as the current top-1 ERAC. When n = 2, Step 7 finds all elements in the current

S are eligible to generate collections of size 3. The join() generates the collec-

tion {e16,e5,e24} and keeps it as the top-1 ERAC. Since the current Ωt is equal

to the estimated threshold Ω({e16,e5,e24},{ f0}), the algorithm stops and returns

{e16,e5,e24} as the final result.

For the same example, we have shown that the exact algorithm ERAC E visits 18

nodes in total, whereas the heuristic algorithm ERAC H only visits 3+3+1=7 nodes,

saving the visit to 61% of nodes over the exact algorithm.

Time Complexity. We now analyze the time complexity of Algorithm 2. Let |S′|
denote the average size of S for all n. Since Step 6 is of O(|S′| ·n2 · |F |) and Step 7

is of O(|S′|2), the time complexity of Algorithm 2 is O(|S′|2 + |S′| ·N3 · |F |), lower

than that of Algorithm 1 as N3 < N4 and as we expect |S′| in Algorithm 2 to be

much smaller than the counterpart |S| in Algorithm 1.

Anomaly Score Decomposition. We now discuss how to derive representative
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value p f (ix,rx,n) for each feature f ∈ F from a given anomaly score x. Ideally,

we aim to obtain the set of p-values that minimize Ω∗(x,n,n′), subject to (I) x ≤
−∑ f∈F logx f ; (II) @i′ < ix with p(i′,r′,n) < p(ix,rx,n).

For efficiency purpose, we approximate the minimum value of Ω∗(x,n,n′) by

assuming the anomaly score x is evenly divided across features. We first compute

e−
x
|F | , then find p f (ix,rx,n) such that (I) p f (ix,rx, n) ≤ e−

x
|F | ; (II) @i′ < ix with

p(i′,r′,n) < p(ix,rx,n); (III) @r′ < rx with p(ix,r′,n) < e−
x
|F | . Condition (I) guar-

antees that x≤−∑ f∈F logx f . Condition (II) is required in the heuristic. Condition

(III) is based on Property 2. As ix is fixed, we choose the larger rx so that the cor-

responding p(ix− (n−n′),rx,n′) is larger, which in turn leads to a smaller anomaly

score.

3.3.4 Handling Dependent Features

For the simplicity of discussion, we have so far assumed that the features in F

are independent of one other. Now we handle the more general case of dependant

features. A feature set F is said to be an Independent Feature Set or IFS, if |F | >
1 and ∀ fi, f j ∈ F , fi is independent of f j. The dependency of any two features

is defined by the Kendall Tau rank correlation coefficient [Ken48]. As there are

potentially many IFS, we focus on the maximal IFSs.

An IFS F is a maximal IFS if @ an IFS F ′ s.t. F ⊂ F ′. Given a feature set F , the

set of all maximal independent feature sets derived from F is denoted as F.

In Section 3.2, the anomaly score is measured on one independent feature set.

Given F, the overall anomaly score of S is aggregated by taking the largest anomaly

score across all maximal IFSs in F:

Ω(S) = max
F ′∈F

Ω(S,F ′)

We now derive two algorithms shown in Algorithm 3 to find ERACs involving a

dependent feature set F based on the exact and heuristic algorithms for independent

features. We denote the algorithm using ERAC E as ERACD E and the one using

ERAC H as ERACD H. In both ERACD E and ERACD H, we first generate all the

maximal IFS from F . For each maximal IFS, we call ERAC E or ERAC H. Finally,
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we get the top-K collections of size up to N by aggregating the top-K collections

across all maximal IFSs. Since we are presented with multiple maximal IFSs, we

return not only the ERACs but also their associated maximal IFSs. We still use

a priority queue of maximum length of K as before, but with composite elements

〈S,F ′〉, where S is an ERAC and F ′ is the maximal IFSs that make S most anoma-

lous. We constrain the priority queue to have distinct collections only. Also note

that it is NP-hard to compute all maximal IFSs F [Rob86]. We adopt the algorithm

in [Epp05] for an approximation for computing the maximal IFS.

Algorithm 3 ERACD E and ERACD H
Input: E, F , K and N
Output: top-K ERACs and maximal IFSs: C= {〈S,F ′〉}
{C.S∗ denotes the top-K ERACs. C.F(S) returns the corresponding maximal IFS
of S in C}

1: C= /0
2: F= generateMIFS(F)
3: for all F ′ ∈ F do
4: S = ERAC E(F ′,N,K) {for ERACD H, S = ERAC H(F ′,K,N) }
5: for all S ∈ S do
6: if S ∈ C.S∗ then
7: if Ω(S,C.F(S)) < Ω(S,F ′) then
8: delete 〈S,C.F(S)〉 from C
9: add 〈S,F ′〉 to C

10: else
11: add 〈S,F ′〉 to C
12: return C

3.4 ERAC Expansion

3.4.1 ERAC Expansion Problem

With the aforementioned algorithms, users are able to find top-K ERACs of size

no greater than a predefined N. It is natural to wonder if the identified ERACs can

be expanded to larger, more anomalous ERACs. For example, after seeing some

identified top-K spammer collections, users may be interested in supersets of these

spammer collections, which are even more anomalous.

One way to derive the larger ERACs is to rerun the ERAC detection algorithms

38



with a larger N. However, users often have little idea about the exact size of the

larger ERACs to set, hence a trial and error strategy is non-ideal. Moreover, it is

possible that some interesting ERAC in the top-K list for N may disappear in the

top-K list of a larger N with the current K setting. This makes it even harder to track

down the superset of the ERAC of interest.

In this section, we propose the problem of expanding an ERAC to the most

anomalous superset of any size. We then propose algorithms to solve the problem.

Definition 3. [ERAC Expansion Problem] Given an ERAC S, find S′ ⊂ E−S such

that (I) S∪S′ is an ERAC; (II) Ω(S∪S′,F) > Ω(S,F); (III) ∀S′′ ⊂ E−S, we have

Ω(S∪S′,F)≥Ω(S∪S′′,F)

The definition states that expanding an ERAC S will produce the superset of S

having the largest anomaly score among all of S’s supersets.

3.4.2 ERAC Expansion Algorithms

With little modification, the algorithms in Section 3.3 for detecting top-K ERACs

of size no greater than N can be applied to expand the ERACs. Specifically, given

an ERAC S to be expanded, for the exact algorithm ERACD E, we first set N=|E|/2
and K=1. Then in the process of computing the upper-bound of the supersets of any

candidate collection S′, we compute the upper-bound of S∪ S′ instead. According

to the analysis in Section 3.3.1, the complexity is O(|S|2 + |S| ·E4 · |F |).

For the sophisticated heuristic algorithm ERACD H, we also set N=|E|/2 and

K=1. When computing the lower-cut using Sx, we use S∪Sx instead. According to

the analysis in Section 3.3.3, the complexity is of O(|S′|2 + |S′| ·E3 · |F |).

As the modified ERACD E and ERACD H are still costly, we propose below more

efficient algorithms for ERAC expansion.

A Greedy Algorithm.

We design a greedy algorithm to add one entity at a time until no further expansion

can produce a more anomalous ERAC. In each step, we add one entity such that the
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resultant ERAC gives the highest anomaly score.

This greedy scheme is based on the observation that members of an ERAC be-

have like each other and most likely occupy the extreme positions of a similar set of

features. Thus, given a subset of an ERAC, the rest of the members of this ERAC

are expected to have similar extreme behavior as the subset.

A naive way of choosing an entity to join S is to try out every entity in E and

select the one that gives the largest anomaly score after joining with S. This is costly,

as each insertion of an entity to S entails scanning through all the entities in E. A

more efficient approach only needs to try out the entities within the extremity index

at each insertion step, which can be easily derived by the existing p-values of S on

each feature.

Specifically, for any feature f , we know the corresponding p(i,r,n) for S on f .

To insert into S an entity that gives a larger anomaly score, we want p(i+1,r′,n+1)

to be smaller than p(i,r,n). Since there can be many r′ that satisfy the condition,

we define the upper-bound on r′, r(S, f ), to be the largest extremity index such that

adding any entity within r(S, f ) produces a smaller p-value than p(i,r,n) on feature

f . Note that these p-values can be pre-computed and sorted for efficient retrieval.

Thus finding the right r(S, f ) can be done in constant time.

Given S and F , we define the candidate pool A(S,F) as the set of entities within

r(S, f ) for all f ∈ F . That is, A(S,F) =
⋃

f∈F E f (r(S, f )), where E f (r) is the set of

entities within r(S, f ) defined in Section 3.2.

Lemma 4. ∀e ∈ E−A(S,F), we have Ω(S∪{e},F) < Ω(S,F).

This lemma states that we only need to check the entities in the candidate pool

instead of all entities in E to guarantee we find the entity e that gives the largest

anomaly score after joining S.

The lemma can be easily proven. Since r(S, f ) is the upper-bound on the ex-

tremity index for feature f , each entity in A(S,F) when joining S will give a smaller

p-value in at least one feature than that of S alone. Thus, every entity in A(S,F) has

a chance to produce a more anomalous superset after joining S. On the other hand,

every entity in E −A(S,F) has no chance to produce a more anomalous superset,

40



as any resultant superset is less anomalous than S w.r.t every feature in F . Since the

final anomaly score is the sum of the anomaly scores w.r.t. all significant features,

each entity in E −A(S,F) when joining with S will give a smaller anomaly score

than that of S.

With this lemma, we propose the following greedy algorithm for expanding S.

Algorithm 4 ERAC Expansion ERAC exp

Input: E, F , an ERAC S0 to be expanded
Output: Expanded ERAC S from S0

1: S = S0

2: for i = |S0|to|E|/2 do
3: A = /0 {A keeps the candidate pool A(S,F)}
4: for all f ∈ F do
5: find r(S, f ) in the pre-computed and sorted p-value list
6: A = A∪E f (r(S, f ))
7: Find entity e in A s.t. Ω(S∪{e},F) is the largest.
8: if Ω(S∪{e},F) > Ω(S,F) then
9: S = S∪{e}

10: else
11: break
12: return S

The algorithm is given an initial collection S0 to expand and outputs the resultant

S, which is the most anomalous superset of S0 of any size. In each loop of i in

Algorithm 4, a new A (i.e., A(S,F)) is computed from Step 4 to Step 6 and entities

in A are visited to find the one that boosts the anomaly score the most. If the resultant

anomaly score still increases, the size of S is incremented by one.

We now analyze the complexity of Algorithm 4. In Step 7, let us suppose

|⋃ f∈F E f (r(S, f ))|= r · |F |, where r is the average number of entities within the ex-

tremity index across all features. Given that computing Ω(S∪{e},F) is of O((|S|+
1)2 · |F |), Step 7 takes O(r · |F | · (|S|+1)2 · |F |).

Therefore, the complexity of the whole algorithm is O(|E| · |F |+ r · |F | · |E|3 ·
|F |+ |E|3 · |F |). Recall the complexity of the modified sophisticated heuristic algo-

rithm for detecting ERACs is of O(|S′|2 + |S′| ·E3 · |F |). Since |S′| is O(|E|N), the

expansion algorithm here is much faster.

A Heuristic-based Greedy Algorithm.
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Note that the time consuming part of the expansion algorithm is in each loop of

i computing the anomaly score for all entities in the updated candidate pool A(S,F)

in Step 7, which has complexity O(r · |F | · |E|2 · |F |). If we can expedite this step,

we can achieve an even more efficient algorithm. This is possible if we avoid com-

puting the value of Ω(S∪{e},F) for each entity in A(S,F). Instead we choose from

A(S,F) the entity that gives the largest anomaly score when joining S0, which is

pre-computed for each entity e in E.

We introduce the following expansion heuristic: entity e in A(S,F) that gives

the largest Ω(S0∪{e},F) value will likely give the largest Ω(S∪{e},F).

Since our algorithm greedily adds entities to S0 one after another, this heuristic

ignores all entities added to S0 in the expansion process and always selects the entity

in A(S,F) that contributes the most to S0 instead of S. Suppose S0 is in fact a subset

of a larger ERAC S, the heuristic has a better chance of retrieving S from S0, if

S0 already has a similar extreme pattern as S, i.e., both of them occupy extreme

positions on similar features.

However, S0 may not always have a similar extreme pattern as S, i.e., S0 may

occupy extreme positions of a few more or less features than S does, which is more

likely to happen when the size of S0 is much smaller than S. When this happens,

the expansion heuristic may fail as it favors only the entities that are similar to all

members in S0, which are not necessarily similar to all members in S.

For example, Figure 3.3 shows the top-12 positions of four features with seven

entities e1 to e7. The empty positions are occupied by other entities, which are

not relevant and are not shown for simplicity. Suppose the target ERAC is S =

{e1,e2,e3,e4,e5,e6}. If we expand S0 = {e1,e2} with the expansion heuristic, the

first entity joining S0 is e7, which produces the highest Ω(S0∪{e},F) value com-

pare to other entities. This will lead us to a different superset than S. However,

if we start with S0 = {e1,e2,e3}, the following entities to join S0 are then from

among {e4,e5,e6,e7}, as they all produce high Ω(S0∪{e},F) values. This way, the

heuristic successfully leads us to the more anomalous superset S.

To incorporate this heuristic, we change Step 7 in Algorithm 4 to “find the entity
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Figure 3.3: An illustration of the expansion heuristic. S = {e1,e2,e3,e4,e5,e6}

e in A such that Ω(S0∪{e},F) is the largest”. We also assume that the correspond-

ing anomaly score Ω(S0 ∪ {e},F) for each entity e in E is pre-computed. As a

result, the new Step 7 has complexity O(r · |F |).

Therefore, the complexity of the whole heuristic-based greedy expansion algo-

rithm is O(|E| · |F |+ |E| · r · |F |+ |E|3 · |F |), faster than without the heuristic. We

apply the more efficient heuristic based greedy algorithm, denoted ERAC exp, in

the experiments to demonstrate the effectiveness of expanding ERACs.

3.5 Discussion on Exploratory ERAC Search

In this section, we discuss an exploratory search strategy for more anomalous ER-

ACs, making use of the algorithms developed for both ERAC detection and expan-

sion.

Ideally, users want to search for more anomalous ERACs regardless of collec-

tion size. Since the search space grows exponentially with the population size, for

efficiency reasons, we propose to first investigate the ERAC detection problem of

finding top-K ERACs of size less than a predefined N of small values. The detected

ERACs are treated as “seeds” in the follow-up ERAC expansion problem to retrieve

the larger and more anomalous ERACs. In this strategy, the ability of discovering

more anomalous ERACs largely depends on whether the seeds contains any subset

of the more anomalous ERACs.

A direct way of incorporating seeds that lead to more anomalous ERACs is to set

a large K and N. However, larger K and N will increase the execution time of the
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ERAC detection algorithms. Unfortunately, setting the right K and N is not trivial.

Due to the lack of downward closure property, it is possible that the subsets of a

less anomalous ERAC are even more anomalous than the subsets of a more anoma-

lous ERAC. Thus, one cannot easily derive the proper K and N by any monotonic

property.

In this section, we therefore propose an exploratory search strategy that gradually

increases K and N based on a gain function. Since the gain function is derived based

on the proposed ERAC detection and expansion algorithms, we first describe the

combined ERAC algorithm ERAC comb in Algorithm 5. C denotes the resultant set

of ERACs after expanding the top-K ERACs of size no greater than N.

Algorithm 5 Combined ERAC algorithm ERAC comb
Input: E, F , K and N
Output: C

1: C= /0
2: C′ = ERACD H(K,N) {run the ERAC detection algorithm}
3: for all S ∈ C′ do
4: S=ERAC exp(E,F,S) {run the ERAC expansion algorithm}
5: add S to C
6: return C

We use T (K,N) to denote the time required to run ERAC comb for a given K

and N. The goal function, denoted by G(K, N), can be defined according to users’

search goal. For example, if users want to get the most anomalous ERACs, the goal

function is maxS∈C(Ω(S,F)). If users want as many anomalous ERACs as possible,

the goal function is ∑S∈C(Ω(S,F)).

Given (K,N) and (K′,N′) with K′ ≥ K and N′ ≥ N, corresponding to two runs

of the ERAC comb algorithm, the gain function I(K′,N′,K,N) is defined as:

G(K′,N′)−G(K,N)
G(K,N)

− T (K′,N′)−T (K,N)
T (K,N)

The first part of the gain function captures the change ratio in gain function and

the other capture the change ratio in execution time. This gain function has larger

value if the second run of ERAC comb with (K′,N′) have larger gain G(K′,N′) and

smaller execution time T (K′, N′) than the first run with (K,N). We use the ratio to

normalize the changes so that the change on gain and time are on the same scale.
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Now, we describe our high-level search strategy in Algorithm 6. The increase of

K or N is decided by the gain function.

Algorithm 6 Exploratory ERAC search
Input: E, F , initial K0 and N0 selected by user for K and N
Output: C, the resultant set of ERACs

1: Set K = K0 and N = N0

2: Run ERAC comb(E,F,K,N); set t = T (K,N) and g = G(K,N)
3: while exploratory search continues do
4: Run C1 =ERAC comb(E,F,K + 1,N); set t1 = T (K + 1,N) and g1 =

G(K +1,N)
5: Run C2 =ERAC comb(E,F,K,N + 1); set t2 = T (K,N + 1) and g2 =

G(K,N +1)
6: if g1−g

g − t1−t
t > g2−g

g − t2−t
t then

7: C= C1
8: K = K +1; t = t1; g = g1;
9: else

10: C= C2
11: N = N +1; t = t2; g = g2;
12: return C

3.6 Experiments on Synthetic Data

In this section, we examine the performance of our ERAC detection and expansion

algorithms on synthetic datasets. We are interested to know (I)how well can our

algorithms retrieve the injected ERACs in synthetic data of various population sizes;

(II)can our algorithms retrieve more anomalous collections compared to existing

approaches.

Synthetic Data Generation.

The input to our synthetic data generation algorithm includes population size and

number of features. In addition, we assume the size of any injected ERAC and

the total number of injected ERACs are given. The output is the set of entity lists

{EL f } and the set of injected ERACs. We begin with randomized entity lists and

inject ERACs of various sizes until the entity lists are no longer independent of each

other. The dependency between entity lists is computed as in [Ken48]. Algorithm 7

shows the detail.
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Algorithm 7 Generate synthetic data with injected ERACs
Input: E, F , size of injected ERACs n, number of injected ERACs ns
Output: a set of entity lists {EL f } and a set of injected ERACs S

1: Generate for each feature f , a random entity list over the same population E as
{EL f }.

2: Let S← /0
3: while {EL f } are independent of each other and |S|< ns do
4: Randomly select F ′ ⊆ F to be the significant features for a new injected

ERAC.
5: Estimate the upper bound z on the extremity index of this ERAC, such that

this ERAC is more anomalous than the top ERAC found in the original
randomized entity lists in step 1.

6: For each feature f ∈ F ′, randomly generate extremity index r f , such that
r f < z.

7: Randomly select a feature f̂ ∈ F ′, and randomly select a collection S
whose representative p-value is p(n,r f̂ ,n) w.r.t. f̂ and S is disjoint with
all previously injected ERACs in S.

8: Add S to S. {S is one of the injected ERACs}
9: for each f ∈ F ′ and f 6= f̂ do

10: Randomly select a collection S′ whose representative p-value is
p(n,r f ,n) w.r.t. r f and is disjoint with all previously injected ER-
ACs in S.

11: Switch the positions of the elements in S to those of elements in S′ in
EL f .

12: return {EL f } and S

3.6.1 ERAC Detection in Synthetic Data

We compare the exact and heuristic algorithms in terms of effectiveness and ef-

ficiency by varying the parameter settings and generating synthetic datasets with

different ground truths.

When generating synthetic datasets, we fix the number of features at 10, the size

of any injected ERAC at 10, and the number of injected ERACs at 5. Different

synthetic datasets are generated by varying the population size |E| from 100 to 300.

For each population size, we generate three datasets for measuring the average per-

formance of our exact ERAC E, naive heuristic ERAC N and sophisticated heuristic

ERAC H algorithms.

For all our ERAC detection algorithms, we fix N=10 and K=5 according to the

synthetic data generation parameters. As for ERAC N, we vary m that controls the

number of candidate collections, i.e., m ∈ {0.1,0.5,1.0}. A larger m requires more
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Figure 3.4: Results on synthetic data

candidate collections to be processed.

Figure 3.4(a) and Figure 3.4(b) report the precision and running time of each

algorithm respectively, averaged over 3 generated datasets for each population size.

When |E| = 300, the exact algorithm takes more than 24 hours, thus its results are

excluded.

We see from Figure 3.4(a) that both ERAC E and ERAC H are able to retrieve

all injected ERACs and achieve perfect precision. On the other hand, the preci-

sion of ERAC N drops as m decreases and the population size |E| increases. These

precisions are in general lower than those of ERAC E and ERAC H. Figure 3.4(b)

confirms that ERAC H and ERAC N require much lower execution time than the ex-

act one as expected. ERAC N needs more execution time when m decreases. The

figures show that our sophisticated algorithm ERAC H achieves comparable preci-

sions with much less execution time than ERAC E. It also achieves higher precisions

although it incurs a longer running time than ERAC N.
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Figure 3.5: The impact of |F | and N on running time of proposed algorithms

To test the scalability of ERAC N and ERAC H, while keeping N = 10, K = 5 and

|F | = 10, we gradually increase the population size up to 500,000, where ERAC N

with m = 0.5 and m = 1.0 cannot complete within 24 hours. For each population

size, we again generate three datasets. Besides running time, we also report the

anomaly score of the K-th most anomalous ERAC identified by each algorithm and

the anomaly score of the K-th most anomalous injected ERAC, denoted as injected.

