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Locally optimal law for maximum inclination change

of a solar sail in an atmosphere

Valentin Stolbunov1

University of Toronto, Toronto, Canada, M3H 5T6.

Matteo Ceriotti2, Camilla Colombo3, and Colin R. McInnes4

University of Strathclyde, Glasgow, United Kingdom, G1 1XJ

The aim of this paper is to devise a local optimal strategy for orbital inclination

change of solar sail spacecraft in low Earth orbit, combining the e�ects of the solar

radiation pressure and atmospheric forces. The spacecraft is modeled as a re�ective

�at plate. The acceleration due to e�ects of atmospheric forces and solar radiation

pressure is computed, depending on the orbital parameters and attitude of the sail.

Then, the attitude that maximizes the instantaneous orbital inclination change is found

through Gauss' equations. When either one of these e�ects dominates over the other

(and so one can be neglected), analytic expressions are found. When both e�ects are

considered, a numerical optimization is used. An additional constraint is introduced

to avoid a decrease in orbital semi-major axis, and therefore prevent losses of orbital

energy, while increasing the inclination. Di�erent regions are identi�ed, depending on

whether the atmospheric e�ects dominate, the solar radiation pressure dominates, or

the two are comparable. Arcs along the orbit are determined in which the optimal

attitude can be found analytically, and the expression is derived. Numerical results

show that a consistent increase of inclination can be achieved in a one year mission,
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starting from di�erent circular orbits, by applying the proposed control laws.
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Nomenclature

a = Semi-major axis of spacecraft's orbit, km

a = Total non-gravitational acceleration, mm/s2

a0 = Characteristic acceleration of the solar sail spacecraft, mm/s2

A = Spacecraft �at plate area, m2

cD = Coe�cient of drag

cL = Coe�cient of lift

D̂ = Unit vector in the direction of aerodynamic drag

e = Eccentricity of spacecraft's orbit

f = True anomaly of spacecraft's orbit, deg or rad

h = Altitude of the orbit, km

h = Angular momentum vector per unit mass of spacecraft's orbit, km2/s

i = Inclination of spacecraft's orbit, deg or rad

L̂ = Unit vector in the direction of aerodynamic lift

m = Spacecraft mass, kg

N̂ = Unit vector normal to the re�ective �at plate

P = Local pressure on sail surface from photon momentum transport, N/m2

r = Spacecraft position vector with respect to the center of the Earth, km

r̂s� = Unit vector pointing from the spacecraft to the Sun, km

t̂, n̂, ĥ = Tangential, normal and out-of-plane right-handed reference frame, centered on the spacecraft

v, v = Velocity vector and its magnitude, km/s

vb = Average normal thermal velocity of atmospheric particles in equilibrium with sail surface, km/s

αN = Right ascension angle of the N̂ vector, deg or rad

α� = Right ascension angle of the r̂s� vector, deg or rad

βN = Declination angle of the N̂ vector, deg or rad

β� = Declination angle of the r̂s� vector, deg or rad

ζ = Angle complementary to �at plate's angle of attack, deg or rad

η = Solar sail e�ciency factor

θ = Argument of latitude (f + ω), deg or rad
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λ� = Angle measured on the ecliptic between Sun position and direction of the gamma-point, deg or rad

µ = Gravity constant of the Earth, 3.9860× 105 km3/s2

ρ = Atmospheric density, kg/m3

σn = Accommodation coe�cient for normal momentum exchange, 0.8

σt = Accommodation coe�cient for tangential momentum exchange, 0.8

φ = Angle between pericenter of spacecraft's orbit and the direction of solar radiation, deg or rad

ω = Argument of the pericenter (measured from the ascending node) of spacecraft's orbit, deg or rad

Ω = Longitude of ascending node of spacecraft's orbit, deg or rad

Subscripts

opt = A vector or value which is deemed optimal

t, n, h = Components of vector quantities directed along the unit vectors of the t̂, n̂, ĥ frame

aero = A vector or value resulting from the aerodynamic forces on the spacecraft

SRP = A vector or value resulting from the solar radiation pressure forces on the spacecraft

Superscripts

+,− = Solution with "+" or "-"

I. Introduction

Solar sailing has for many years been an intriguing concept for spacecraft propulsion. The

original concept has been studied extensively in the literature since its introduction during the

beginning of the 1900's. The reason for this interest is mainly related to the capability of a solar

sail to provide a continuous (albeit relatively small) acceleration, without using propellant mass.

After many years of theoretical studies and laboratory experiments, JAXA's spacecraft IKAROS

[1] successfully deployed the �rst solar sail in space, demonstrating that solar sailing is viable.

Most studies which focus on the use of solar sails are motivated by one of two types of space

missions. The �rst of these are deep space interplanetary or Lagrange point missions [2]. The second

type are high-altitude Earth bounded orbits where the e�ect of the atmosphere is negligible [3]. This

is partly justi�ed by the fact that a solar sail is a large surface of an extremely thin, membrane with
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an extremely high area-to-mass ratio.

However, recently NASA's Nanosail-D2 [4] demonstrated the de-orbiting capabilities of a large,

low-mass, high-surface area sail, also showing the feasibility of deploying a sail in the upper layers

of the atmosphere, at least as a de-orbiting device. Nanosail-D2 was only passively stabilized by

the atmospheric drag force on the sail and therefore could not be used to demonstrate solar sailing.

Another demonstrator, CubeSail [5], is being designed and will be launched into a 800 km orbit with

the aim of testing a 3-axis attitude control system. Despite its relatively low area-to-mass ratio,

the mission will demonstrate the capabilities of a solar sail in a low Earth Sun-Synchronous orbit,

where the sail is kept in a minimum-drag con�guration.

The combined e�ects of solar radiation pressure (SRP) and aerodynamic forces are traditionally

taken into account on spacecraft in low and medium Earth orbits in terms of perturbations on the

dynamics of the spacecraft. Recently, Colombo et al. studied the e�ects of these forces on the

long-term orbit evolution of large area-to-mass spacecraft such as a large solar sail or micro-scale

`SpaceChips,' considering a passively stabilised attitude [6]. It was shown that these e�ects can

be exploited for orbit control, either modifying the re�ectivity coe�cient through electro-chromic

coating to modulate the magnitude of the solar radiation pressure acceleration [7], or by engineering

the drag coe�cient by a change in temperature.

However, relatively little work has been done on exploiting these e�ects by actively changing

the attitude of the spacecraft, with the aim of changing the orbital elements. In particular, if a large

area-to-mass ratio spacecraft is modeled as a re�ective plate subject to solar radiation pressure and

aerodynamic forces, then its attitude can be controlled to substantially vary the two forces. The

work of Morgan [8] investigated the use of a solar sail to increase the orbit inclination. In particular,

the optimal roll angle of a solar sail that maintains a continuous no-drag con�guration in a circular

orbit was found. This results in no change in any of the Keplerian elements, except the inclination

and the right ascension of the ascending node. More recent work by Mengali et al. [9] focused on

the optimal control law of a solar sail spacecraft to increase the semi-major axis of a polar circular

low Earth orbit.

The work presented here complements that of Mengali et al, in that the objective is to maximize
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the orbital inclination change, with no decrease in semi-major axis (and therefore orbital energy).

After developing the dynamic model of the sail in a three-dimensional space, expressions for

the acceleration due to both solar radiation pressure and aerodynamic forces are developed. Gauss'

form of the Lagrange variational equations is then used to express the variation of the inclination

and of the semi-major axis as a function of the attitude of the sail. Analytical solutions are found

for maximizing the change of inclination in the two cases where either SRP or the aerodynamic

force is