We plot the results in Figure 3.4(c) and Figure 3.4(d).

We see that ERAC H scales well with data size. In all the settings, ERAC H

is able to retrieve either all the injected ERACs or the ones that are even more

anomalous than the injected ERACs. Note that as the population size goes larger, if

any randomly injected ERAC is not very anomalous, its subsets are more likely to

form even more anomalous ERACs with other entities. However, ERAC N cannot

even retrieve collections that are as anomalous as the injected ones. This shows that

the pruning technique used in ERAC H takes good advantage of the properties of

the ERACs and render much better results than the naive heuristics.

Next, we investigate the impact of the size of the feature set F and the collection

size N on the execution time of ERAC N (with m ∈ {0.1,0.5,1.0} as before) and

ERAC H. According to the result of above experiments, we fix the population size

|E| to 200, so that ERAC E can finish in a reasonable period. We first set N = 10,

K=5 and vary |F | from 10 to 200. For each choice of |F |, we generate three datasets

as before. The running time is averaged across datasets and shown in Figure 3.5(a).
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We can see that the number of features has less impact on the running time of

all algorithm than population size |E| does as shown in Figure 3.4. We then set

|F | = 10, K=5 and vary N from 5 to 50. For each choice of N, we also generate

three datasets and plot the averaged running time in Figure 3.5(b). We can observe

from this figure that N has much larger impact on the running time than |F | does,

which is in line with the time complexity analysis. Note that in Figure 3.5, if any

run takes more than 24 hours, its results are excluded.

We also study the pruning power of the proposed algorithms by measuring the

number of collections evaluated. The fewer the number of collections being evalu-

ated, the large pruning power an algorithm has. We fix N=10, K=5, |F | = 10 and

vary the population size |E| from 100 to 300 as before for the purpose of cross

checking. We generate three datasets for each setting of |E|, the results are plot-

ted in Figure 3.6, which shows our heuristic algorithms ERAC H and ERAC N has

larger pruning power than the exact one as expected.

3.6.2 ERAC Expansion in Synthetic Data

Here we demonstrate the effectiveness of expanding ERACs on synthetic data using

the algorithm proposed in Section 3.4.2. We are interested to know whether the

expanding algorithm ERAC exp can retrieve the injected ERACs from the top-K

ERACs identified by the detection algorithm ERAC H.

For the synthetic data generation, we set |E|=200, |F |=10 and the size of the

injected ERAC to 10. For simplicity, we inject one ERAC into each synthetic data.
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N 3 5 7 9
success rate 35/50 50/50 50/50 50/50

Table 3.3: The results of ERAC expansion in five synthetic datasets. Success rate re-
flects the ratio of successfully retrieving the injected ERAC by exp in five synthetic
datasets

We run the synthetic generation algorithm five times so that we have 5 synthetic

datasets, each with one injected ERAC.

Next we apply the ERACD H with N=3, 5, 7, 9 and K=10 on each of the five

synthetic datasets. It turns out that for each setting of N, all top-10 ERACs returned

are subsets of the corresponding injected ERAC.

For each of the five synthetic datasets, we expand top-10 ERACs for each setting

of N=3,5,7,9 and run our expanding algorithm ERAC exp. Thus, we run ERAC exp

200 (5*4*10=200) times altogether. To measure the performance of the algorithm,

we measure the “success rate” of the algorithm in retrieving exactly the injected

ERAC over the five synthetic datasets. Otherwise, we give a zero score.

We observe in Table 3.3 that when N gets larger, ERAC exp successfully retrieves

the injected ERAC for all the five synthetic datasets. When N=3, there are 15 cases

out of 200 where the algorithm fails to expand some top-K ERACs to the original

injected ERAC of size 10. This is because, when N is small, the detected ERAC of

size N is likely to have extreme patterns dissimilar with the injected ERAC. Thus,

in the greedy expansion process, the heuristic in ERAC exp does not favor the other

members in the injected ERACs and ends up with a different expanded ERAC than

the injected one. When N is larger, it is more likely for the detected ERACs to have

similar extreme pattern as the injected ERAC, leading to a very high success rate.

3.7 Experiments on Web Spam Data

As reported in [BCD+08], spammers often try to game the search result ranking

by fabricating incoming links from link farms, which are usually also spammers

deploying the same spamming strategies. Moreover, these incoming spammer pages

are often created from the same web page template at a very low cost.
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As a result, the incoming neighborhoods of spammers are extremely homoge-

neous or heterogeneous compared to those of normal ones that are gradually built

up. In other words, web spammers are expected to be ranked at the top or bottom as

measured by the homogeneity of their incoming neighborhood.

Given a node e, we define the Incoming Neighborhood Feature of a feature f

in such a way that a node with homogeneous incoming neighborhood has a small

value, while a node with heterogeneous incoming neighborhood has a large value.

This value is defined as mediane′,e′′∈1-hop incoming neighborhood of e, e′ 6=e′′ 6=e|e′. f−
e′′. f |.

We extract the web host graph from the WEBSPAM-UK2006 dataset4 published

by Yahoo! Research. We adopt the 96 content features provided by [CDG+07]

[BCD+08], where the features of a host are represented by its home page as well

as the page with the highest PageRank score on the host. We compute 6 struc-

tural features at the host level, including the number of 1-hop and 2-hop incoming

neighbors. The incoming neighborhood features are derived from these content and

structural features and are used to rank web hosts in the following experiments.

We iteratively remove entities with less than 2 incoming neighbors, assuming

they are not spammers. This is because spammers are more likely to have many in-

coming neighbors and those spammers having few incoming neighbors are of little

spamming power anyway. This leaves one big connected web host graph, with 5634

nodes (1709 spammers) associated with 102 features.

3.7.1 Effectiveness of ERAC Detection Algorithm

Since some of the 102 features in the web spam dataset are dependent on each

other, we apply the ERAC detection algorithm designed for dependent feature set

to compute the top-K ERACs of size no greater than N. As the heuristic algorithm

ERACD H is the most efficient one among all proposed ones, we apply it to detect

ERACs in real-life datasets. We set K=1000 and N=12, so that ERACD H can finish

in a few hours.
4http://barcelona.research.yahoo.net/webspam/datasets
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Applying the ERACD H algorithm, we formed 258 maximal IFSs from the 102

features. Among the maximal IFSs, 21 are of size 3, the largest size of all. The

top ERAC returned by ERACD H consists of 12 hosts, all true spammers (includ-

ing englandguide.co.uk and posters.co.uk that are still actively spamming despite

having being labeled as spammers since 2006). This collection is associated with

the maximal IFS {“Number of words”, “Top 100 corpus precision”, “Independent

LH” }, where corpus precision refers to the fraction of words that appear in the

set of popular terms, and Independent LH is a measure of the independence of the

distribution of trigrams in the page content.

Now we look further into the representative extremity indices of this collection,

and explain why it is anomalous. It turns out that the web hosts in this collection

are clustered in the top 18 positions on “Number of words”, top 22 on “Top 100

corpus precision” and top 45 on “Independent LH”. This means that the neighbor-

hood of each host in this collection is very homogeneous in terms of number of

words, tendency to use very popular keywords, and pattern of using many unrelated

keywords. The experiment demonstrates that our approach is able to discover true

spammer collections as well as explain why they are anomalous.

3.7.2 Comparison to Spam Detection Approaches

Next, we compare our ERACD H algorithm with unsupervised TrustRank [GGMP04]

[GBGMP06] and supervised decision tree techniques employed in [CDG+07] and

[BCD+08]. These spam detection approaches aim at detecting individual spam-

mers, not spam collections. We therefore treat the websites in our top-K ERACs

as individual spammers to compare with the precisions of those of TrustRank and

decision tree based methods.

TrustRank starts with a seed set of trusted nodes, and propagates their scores by

simulating a random walk with restart to the trusted pages. The estimated non-spam

mass [GBGMP06] of a page is the amount of score it receives from trusted pages.

We refer to this non-spam mass as the trustrank score. The lower the trustrank score

of a node, the more likely it is a spammer.
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To select the trusted nodes, we follow the guidance of [CDG+07] and randomly

sampled 3800 hosts from the .UK domain in the Open Directory Project5. In com-

puting the trustrank score, we set the probability of following an out-link from a

trusted web page to 0.85. We then rank web hosts in ascending order by the trustrank

score of their respective home page (hp), as well as the page with the highest page

rank (mp). Thus, the hosts at the top are likely to be spammers. We denote the ap-

proach involving home pages as TR hp and the ranked list it produces as EL(TR hp).

The approach involving the pages with the highest page rank is denoted as TR mp

and its ranked list as EL(TR mp).

For decision tree DT, we use J48 of Weka6 with 5-fold cross validation. The

features used are the same set of derived neighborhood features for ERACD H. To

derive a ranked list of web hosts for comparing with other approaches, we sort the

hosts in descending order of the prediction values assigned to them by the decision

tree. The ranked list is denoted as EL(DT).

Since our heuristic algorithm works incrementally each loop of n from 1 to N

outputs the top-K ERACs of size no greater than n, denoted as S∗(n,K). We there-

fore are able to compare the ERACD H approach with collections of various sizes by

keeping the intermediate top-K ERACs produced by ERACD H for various n ≤ N.

In the experiments, we try n ∈ {4,8,12}.

Given n and K, let τ(n,K) = |⋃e∈⋃
S∈S∗(n,K)

e| denote the number of distinct web-

sites in S∗(n,K). We assume that all the websites in S∗(n,K) are spammers and

compare the top-τ(n,K) websites of each approach. Let EL(O,τ(n,K)) denote the

top-τ(n,K) websites returned by approach O ∈ {ERACD H, TR hp, TR mp, DT}.

The precision of the top-τ(n,K) websites is defined as |EL(O,τ(n,K))∩true spammer set|
|EL(O,τ(n,K))| .

Figures 3.7(a), 3.7(b) and 3.7(c) plot the precision against K for ERACD H versus

{DT, TR hp and TR mp}. In the figures, ERACD H is represented by solid line,

while the competing approaches are in doted lines.

As we observe in the figures, ERACD H outperforms DT, TR hp and TR mp for

all n settings. This demonstrates that our approach, although not specifically de-

5http://rdf.dmoz.org/
6www.cs.waikato.ac.nz/ml/weka

53



ERACD_H_N=4 ERACD_H_N=8 ERACD_H_N=12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

(a)

DT_N=4
DT_N=8

DT_N=12
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

(b)

TR_hp_N=4
TR_hp_N=8

TR_hp_N=12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

(c)

TR_mp_N=4
TR_mp_N=8

TR_mp_N=12
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

(d)

Density_N=4
Density_N=8

Density_N=12

Figure 3.7: Comparison of ERACD H to other approaches in terms of precision. In
each the plot, X-axis shows K as in Top-K, and Y-axis shows precision. Figure(a):
ERACD H vs DT, Figure(b): ERACD H vs TR hp, Figure(c): ERACD H vs TR mp
and Figure(d): ERACD H vs Density-based

signed to detect spammers, still outperforms the other methods in precision.

The recall levels achieved by our approach are all around 0.03 for n = 4,8,12

respectively and with K = 1000. The low recall levels are expected, as our approach

is designed to discover the most anomalous collections of websites, with no attempt

to avoid overlap between collections.

Next, to check whether our approach finds unique spammers, we check the over-

lap between the top-τ(n,K) websites returned by our approach and that of each com-

peting approach. We define the overlap ratio as |EL(ERACD H,τ(n,K))∩EL(O,τ(n,K)|
τ(n,K) ,

where O ∈ {TR hp, TR mp, DT}. For K = 1000 and n ∈ {4,8,12}, all the overlap

ratios are smaller than 0.05, indicating ERACD H detects unique spammer hosts that

are missed by the competing methods.
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3.7.3 Comparison to Anomaly Detection Approaches

Having compared our approach with spammer detection approaches that produce

point anomalies, we compare with the general density-based and clustering-based

anomaly detection approaches. Note that the density-based approach returns indi-

vidual websites whereas the clustering-based one returns collections of websites.

We are interested to know whether the anomaly score and precision of the collec-

tions returned by our approach are better.

We first show the comparison with the density-based approach [BKNS00]. Fig-

ure 3.7(d) shows the precision curve. The top websites returned by the density-based

approach are mostly non-spammers. This is because the density-based approach as-

sumes anomalies appear in sparse regions. However, true spammers are likely to

employ common spamming tricks, making them less likely to appear in sparse re-

gions of the feature space.

Next, we consider clustering-based outlier detection approaches, which consider

“small clusters” to be anomalous. We follow [LTS04] in defining a small cluster as

the one with a size smaller than half of the average cluster size.

We apply agglomerative hierarchical clustering with complete link and Euclidian

distance to cluster E. The clustering algorithm is run on each maximal IFS calcu-

lated by our approach so as to find the most anomalous cluster across all maximal

IFSs. In clustering for a given maximal IFS, we stop growing the cluster tree once

the combination of the next two clusters would cause the average size of all the

clusters to rise above 2 ·N. This is to make sure that all resultant clusters of size

smaller than or equal to N are “small” clusters by the definition of the clustering-

based approach. Since the clusters returned by our approach are of size no greater

than N, we can make a fair comparison with the “small” clusters returned by the

clustering-based approach.

In the comparison, we keep the intermediate top-K results as N varies, and show

the top-1 ERAC and top-1000 ERAC of ERACD H for each N together with the

most anomalous cluster discovered by the clustering-based approach.

In Figure 3.8, we see that for all N = {2,4,6,8,10,12}, the collections discov-
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Figure 3.8: ERACD H vs Clustering-based method on web spam data in terms of
anomaly scores

ered by our approach are more anomalous than the clustering-based ones, because

ERACD H is optimized to collections that exhibit extreme behaviors.

To take a close look of the extremity of the top ERAC and the most anomalous

cluster produced by the clustering-based approach on each of the three features in

the maximal IFS, we use star charts to plot the relative rankings of the members

in the two collections. For better visualization, we select the corresponding ERAC

and cluster for N=4. The result is shown in Figure 3.9. The center point of each

star chart represents the middle ranking (i.e., 2817), as we have 5634 websites in

total. The distance to the center represents the extremity in ranking for a feature.

It is easy to see that although the members in the most anomalous cluster by the

clustering-based approach are similar to each other, they are not extreme on any

of the features. In contrast, members of the top ERAC are extreme on all the three

features. Interestingly, all the four websites in the top ERAC are spammers, whereas

all the websites in the cluster are normal websites.

As for precision, we compute for each given maximal IFS the ratio of the number

of true spammers in all the small clusters over the total number of websites in all

the small clusters. The maximal ratio is selected as the precision across all maximal

IFSs. We also compute this precision for all N = {2,4,6,8,10,12}. The results

show that the precision of the small clusters is quite low for each N, with a maxi-

mum of 0.35 at N=10 which is as good as random guess. This suggests that most of

the websites in small clusters are not necessarily spammers. Obviously we cannot

rely on clustering-based anomaly detection techniques to find spammer collections.
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Figure 3.9: Top-1 ERAC of size 4 by ERACD H (in solid lines) vs the most anoma-
lous cluster of size 4 by clustering-based method (in dotted lines) on web spam
data

Method ERAC expansion DT TR hp TR mp
Precision 0.80 0.76 0.71 0.69

Table 3.4: The precisions of ERAC expansion and other competing methods

3.7.4 ERAC Expansion in Web Spam Data

We also apply our expansion algorithm ERAC exp on this web spam data after we

retrieve the top-1000 ERACs for each parameter setting of N = {4,8,12}. For each

setting of N, we feed every top-1000 ERACs into ERAC exp.

Interestingly, for all settings of N, the top-1000 ERACs are expanded to the same

ERAC of size 79. This suggests the top-1000 ERACs are part of a larger cohesive

ERAC. Note that all detected ERAC of different sizes have the same extreme pat-

tern. In particular, they are located at the extreme top positions of the maximal

IFS, {“Number of words”, “Top 100 corpus precision”, “Independent LH” }. This

is the reason why the expansion algorithm ERAC exp is able to retrieve the same

ERAC for all the settings. The anomaly score of the expanded ERAC of size 79

is of 1345.34, much larger than the original ERACs of small sizes, which suggests

ERAC exp successfully retrieve the much more anomalous superset.

We also measure the precision of this expanded ERAC and compare with the

competing methods {DT, TR hp and TR mp}. As the expanded ERAC has a size of

79, we take the top-79 spammers returned by each approach and measure their pre-
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Figure 3.10: ERACD H vs Clustering-based method on IMDB data in terms of top-
1st collections shown in (a), top-2nd collections shown in (b), and top-3rd collec-
tions in (c).

cisions. As shown in Table 3.4, our expansion is still more effective in identifying

spammers than the competing methods.

3.8 Experiments on IMDB Data

From the IMDB dataset7, we focus on actors and actresses participating in movies

shown between 1990 and 2008. We extract actors playing non-trivial roles in each

movie by taking only those appearing among the top 10 names in the cast list. We

extracted 6 actor features including number of movies, average rating of all movies,

average salary, average movie budget, average movie box office and average pay-

back (the ratio of average box office to average salary). After dropping those actors

who have missing feature values, we are left with 183 actors.

3.8.1 ERAC Detection in IMDB Data

We apply ERACD H on this preprocessed IMDB dataset with K=3 and N=3. We set

K and N to be small so that the results are easier to analyze. There are 12 maximal

IFSs extracted from the 6 features, including two maximal IFSs with the largest size

3. Each maximal IFS returns a top ERAC. According to our definition in Section

3.3.4, we choose the maximal IFS that leads to the most anomalous ERAC, which
7http://www.imdb.com/interfaces
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is {number of movies, average movie budget, average payback}.

Using this maximal independent feature set, we also run the clustering-based

approach on the IMDB dataset. Since we set N=3 for ERACD H, it is only fair

for the clustering-based approach to assume that clusters of size no greater than

3 are anomalous. Altogether, the clustering-based approach returned 29 clusters,

including 3 anomalous ones, all of which are less anomalous than the top-3 ERACs

returned by ERACD H.

Specifically, the three anomalous clusters returned by the clustering-based ap-

proach are {Lohan Lindsay, Witherspoon John, Madonna}, {Hudson Kate, Walker

Paul, Crudup Billy} and {Duchovny David, Hawke Ethan}. The top-3 ERACs are

{Grint Rupert, Radcliffe Daniel, Watson Emma}, {Bloom Orlando, Grint Rupert,

Watson Emma}, {Brando Marlon, Grint Rupert, Watson Emma}. We plot their

relative feature rankings in Figure 3.10(a), Figure 3.10(b) and Figure 3.10(c). The

center point of each star chart represents the middle ranking (i.e., 91), as we have

183 actors. The distance to the center point represents the extremity in ranking for

a feature. By visual inspection, we find that the ERACs are more extreme on all

the three features, compared to the three clusters returned by the clustering-based

approach. This demonstrates again that while clustering-based approaches could

return sets of similar actors, they are not designed to capture interesting collections

that exhibit extreme behavior.

We note that several of the ERACs are potentially useful in practice. For ex-

ample, a movie producer may want to find actors who perform in few large-budget

movies but have big payback. Our results suggest the producer should go for the

Harry Potter actors, or other top ERACs.

3.8.2 ERAC Expansion in IMDB Data

Algorithm ERAC exp is applied to the top-3 ERACs detected by ERACD H. Since

all the top-3 ERACs have the same extreme patterns on the maximal IFS {number of

movies, average movie budget, average payback}, they expand to the same ERAC of

size 12, which is {Grint Rupert, Radcliffe Daniel, Watson Emma, Bloom Orlando,
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Brando Marlon, Dane Eric, Donner Richard, Englund Robert, Frakes Jonathan, Gib-

son Tyrese, Howard Bryce Dallas, Jackson Janet}. As expected, this expanded

ERAC has the same extreme pattern as the top-3 ERACs. The anomaly score grows

from 37.3 for the original top ERAC of size 3, to 53.18 for the expanded superset

of size 12.

To compare fairly with our ERAC detection algorithm, the clustering-based al-

gorithm assumes that clusters that are no larger than 12 are anomalous, as our ex-

panded ERAC is of size 12. Altogether, the clustering-based approach returned 8

clusters, including 2 anomalous ones. One cluster is of size 12 with anomaly score

of 13.7, which contains {Gere Richard, Chase Chevy, Baldwin William, Jackman

Hugh, Zellweger Renee, Daniels Jeff, Penn Sean, Barrymore Drew, Hackman Gene,

Duchovny David, Vaughn Vince, Grant Hugh} The other is of size 8 with anomaly

score of 6.84, which contains {Scorsese Martin, Silverstone Alicia, Jackson Samuel

L., Farrell Colin, Kirkland Sally, Bower Michael, Brosnan Pierce, Ryder Winona}.

They are much less anomalous than the expanded ERAC. These results show that

our ERAC expansion successfully retrieves a larger ERAC that is more anomalous

than the original ERACs as well as the anomalous clusters returned by the compet-

ing method.

3.9 Experiments on Chinese Online Forum Data

In this section, we apply our algorithm ERACD H to identify the infamous Chinese

online “water army” (�dy�) spammers8, who are hired to post or comment on

threads in many popular online forums, with the aim of influencing public opinion

on targeted events or products. It is reported that during the Qihoo 3609 vs Tencent

QQ10 dispute, both sides hired water armies to post favorable comments on them-

selves while disparaging the other11. Another reported event is in the Chinese dairy

industry, where the brand manager of MengNiu(¤:) company was arrested for

8http://en.wikipedia.org/wiki/Internet Water Army
9www.360.cn, the number 1 computer network security service provider in China

10QQ.com, the number 1 instant messaging and online community service provider in China
11http://www.chinadaily.com.cn/bizchina/2010-11/05/content 11509557.htm
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hiring online water army to frame the competing company YiLi(�¼)12.

Water army operates by soliciting various tasks from internet public relations

agencies (e.g. shuijunwang.com) and get paid according to the quality and quantity

of posts or comments generated on popular online forums. It is often the case that

hundreds or thousands of spammers are hired to form a water army that participates

very actively in many popular online forums.

Each water army spammer commonly post comments from multiple user ac-

counts. This helps to hide his/her true identity, as readers may not suspect that these

comments come from the same person due to the different account names. If some

lazy spammers simply copy and paste his message multiple times in the same post

or in multiple posts, they do not get paid by the agencies, as the spammers are in-

structed not to perform such easily detectable behavior and should post relevant and

meaningful messages using different accounts. This makes detecting water army

spammers difficult, as they put in effort to post non-repetitive and relevant com-

ments to appear like normal users.

We detect spammer collections in Tianya.cn13, one of the most popular online

Chinese forums. We focus on three hot events namely, 360 vs QQ, Yaojiaxin(��

c), and Ligangmen(¯¦ ), which are highly suspected14 to involve water army

activities. For each event, we submit the event name as query to the search interface

of Tianya.cn, which returns the 750 most relevant threads. We keep only those

threads that are posted within the relevant period of each event. The start and end

dates are determined from news reports and are shown in Table 3.5.

With the relevant threads, we extract all the user accounts that have posted in

the threads. We then filter accounts by their membership scores. The membership

score assigned by Tianya.cn reflects how active an account is and how much con-

tribution it has made writing acknowledged posts and getting involved in different

interactive activities. Since a water army spammer normally has many accounts and

would not take too much effort to build up membership scores for each of them, we

remove the top 50 percent of accounts that have high membership scores. We also

12http://www.chinadaily.com.cn/china/2010-10/21/content 11437735.htm
13http://www.tianya.cn
14http://www.shuijunshiwan.com/wenku/
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events time period num of
threads

num of
users

360 vs QQ 2010.9-2010.12 413 3545
Yaojiaxin(��c) 2010.10-2011.4 345 6443
Ligangmen(¯¦ ) 2010.10-2011.1 359 3269

Table 3.5: 3 focused events for detecting water army in Tianya.cn

filter out accounts with only one post or comment, as they are also not likely to be

involved in water army. Table 3.5 summarizes the profile of the three events after

the aforementioned preprocessing.

Given a particular event, we treat each thread of this event as a feature, and the

number of times that an account comments in this thread as the feature value. When

accounts are ranked according to each thread in descending order, we expect col-

lections of water army spammers to appear in top positions of a few threads, as a

few spammers are collaborating, or the same spammer is using multiple accounts

in these threads. This collective extreme behavior of water army spammers fits our

ERAC principles. Note that a normal active account may also appear in the top posi-

tions of a few threads, but not likely in the top position of many threads consistently.

3.9.1 Effectiveness of ERAC Detection Algorithm

We set N = 5 and K = 1 for our heuristic algorithm ERACD H. The results of the

top ERAC returned for each event are listed in Table 3.6. The third column |Fs|
denotes the number of threads w.r.t. which the ERAC is significant (i.e., the corre-

sponding representative p-value is below α). For each significant feature, we find

the corresponding extremity index r and intersection i value as in p(i,r,n). avg-r

and avg-i in the fourth column shows their average values.

For example, in the event of 360 vs QQ, the top ERAC is {_Lu,ayaya118,�

�p�,Ly`{ÜÓ,tÖV|��}. By checking the representative p-value

of this collection w.r.t. each of the 357 threads, we know their collective extreme

behavior is significant in 13 threads, with average r=50.2 and average i=3.7. This

suggests that they actively commented on the 13 threads. Reading through the com-
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events top ERAC |FS| avg-r
(avg-i)

360 vs _Lu,ayaya118,��p� 13 50.2(3.7)
QQ Ly`{ÜÓ,tÖV|��
Yaojiaxin ÉV%,probit,)�Ì� 35 67.3(2.9)
(��c) vy��,�4ó"
Ligangmen www9w,y©�B,muzi840719 15 45.8(3.6)
(¯¦ ) �²4½¡Çq�X
Ú

Table 3.6: Top ERAC for each event in Tianya.cn

ments of the five accounts, it is clear that their posts are either against 360 or for QQ

and the posts are generated within a 5-day period. Furthermore, most of their com-

ments were posted to the threads related to 360 vs QQ. All the above observations

clearly indicate collaboration among the five accounts.

3.9.2 User Evaluation

Since we do not have the ground truth on water army spammers in Tianya.cn, we re-

cruit human evaluators to judge the accounts on both individual level and collection

level.

We hired four Chinese evaluators who are familiar with Tianya.cn forum and the

three hot events. They are requested to read the Chinese Wiki page and news re-

ports on water army beforehand. For each user account, the evaluators are provided

with the account’s homepage in Tianya.cn, which contains the membership score,

number of visits, last visit time, registration time and all the threads the account has

posted or commented on. As Tianya.cn lists each account’s threads page by page, it

is very tedious for the evaluators to navigate through the threads and the comments

posted from the account. We therefore crawled each account’s home page, all the

threads as well as the comments in each thread, and presented them together to the

evaluators.

User Evaluation at Individual Level.

Firstly, we are interested to know whether the user accounts in the top-K ERACs

really are water army spammers on Tianya.cn.
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To alleviate the demand placed on the evaluators, we only select accounts in the

top ERAC of each focused event, altogether 15 of them, for judging. The evaluators

are asked to judge whether each account is a spammer according to his understand-

ing of how a normal account in any online forum should behave. The evaluators as-

sign a score between 1 and 5 to each account, with 1 being normal, 5 being spammer

and 3 being not-sure. The final score of an account is the average score assigned

by the evaluators. We consider the accounts with final score greater than 3 to be

spammers and the rest to be normal.

The scores from the evaluators are shown in Table 3.7. Out of 15 accounts iden-

tified by our approach, 13 of them are judged by the evaluators to be spammers.

This gives a precision of 0.87.

For user account “Ly`{ÜÓ”, the evaluators report that it has not logged

in after the event of 360 vs QQ, almost all of its threads are about 360 vs QQ, and

almost all of its comments contain links to a voting website supporting 360. These

observations cast strong suspicions on the account.

There are two accounts “y©�B” and “ÉV%” that the evaluators give low

scores as they find that although the accounts are involved in many threads on the

corresponding event, they also commented on other events, which makes them less

suspicious. Our approach considers only the number of comments across threads

but not the actual content of the comments and therefore misclassify them.

User Evaluation at Collection Level.

Now we conduct our user evaluation at collection level. We are interested to know

(I) Are the accounts in the top ERAC spamming in the corresponding significant

threads? (II) Are the ERAC rankings consistent with the evaluators’ perception? In

this user evaluation, we focus on the 360 vs QQ event.

We derive a random set of accounts to compare with our top ERAC. We ran-

domly choose from the users whose number of comments are comparable to the

average number of comments of the accounts in the top ERAC. This way, the cho-

sen accounts are as active as the members in top ERAC. We end up with the ERAC

{¾¾¥Â,treegreen12010,�º�0,òD�d,quanyeke}.
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event user count E1 E2 E3 E4 avg

360 vs QQ

Ly`{ÜÓ 5 5 5 5 5
_Lu 3 4 4 4 3.75
tÖV|�� 5 3 5 4 4.25
��p� 4 4 4 4 4
ayaya118 5 3 5 5 4.5

Ligangmen

www9w 3 3 3 4 3.25
(¯¦ ) y©�B 3 1 1 2 1.75

�²4½¡ 4 4 5 3 4
q�X
Ú 5 5 4 4 4.5
muzi840719 5 4 4 4 4.25

Yaojiaxin

)�Ì� 3 5 4 2 3.5
(��c) ÉV% 3 2 2 3 2.5

�4ó" 4 4 4 4 4
vy�� 2 4 5 5 4
probit 3 5 5 4 4.25

Table 3.7: User evaluation at individual level. E1 to E4 denote the four evaluators

ERACs E1 E2 E3 E4 avg
top-1 2.56 3.18 4.01 3.08 3.21
random collection 1.14 1.21 1.91 2.17 1.61

Table 3.8: User evaluation at collection level. E1 to E4 denote the four evaluators

We present the 5 accounts in the top ERAC with its 13 significant threads, to-

gether with the 5 accounts in the random user collection with its 16 significant

threads to the evaluators. For each account, the evaluators are given its comments

in all the significant threads and asked to judge whether the account is spamming in

a particular thread based on the comments it posted.

For each account, the evaluator assigns a score from 1 to 5 according to each of

the significant thread, with 1 being non-spamming, 5 being spamming and 3 being

not-sure. The evaluators also need to provide their reasons.

The final score of an ERAC is the average score of its member accounts across

the significant threads. Table 3.8 shows the results. As we see from the table, the

average score of the top ERAC is larger than 3, indicating that its members indeed

are spamming the significant threads. We also observe that the evaluators consider

the top ERAC more suspicious than the less anomalous random account collection,

suggesting our ranking are in line with the evaluators’ perception.
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3.9.3 ERAC Expansion in Chinese Online Forum Data

The previous experiments on detecting water army spammer collections revealed

ERACs with predefined size N=5. To uncover water army collections that are su-

persets of the detected ERACs, we expand the top-K ERACs returned for the event

of 360 vs QQ by the ERAC exp algorithms described in Section 3.4.2.

We first set N = 5, K = 100 and run ERACD H to return the top-100 ERACs of

size up to 5. We then apply ERAC exp to expand each ERAC.

Interestingly, 67 of the 100 ERACs expand to the same ERAC of size 11, whereas

the remaining 33 ERACs are expand to another ERAC of size 14. The first expanded

ERAC of size 11 is significant on 13 features, which are exactly the same 13 features

on which the original 67 ERACs of size 5 are significant. On the other hand, the

second expanded ERAC of size 14 are significant on 15 features, which overlap

with the significant features of the original 33 ERACs on 14.63 features on average.

These observations indicate that the added members in the expanded ERACs

have very similar extreme patterns as members in the original ERACs. Specifically,

in Tianya.cn, the accounts in the same ERAC posted many times on almost the same

set of threads, which substantiates our expansion heuristic.

The 67 ERACs of size 5 have a maximum anomaly score of 314.98, whereas

the expanded ERAC of size 11 scores 661.41. On the other hand, the maximum

anomaly score of the 33 ERACs is 309.67, much less than 754.36, the anomaly

score of the ERAC of size 14 after expansion. This shows that ERAC expansion

indeed produces much more anomalous supersets.

Another observation is that the two expanded ERACs do not overlap, neither

do their significant features. After reading through the posts from users in each

expanded ERAC on their corresponding significant features (i.e., threads), we dis-

cover that the two collections of users had condemned 360 harshly with emotive

remarks, but providing little factual support. This suggests the existence of at least

two independent water army collections spamming on Tianya.cn on behalf of QQ.
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3.10 Summary

In this chapter, we detect a new type of anomaly collections, called extreme rank

anomaly collections (ERAC). Members of an ERAC exhibit similar extreme behav-

iors and thus appear at extreme ranking positions of multiple features. Due to the

existence of large number of ERACs of various sizes, for efficiency reasons, we

first propose the problem of discovering top-K ERACs with a predefined size limit.

To uncover the anomalous supersets of the detected ERACs, we then propose the

problem of ERAC expansion without having to specify the size of supersets.

We apply ERAC detection and expansion algorithms to discover injected ERACs

in synthetic datasets, web spammer collections in a web spam dataset, unusual actor

collections in an IMDB dataset and water army spammer collections in a Chinese

online forum dataset. The results show that our algorithms are able to uncover the

anomalous collections in all datasets. Moreover, we achieve higher precision in web

spam detection than existing approaches. We detect anomalous actor collections

that are not easily identified by other approaches. We reveal collaborating water

army spammer collections in the Chinese online forum, which are agreed by human

evaluators.
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Chapter 4

Detecting Coherent Anomaly

Collections

4.1 Introduction

In the previous chapter, we describe our ERAC work, which better serves the ap-

plications where entities are likely to participate in multiple anomalous collections.

When users are interested in disjoint anomaly collections, ERAC work is not suit-

able due to the overlap of members among different ERACs. Furthermore, the

ERAC definition does not capture the coherence in the unusual behavior of mem-

bers in an anomaly collection. We therefore propose a new anomaly collection

definition, Coherent Anomaly Collection(CAC) emphasizing the shared anomalous

behavior patterns among members and propose the problem of detecting top-K dis-

joint CACs.

Examples of this kind of coherent anomaly collections are prominent in social

media. In Twitter, a group of users may collaboratively spam on popular hashtags

to promote their websites or businesses. Their strategy is to post a large number of

tweets containing both their advertisement content and the popular hashtags, so that

other users querying any of these hashtags would see their spamming tweets. These

activities are classified as spamming according to Twitter’s rules1. Let us consider

a real example.

1http://support.twitter.com/articles/18311-the-twitter-rules
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Figure 1.2 shows three collections of real spammers in Twitter detected by our

approach. Members of each collection post tweets with no real content other than

a large number of hashtags appended with short URLs. The URLs show that group

S1 promotes travel guidance books for various cities including London and Hong

Kong, corresponding to the hashtags they use for spamming. S2 and S3 promote

the same pornography website in Brazil. As the unusually high usage of popular

hashtags offers a clue for finding these spammers, we rank all the users in descend-

ing order by the number of times they used a hashtag. Here we show four popular

hashtags (#london, #hongkong, #philipines and #mongolia), and the 34 top-ranked

users out of 1899 for each hashtag. We observe that members of the three identified

spammer collections are highly consistent in their heavy usage of the same set of

hashtags. In contrast, for users in the blank cells, despite their heavy hashtag usage,

they are not found to be spammers because their usage patterns do not appear to be

shared by other users.

These observations show that the key to detecting suspicious collaborative ac-

counts is to identify their shared anomalous behavior patterns. We call such a user

group a Coherent Anomaly Collection(CAC), and propose an information theory

based definition to characterize it. We mine top-K disjoint coherent anomaly col-

lections. Furthermore, to relieve the burden from users, they do not need to specify

either the number or sizes of the target collections as we do in ERAC work.

The rest of the chapter is organized as follows. We formulate our problem in Sec-

tion 4.2. Our exact algorithm is presented in Section 4.3, followed by the heuristic

algorithm described in Section 4.4. Section 4.5, Section 4.6, Section 4.7 and Section

4.8 report on experiments. We conclude in Section 4.9.

This chapter is based on our publication in ACM International Conference on

Information and Knowledge Management (CIKM 2012) [DZLP12c].

4.2 Coherent Anomaly Collection

The definition of coherent anomaly collection or CAC is based on the definition

of ERAC in the previous chapter. We first show how to measure the coherence,

69



Notation Meaning Notation Meaning
E the universal entity set F a feature set { f}
S an entity collection FS significant feature set

r f (S) representative r of S on f S f (r) entities in S within r on f
p f (S,r) p-value of S w.r.t. r on f p̂ f (S) S’ representative p-value on f
M(S) the extremity matrix of S

Table 4.1: Notations

followed by the problem definition. The frequently used notations are summarized

in Table 4.2.1.

4.2.1 Measuring Coherence

By definition, the anomaly score of an entity collection is determined by the subset

of its members which are most extremely ranked w.r.t. some features. It is possi-

ble that different subsets of members are extremely ranked w.r.t. different feature

subsets. However, for many applications, we are most interested in ERACs whose

members are extremely ranked w.r.t the same set of features. For instance, in our

Twitter example in Figure 1.2, we prefer to identify S1, S2 and S3 as three different

ERACs instead of consider them as a single ERAC.

This kind of coherent behavior pattern as a group, which usually reflects highly

coordinated activities, could serve as a strong indication that members of the ERAC

have engaged in collaboration. To capture this important notion of coherence in our

problem definition, we formally define “coherence” by first representing an ERAC

in a matrix form and using the matrix encoding cost from information theory in

[CPMF04] to evaluate the coherence of the ERAC.

For a given ERAC S and its significant feature set FS, we denote E(S,FS) as the

members of S that appear in the positions indicated by the representative extremity

index of any significant feature, i.e., E(S,FS) =
⋃

f∈FS S f (r f (S)).

To tell how coherent an ERAC is, we represent it by a |FS| by |E(S,FS)| ma-

trix. Specifically, given an ERAC S, its significant feature set FS and its extreme

subset E(S,FS), with fa,(a = 1, ..., |FS|) being the a-th feature in FS and eb,(b =

1, ..., |E(S,FS)|) being the b-th entity in E(S,FS), the extreme matrix is M(S) =
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1 1 1

1 1 1

e1 e2 e3

f1

f2

1 0 1

1 1 1

e4 e5 e6

f2

f3

1 0

1 1

e7 e8

0 0 0

1 0 1

f1

f2

0 0

1 0

1 1 1

1 1 1

e1 e2 e3

1 1 1f3 1 10 0 0
M(S1)

M(S2)

M(S1ÈS2)

1 1

1 1

e9 e10

1 1 1f4 1 1 1 1

0 0

1 1

1 1

1 1 1f4 1 10 0 0 1 1

e4 e5 e6 e7 e8 e9 e10

Figure 4.1: The extreme matrixes of S1 = {e1,e2,e3}, S2 = {e4, ...,e10} and S1∪S2
in Figure 1.2. S1 and S2 are coherent but S1∪S2 is not.

[mab], where

mab =





1, if eb ∈ E fa(S,r fa(S));

0, otherwise.

For example, given the collections in Figure 1.2, we show the extreme matrixes

of S1, S2 and S1 ∪ S2 in Figure 4.1. Given E(S1,FS1) = {e1,e2,e3} and FS1 =

{ f1, f2}, M(S1) contains all 1s. Similarly, we derive M(S2) and M(S1∪S2).

According to [CPMF04], any matrix can be encoded as one or more row and

column clusters. The encoding cost is the sum of the coding cost and description

cost, where the first cost is for encoding each row and column cluster and the second

cost is for describing the grouping information and the exceptions. If a matrix is

highly homogeneous, e.g., it contains all 1s or all 0s like M(S1), its encoding cost

as one cluster is low.

If a matrix is not homogeneous, e.g., it contains multiple homogeneous clusters

like M(S1∪S2), we should be able to find a minimum cost to encode this matrix by

encoding each homogeneous cluster within and describing the grouping information

of these clusters. in Figure 4.1, encoding M(S1 ∪ S2) as two row clusters and two

column clusters, as indicated by the red rectangles with dotted line, would have

a lower cost than encoding it as one cluster. This is because, for the upper-right

cluster, conceptually we use 1 bit to code it as a matrix with all 0s and 5 bit to

describe the 5 exceptions (i.e., five 1s); for the other three clusters contain purely 1s

or 0s, we only need 1 bit to encode each cluster. Thus M(S1∪ S2) as four clusters

needs 9 bits totally for encoding. In contrast, if we encode M(S1∪S2) as one cluster,

we need 1 bit to code it as a matrix with all 1s and 15 bits for describing where the

fifteen 0s are, leading to a total of 16 bits, larger than that of four clusters.
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Definition 4. [CAC] Given an entity universe E and an entity set S, S ⊂ E, a set

of independent features F and a threshold α, S is a Coherent Anomaly Collection

(CAC) if (I) S is an ERAC; (II) the cost of encoding M(S) as one cluster is lower

than the minimum cost of encoding M(S) as multiple homogeneous clusters; (III)

the number of 1s in its extreme matrix must be greater than half of the size of its

extreme matrix.

We need condition (III) as the information theory based condition does not dis-

tinguish between matrix M with mostly 1s and the matrix I−M with mostly 0s.

In other words, the extreme matrix of an ERAC containing mostly 0s can satisfy

condition (II), but we do not consider this ERAC to be coherent. In this case, most

members of the corresponding ERAC do not even appear in extreme positions w.r.t.

most of the significant features.

4.2.2 Problem Formulation and Analysis

We formally define our problem of detecting top-K disjoint CACs as follows.

Definition 5. [TOPK CAC] Given K, the entity universe E, a set F of indepen-

dent features and the ranking of E on F, let S∗ = (S1,S2, . . . ,SN) be the sequence

of coherent anomaly collections ranked in descending anomaly score order. The

problem of TOPK CAC is to find the length-K disjoint subsequence Ŝ of S∗ where

Ŝ = (Sâ1,Sâ2, . . . ,SâK) such that (I) Sâi

⋂
Sâ j = /0 and 1 ≤ âi < â j ≤ N, for 1 ≤

i < j ≤ K; and (II) for any other length-K disjoint subsequence S′ of S∗ where

S′ = (Sa′1,Sa′2, . . . ,Sa′K) such that Sa′i
⋂

Sa′j = /0 and 1 ≤ a′i < a′j ≤ N, for 1 ≤ i <

j ≤ K, there exists an index j∗,1 ≤ j∗ ≤ K such that â j∗ < a′j∗ and âi = a′i, for all

1≤ i≤ j∗−1.

Conceptually, we have two ways to approach the problem. One is to scan through

S∗, the list of all CACs as stated in the problem definition. However, we can prove

that in the worst case any algorithm would need at least a running time on the order

of 2|E| to find the top-K disjoint CACs from scanning S∗. This is because, by using

adversary argument, any algorithm would need to compute at least |S∗|/c portion of

S∗ for some constant c. In particular, we can prove that for any algorithm computing
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less than |S∗|/c portion of S∗, there are TOPK CAC problem instances such that the

algorithm must fail to return even the correct top-2 CACs.

We have the following theorem.

Theorem 2. Given K, the entity universe E, a set F of independent features and the

ranking of E on F, any algorithm would need at least a running time on the order

of 2|E| to find the top-K disjoint CACs.

Proof. Let S∗ be the sequence of all coherent anomaly collections ranked in de-

scending order by their anomaly scores. It is easy to see that, in the worst case, S∗

is of size Ω(2|E|), and we can solve the TOPK* CAC by computing the entire S∗.

Thus, the problem complexity is O(2|E|). To prove that it is Ω(2|E|), we prove the

following: To solve the TOPK* CAC problem, any algorithm would need to compute

Ω(|S∗|/c) portion of S∗ for some constant c. We prove this by using adversary argu-

ment to show that, for any algorithm computing less than Ω(|S∗|/c) portion of S∗,

there are TOPK* CAC problem instances such that the algorithm must fail to return

even the correct top-2 CACs.

The illustrative problem instance we are going to construct is assumed to have

four features f1 to f4 over a set of entities E. first, we select a set of entities

S={e1,e2, ...,e|S|}, S ⊂ E to be the top entities on feature f1 and f2. To make

sure that { f1, f2} is an independent feature set, i.e., dep( f1, f2) ≤ 1.96 as defined

in 3.2.1, we compute the upper-bound of |S| as follows. According to the definition

of dependency, |nc − nd| directly affects its value, which summarizes the order-

ings of all entity pairs in f1 and f2. We assume the entities pairs from S× S or

(E−S)× (E−S) makes no contribution to |nc−nd|, suggesting half of these entity

pairs are concordant and the rest half are discordant. This can be easily achieved

by randomly permutate entities within S and E− S on both features. On the other

hand, the entity pairs from S× (E−S) contribute |S|× |E−S| to |nc−nd|. This is

because S sits at the top-|S| positions of both features, every pair of entities from

S× (E−S) are concordant. Therefore, if dep( f1, f2) = 1.96, we have the equation

|nc−nd|= |S|× |E−S|= 1.96·
√
|E|·(|E|−1)·(2|E|+5)/2

3 to tell us the maximum size of

S. We take the positive solution of the equation and know that |S| is at least a · |E|,
where a is constant. In this way, all entities in S are in the extremity index |S|,
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therefore S is a CAC.

Next, we generate another two random entity lists over E for feature f3 and

f4. We then switch entities e|S|+1 and e|S|+2 with the entities sitting on the top-

(|S|+1)-th and top-(|S|+2)-th position of f3 and f4. This way, (I)F ={ f1, f2, f3, f4}
are independent of each other; (II)S′ = {e|S|+1,e|S|+2} does not overlap S; (III){ f1,

f2} and { f3, f4} are the significant features of S and S′ respectively. We can also

guarantee the collection S′ is a CAC by definition, if p(2, |S|+ 2,2) < α/|F |. This

is easily achievable for a reasonably large size E, as the p value deceases as the

population size grows. Therefore, we have created another CAC S′ of size 2, which

is also coherent as both its entities are in the extreme region of |S|+2. At the same

time, S′ is much less anomalous than S, i.e., S is the top-first CAC and S′ is top-2nd

CAC.

Since S′ is a CAC, suggesting p(2, |S|+ 2,2) < α/|F |. According the p-value

properties shown in [DZLP12b] [Tal05], p(i, |S|,n) < α/|F |, for 2≤ i≤ n and 2≤
i≤ |S|. This indicates that any subset of S of size greater than 1 is also a CAC with

significant features f1 and f2, which leaves us 2|S| number of CACs. Since all these

subsets of size at least 2 sit at more extreme positions than S′ and are at least as large

as S′, they are therefore more anomalous than S′. In other words, in S∗, there are

at least 2|S| of CACs ranked higher than S′. Since 2|S| is bounded by 2a·|E| and |S∗|
is also bounded by 2|E|, we need to go through at least Ω(|S∗|/c) portion of S∗ for

some constant c, before finding S′ as the top-2nd CAC. Therefore, in this problem

instance we created, if any algorithm computing less than Ω(|S∗|/c) portion of S∗,

this algorithm fail to return even the correct top-2 CACs.

Since the size of S∗ is of size Ω(2|E|) in the worst case, we conclude any al-

gorithm would need at least a running time on the order of 2|E| to find the top-K

disjoint CACs.

Instead of going through S∗, which incurs exponential execution time. The other

way to solve the problem is to first find the top CAC and then find the next most

anomalous CAC that does not overlap with any of the previously detected CACs

and so on, until K CACs are returned. In the following two sections, based on this

search paradigm, we design our exact and heuristic algorithms to solve the problem.
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4.3 The Exact Algorithm for CAC Detection

In this section, we describe the exact algorithm for solving the TOPK CAC problem.

According to the search paradigm of first finding the top CAC and then the next most

anomalous CAC that does not overlap with any of the previously detected CACs and

so on, any algorithm would mine the most anomalous CAC with the constraint of

being disjoint with a set of entities C, C ⊂ E. We call this C the constraint set. To

do this, the exact algorithm needs to find the most anomalous CAC of all sizes from

2 to |E|/2. Algorithm 8 shows the detail.

Algorithm 8 CACD E, detecting exact top-K disjoint CACs
Input: E, F , K
Output: exact top-K CACs: Ŝ

1: Ŝ← /0; C ← /0 {the constraint set C keeps all entities in detected CACs.}
2: repeat
3: n← 2
4: S← topCAC size E(E,F,n,C)
5: while n < |E|/2 do
6: n← n+1
7: S′← topCAC size E(E,F,n,C)
8: if S′ 6= null AND Ω(S,F) < Ω(S′,F) then
9: S← S′ {when S is null, Ω(S,F) is 0}

10: if S 6= null then
11: add S to Ŝ
12: add all entities in S to C
13: until S == null OR |Ŝ|> K
14: return Ŝ

In step 4 and step 7 of Algorithm 8, function topCAC size E(E,F,n,C) finds the

top CAC of size n that does not overlap with the constraint set C. The idea is to

first find the top-k anomalous collections w.r.t. each single feature f ∈ F that do

not overlap with the constraint set C. From these collections, we then derive the

top CAC w.r.t. the given set of feature F . Specifically, we start from top anoma-

lous collections w.r.t. each feature and gradually pull in the next most anomalous

collections w.r.t. each feature until the exact top CACs w.r.t. F is guaranteed.

We will first discuss for any given k, how to derive the k-th most anomalous

collections w.r.t. any feature that do not overlap with the constraint set C, followed

by the detailed algorithm of function topCAC size E(E,F,n,C), with a stopping

criterion on k in order to guarantee the exact top CAC w.r.t. F .
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4.3.1 Deriving k-th most Anomalous Collections w.r.t. Single

Feature

To derive the k-th most anomalous collections w.r.t. a feature, a naive way is to

enumerate all collections and sort them by their anomalousness w.r.t this feature.

However, the number of collections may be too large to enumerate. Besides, not all

enumerated collections will be qualified in the final top CAC w.r.t. F . We propose

to derive the k-th most anomalous collections by the ordering of p-values.

Recall that given an entity set S and a significant feature f , the anomaly score

of S w.r.t. f depends on the representative p-value of S w.r.t. f . If we can order

the representative p-values of all possible collections of size n, and then find the

set of collections corresponding to each of these p-values, we will be able to derive

the collections with larger anomaly score w.r.t. f . In other words, the ordering of

collections by anomaly score can be derived from the ordering of p-values.

Ordering of P-values.

Recall that given any collection S of size n, the p-value of S is determined by

the extremity index r and i which is the number of entities in S that appear in top-r

positions. Hence any p-value can be represented as p(i,r,n).

For all collections of size n, we could derive their representative p-values by

enumerating all possible (i,r,n) combinations with the constraints 1 ≤ r < |E|/2,

1 ≤ i ≤ min(r,n). However, the total number of (i,r,n) combinations is large. Fur-

thermore, we are more interested in those with the small p-values, as they indicate

more anomalous collections. We therefore make use of the intrinsic partial order-

ings among p(i,r,n) values for deriving the next smallest p-value without enumer-

ating all p-values.

To illustrate, we organize the p(i,r,n) values of the same i into the same column

and order the columns by descending i from left to right. In each column, we list

the p-values according to the r values in ascending order from top to bottom. We

call the first p-value of a column its anchor. Suppose |E| = 10 and n = 3, all the
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column-3 column-2 column-1
p(3,3,3)=0.008 p(2,2,3)=0.067 p(1,1,3)=0.3
p(3,4,3)=0.033 p(2,3,3)=0.183 p(1,2,3)=0.533
p(3,5,3)=0.083 p(2,4,3)=0.333 p(1,3,3)=0.708

p(2,5,3)=0.5 p(1,4,3)=0.833
p(1,5,3)=0.917

Table 4.2: All p(i,r,n) values of n = 3.

p(i,r,n) values are shown in Table 4.2.

We utilize two partial orders: column order and anchor order. The column or-

der states that within a column, each p-value is smaller than the p-values below.

Formally, p(i,r,n) < p(i,r +1,n), for all i≤ r ≤ |E|/2.

The anchor order states that the anchor p-value of a column is smaller than the

anchors of all columns to its right. Formally, p(i, i,n) < p(i− 1, i− 1,n), for all

1≤ i≤ n.

To prove these two partial orders is to prove the associated p-value properties of

the hypergeometric distribution, which can be found in [Tal05].

With the partial orders, we are able to decide which p(i,r,n) value is the next

smallest one, without enumerating all possible p(i,r,n) values. We define the p-

value frontier of p(i,r,n) as the set of p-values that are the immediate smaller

p-values according to each partial order. The partial orders lead to the following

Lemmas for deriving the next smallest p(i,r,n) value.

Lemma 5. The anchor of column-n, i.e., p(n,n,n), is the smallest p-value of all.

This lemma is straightforward. Firstly according to column order, each anchor is

the smallest within the column. Secondly, according to anchor order, the anchor of

column-n is the smallest of all anchors and hence the smallest p-value of all.

Lemma 6. Given any p(i,r,n) value, the next smallest p-value lies in the p-value

frontier of p(i,r,n) or the frontiers of the p-values that are no greater than p(i,r,n).

Lemma 6 holds because according to the definition of frontier, p-values in p(i,r,n)’s

frontier are larger than p(i,r,n) and smaller than those p-values in their frontiers.

According to these two lemmas, starting from the smallest p-value p(n,n,n),
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we just need to keep all the frontiers of the p-values being searched, and find the

smallest one in the frontiers to be the next smallest p-value.

In Table 4.2, the frontier of p(3,3,3) contains p(3,4,3) by column order, and

p(2,2,3) by anchor order. The p-value frontier of p(3,4,3) contains p(3,5,3) by

column order. Note that the elements in the frontiers of p-values that are smaller

than p(i,r,n) can be smaller than the elements in the frontier of p(i,r,n). Sup-

pose the current p-value is p(3,3,3), the next smallest p-value is among its frontier

{p(3,4,3), p(2,2,3)}. If the current p-value is p(2,2,3), then the next smallest

p-value is in its frontier {p(2,3,3), p(1,1,3)} or in p(3,3,3)’s frontier. From these

frontiers, we know the next smallest p-value after p(2,2,3) is p(3,4,3).

Deriving the Set of Collections Whose Representative P-value is p(i,r,n).

Now the question is how to derive the set of collections whose representative p-

value is of a given p(i,r,n). For a given p(i,r,n), multiple collections have p(i,r,n)

as their representative p-value. For example, in Figure 4.2, in the entity list of f2,

{e1,e2,e6}, {e1,e3,e6}, and {e2,e3,e6} all have representative p-value of p(3,4,3).

Here, we describe given p(i,r,n), how to find the set of size-n collections with the

representative p-value of p(i,r,n) w.r.t. any feature f. The idea is that we enumerate

all the corresponding size-n collections by moving n non-overlapping indices, each

index points to a ranking from 1 to |E| on the entity list of f . We also need to make

sure that these indices skip the entities in the constraint set C.

Next, we need a way of pinpointing individual entities in the entity list corre-

sponding to each feature. Intuitively, we need n pointers, each points to an indi-

vidual entity. We denote the list of rankings indicated by the n pointers as π. For

example, in Figure 4.2, there are three pointers on f2, with the first one pointing to

e1 (first), the second pointing to e6 (4th) and the third pointing to e8 (5th), hence

π=(1,4,5). Let π( j) denotes the ranking indicated by the j-th pointer counted from

left to right, with 1 ≤ j ≤ n. E.g. in Figure 4.2, π(1) = 1, π(2) = 4 and π(3) = 5.

Note that by definition, π( j) > π( j−1).

For a given feature f , π uniquely indicates one size-n collection. We denote

E f (π) as the set of entities associated with π for f . E.g. in Figure 4.2, E f2(π) =
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e1 e2 e3 e6 e8 e7 e0 e4 e5

e9 e8 e5 e6 e0f1

f2

e7

e9

e2 e4e3 e1

Figure 4.2: 10 entities {e0, ...,e9} are ranked according to each 2 features F =
{ f1, f2}.

{e1,e6,e8}.

Now given a p(i,r,n), we need to figure out where to put n pointers such that

E f (π) has p(i,r,n) as representative p-value. Suppose that i = 3, r = 5, n = 3,

and we want to get collections in f2 whose representative p-values are p(3,5,3) in

Figure 4.2. Firstly, we know that the third pointer should point to e8. In general,

by the definition of p-value, the i-th pointer should point to the ranking of r, i.e.,

π(i) = r.

Regarding the first and the second indices, we may think that the first index

ranges from ranking 1 to 3, while the second pointer ranges from 2 to 4. However,

this may not be the case, as the corresponding collections’ representative p-values

may not be p(3,5,3). For example, suppose π(1) = 1, π(2) = 2 and π(3) = 5, then

E f2(π) = {e1,e2,e8}. But p̂ f2({e1,e2,e8}) = p(2,2,3) instead of p(3,5,3). This is

because p(2,2,3) < p(3,5,3) = 0.5.

In general, given p(i,r,n) and the constraint set C, we say π is representatively-

correct iff. (I) π(i) = r; (II) ∀ j, 1≤ j≤ n and j 6= i, we have p( j,π( j),n) > p(i,r,n);

(III) E f (π)∩C = /0. In other words, if π is representatively-correct, E f (π) has

p f (i,r,n) as its representative p-value and does not overlap with C.

We now illustrate the process of finding all collections whose representative p-

value is p(3,5,3) with the entity list of f2 in Figure 4.2, assuming the constraint set

is empty. We start by putting π(1) = 1, π(2) = 2 and π(3) = 5. Since π(3) is pinned

to 5, we move π(2) rightwards until π(2) = 4. we then move π(1) to its immediate

position to its right, i.e., π(1) = 2 and move π(2) back to 3. After we repeat the

process of moving π(2) rightwards until π(2) = 4, we then move π(1) to π(1) = 3

and move π(3) back to 4. During the whole process, we always output E f2(π) if π

is representatively-correct.
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Algorithm 9 getcollections
Input: i, r, n, feature f , constraint set C
Output: the set of collections associated with p(i,r,n) denoted as
Ŝ

1: for j = 1 to n do
2: if j < i then
3: π( j)← j
4: else if j > i then
5: π( j)← r +( j− i)
6: else
7: π( j)← r
8: while π( j) points to any entity in C do
9: π( j)++

10: if π( j) > |E| then
11: return null

{Initialize π, if the any pointer points to entities in C, then move to the
next appropriate position}

12: Traverse(0,π, Ŝ, i,r,n)
13: return Ŝ

The detailed algorithm for finding collections whose representative p-value is

p(i,r,n) is given in Algorithm 9. This algorithm calls the Traverse function of Al-

gorithm 10 that iteratively calls itself to traverse all ranking positions by changing

π. It is easy to see that the execution time of Algorithm 9 is dominated by the Tra-

verse function, which is O(|E|n). Therefore the time complexity of Algorithm 9 is

O(|E|n).

As we already solve the problem of sorting p-values, with this algorithm, we are

able to derive the set of k-th anomalous collections w.r.t. a single feature whose

representative p-value is the k-th smallest of all p-values.

4.3.2 Finding Exact Top CAC of Size n

Now, we describe the algorithm for computing the top CAC of a given size n. This

algorithm is similar to Fagin’s Threshold Algorithm(TA) [FLN01]. We denote the

k-th smallest p-value as p(ik,rk,nk), and the set of k-th anomalous collections w.r.t.

feature f whose representative p-values are p(ik,rk,nk) as C(k, f ).

To find top CAC, we compute the anomaly score of each collection in
⋃

1≤k≤K∗
⋃

f∈F C(k, f ) and find our top there. Therefore, we will only miss a top
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Algorithm 10 Function Traverse( j,π, Ŝ, i,r,n)
1: if j == n then
2: if j == i then
3: if π is representatively-correct, add E f (π) to Ŝ
4: else
5: while π(n)≤ |E| do
6: if π is representatively-correct, add E f (π) to Ŝ
7: π(n)← π(n)+1
8: return
9: else

10: Traverse( j +1,π, Ŝ, i,r,n)
11: if ( j == i) ‖ ( j < i && π( j) == r− ( j− i)) ‖ ( j > i && π( j) == |E|−

(n− j)) then
12: return
13: else
14: π( j) = π( j)+1
15: for j = 1+1 to n do
16: if j < i, π( j)← j; if j == i, π( j)← r; if j > i, π( j)← r+( j− i).
17: Traverse( j,π, Ŝ, i,r,n)

CAC if it does not appear in
⋃

1≤k≤K∗
⋃

f∈F C(k, f ). To guarantee the exact top

CAC, we need to decide K∗, i.e., how far do we search along each single feature.

We hence have the following lemma:

Lemma 7. The upper-bound of the anomaly score of the collections that never

appear in top-K∗ anomalous collections of any feature (i.e.,
⋃

1≤k≤K∗
⋃

f∈F C(k, f ))

is − log p(iK
∗+1,rK∗+1,nK∗+1) · |F |.

Lemma 7 estimates the upper-bound of collections that never appear among the

top-K∗ of any feature by assuming they have the “best case p-value” over every fea-

ture. The proof of this lemma can be easily derived from [FLN01]. With Lemma 7,

we can derive K∗ such that the anomaly score upper-bound of the unseen collections

is smaller than the smallest score in the current top CAC.

The exact algorithm always maintains the current top CAC during the search

process. It starts from k = 1 and computes the set of k-th most anomalous collection

w.r.t. each feature, i.e.,
⋃

f∈F C(1, f ). It then compute the anomaly score of each

collection w.r.t. F in
⋃

f∈F C(k, f ) and update the current top CAC. The algorithm

then check whether the upper-bound of the collections that never appear in top-

k anomalous collections of any feature is smaller than the anomaly score of the
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current top CAC. If the stopping criterion has not been met, the algorithm increases

k by 1 and continues to evaluate the collections in
⋃

f∈F C(k, f ). Whenever the

stopping criterion is met, we stop increase k and return the top CAC.

The details of the exact algorithm is shown in Algorithm 11.

Algorithm 11 topCAC size E(E,F,n,C), the exact algorithm to detect top CAC of
size n
Input: E, F , collection size n, constraint set C
Output: S

1: Let pt ← (n,n,n) and S = /0 { pt keeps the current p-value (i,r,n) tuple}
2: Let Ψ ← f rontier p(pt) { frontier() function computes the frontier of the

p(i,r,n) indicated by pt}
3: repeat
4: for each f ∈ F do
5: Ŝ← getcollections(pt.i, pt.r, pt.n, f )
6: for each S′ ∈ Ŝ do
7: if Ω(S′,F) > Ω(S,F) then
8: S← S′
9: pt ← pop(Ψ) {pop out the (i,r,n) tuple with the smallest p-value in the

frontiers Ψ}
10: Ψ←Ψ∪ f rontier p(pt)
11: until Ω(S,F) >− log(p(pt.i, pt.r, pt.n)) · |F |
12: return S

We illustrate the exact algorithm topCAC size E with the run example in Figure

4.2 with n = 3. The algorithm starts with p(3,3,3), and finds p(3,3,3)’s frontier. In

the repeat until loop, it gets {e9,e3,e1} and {e1,e2,e3} as the corresponding collec-

tion of p(3,3,3) for f1 and f2 respectively. After updating the top CAC, the current

smallest anomaly score of the collections in Top-K CACs, i.e., Ω({e1,e2,e3},F) =

− log p(3,3,3)− log p(3,4,3) =− log0.008− log0.033 = 8.24. The upper-bound of

the collections that have yet to search is computed as Lemma 7: − log p(3,4,3)×2

= 6.82, which is smaller than 8.24. Now the upper-bound is smaller than the current

top CAC, the algorithm stops and returns {e1,e2,e3} as the final result.

Time Complexity of algorithm CACD E. We first analyze the complexity of Algo-

rithm 11. Since the time complexity of getcollections(pt.i, pt.r, pt.n, f ) is O(|E|n),
in the worse case, the size of Ŝ is also |E|n. Thus, the time complexity of Algorithm

11 is O(|F | · |E|n ·λ), where λ is the number of (i,r,n) tuples popped out in step 9

until the algorithm stops.
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Algorithm 8 CACD E calls Algorithm 11 at step 4 and step 7. It is easy to see

that Algorithm 11 is called |E|/2 times. Therefore, the time complexity of algorithm

CACD E is O(K · |F | · |E|n+1 ·λ).

4.4 The Heuristic Algorithm for CAC Detection

The high complexity of the exact algorithm leads us to propose heuristics to solve

the TOPK CAC problem by sampling the candidate collections that are potentially

more anomalous.

We sample candidates in increasing sizes. This is because, (I) anomalies are

minorities, and anomaly collections are generally small; (II) collections of larger

sizes may have larger anomaly scores, but they are less likely to be coherent. Before

showing the first heuristic regarding sampling candidates from small to large sizes,

we define first-maximal CAC with constraint C as follows.

Given E and C, let (S2, . . . ,S|E|/2−1) be the sequence of top CACs of size from

2 to |E|/2− 1, s.t. Si∩C = /0, ∀2 ≤ i < |E|/2− 1. The first-maximal CAC with

constraint C is the Si, 2≤ i < |E|/2−1 such that (I) Ω(S j,F)≤Ω(S j+1,F), for all

1 < j < i; (II) Ω(Si,F) > Ω(Si+1,F).

Intuitively, the first-maximal CAC with constraint C is the CAC that does not

overlap with C and are more anomalous than all smaller collections. With this, our

first heuristic is as follows.

Heuristic 1. [first-maximal property of Top-K CACs] Let Ŝ =(S1,S2, . . . ,SK) be the

top-K CACs. ∀i,1≤ i≤ K, Si is the first-maximal CAC with constraint
⋃

1≤ j<i S j.

This heuristic states that every CAC in the final sequence Ŝ is the first local max-

imal with the constraint of being disjoint with other CACs that are more anomalous

in Ŝ. Based on this heuristic, we propose the heuristic algorithm CACD H shown in

Algorithm 12. We compute the top CAC incrementally for size starting from 2, and

stop the search as soon as the anomaly score of the top CAC drops. The resultant

CAC is one first-maximal with constraint C.

Similar to the exact algorithm, in step 7 and step 9 of Algorithm 12, we need to
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Algorithm 12 CACD H, Heuristically detecting top-K disjoint CACs
Input: E, F , K
Output: heuristic top-K CACs: Ŝ

1: Ŝ← /0; C ← /0
2: repeat
3: n← 2
4: S← topCAC size H(E,F,n,C)
5: while S 6= null AND n < |E|/2 do
6: n← n+1
7: S′← topCAC size H(E,F,n,C)
8: if S′ 6= null AND Ω(S,F) < Ω(S′,F) then
9: S← S′ {when S is null, Ω(S,F) is 0}

10: else
11: break {apply heuristic 1}
12: if S 6= null then
13: add S to Ŝ
14: add all entities in S to C
15: until S == null OR |Ŝ|> K
16: return Ŝ

find the top CAC of a given size n. However, the number of CACs of size n is |E|n

in the worst case, as we showed for the exact algorithm. We therefore propose the

second heuristic regarding the importance of local extremity.

Heuristic 2. [Importance of Local Extremity] Given E and F, let S be the top CAC

w.r.t. F. There exists a feature f ∈ F and a small integer threshold θ such that S is

among the top-θ CACs w.r.t. f .

The rationale is that if a collection is not very anomalous w.r.t. any single feature

f ∈ F , it is unlikely to be the top CAC w.r.t. F . Based on this heuristic, we first

sample collections with large anomaly score w.r.t. each single feature f ∈ F , from

which we then derive the top CAC w.r.t. F . To find the collections that are more

anomalous w.r.t. a single feature, we take advantage of the ordering of p-values, as

we do for the exact algorithm.

4.4.1 Sampling the Set of Collections Whose Representative P-

value is p(i,r,n)

Now the question is how to efficiently derive the set of collections whose represen-

tative p-value is of a given p(i,r,n). For a given p(i,r,n), multiple collections may
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π(1) Ω({e},F) π(2) Ω({e},F) π(3) Ω({e},F)
{e1} 3.51 {e2} 2.53 {e8} 1.39
{e3} 2.81 {e3} 2.81
{e2} 2.53 {e6} 1.61

Table 4.3: Candidate entity lists of each π( j)
for generating entity collections of representative p-value p(3,5,3) on feature f2.

have p(i,r,n) as their representative p-value. Recall that we have shown in the pre-

vious section that the number of collections having the same representative p-value

w.r.t. any feature can be as many as
(r

i

) ˙(|E|−r
n−i

)
. We therefore want to sample only

a subset of these collections that have larger anomaly score not only w.r.t. a single

feature, but also w.r.t. the whole feature set F .

Our idea is to select individual entities that are more anomalous w.r.t. F and

construct collections from them. Naturally, an individual entity e is more anomalous

if its singular anomaly score, i.e., Ω({e},F) is larger. We hence take the heuristic

that those collections whose elements have larger sum of singular anomaly scores

would have larger anomaly scores. In other words, we approximate Ω(S,F) by

Σe∈SΩ({e},F). For example, in Figure 4.2, we have Ω({1},F) = − log p(1,1,1)−
log p(1,3,1)=3.51 and Ω({2},F)=− log p(1,2,1)− log p(1,4,1)=2.53. This aligns

with our intuition that e1 is more anomalous than e2. Note that this heuristic omits

the collection level structure among entities and therefore does not guarantee exact

results.

As we do in the exact algorithm design, we use π to denote the list of rankings

indicated by the n pointers, and we apply the same scheme to put n pointers such

that E f (π) has p(i,r,n) as representative p-value. Then, for each pointer, we get the

set of entities it can point to and rank the entities by their singular anomaly scores

in descending order. Thus we have n candidate entity lists, each corresponding to a

π( j), (1≤ j ≤ n). After computing Ω({e},F) for each of the 10 entities, we arrive

at the candidate entity lists (e1,e2,e3), (e2,e3,e6) and (e8), corresponding to π(1),

π(2) and π(3) respectively. The lists are shown in Table 4.3 in columns along with

their anomaly scores.

Next, we form a collection from the first entity on each candidate entity list, i.e.,

e1, e2 and e8. As the representative p-value p̂ f2({e1,e2,e8}) is p(2,2,3) rather than
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the desired p(3,5,3), we discard this collection. In order to find the collection that

has the next largest sum of singular anomaly score and p(3,5,3) as representative

p-value, we reuse the concept of “frontier” to keep the pool of collections, from

which the next collection is selected.

Given any collection E f (π) and a p-value p, the pointer frontier of E f (π) on

f is the set of collections, each generated by replacing one entity E f (π) with the

next entity on the candidate entity list corresponding to π( j) (1 ≤ j ≤ n). Each

collection is generated subject to the constraints: (I) π( j) < π( j + 1); (II) p is its

representative p-value; and (III) it does not overlap with C. Next, we aggregate the

collections selected from |F | number of pointer frontiers by anomaly score.

4.4.2 Heuristically Finding Top CAC of Size n

Putting the ideas together, we have Algorithm 13 topCAC size H that heuristi-

cally computes the top CAC of a given size n. It needs two additional parameters θc

and θp for applying heuristic 2. The first parameter θc is used for selecting collec-

tions for a given p-value. Specifically, for p(i,r,n), we repeatedly pop a collection

across multiple features and evaluate whether it is larger than the current top CAC.

If the top CAC remains unchanged after θc number of times, we stop the collec-

tion selection process for p(i,r,n). As the algorithm searches progressively larger

p-values, the second parameter θp serves as a ceiling on the number of p-values that

have contributed no collections to the current top CAC. The intuition is that if θp

number of p-values have not contributed any collection to the top CAC, the unseen

p-values which are even smaller are unlikely to be able to contribute collections. θc

and θp can be decided empirically. Larger θc and θp settings imply going through

more candidate collections, which necessitates a longer execution time. The setting

of θc and θp will be studied in the experiments section.

Time Complexity of algorithm CACD H. We first analyze the time complexity of

Algorithm 13 topCAC size H. The for loop in step 6 is of |F |, assuming step 7 and

8 can be computed in constant time with proper data structures. In the previous

chapter, we know that the time complexity of computing Ω(S,F) is O(|S|2 · |F |).
Thus, the time complexity of step 10 is O(|S|2 · |F |2). According to [CPMF04],
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Algorithm 13 topCAC size H(E,F,n,C), the heuristic algorithm to detect top CAC
of size n
Input: E, F , collection size n, constraint set C, θc and θp for applying heuristic 2
Output: the top CAC of size n: S

1: Let pt ← (n,n,n), let S← /0 { pt keeps the current p-value (i,r,n) tuple}
2: Let Ψ ← f rontier p(pt) { f rontier p() computes the frontier of the p(i,r,n)

indicated by pt}
3: y← 0
4: repeat
5: x← 0
6: for each f ∈ F do
7: Initialize S( f ) as the collection having the largest sum of singular

anomaly score for feature f and disjoint with C.
8: Γ( f )← f rontier i(S( f ),C) {Γ( f ) keeps the pointer frontier for fea-

ture f ; f rontier i(S( f ),C) returns the pointer frontier of collection
S( f ) and the collections are disjoint with C}

9: while (x < θc) AND ∃ f ∈ F s.t. S( f ) 6= /0 do
10: f ← argmax f∈FΩ(S( f ),F)
11: if Ω(S( f ),F) > Ω(S,F) AND S( f ) is coherent then
12: S← S( f )
13: else
14: x++
15: S( f )← pop(Γ( f )) {pop out the collection with the largest anomaly

score in Γ( f )}
16: Γ( f )← Γ( f )∪ f rontier i(S( f ),C)
17: if S is never updated for this pt then
18: y++
19: pt ← pop(Ψ) {returns the (i,r,n) tuple with the smallest p-value in the

frontiers Ψ}
20: Ψ←Ψ∪ f rontier p(pt)
21: until y > θp

22: return S

the time complexity of coherence checking is O(|S|2). Then, the while loop is

O(θc · (|F |2 + 1) · |S|2). Therefore, the time complexity of Algorithm 13 is O(θp ·
|F |+θp ·θc · (|F |2 +1) · |S|2).

Algorithm 12 CACD H calls Algorithm topCAC size H at step 7 and step 9. In-

stead of calling Algorithm topCAC size H |E|/2 times as CACD E calls topCAC size E,

CACD H is assumed to call topCAC size H µ times, which is much smaller than

|E|/2. Therefore, the time complexity of algorithm CACD H is O(K ·µ · (θp · |F |+
θp ·θc · (|F |2 +1) ·µ2)).
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4.5 Experiments on Synthetic Data.

In this section, we present experimental studies of our CAC detection on synthetic

data. We are interested to know compared to existing baselines, how efficient our

exact and heuristic algorithms are; and how well our proposed heuristics retrieve

injected CACs with varied parameter settings.

4.5.1 Synthetic Data Generation

This synthetic data generation algorithm is based on Algorithm 7 of Chapter 3. Be-

sides the population size, the number of features, we assume that for any injected

CAC, its lower-bound on the minimum extremity index across all significant fea-

tures is given in order to control the anomalousness of the injected CACs. The

output is the set of entity lists {EL f } and the set of injected CACs.

We start from randomized entity lists and inject multiple CACs of various sizes

on different features until the entity lists are no longer independent of each other.

After this step, in addition to Algorithm 7, we need to estimate the upper bound x

on the size of CAC, such that any two features that with this CAC appearing at the

top extreme positions are still independent. We do not need to add the condition of

|S| < ns of step 3, as we do not directly control the number of injected CACs by

an input parameter. Entering the while loop, we add a step of “Randomly select n,

n < x to be the size for an injected CAC.”. Lastly, in step 6, we not only need the

randomly generated extreme index r f < z, but also need min f∈F ′r f < max(n,r∗).

The rest of generation algorithm is identical to Algorithm 7.

4.5.2 Efficiency of CAC Detection Algorithms

To evaluate the efficiency of our proposed algorithms, we design two baseline ap-

proaches by modifying the exact algorithm ERACD E and the heuristic algorithm

ERACD H for detecting ERACs proposed in [DZLP12b]. Both algorithms search

collections in a bottom-up fashion with some pruning strategies for the most anoma-

lous collections of all sizes. We add the coherence checking part to the two algo-
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rithms and use each of the two algorithms to compute the top CAC and consec-

utively find the next most anomalous CACs that do not overlap with any of the

previously detected CACs. We thus have a competing exact algorithm that returns

the exact top-K CACs denoted as ERAC E CH and another heuristic one denoted as

ERAC H CH. Altogether, we have four methods to compare.

Since both exact algorithms CACD E and ERAC E CH take too long to run on

large data, we first generate synthetic data with relatively small population sizes.

We set |F | =10, r∗=10 and vary the population size |E|. This makes sure that

some really anomalous CACs are present in the datasets so that ERAC E CH and

ERAC H CH would prune more data points and run faster. For each population size,

we generate 3 synthetic datasets and run all three methods on the generated data.

Regarding the parameters of CACD H, we set θc=100 and θp=20. For all methods,

K is set to the number of injected CACs. Note that K may be different for different

generated datasets, depending on when the stopping criterion at step 3 of Algorithm

7 is met.

The average execution time of the four methods(in seconds) are shown in log10

scale in Figure 4.3(a). We see that in general when the population size grows, each

method needs more time to execute. Both heuristic algorithms are fast, whereas the

exact algorithms run much slower than the heuristic ones and their running time

grows exponentially with population size as expected. Nevertheless, CACD E runs

faster than ERAC E CH. All methods are able to retrieve the injected CACs, if they

can terminate within 24 hours.

We also create datasets with larger populations to test the limitation of ERAC H CH.

Other parameters of the synthetic data generation algorithm are set as before. The

average running times are plotted in Figure 4.3(b). We observe that CACD H runs

much faster than ERAC H CH and stays on the scale of hundreds of seconds when

size goes up. However, when the population size reaches 500, ERAC H CH takes

more than 24 hours to output the result. Since CACD H is the most efficiently over

large datasets, we use it to detect CACs in the remaining experiments.
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Figure 4.3: Comparison of the efficiency. The running time is shown in seconds on
log10 scale.

4.5.3 Effectiveness of CACD H

To evaluate the accuracy of CACD H on detecting CACs, we need some baseline

method for comparison. As our method can simultaneously detect anomaly col-

lections and their corresponding significant features, one may suspect that similar

results can be obtained by modeling the problem as a co-clustering task by clus-

tering rows (features) and columns (users) of a matrix at the same time. We thus

compare with the results of a co-clustering algorithm from [CPMF04]. This algo-

rithm is chosen as it does not need the number of clusters as input and is denoted as

Co-clustering.

Co-clustering takes a matrix containing 1s and 0s as input. To detect anomaly

collections, a cell value of the input matrix should encode whether an entity appears

within the extreme positions of a given feature. We thus take the entities that appear

within the extremity index of any injected CAC as the target entity set. To generate

one cell value ( f ,e) of the input matrix, where f ∈ F and e belongs to the target

entity set, we set ( f ,e)=1, if entity e appears within the extremity index of any

injected CAC w.r.t. feature f . We set ( f ,e)=0, otherwise. Note that in this way,

Co-clustering is already fed with partial information on the ground truth, which

CACD H does not have.

We set |E|=5000, |F |=10 and vary r∗. For each parameter setting, we generate 3

datasets and for both methods we measure precision@K, where K is the number of
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Figure 4.4: (a) Precision@K of CACD H and Co-clustering; (b) Precision@K of
CACD H with r∗=120.

injected CACs. Regarding other parameters of CACD H, we set θc=100 and θp=20.

The results are plotted in Figure 4.4(a).

As we see in the figure, CACD H achieves much higher precision than Co-clustering

despite Co-clustering knowing partial information about the ground truth. As Co-

clustering considers each feature equally important when optimizing the clustering

function, it may not successfully distinguish different anomalous collections ap-

pearing at the extreme positions w.r.t. different features. In contrast, CACD H is

able to identify different significant features for different collections.

Another observation is that when r∗ increases, the precision of CACD H drops.

This is expected as CACD H samples candidate collections from small to large rep-

resentative p-values w.r.t. single features. With a fixed θp=20, CACD H can only

search a fixed number of p-values. If the p-values being searched is smaller than

the smallest representative p-value of an injected CAC, then CACD H will miss this

CAC. As r∗ increases, the smallest representative p-value of each injected CAC may

increase, making it less likely for CACD H with θp=20 to successfully sample the

injected CACs.

In order to achieve higher precision when r∗ is large, we increase θp to sample

more candidates with larger representative p-values. Figure 4.4(b) shows that with

r∗=120 and θc=100, increasing θp leads to better precisions.

We also vary θc from small to large while fixing θp=40 and r∗=120. Figure 4.5

shows that as θc increases, precision also increases as expected. Once θc is set
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Figure 4.5: Precision@K of CACD H, varying θc.

to greater than 60, the precisions are stable at 1.0, suggesting the collections we

sampled corresponding to each p-value w.r.t. single features are very anomalous

w.r.t. the set of all features.

4.6 Experiments on Twitter Data

4.6.1 Data Setting

Our Twitter data2 is composed of all the tweets published between September 8th

2011 and November 15th 2011, containing any of the 9 hashtags related to Singa-

pore including #sg, #singapore and #sosingaporean. Altogether, there are 231,803

tweets from 21,666 users. With a total of 11,901 hashtags, a hashtag is used by

4.58 users on average. Ranked by the number of users, the top 5 percent of these

hashtags are considered popular. We remove the rest of the hashtags along with the

ones that we used to collect the data. We also remove all the retweets, as hashtags

in retweets do not indicate that the retweeting user is spamming on the hashtags. In

addition, we filter away users who use a hashtag only once, since they are unlikely

to be spamming on hashtags. After the preprocessing, we are left with 1899 users

with 587 popular hashtags, which are considered independent features. For each

hashtag, we rank all the users in descending order by usage frequency. If a user

never mentions a particular hashtag, the corresponding feature value is zero. For

2http://research.larc.smu.edu.sg/palanteer/index tracker.php
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K(Ω) CAC (size) — [Spamming Behavior]
1(272.09) {LiveSEXsheLOve, LOVEsexyFREE, PornLOveCamFree,

SexFullFreeCam, SEXsheylaPOrn, SHEYLLAsexPORN,
LOVEsexCamFRee4} (7) — [Each posted ≥ 20 duplicate
tweets with identical short URLs pointing to a pornographic
website in Brazil – palcoprincipal.com.br]

2 (265.06) {SexFreeLive1, ChinaSexPOrnFRE, SEXYloveCAMFree,
TokioSEXfreeLiv, FullSEXpornFREE } (5) — [Same as # 1]

3 (262.19) {SEXyFreCAMLOVe, SEXdownloadFRE2, Down-
loadSexFree, LOVEsexCAMfree2, LOVEsexCAMlive,
SEX FREEpornTOP, SexPornFreeLive } (7) — [Same as # 1]

4 (214.45) {Lostgetfound, hmseetho, ChanHeng71, russan10, loveFan-
nyWong, shao29, jonathan ben, AllisonZoe1, JeanetteBatisah,
willow 11, cheokjung, Amabelle Kok, VictoriaKaylee, Find-
ing4Job, MedhatSaaleh, FionaWee2, PositiveInspira} (17) —
[Identical tweets with the same URL pointing to the same job-
hunting related website – dougleschan.com ]

5 (214.05) {TopSEXFreeLIve, SEXpornFREEcam, LoveSexCamFree3,
LOVEpornSEXfree} (4) — [Same as # 1]

6 (193.41) {LOVEsexFREE, LoveSexyFreeRio, SexyCamRioFree,
SexLoveDownload, SEXdownloadCAM} (5) — [Same as #
1]

7 (189.99) {SEXfreeCAMteen, NIkitaSHOWsexy, LoveSexFreeCam,
iLoveHKSAR, Rock in Rio2012} (5) — [Same as # 1]

8 (178.05) {blackberrypros, randomwireless, greenerblogs} (3) —
[Identical tweets followed by the same URL pointing to
webpages promoting travel guidance publications, e.g.
stumbleupon.com/su/3P4etP/livetravelcity.com/2011/09/little-
city-travelers/]

9 (141.15) {HirenDarlami EI, HumanRevolutioo} (2) — [All their
tweets contains messages ”Occupy MANIFESTO FEARLESS
HUMAN- ISM” followed by a URL pointing to a website
”www.occupybucharest.com”]

10 (124.19) {DevanLum, LJeanneP, jasminechua1223, ChuaYeeCheow,
lydiasoh1221, JoshuaMason6, Jade Dinnadge, jeanchloethoo}
(8) — [Same as #4]

Table 4.4: Top-10 disjoint CACs in Twitter data.
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Figure 4.6: Top-10 CACs corresponding 63 users and 39 significant features (i.e.,
hashtags).

each feature, rankings of users with identical feature values are randomized.

4.6.2 Effectiveness of CACD H

In this experiment, we empirically set θc=100 and θp=20 for our algorithm CACD H.

Larger parameter values such as θc=500 and θp=50 have also been tried and give the

same results with longer running time. We set K to a large value, so that CACD H

stops when it finds all the disjoint CACs.

As a result, CACD H produces 36 disjoint CACs. Table 4.4 shows the top 10

CACs with their identified spamming behavior. It is clear that members of a CAC

collaborate in the same spamming campaign, as their tweets are often identical,

with no real content other than a large number of hashtags appended with short

URLs pointing to some website(s).

All members in the top-10 CACs are visualized in Figure 4.6 by parallel coor-

dinates. Each member is represented by a line connecting the ranks of the user’s

usage of all the 39 significant features (i.e., hashtags). Members of the same CAC

are given the same color. It is visually telling that all the 10 CACs are both ex-

treme and coherent in their usage patterns of the hashtags. Moreover, our algorithm

can identify subtle differences in the extreme behavior of CACs which seemingly

belong to the same group. For example, the first and second most anomalous collec-

tions of “pornographic” spammers are in fact slightly different in their spamming

patterns: (I) Besides the 8 hashtags in common, the top group spams on #mongolia

and #nepal while the top-2nd group spams on #brunei and #vietnam; (II) the second
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top CAC, despite having fewer members, uses most of the hashtags more heavily

than the top CAC.

We again compare the effectiveness of our algorithm to that of the co-clustering

approach. To apply the co-clustering algorithm, we need to first derive the input

matrix. The direct way of representing the input matrix on this Twitter data is to

give a value of 1 to a cell if the corresponding user has used this hashtag, and give

a value of 0 otherwise. Consequently, we have a 587 (number of features) by 1899

(number of users) matrix to feed into the co-clustering algorithm [CPMF04]. In the

result, the matrix is co-clustered into 8 feature groups and 10 user groups, the largest

user group being of size 467 and the smallest of size 2. Of all the 10 user groups,

none are coherent and only 5 of them can be considered to be anomaly collections.

We manually go through the 5 anomaly collections and find that they are anomalous

only because they contain subsets of members that are ranked at extreme positions

on a small number of features. This is not surprising as co-clustering aims to group

users using similar sets of hashtags, not necessarily those who heavily use these

hashtags. While identified behavior are shared, they are not necessarily anomalous.

Even if we take only the union of users ranked in the top positions of each fea-

ture, the co-clustering algorithm would not output some extremely ranked collec-

tions as expected. We choose the top-31 positions of each feature so that the input

matrix contains information on all the users in our top-10 CACs. Yet, out of the 10

user collections identified by co-clustering, none are both anomalous and coherent.

The most anomalous collection returned has a size of 124; it contains some of the

pornographic spammers, and many other users that are not even sharing the same

significant features with the pornographic spammers. This observation is in line

with what we observed in the synthetic data above. The poor performance of co-

clustering is due to its treating every feature the same when trying to simultaneously

group users and features. In contrast, our approach is able to identify the significant

features along with the anomalous users.
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4.7 Experiments on Web Spam Data

4.7.1 Data Setting

We extract the web host graph from WEBSPAM-UK20063 published by Yahoo!

Research by iteratively removing nodes with less than 2 incoming neighbors, as-

suming they are not spammers. This gives one big connected web host graph, with

5634 nodes (including 1709 spammers). We extract 102 features including the 96

content features identified in [CDG+07] [BCD+08] and the 6 structural features at

the host level, including the number of 1-hop and 2-hop incoming neighbors. The

features of a host are represented by its home page as well as the page with the

highest PageRank score on the host.

As reported in [BCD+08], the incoming neighborhoods of spammers are ex-

tremely homogeneous or heterogeneous compared to those of normal ones that are

gradually built up. We therefore derive neighborhood features that capture the ho-

mogeneity of a host’s 1-hop neighborhood for each of the content and structure

features. Ranked by the neighborhood features, web spammers are expected to

appear in groups at the the top or bottom positions. We hence use neighborhood

features to detect web spammer groups. As the features adopted may be depen-

dent, we adopt the algorithm in [Epp05] to extract the independent feature set that

produces the most anomalous top CAC among all independent feature sets. The

resultant feature set is {“Number of words”, “Top 100 corpus precision”, “Inde-

pendent LH” }, where corpus precision refers to the fraction of words that appear

in the set of popular terms, and Independent LH is a measure of the independence

of the distribution of trigrams. We use this feature set for the rest of the experiments.

4.7.2 Effectiveness of CACD H

We apply our heuristic algorithm CACD H with θc=100 and θp=20. We again set K

to a large value in order to get all disjoint CACs. The competing methods are four

3http://barcelona.research.yahoo.net/webspam/datasets
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representative algorithms for mining individual anomalies or spammers: (I)The two

variants of unsupervised TrustRank [GBGMP06] designed for spam detection. We

denote the variant involving home pages as TR hp and the variant involving the

pages with highest PageRank score as TR mp. (II)The supervised decision tree

DT techniques employed in [CDG+07] and [BCD+08]. (III)The density-based ap-

proach LOF [BKNS00] for individual anomaly detection.

Since the ground truth is labeled on individual hosts, we assume that the hosts in

the top-K CACs are spammers, and compare with the same number of hosts ranked

at the top by the other approaches. For example, our top CAC contains 26 hosts

(including 25 true spammers) with a precision of 0.96. We take the top 26 hosts

returned by each competing approach and measure their precisions.

Figure 4.7 shows the precision curves of the five algorithms. Since our algorithm

returns altogether 30 CACs, we let K range from 1 to 30. It can be observed that

our approach outperforms the other methods for 1 ≤ K ≤ 13. As K increases, the

CACs found become less anomalous and hence the lower precision. When K = 13,

CACD H identified 195 hosts (including 141 true spammers) with a recall of 0.08.

When K = 30, we are able to reach a recall of 0.12. Note that our aim is to detect

hosts sharing extreme group behavior, not spammers of all types with or without

extreme group behavior. For 1 ≤ K ≤ 30, all the pairwise overlap ratios are below

0.07 between the hosts in our top-K CACs and the same number of hosts returned by

each competing approach. This suggests that CACD H is able to capture spammer

hosts with anomalous group behavior that are missed by the competing methods.

4.8 Experiments on Chinese Online Forum Data

We demonstrate the effectiveness of our framework by detecting the infamous Chi-

nese online “water army” (�dy�) collections. Spammers solicits tasks from

internet public relations agencies such as shuijunwang.com. Since these spammers

are paid according to the quality and the quantity of posts or comments generated,

each of them often possess multiple user accounts. To avoid being identified by

the forum as spammers that leads to a cease of the user account, spammers would
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Figure 4.7: Precision curves against K.

constantly switching from their accounts to hide his/her true identities. Moreover,

spammers are instructed by agencies not to perform lazy detectable behaviors such

as copy and paste. Instead spammers should try their best to post relevant and mean-

ingful messages. This makes detecting water army spammers even harder, as they

may disguise themselves just as any other normal users in terms of messages posted.

Nevertheless, our method can be applied to detect these kind of water army spam-

mers by capturing their collective and coherent posting behavior. We consider one

thread regarding a focused event (e.g. QQ v.s. 360 dispute) as a feature, and the

number of times a user comments in this thread as the feature value. When users

are ranked according to each thread in descending order, we expect that collections

of water army members would appear in the top positions of multiple threads, due

to the fact that many water army spammers may collaborate, or the same water army

spammer may post with multiple accounts.

Note that a normal active user may also appear in the top position of few threads,

as he or she may get involved with some arguments with some other users and they

ended up commenting a lot on these few threads. However, normal users would not

have the time and energy to comment intensively on multiple threads. Even if they

do, they are less likely to be involved with the same group of users.
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4.8.1 Data Setting

We choose Tianya.cn4, one of the most popular online Chinese forums, to test our

approaches. We pick the 360 v.s. QQ dispute as the target event. The data was

crawled in Oct 2011 by first submitting the event name as keywords to the search

engine of Tianya.cn, which by default returns 750 threads. We keep those threads

that are posted within the time period when the 360 v.s. QQ dispute was on-going,

starting from Sept 2010 to Dec 2010.

With the relevant threads of the target event, we extract all users that have posted

or commented in these threads. We filter users by their membership scores. The

membership score assigned by Tianya.cn reflects how active a user is and how

much contribution he has given including writing acknowledged posts and getting

involved in different kinds of interactive activities. Since a water army spammer

normally has many dummy user accounts and would not take too much effort in

building up membership scores for each of them, we remove the top 50 percent of

user accounts having high membership scores. We also filter out users with only

one post or comment, as they are also not likely to involve in water army either. In

the end, we have altogether 413 threads and 3545 users and all users are ranked in

descending order by feature value on each thread.

4.8.2 Effectiveness of CACD H

We set θc=100 and θp=20 for our heuristic algorithm as before, which returns 101

disjoint CACs. We also tried θc=500 and θp=50, which gives identical results. We

list the top-10 CACs along with their anomaly score and significant features in Table

4.5.

To better evaluate our results, we gather all information available in each user’s

homepage in Tianya.cn, which contains the membership score, number of visits,

last visit time, registration time and all the threads this user has commented. As

the homepage simply lists all threads of a user without the actual comments made

4http://www.tianya.cn
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K CAC Ω |FS|
1 {luanqioere, huisiooo, tuanduer, kankse, sasahie} 286.98 15
2 {hongdou66, sihaiwei, tinghohoo} 272.08 19
3 {?ó½B,òD�d, yingema,Ø�ê.'} 266.66 16
4 {qiangdong8, qiwanci0,�ÁBÎ¶} 239.24 18
5 {Ì ° { d9, ¾ ¾ ¥ Â, treegreen12010,

yuan9polin}
229.07 15

6 {�°4/,? Ò � 8,_Lu,yQ*Â001,
óXB°,44£¬,LyíE}

197.78 11

7 {yanyizie,®ú®º, taiyaniii} 190.25 14
8 {Ã�µÛ8, qanliepo, binmalim, duanduanee,

quanyeke}
184.80 13

9 {wenzihe,`°��, manrahe} 179.46 14
10 {douahaoe88, banbane90, niakdker} 177.46 13

Table 4.5: Top-10 disjoint CACs in Tianya data

this user, it is very hard to navigate through all the threads to find evidence. We

therefore crawl for each user account, all information listed on its home page and

the threads together with the comments this account involves, so that we can better

observe their behaviors.

After putting all information of the 5 members in the top CAC together, we

discover that all 5 members have commented altogether 100 threads. Most of these

threads are related to 360 v.s. QQ dispute, out of which our algorithm shows that

they heavily comment on the same 15 threads. Moreover, the comments they give in

all these threads are consistently talking about bad things about 360 or good things

about QQ. Interestingly, besides the 15 threads about the dispute, they all comment

on threads including “Y�,�D�,Ybw,��”, which is clearly promoting

the 129T.com website, and “åeeÕ?ê,w´���ê, �õª!”, which

is promoting some health care product. We can also see that they almost never

repeat their comments both within the threads and across threads, showing they put

a lot of effort in commenting in order to be considered as normal by other users

that reading these threads. All of the above observations indicate that these 5 users

are collaborating in opinion spamming, which cannot be easily identified just by

reading their comments individually.

The second most anomalous CAC contains 3 users. They all post on 19 threads

with good words about QQ and bad words towards 360. Besides these threads,
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they all comment on multiple threads promoting a cosmetic product of the brand

“Äî”. Other than threads regarding cosmetic product and QQ v.s. 360, they

seldom comment on other threads. We also observe that they seldom repeat their

own comments and different members post different comments, which shows they

put more efforts than simply copy and paste existing comments. Interestingly, all

three users are registered on the same day, 2010-02-06, which is another strong

indication of being involved in collaborative spamming activities.

After going though all top-10 CACs, we find that they are all condemning 360.

It seems that the water army collections are in favor of QQ on Tianya.cn.

4.9 Summary

In this chapter, we propose the problem of detecting top-K disjoint Coherent Anomaly

Collections (CAC). We present both exact and heuristic algorithms to identify CACs

that does not need the number of collections or collection size to be specified before-

hand. The efficiency and effectiveness of the proposed algorithms are demonstrated

by comparing against existing approaches on synthetic data. Our heuristic algorithm

is also tested on three real-life datasets, namely Twitter.com, a Webspam dataset and

a Chinese online forum, to detect hashtag spammer collections, spamming website

collections and opinion spammer collections respectively. The experiment results

demonstrate that in all three datasets, our approach successfully finds suspicious

spammer groups which are not easily identified with other approaches.
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Chapter 5

Detecting Anomalies in Graphs

5.1 Introduction

In the previous two chapters, we exploit the anomalous behavior of unusual coali-

tion among a collection of entities to detect anomaly collections. Here in this chap-

ter, we are interested in another type of anomalous behavior: expressing unusual

conflicting views among human actors towards the same resource. To better study

this type of anomalous behavior in social data, we model different types of enti-

ties including human actors and resources as nodes of different partites in bipartite

graphs. In these bipartite graphs, a directed edge carries the “opinion” of a source

node towards a target node. For example, in the users-rating-products context in

online marketplaces, an edge conveys the rating given to a product by a user. in

the users-clicking-webpages context on the World Wide Web, an edge conveys the

degree of endorsement from a user to a webpage.

Moreover, from the perspective of a target node, an edge can be identified as

agreeing or disagreeing by whether the opinion carried by this edge agrees with

the majority opinion on the target node. For example in Figure 1.1, we show a

toy example with 5 users (represented by s1 to s5) and 3 products (represented by

t1 to t3) with the edges carrying ratings on a scale of 5. We observe that edge

(s4, t2) and edge (s2, t3) do not agree with the majority opinion on target nodes t2

and t3 respectively. We denote the two disagreeing edges with dotted lines and the

agreeing edges with solid lines.
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In general, in a bipartite graph, anomalous nodes are the minority and are in-

consistent with the rest of the nodes in the same partite. From this toy example,

we first try to manually identify node anomalies that are inconsistent with the rest

in terms of opinions. We observe from Figure 1.1 that users s1, s2 and s3 hold the

same opinion toward products t1 and t2, on the other hand, s4 and s5 agree on t3.

However, disagreeing edges (s4, t2) and (s2, t3) show that {s1,s2,s3} and {s4,s5}
hold different opinions on products. Since the majority of the source nodes should

be normal, users in {s1,s2,s3} are considered to be normal. As a result, products t1

and t2 that are agreed upon by the normal users are unspammed products, whereas

the product t3 agreed by anomalous users are considered to be anomalous. A pos-

sible scenario is: {s1,s2,s3} are normal users who like products t1 and t2. Also s2

thinks that product t3 is very good. However, products t2 and t3 that are given high

ratings by normal users are given very low ratings by s4 and s5, who are possibly

two spammers hired to demote t2 and t3.

In reality, we are not likely to be able to observe a clear split between opinion

groups. Rather we need to derive “local” principles for identifying anomalous nodes

in both partites. One observation is that we cannot judge a node by its edges alone,

instead we should also involve the linked nodes in the other partite. For example,

we cannot say s2 is anomalous simply because he gives t3 a minority rating. In

fact, it is natural for s2, a normal node, to give a minority rating to t3, which is

mostly demoted by spammers. In contrast, s4 giving a minority rating to t2 should

be identified as anomalous. This is because t2 is an unspammed product and thus any

user who disagrees with the majority who gave high ratings is suspicious. Similarly,

we cannot say s5 is normal simply because he gives t3 a majority rating, as the fact

that t3 is anomalous makes s5 giving an agreeing edge to t3 also anomalous.

Thus, an agreeing edge plays a positive mutual dependency role on its source

and target. For example, s1 is more normal if t1 is more normal and vice versa;

similarly, s5 is more anomalous if t3 is more anomalous and vice versa. It can

also be observed that an disagreeing edge acts as a negative mutual dependency

channel on its ends. For example, s2 is more normal if t3 is more anomalous and

vice versa.
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We emphasize that both positive and negative mutual dependencies are impor-

tant. For example, s5 would not be marked as anonymous without the positive

mutual dependency on the anomalous t3. Further, t3 is flagged as anomalous only

due to the negative mutual dependency on s2, a normal user.

We therefore arrive at the following integral set of mutual dependency princi-

ples: (I)Positive mutual dependency states that a source is more anomalous if it

connects to anomalous targets with agreeing edges, and more normal if it connects

to normal targets with agreeing edges. (II)Negative mutual dependency states

that a source is more anomalous if it connects to normal targets with disagreeing

edges, and more normal if it connects to anomalous targets with disagreeing edges.

Although the principles are stated in terms of judging source nodes, equivalent prin-

ciples apply on target nodes.

Previous studies have proposed to model only one of the principles. The mu-

tual reinforcement principle is utilized to rank webpages [Kle99], to identify salient

terms and sentences [Zha02], to detect reliable users and contents in social media

[BLZ+09] and to find suspicious reviewers [WXLY11]. The negative mutual de-

pendency principle is used to detect biased users and controversial products in eval-

uation systems [LLW08]. We are the first to propose a generic anomaly detection

framework that integrates both sets of mutual dependency principles.

The rest of the chapter is organized as follows. We formulate our problem and

present our model in Section 5.2, and Section 5.3, Section 5.4 and Section 5.5 cover

experiments and their results. We conclude the chapter in Section 5.6.

This chapter is based on our publication in IEEE International Conference on

Data Mining (ICDM 2012) [DZLP12a].

5.2 Anomaly Detection Framework

In this section, we first define the anomaly detection problem, followed by model

formulation. We then discuss the iterative computation for solving the problem and

its convergence. The frequently used notations are summarized in Table 5.2.
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Notation Meaning Notation Meaning
G the bipartite graph S nodes in source partite
T nodes in target partite E directed edges from

source to target nodes
A edge labels

Table 5.1: Notations

principles source edge target
positive normal agreeing normal
mutual dependency anomalous agreeing anomalous
negative normal disagreeing anomalous
mutual dependency anomalous disagreeing normal

Table 5.2: Mutual dependency principles.

5.2.1 Problem Definition

Given a bipartite graph G = 〈S∪T,E,A〉, where S = {s1, ...,s|S|} is a set of nodes in

the source partite, T = {t1, ..., t|T |} is a set of nodes in the target partite, E ⊂ S×T

is a set of directed edges from the source partite to the target partite, each directed

edge carries an edge label, an edge can be identified as agreeing or disagreeing by

whether its label agrees with the majority edge labels towards the target node, and

A = {ai j} is a set of labels attached to edges, such that

ai j =





0, if (si, t j) is an agreeing edge;

1, if (si, t j) is a disagreeing edge.

The anomaly detection problem is to assign an anomaly score to each node in

each partite. The anomaly score of a node is a value in [0,1], with [0,0.5) being

the normal range and (0.5,1] being the anomalous range. In particular, 0 indicating

absolute normality and 1 indicating absolute abnormality.

5.2.2 Model Formulation

Our model is formulated based on the aforementioned principles summarized in

Table 5.2.

We first show how to compute the anomaly score si of source node si from an

edge label ai j and the corresponding anomaly score tj of target node t j. As we

observe from Table 5.2, our mutual dependency principles can be illustrated as:
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(I)When ai j = 0, i.e., for agreeing edges, si mirrors tj, i.e., si = tj; (II)When ai j = 1,

i.e., for disagreeing edges, si is the opposite of tj, i.e., si = 1− tj.

Note that since si and tj are mutually dependent of each other, Table 5.2 only

shows two extreme cases of this mutual dependency relationship with nodes asso-

ciated with anomaly score of integers 0 and 1 respectively. In order to quantify the

mutual dependency in general cases, we assume that the anomaly scores si and tj

change linearly with si = tj being positive dependency and si = 1− tj being nega-

tive dependency. For example, if a source node si is of anomaly score 0.8, and the

corresponding edge is agreeing, then it endorses its connected target nodes with an

anomaly score of 0.8.

The two conditions together give rise to:

si =





tj, ai j=0;

1− tj, ai j=1.

It is easy to see that the above formula can be simplified as:

si = (1−2ai j)tj +ai j.

The above formula is for source partite, when it comes to compute the anomaly

score tj from si and ai j, an equivalent formula applies.

tj =





si, ai j=0;

1− si, ai j=1.

We hence have tj = (1− 2ai j)si + ai j, as source and target are symmetric in our

principles.

Next, we define the anomaly score of a node si or t j as the aggregated anomaly

score of all its linked target or source nodes. As we want to account for the impact

of all the connected nodes, in the absence of information on the relative importance

of various connected nodes, the reasonable option is to give them equal weights.

The simple average achieves this, while keeping the score within [0,1]. Further-

more, average allows nice matrix transformation of our formula. Hence we have

the following formula:




si = AV Gt j:(si,t j)∈E(1−2ai j)tj +ai j

tj = AV Gsi:(si,t j)∈E(1−2ai j)si +ai j

(5.1)
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5.2.3 Iterative Computation

We can now design the iterative process to compute the anomaly scores of sources

and targets by translating Formula 5.1 into a matrix form. This way we can simplify

computations by using existing matrix computation techniques.

Let W S = [wS
i j] be a |S| by |T | matrix s.t.

wS
i j =





1
out degree o f si

, if (si, t j) ∈ E;

0, otherwise.

Similarly, Let W T = [wT
ji] be a |T | by |S| matrix, s.t.,

wT
ji =





1
in degree o f t j

, if (si, t j) ∈ E;

0, otherwise.

We then define X = [xi j] as a |S| by |T | matrix s.t.

xi j =





ai jwS
i j, if (si, t j) ∈ E;

0, otherwise.

Y = [y ji] as a |T | by |S| matrix s.t.

y ji =





ai jwT
ji, if (si, t j) ∈ E;

0, otherwise.

Let X be a vector with |S| rows s.t. xi = ∑|T |m=1 xim and Y be a vector with |T | rows

s.t. y j = ∑|S|m=1 y jm.

Let S and T denote the vectors of anomaly scores of sources and anomaly scores

of targets respectively, Formula 5.1 can be translated to the matrix form as follows:




S = (W S−2X)T+X

T = (W T −2Y )S+Y

S and T are computed iteratively. Let Sk and Tk denote the vectors of anomaly

scores of sources si and anomaly scores of targets tj in iteration k respectively, then

we have the following iterative formula to compute the anomaly scores of source

and target nodes.




Sk = (W S−2X)(W T −2Y )Sk−1 +(W S−2X)Y +X

Tk = (W T −2Y )(W S−2X)Tk−1 +(W T −2Y )X +Y
(5.2)
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5.2.4 Convergence

The formula of HITS [Kle99] based on the mutual reinforcement principle can be

represented as the eigenvector equation and the iteration computation of hub and

authority scores will converge to the principle eigenvector of AT A and AAT respec-

tively, where A is the adjacency matrix of the graph. Other existing work including

[WLLH08] transforms their corresponding matrix to a stochastic and irreducible

one by column normalization in order to guarantee convergence. In [LLW08], al-

though their formulation is not in the form of eigenvector equation, they translate

their formula into an eigenvector equation by assuming the sum of the anomaly

scores of all source or target is 1. To guarantee convergence, they normalize the

scores during the iterative computation.

However, in our case, we do not make the assumption about the sum of anomaly

scores. Nor can we normalize the corresponding matrix as done in the previous

studies. This is because, since any score above 0.5 is considered as anomalous and

any score below 0.5 implies normality, normalization may convert a node’s score

above 0.5 to a score below 0.5, which leads to a “wrong” perception about this node

in the iteration process.

In this section, we prove that under certain assumptions, the ranking of nodes in

each partite stays unchanged after a certain number of iterations. We only show the

proof for source nodes here. The proof for target nodes is similar, as source and

target are symmetric in our model.

Let Q = (W S−2X)(W T −2Y ) and b = (W S−2X)Y +X . Here, Q is a |S| by |S|
matrix, b is a vector with |S| rows and Sk is the score vector with |S| rows. Thus,

we have Sk = QSk−1 +b.

Lemma 8. For Sk = QSk−1+b, where k≥ 1, if the initial value S0 =(0.5,0.5, ...,0.5)′,

Sk always has the solution of (0.5,0.5, ...,0.5)′, for any k > 1.

This lemma is easily proven. According to our formulation, if the anomaly scores

of all targets are 0.5, then the anomaly scores of all sources are also 0.5, regard-

less of the edge label. Therefore, if the initial anomaly score vector for source is

(0.5,0.5, ...,0.5)′, all scores of source nodes stay at 0.5 for any number of iterations.
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We then have the following Lemma 9 to transform Sk = QSk−1 +b to facilitate

the convergence study.

Lemma 9. Let e be a |S| dimensional vector with all its elements being 1, i.e. e =

(1,1, ...,1)′. If the largest eigenvalue of Q is smaller than 1, given any initial vector

S0 such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 6= 0.5, then Sk = QSk−1 + b can be

represented as: Sk

‖Qke‖1
= θQke
‖Qke‖1

+ 0.5e
‖Qke‖1

where −0.5≤ θ≤ 0.5.

Proof. Since Sk = QSk−1 + b, after we substitute Sk−1 by QSk−2 + b and then

substitute Sk−2 and so on, we arrive at Sk = QkS0 +(I +Q+ ...+Qk−1)b.

As the largest eigenvalue ρ(Q) < 1, we have lim
k→∞

Qk = 0. I + Q + ...+ Qk is in

fact the Neumann Series, which has been shown to converge to (I−Q)−1 [Mey01].

Therefore, Sk converges to (I−Q)−1b for an arbitrary S0.

Let Rk be another anomaly score vector and R0 = 0.5e. According to Lemma 8,

we have R1 = QR0 +b = 0.5e, R2 = QR1 +b = 0.5e, and in general, Rk = QRk−1 +

b = 0.5e, for every k ≥ 1.

Since the initial vector S0 has equal elements that are not 0.5, we can denote

any initial vector as S0 = (0.5+θ)e. As the initial anomaly score is assumed to be

within [0,1], we have −0.5≤ θ≤ 0.5.

For any θ, (−0.5 ≤ θ ≤ 0.5), we have S1 = QS0 + b = Q(0.5e + θe) + b =

QR0 +b+Qθe = R1 +Qθe. Similarly, we can show that S2 = R2 +Q2θe.

Therefore, we have Sk = θQke + Rk = θQke + 0.5e, which can be represented

as: Sk

‖Qke‖1
= θQke
‖Qke‖1

+ 0.5e
‖Qke‖1

.

With Lemma 9, in order to study the convergence of Sk, we can prove the con-

vergence of Qke
‖Qke‖1

, since other parts of θQke
‖Qke‖1

+ 0.5e
‖Qke‖1

are of known value.

Lemma 10. Qke
‖Qke‖1

converges when k → ∞.

Proof. Let σ(Q) = {λ1,λ2, ...,λx} denote x number of distinct eigenvalues of Q.

According to [Mey01], there exists a nonsingular matrix P s.t.
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J = P−1QP =




J(λ1) 0 · · · 0

0 J(λ2) · · · 0
...

... . . . ...

0 0 · · · J(λx)




, J is called the Jordan form of Q,

and each of the J(λi) takes the form of




J1(λi) 0 · · · 0

0 J2(λi) · · · 0
...

... . . . ...

0 0 · · · Jy(λi)




, where y

can be calculated as in [Mey01], J?(λi) =




λi 1
. . . . . .

. . . 1

λi




m×m

, where m can

be calculated as in [Mey01]. Therefore, we have Q = PJP−1, and Qk = PJkP−1.

Since J is block diagonal, we have Jk =




J(λ1)k 0 · · · 0

0 J(λ2)k · · · 0
...

... . . . ...

0 0 · · · J(λx)k




. Since

J(λi) is also block diagonal, we are interested to know the form of J?(λi)k with

m×m, which can be shown as

J?(λi)k =




λk
i

(k
1

)
λk−1

i · · · ( k
m−1

)
λk−m+1

i

λk
i

. . . ...

. . .
(k

1

)
λk−1

i

λk
i




Let D be the set of distinct terms that appear in at least one element of Qke. Each

term in D is of form


 k

m−1


λk−m+1, where m ≥ 1 and λ ∈ σ(Q). Therefore,

Qke =




...

∑ j ci, jdi, j
...


. Here i represents the i-th element of Qke, j represents the

j-th term of an element, and ci, j is a non-zero real value.

It can be easily proven as follows that there exists a d∗ ∈ D, such that ∀d ∈
D−{d∗}, lim

k→∞
|d|
|d∗| = 0. For any given two terms in D, we have
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(I) if the terms contain the same λ, then


 k

m1


/


 k

m2


 → 0, when k →

∞,m1 < m2.

(II) if the terms of an element contain different λ1 and λ2, then


 k

m


(λ1

λ2
)k →

0, when k → ∞,λ1 < λ2.

Therefore, there exists a d∗ ∈ D such that ∀d ∈ D− {d∗}, lim
k→∞

|d|
|d∗| = 0. As

Qke
‖Qke‖1

= Qke
∑i |∑ j ci, jdi, j| =

Qke/|d∗|
∑i |∑ j ci, jdi, j/d∗| , we have, lim

k→∞
Qke
‖Qke‖1

= lim
k→∞

Qke/|d∗|
∑i |∑ j ci, jdi, j/d∗| .

For the denominator, for the terms di, j = d∗, the limit of di, j/d∗ is 1, whereas for

the terms di, j 6= d∗, di, j/d∗ is 0. Hence, the limit of the denominator is the sum of the

ci, j where the corresponding di, j = d∗. On the other hand, the limit of the numerator

is a vector of real values where only the elements whose terms contain d∗ is non-

zero value. Hence, the whole fraction converges. Therefore, Qke
‖Qke‖1

converges when

k → ∞.

With Lemma 10, we have the following Theorem 3 regarding the convergence of

anomaly scores Sk:

Theorem 3. For Sk = QSk−1 + b, where k ≥ 1, if the largest eigenvalue of Q is

smaller than 1, given any initial vector S0 such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 6=
0.5, then Sk converges when k → ∞.

With Lemma 9 and Lemma 10, this theorem is obvious.

We now study the convergence of rankings of nodes according to their anomaly

scores Sk. We have the following:

Theorem 4. For Sk = QSk−1 + b, where k ≥ 1, if the largest eigenvalue of Q is

smaller than 1, given any initial vector S0 such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 6=
0.5, then ∃ an integer K > 0 such that the ranking of elements in Sk will stay

unchanged ∀ k > K.

Proof. Since Q’s largest eigenvalue is smaller than 1, and the initial vector S0 con-

tains identical values not equal to 0.5, according to Lemma 9, we have Sk

‖Qke‖1
=

θQke
‖Qke‖1

+ 0.5e
‖Qke‖1

. Let Qke
‖Qke‖1

(i) denote the i-th element of vector Qke
‖Qke‖1

. Let ∆ =
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mini, j( Qke
‖Qke‖1

(i)− Qke
‖Qke‖1

( j)), then for any i, j, we have | Qke
‖Qke‖1

(i)− Qke
‖Qke‖1

( j)| ≥
∆.

According to Lemma 10, Qke
‖Qke‖1

converges. Hence, for any real number ε > 0,∃
an integer K > 0, s.t., ∀k > K, maxi(| Qk+1e

‖Qk+1e‖1
(i)− Qke

‖Qke‖1
(i)|) < ε. Therefore, if ε

is smaller than ∆/2, the above still holds.

Suppose Qke
‖Qke‖1

(i)> Qke
‖Qke‖1

( j), for any ε < ∆/2, we have Qk+1e
‖Qk+1e‖1

(i)> Qke
‖Qke‖1

(i)−
ε, and Qk+1e

‖Qk+1e‖1
( j)< Qke

‖Qke‖1
( j)+ε. Since | Qk+1e

‖Qk+1e‖1
(i)− Qke

‖Qke‖1
(i)|< ε and | Qk+1e

‖Qk+1e‖1
( j)−

Qke
‖Qke‖1

( j)|< ε, we always have Qk+1e
‖Qk+1e‖1

(i) > Qk+1e
‖Qk+1e‖1

( j).

Therefore, the relative order of Qke
‖Qke‖1

(i) and Qke
‖Qke‖1

( j) stays unchanged for all

k > K. Therefore, we have proven that there exists an integer K > 0, s.t. the ranking

of all elements in Sk never changes ∀k > K.

With the proven Theorem 4, we know that with certain assumption about Q and

as long as we set the identical initial value for all source nodes, the ranking of source

nodes will stay the same after a certain number of iterations. Now the question is,

will different runs with initial vectors of different identical values converge to the

same ranking?

The following theorem shows that (I)If two different runs involve different iden-

tical initial values that are both smaller 0.5, the final rankings are the same; (II)if

two different runs involve different identical initial values that are both greater than

0.5, the final rankings are the same; (III)If one run involves initial values smaller

than 0.5 and another run involves initial values greater than 0.5, the final rankings

are the opposite.

Theorem 5. For Sk = QSk−1 + b, where k ≥ 1, if the largest eigenvalue of Q is

smaller than 1, we have:

(I) given one initial vector S0, such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 < 0.5, and

another initial vector S∗0, such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 < 0.5, then there

exist an integer K > 0, such that the two rankings Sk and S∗k are identical ∀k > K.

(II) given one initial vector S0, such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 > 0.5, and

another initial vector S∗0, such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 > 0.5, then there

exist an integer K > 0, such that the two rankings Sk and S∗k are identical ∀k > K.
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(III) given one initial vector S0, such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 < 0.5, and

another initial vector S∗0, such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 > 0.5, then there

exist an integer K > 0, such that the two rankings Sk and S∗k are exactly the

opposite ∀k > K.

Proof. Since Q’s largest eigenvalue is smaller than 1, and the initial vector S0 con-

tains identical values not equal to 0.5, according to Lemma 9, we have Sk

‖Qke‖1
=

θQke
‖Qke‖1

+ 0.5e
‖Qke‖1

, where −0.5≤ θ≤ 0.5.

Since the initial vector S0 has equal elements not equal to 0.5, we have denoted

in Lemma 9 any initial vector as S0 = (0.5 + θ)e. When θ > 0, the initial vector

has elements larger than 0.5, whereas when θ < 0, the initial vector has elements

smaller than 0.5.

Therefore, (I) actually states S0 = (0.5+θ)e, S∗0 = (0.5+θ∗)e with θ < 0 and

θ∗ < 0. (II) involves θ > 0 and θ∗ > 0 and (III) suggests θ < 0 and θ∗ > 0.

Thus, we have Sk = θQke+0.5e and S∗k = θ∗Qke+0.5e. It is easy to see that

if (I)θ < 0 and θ∗ < 0 or (II)θ > 0 and θ∗ > 0, Sk will only differ from S∗k by some

scale. The rankings of all elements will be the same. When (III)θ < 0 and θ∗ > 0,

any two elements in Sk will have a reverse ranking in S∗k. Thus Sk is a reverse

ranking of S∗k.

According to Theorem 4, suppose K and K∗ are the two integers where the rank-

ings of Sk and S∗k stay unchanged, we know ∀k > max(K,K∗), both rankings will

stay unchanged. Therefore, we have proven (I), (II) and (III).

Theorem 5 suggests that if we set the initial value to be smaller than 0.5, implying

originally all nodes are normal, we will get the ranking that is exactly the opposite

of that we get if we set the initial value to be larger than 0.5, implying originally

all nodes are anomalous. Thus, the initial values act as the “prior view” towards

all nodes. Since we assume the normal nodes are the majority, we therefore should

always set the initial value to be smaller than 0.5.
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5.2.5 Iterative Algorithm

With these theorems we now design our iterative algorithm IMD, Algorithm 14 to

compute the ranking of source nodes. The ranking of target nodes can be computed

similarly.

Algorithm 14 IMD, Iterative algorithm to compute ranking of source nodes.
Input: bipartite graph G = 〈S∪T,E,A〉, initial value x,
number of iterations ranking stays unchanged y.
Output: rankings of S, Ŝ.

1: Set S0=(x,x, ...,x)′.
2: Let Ŝ∗ be the ranking of S according to S0.
3: c=0; k=1.
4: while c≤ y do
5: Compute anomaly score for source nodes as in Formula 5.2,

Sk = (W S−2X)(W T −2Y )Sk−1 +(W S−2X)Y +X .
6: Ŝ keeps the ranking of S according to Sk.
7: if the distance between Ŝ and Ŝ∗ is 0 then
8: c++.
9: else

10: c = 0.
11: Ŝ∗ = Ŝ.
12: k++.
13: return Ŝ

We set the initial score vector of both source and target nodes as (0.1,0.1, ...,0.1)′,

since we assume all nodes are normal in the beginning. Different values that are

smaller than 0.5 gives the same ranking, as proven in Theorem 5. We measure the

distance of the two consecutive iterations by Kullback-Leibler divergence [KL51].

If the rankings stay unchanged for a certain number of times y, which is set to a

small number such as 10, the algorithm stops. Note that the purpose of y is for

observing convergence, as we have proven the ranking should converge if certain

conditions are met. In practice, the actual number of iterations needed is small,

which is studied in the experiments section.

Time Complexity of algorithm IMD. We first analyze the complexity of step 5 of

IMD. It involves multiple matrix multiplications, whose time complexity is of O(n2),

where n is the number of nodes in the graph. Suppose the number of iterations

needed to convergence is ρ, then the time complexity of algorithm IMD is of O(n2ρ̇).
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5.3 Experiments on Synthetic Data

In this section, we evaluate our node anomaly detection framework on synthetic

data. We generate synthetic bipartite graphs with properties that are necessary for

testing different detection models. We show the precisions of our method as well as

other existing methods on these synthetic graphs.

5.3.1 Synthetic Data Generation Algorithm without Noise

In Algorithm 15, we first set aside 4 sets of nodes as anomalous source nodes SA,

anomalous target nodes T A, normal source nodes SN and normal target nodes T N

and then generate edges among them. In order for an injected anomalous node

to be anomalous, it has to possess at least one kind of anomalous characteristics:

giving/receiving disagreeing edges to/by normal nodes or giving/receiving agreeing

edges to/by anomalous nodes. Similarly, for an injected normal node to be normal,

it has to have at least one kind of normal characteristics: giving/receiving disagree-

ing edges to/by anomalous nodes or giving/receiving agreeing edges to/by normal

nodes.

We generate edges in the following sequence: from SA to T A, from SA to T N ,

from SN to T A, and then from SN to T N . We introduce parameters in the data

generation algorithm such that it generates graphs of different properties (e.g., the

ratio of disagreeing edges to agreeing edges), which are necessary to test our method

as well as others. We also make sure that the algorithm generates these properties

for source and target nodes simultaneously so that later steps would not mess up the

properties generated by the previous steps. Parameter n controls the size of SN and

T N , α is the ratio of |SA| to |SN | or the ratio of |T A| to |T N |, β is the ratio of the

expected number of disagreeing edges to the expected number of agreeing edges

for any anomalous node, and 1/γ is the ratio of the expected number of disagreeing

edges to the expected number of agreeing edges for any normal node.

Figure 5.1 illustrates the properties of our generated graphs. Specifically, after

step 6, it can be easily shown that for any anomalous source, the expectation of the

number of agreeing edges is α ·n/2; and the expectation of the number of disagree-
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Algorithm 15 Generate synthetic bipartite graph
Input: parameters: n, α, β, γ
Output: bipartite graph, G

1: Generate node sets for G: SN , SA, T N , T A such that |SN | = |T N | = n, |SA| =
|T A|= α ·n, (0 < α < 1)

2: for each node s in SA do
3: Randomly select a target node set T ∗ ⊂ T A, where |T ∗| is randomly drawn

from [0,α ·n], (α ·n≤ |T A|= α ·n).
4: Generate agreeing edges from s to each node in T ∗.
5: Randomly select a target node set T ∗ ⊂ T N , where |T ∗| is randomly drawn

from [0,α ·n ·β], (α ·n ·β≤ |T N |= n).
6: Generate disagreeing edges from s to each node in T ∗.
7: for each node t in T A do
8: Randomly select a source node set S∗ ⊂ SN , where |S∗| is randomly drawn

from [0,α ·n ·β], (α ·n ·β≤ |SN |= n).
9: Generate disagreeing edges from each node in |S∗| to t.

10: for each node s in SN do
11: Randomly select a target node set T ∗ ⊂ T N , where |T ∗| is randomly drawn

from [0,α2 ·n ·β · γ], (α2 ·n ·β · γ≤ |T N |= n).
12: Generate agreeing edges from s to each node in |T ∗|.
13: return G

ing edges is α ·n ·β/2.

We can also compute for any node in T N , the expected number of edges linking

from SA as: 1
α·n·β+1 ·∑

α·n·β
i=0

i
n ·α ·n = α2 ·n ·β/2.

Similarly, since |SA| = |T A|, for any node in T A, the expected number of edges

linking from SA is exactly α ·n/2.

After step 9, for any anomalous target in T A, the expectation of the number of

edges from SN is α ·n ·β/2. Similarly, for any node in SN , the expected number of

edges to T A is α2 ·n ·β/2.

After step 12, we can compute that for any node in SN , the expectation of the

number of edges to T N is α2 ·n ·β · γ/2. Since |SN |= |T N |, for any node in T N , the

expectation of the number of edges from SN is also α2 ·n ·β · γ/2.

Now, for any node in SA or in T A, the ratio of the expected number of disagree-

ing edges to the expected number of agreeing edges is α·n·β/2
α·n/2 = β. On the other

hand, for any node in SN or in T N , the ratio of the expected number of disagreeing

edges to the expected number of agreeing edges is α2·n·β/2
α2·n·β·γ/2 = 1/γ. These ratios are

controlled by varying parameters of α, β and γ.
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SN, |SN|=n

TN, |TN|=n

SA, |SA|=α·n

TA, |TA|=α·n

sources

targets

α2 · n · β · g /2 α·n/2
α · n · β /2

α · n · β /2

α2 ·n· β /2

α2 · n · β /2

Figure 5.1: Synthetic bipartite graph. SA: anomalous source nodes, T A: anomalous
target nodes, SN : normal source nodes and T N : normal target nodes.

In bipartite graphs, each edge carries the opinion of source node to target node.

It is natural to expect that the opinions generated by the normal nodes prevail the

opinions generated by the anomalous nodes, we should be able to set the parameters

so as to control the opinions from anomalous nodes always being minority. Specif-

ically, since disagreeing edges are always between anomalous and normal nodes,

the opinions from normal and anomalous nodes carried by disagreeing edges are al-

ways equal. Thus, we want the opinions in the form of expected number of agreeing

edges among normal nodes to be larger than those among anomalous nodes.

The expected number of agreeing edges among normal nodes is (|SN |+ |T N |) ·
α2 ·n ·β ·γ/2 = α2 ·n2 ·β ·γ. The expected number of agreeing edges among anoma-

lous nodes is (|SA|+ |T A|) ·α · n/2 = α2 · n2. According to the anomaly being mi-

nority assumption, we have α2 ·n2 ·β · γ > α2 ·n2, which leads to β > 1/γ. Thus, we

set β to be larger than 1/γ to guarantee the graphs are properly generated.

Other parameter constraints can be derived from the generation algorithm. They

are α · n ·β ≤ 1 derived from step 5 and step 8 and α2 ·β · γ ≤ 1 derived from step

11.
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5.3.2 Results

We compare our model denoted as IMD with the models that are based on only one

of the mutual dependency principles. We denote the one with positive mutual de-

pendency principle as PMD implemented as in [Zha02] and the one with negative

mutual dependency principle as NMD implemented as in [LLW08]. We also incor-

porate the random guess method denoted as RG. We vary the parameters and test

the precisions of all methods.

We first test with a fixed α and β, how 1/γ affects the results. Note that both β

and 1/γ can be set as any real number. If they are smaller than one, agreeing edges

dominate for each node. If they are larger than one, disagreeing edges dominate.

We set |SN |= |T N |= n as 200 and set α = 0.5. β can be derived as smaller than or

equal to 2. We set β=2 and set 1/γ={1.9, 1.5,1,0.5} to test on graphs where agree-

ing edges dominate for anomalous nodes. We also try β=0.5 and vary 1/γ from

{1/2.1, 1/4, 1/6, 1/8} to test on graphs where agreeing edges dominate for anoma-

lous nodes. The values for 1/γ satisfy the aforementioned parameter constraints.

For each parameter setting, we generate 3 bipartite graphs and evaluate each method

by precision@K, where K is the number of true anomalous source/target nodes.

Our results with β=2 is shown in Figure 5.2(a) and the results with β=0.5 in Figure

5.2(b). Y -axis shows the average precision@K and X-axis shows different 1/γ val-

ues. The curve with IMD s is regarding the performance of method IMD on source

nodes. Similarly, IMD t is for target nodes.

We can see from Figure 5.2(a) and Figure 5.2(b) that our method IMD gets perfect

precision over all settings, much better than the competing ones. When β is fixed

and 1/γ is varied. As 1/γ gets smaller, anomalous nodes are getting more char-

acterized by disagreeing edges and less characterized by agreeing edges compared

to normal ones. As a result, it becomes easier for the model NMD that propagates

anomaly scores through disagreeing edges to identify anomalous nodes. At the

same time it becomes harder for the model PMD that propagates anomaly scores

through agreeing edges to identify anomalous nodes.

As IMD takes into consideration both mutual dependency principles and prop-

agate anomaly scores on both types of edges, we are able to achieve the perfect
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Figure 5.2: Results on synthetic data. Y -axis shows the average precision@K and
X-axis shows different 1/γ values. (a) with α=0.5, β=2, varying 1/γ; (b) with α=0.5,
β=0.5 and varying 1/γ; (c) with β = 0.5, 1/γ = 0.49 and varying α.

precision. This shows that both the positive and negative mutual dependency rela-

tionships are necessary for anomaly detection.

To test whether the performance will be affected by the number of anomalous

nodes α, we set β = 0.5 and 1/γ = 0.49. The results are shown in Figure 5.2(c),

which suggests that, as α changes, the performance of NMD and PMD are only as

good as the random guess. The explanation is when 1/γ is only slightly smaller

than β, the normal nodes and the anomalous nodes are giving out almost the same

ratio of number of agreeing edges to disagreeing edges. This makes the anomalous

nodes hard to discriminate from the normal ones for NMD and PMD.

5.3.3 Synthetic Data Generation Algorithm with Noise

We have shown the results on synthetic graphs generated under the assumption

that normal nodes never behave anomalously and anomalous nodes never show

any normal behaviors. This assumption makes sure that the anomalous and nor-
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Figure 5.3: Results on synthetic data with varying noise level π.

mal nodes are truly the ground truth. Here we also experiment on synthetic bipartite

graphs with noisy ground truth. In other words, anomalous nodes may possess

some normal behaviors: giving/receiving disagreeing edges to/by anomalous nodes

or giving/receiving agreeing edges to/by normal nodes; normal nodes may show

anomalous behaviors: giving/receiving disagreeing edges to/by normal nodes or

giving/receiving agreeing edges to/by anomalous nodes.

Parameter π is used to control the probability of a node having the behavior of its

opposing role. Specifically, we modify the Algorithm 15 such that when agreeing

edges are generated in step 4 and step 12, each edge has a probability of π of being

a disagreeing edge. Similarly, when disagreeing edges are generated in step 6 and

step 9, each edge has a probability of π of being an agreeing edge. Note that the

larger the π is, the less likely the anomalous and normal nodes are the real ground

truth.

5.3.4 Results

We vary π and set other parameters as n = 200, α = 0.5, β = 0.5, 1/γ = 0.5, as the

competing method performs better on this setting. The results are shown in Figure

5.3. As we can see that, even in the presence of noise, IMD is still the best. Even

when the noisy level is 0.3, IMD resists all noisy information. When π = 0.5, all

methods are as good as the random guess. This is because, when anomalous nodes

manifest the same amount of anomalous behavior as normal behaviors, anomalous

nodes are no longer anomalous.
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Figure 5.4: Results on convergence. Different curves corresponding to different
graph sizes (number of nodes) show how the KL divergence between the node rank-
ings of two consecutive iterations changes as the number of iterations increases.

Number of nodes n 100 500 1000 5000 10000
Running time 0.12 2.49 11.2 489 3193

Table 5.3: The running time of algorithm IMD with graphs of various number of
nodes

5.3.5 Convergence Speed

Here we study during the iterative computation, how fast the rankings converge.

We measure the distance between the rankings of two consecutive iterations by

Kullback-Leibler divergence [KL51]. If two rankings are the same, the KL diver-

gence distance is 0. We set α = 0.5, β = 0.5, 1/γ = 0.5 and π = 0.1. We vary the

size of n from small to large, such that the total number of nodes in the generated

graphs are from 100 to 10,000. The KL divergence distance v.s. the number of iter-

ations curves for sources are shown in Figure 5.4. The curves for targets are similar

and are omitted due to space constraint. Note that the figure shows the number of

iterations until the distance becomes 0. In practice, our algorithm runs 10 more iter-

ations to guarantee the distance does stay as 0 afterwards. We can see from the plot

that our node ranking stays unchanged after only a small number of iterations. We

also report the corresponding running time (in seconds) of algorithm IMD in Table

5.3. We can see that our algorithm scales as we expected in the time complexity

analysis.
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5.4 Experiments on Goodreads Data

Goodreads1 is the largest website for people to write book reviews, rate books,

recommend books to friends and socialize online with other readers or writers. Ac-

cording to its website, it has more than 9,000,000 members who have added more

than 320,000,000 books to their shelves. To facilitate exploration, Goodreads cre-

ates “listopia” for users to quick find interesting books and maybe vote for their

favorites. A book can be rated by any user on a scale of 5.

We utilize the API provided by Goodreads to crawl our data on May 20, 2012.

Since the number of books and users are too large, we start from a popular book

list in Goodreads’ listopia, called “Dealbreakers: If You Like This Book, We Won’t

Get Along”. We crawl from this list that books that have less than 1000 user ratings.

We then crawl all the users who have rated these books and have rated less than

1000 books. We further go another hop to get all the books that are rated by the

previously crawled users and have less than 1000 user ratings. The bipartite graph

is thus generated with users as the source partite, books as the target partite and the

edges suggests users rating books.

We only crawl the books and users with less than 1000 neighbors so that we

would not run into some really popular books and end up with too large a dataset.

The other reason is that the anomalous books and users with fewer ratings are easier

to examine and make sense of.

As our model takes in edge labels which are either agreeing or disagreeing, we

thus map the rating carried by an edge to a label as follows. If this rating is a minor-

ity rating of all ratings given to the same book, then this edge is given a disagreeing

label; otherwise, this edge is given a agreeing label. The majority ratings are the

ones within 2 standard deviation from the mean of all ratings given to a target.

We iteratively filter away target nodes with less than 10 edges and source nodes

with less than 2 edges, as books rated by less than 10 users are not drawing enough

attention from the audience and less likely to be spammed. Similarly users only rate

one book are not influential enough, even if they are spammers. In the end, we have

1http://www.goodreads.com/
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a bipartite graph with 7982 source nodes, 9169 target nodes and 163621 edges.

We apply our anomaly detection method on this bipartite graph. The top-1

anomalous book returned is “Justin Bieber: My World”, published in August 1st

2010, and written by Justin Bieber. It received 100 ratings, with 48 of score 5, 4 of

score 4, 4 of score 3, 3 of score 2 and 41 of score 1. Judging by this rating distri-

bution, we know the opinions on this book are rather divided. Moreover, it is very

hard to tell whether the users giving out 1 or the users giving 5 are spamming or

anomalous simply by rating distribution. However, our approach is able to identify

out of 99 users, 25 of them are anomalous users (i.e., users whose anomaly scores

are greater than 0.5). Interestingly, these anomalous users are all giving low ratings

(1 or 2) to this book and none of them gives textual comments to this book. Our

model considers these 25 users anomalous as when they rate other books, they tend

to disagree with normal users and agree with other anomalous users. We find that

some of the 25 users including Angela and Kimiko, who rated around twenty books

and mostly gave low ratings are not quite far away from the average rating. Based

on our results, we may think that the book “Justin Bieber: My World” is unfairly

demoted by some users.

Top-2nd is also a book by Justin Bieber, called “I ♥ Justin Bieber”. It received

23 ratings, with 22 of them being 5. Unlike the top-1 book, this book is anomalous,

as there are 9 identified anomalous users giving out score 5 to it. Almost all 9 users

seem to be the fans of Justin Bieber. Their comments are about loving the person,

not the book. One of them even has the user name as “JustinBieberLover”. We

therefore conclude that this book is somewhat spammed by his fans to promote the

book.

Other top 10 anomalous books include 3 other Justin Bieber’s books, “Kar-

dashian Konfidential” by Kourtney Kardashian and “Birth Control Is Sinful in the

Christian Marriages and Also Robbing God of Priesthood Children!!” by Eliyza-

beth Yanne Strong-Anderson. All these books are identified by our model as being

rated by some suspicious users.
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5.5 Experiments on Buzzcity data

BuzzCity2 is a global mobile advertising platform, where publishers host on their

own websites the advertisement of advertisers. If anyone clicks on the advertise-

ments, the publishers and the BuzzCity platform get money paid by advertisers.

It is suspected that some fraudulent publishers would hire spammers to click on

the advertisement hosted on their websites to gain money. To maintain a healthy

ecosystem, BuzzCity has good intention to identify these spammers.

Buzzcity provides around 10 million click logs during a three day’s period from

Jan 26, 2012 to Jan 28, 2012. The dataset contains the encoded IP address of each

click on each publisher. As a publisher may have multiple websites, the click data

is already aggregated by publishers. Buzzcity has asked its own employees to label

the publishers as “OK”, “Observation” (meaning not sure) or “Fraud”. This dataset

will be made public for a fraud detection competition.

We apply our model to detect the fraudulent clickers (i.e., IP addresses) and

publishers with clickers as one partite, publishers as the other partite and edges

suggest users click on publishers. Since each edge carries the number of clicks

from a clicker to a publisher, we map the number of clicks to agreeing and disagree

edges as we do for the Goodreads data. We iteratively filter out nodes with less than

2 edges, as they are unlikely to be fraudulent. As a result, we have 132540 source

nodes, 1428 target nodes, among which 1264 are OK, 77 are Observation and 87

are Fraud cases. Thus a random guess may achieve a precision of around 0.06.

The completing methods of our IMD are PMD with positive mutual dependency,

NMD with negative mutual dependency, the distance-based anomaly detection ap-

proach DIST and a supervised approach, decision tree DT. For DIST, the distance

between two publishers is defined as the KL divergence distance between the corre-

sponding two click distributions of publishers. A click distribution of a publisher is

the normalized histogram on the number of clicks from all clickers of this publisher.

The distance-based anomaly score is computed as in [KN98]. As for DT, for each

publisher, we define 7 features including total number of unique clickers, total num-

ber of clicks, the ratio of number of clicks to the total number of unique clickers,

2http://www.buzzcity.com/
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Figure 5.5: Precision@K curves on Buzzcity dataset.

as well as mean, median, standard deviation and skewness of the click distribution.

We use C4.5 implemented by WEKA [HFH+09] with 10 fold cross-validation and

output the prediction score of each publisher.

Since each method can output a ranking of the publishers according to its com-

puted scores, we thus measure the performance of the top ranked publishers of each

method by Precision@K. We vary K from small to as large as 87, the number of

labeled fraudulent publishers. The results are shown in Figure 5.5. As we can see

from the plot that our method IMD performs the best among all approaches.

5.6 Summary

We proposed a generic anomaly detection framework on bipartite graphs, based on

the integral set of mutual dependency principles. We are the first to unify the posi-

tive and negative mutual dependency principles and design iterative algorithm with

guarantee that the ranking of sources or targets will converge. We tested our frame-

work on both the synthetic data and two real life datasets, namely Goodreads and

Buzzcity. The results in these datasets show that our model outperforms the mod-

els with either positive or negative mutual dependency principles, which demon-

strates the necessity of incorporating both principles for anomaly detection tasks.

Moreover, we successfully identified suspicious users and books in Goodreads and

achieved higher precision in detecting fraudulent publishers in Buzzcity than exist-

ing approaches.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation constitutes our research on detecting anomalies in social data.

Thanks to the booming of online social media including Facebook and Twitter, large

amount of social data is generated every second. The data captures the interactions

and behaviors of multiple types of entities including human actors and resources.

Another character of social data is its richness in both content and linkage informa-

tion regarding the involving entities. Anomalies in social data are the entities that

are inconsistent with the rest in terms of behaviors in the social network or features

extracted from the social data. Examples of anomalies are spammers in Twitter,

fraudulent users in online marketplace and opinion spammers in online forum.

Observations indicate that in social data anomalies often do not occur individ-

ually, but form small collections. Unlike the majority, entities in an anomalous

collection tend to share certain extreme behavioral traits. We therefore propose the

first type of problems, detecting anomalous collections. Furthermore, in a social

network containing different types of entities, the anomalousness of one entity of-

ten depends on the entities it connects with, we therefore propose the second type of

problems, detecting node anomalies in graphs. The first type of problems identifies

anomalous collections of one type of entities by their collective extreme behaviors,

whereas the second type of problems discovers node anomalies of two types of en-

tities in social networks by their unusual interactions.
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We introduce the problem of discovering extreme rank anomalous collections

(ERAC). We propose both exact and heuristic algorithms for detecting top-K ER-

ACs, for both independent and dependent feature sets. We apply our approach to

detect web spammers in web host graph, anomalous actor groups in IMDB, as well

as opinion spammers in Chinese online forum. The results on both data sets showed

that the top ERACs are meaningful. Interestingly, the anomalous entities discov-

ered by our approach are highly distinctive from those found by existing methods.

Moreover, for web spam detection, our approach not only detects web spammer

collections with higher precision than existing approaches, but also explains the

anomaly statistically. The results on Chinese online forums indicate we find mean-

ingful opinion spammer collections agreed by human evaluators. We also propose

the follow-up problem of ERAC expansion, where the detected top-K ERACs are

expanded to more anomalous supersets. Experiments on all datasets demonstrate

the effectiveness of ERAC expansion.

We propose the problem of detecting top-K disjoint Coherent Anomaly Col-

lections (CAC). We present an algorithm to identify CACs that does not need the

collection number or collection size to be specified beforehand. The efficiency and

effectiveness of the proposed algorithm are demonstrated by comparing with ex-

isting schemes on synthetic data. Our algorithm is also tested on three real world

data sets, namely Twitter.com, a Webspam dataset and a Chinese online forum,

to detect hashtag spammer collections, spamming website collections and opinion

spammer collections respectively. The experiment results demonstrate that in all

three datasets, our approach successfully finds suspicious spammer groups which

are not easily identifiable with other approaches.

We also propose a generic anomaly detection framework on bipartite graphs,

based on the integral set of mutual dependency principles. We are the first to unify

the positive and negative mutual dependency principles and design iterative algo-

rithm with guarantee that the ranking of sources or targets will stay unchanged for a

certain number of iterations. We tested our framework on both the synthetic data and

two real life datasets, namely Goodreads and Buzzcity. The results in these datasets

show that our model outperforms the models with either positive or negative mu-

tual dependency principles, which demonstrates the necessity of incorporating both
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principles for anomaly detection tasks. Moreover, we successfully identified sus-

picious users and books in Goodreads and achieved higher precision in detecting

fraudulent publishers in Buzzcity than existing approaches.

6.2 Future Work

We identify several future research directions to expand our work in detecting anoma-

lous collections and anomalies in graphs.

Mining General Anomaly Collections.

Both of our ERAC and CAC detection frameworks are based on the “extreme rank”

concept, where members of an anomaly collection consistently appear at extreme

ranking positions of certain features. However, it is possible to have an anomalous

collection defined to have members appearing consistently at some non-extreme po-

sitions. This general definition of anomaly collection would be able to utilize fea-

tures where the behaviors of the anomaly collection are not extreme. One solution

is to change the “extreme index” concept to a “closeness interval” in the entity rank-

ing list. Given a collection and a closeness interval, the number of entities of this

collection appearing in this closeness interval still follows the hypergeometric dis-

tribution. It would also be interesting to know whether more efficient algorithms can

be designed and whether this new definition can retrieve more interesting anoma-

lous collections in real data.

Mining Anomaly Collections in Data Streams

We have been assuming that the input data to our anomaly detection problems is

static. In other words, we take a summarized view of the social data and then try

to find the anomalies in this static view. It would be interesting to mine anomaly

collections in data streams, where the entity population and the behavior of entities

may change over time. For example spammers in Twitter, may be reported and

deleted. New user accounts may be compromised and start to manifest spamming

behaviors. These characteristics of data streams require a new definition of anomaly
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collection incorporating the time dimension. We can derive the probability of each

unusual pattern based on the previous n snapshots of the social network, and define

the anomaly as the unusual patterns that are of small probabilities and are actually

observed in the “future” snapshots.

Moreover, the stream data can be so huge in volume that we can only scan the

data once. We thus need an efficient data structure and its corresponding algorithms

to work on. One extension is to use a time window to sample the data along the

time dimension. Efficient and appropriate ways to update our ranking lists asso-

ciated with all features can be designed for detecting ERACs or CACs. We may

also consider ways of weighting features by heuristics such as during the collection

search process, if one feature contributes too few entities that are also appear in the

extreme positions of other features, then we can prune this feature dynamically.

Mining Anomaly Collections in Graphs

Our work on detecting node anomalies in graphs derives the anomaly scores of

nodes in bipartite graphs simultaneously. However, the scores are computed on in-

dividual node level based on the mutual dependency relationships among nodes.

This mutual dependency may also exist at the collection level, where the anoma-

lousness of a collection depends on that of other collections associated with it. The

hard part is then how to derive the collections or how to aggregate the nodes to

collections. One possible solution is to borrow the results of our work of ERAC

and CAC detection to find these collections and then apply the mutual dependency

principle. This combination may have the benefit of boosting precisions of find-

ing spammers in real-life datasets, as this approach takes both the node feature and

linkage information into consideration.
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[GGMP04] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combat-

ing web spam with trustrank. In VLDB Conf., 2004.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust

clustering algorithm for categorical attributes. In ICDE Conf., 1999.

[Har65] W. L. Harkness. Properties of the extended hypergeometric distribu-

tion. The Annals of Mathematical Statistics, 36(3), 1965.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. The weka data mining software: an

update. SIGKDD Explor. Newsl., 11(1), 2009.

[HLV03] Wenjie Hu, Yihua Liao, and V. Rao Vemuri. Robust anomaly detec-

tion using support vector machines. In ICML Conf., 2003.

[HXD03] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-

based local outliers. Pattern Recogn. Lett., 24(9), 2003.

[Ken48] Maurice G. Kendall. Rank correlation methods. Griffin, 1948.

132



[KJD09] Das Kaustav, Schneider Jeff, and B. Neill Daniel. Detecting Anoma-

lous Groups in Categorical Datasets. CMU Technical Report, 2009.

[KL51] S. Kullback and R. A. Leibler. On information and sufficiency. Ann.

Math. Statist., 22(1), 1951.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environ-

ment. J. ACM, 46(5), 1999.

[Kle02] Jon Kleinberg. Bursty and hierarchical structure in streams. In

SIGKDD Conf., 2002.

[KN98] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining

distance-based outliers in large datasets. In VLDB Conf., 1998.

[LC08] Shou-de Lin and Hans Chalupsky. Discovering and explaining ab-

normal nodes in semantic graphs. IEEE Trans. on Knowl. and Data

Eng., 20(8), 2008.

[LLW08] Hady W. Lauw, Ee-Peng Lim, and Ke Wang. Bias and controversy in

evaluation systems. IEEE Trans. on Knowl. and Data Eng., 20(11),

2008.

[LTS04] Antonio Loureiro, Luis Torgo, and Carlos Soares. Outlier detection

using clustering methods: a data cleaning application. In Proc. of the

data mining for business workshop, 2004.

[LTZ10] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. On detecting clus-

tered anomalies using sciforest. In ECML/PKDD Conf., 2010.

[Mey01] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra Book

and Solutions Manual. SIAM: Society for Industrial and Applied

Mathematics, 2001.

[MLG12] Arjun Mukherjee, Bing Liu, and Natalie Glance. Spotting fake re-

viewer groups in consumer reviews. In WWW Conf., 2012.

[MLW+11] Arjun Mukherjee, Bing Liu, Junhui Wang, Natalie Glance, and Nitin

Jindal. Detecting group review spam. In WWW Conf., 2011.

133



[NC03] Caleb C. Noble and Diane J. Cook. Graph-based anomaly detection.

In KDD Conf., 2003.

[PCWF07] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos

Faloutsos. Netprobe: a fast and scalable system for fraud detection in

online auction networks. In WWW Conf., 2007.

[Rob86] J. M. Robson. Algorithms for maximum independent sets. Journal

of Algorithms, 7(3), 1986.

[SEKX98] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.

Density-based clustering in spatial databases: The algorithm gdbscan

and its applications. Data Min. Knowl. Discov., 2(2), 1998.

[SQCF05] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos

Faloutsos. Neighborhood formation and anomaly detection in bipar-

tite graphs. In ICDM Conf., 2005.

[Tal05] Erik Talens. Statistical auditing and the AOQL-method. Labyrint

Publication, 2005.

[TY06] Jun-ichi Takeuchi and Kenji Yamanishi. A unifying framework for

detecting outliers and change points from time series. IEEE Trans.

on Knowl. and Data Eng., 18(4), 2006.

[WLLH08] Furu Wei, Wenjie Li, Qin Lu, and Yanxiang He. Query-sensitive mu-

tual reinforcement chain and its application in query-oriented multi-

document summarization. In SIGIR Conf., 2008.

[WMCW03] Weng-Keen Wong, Andrew Moore, Gregory Cooper, and Michael

Wagner. Bayesian network anomaly pattern detection for disease out-

breaks. In ICML Conf., 2003.

[Wu93] Trong Wu. An accurate computation of the hypergeometric distribu-

tion function. ACM Trans. Math. Softw., 19(1), 1993.

[WXLY11] Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. Review graph

based online store review spammer detection. In ICDM Conf., 2011.

134



[YHY07] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with

multiple conflicting information providers on the web. In SIGKDD

Conf., 2007.

[YSZ02] Dantong Yu, Gholamhosein Sheikholeslami, and Aidong Zhang.

Findout: finding outliers in very large datasets. Knowl. Inf. Syst.,

4(4), 2002.

[Zha02] Hongyuan Zha. Generic summarization and keyphrase extraction us-

ing mutual reinforcement principle and sentence clustering. In SIGIR

Conf., 2002.

135


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2013

	Anomaly Detection on Social Data
	Hanbo DAI
	Citation


	tmp.1379566186.pdf.DSdwf

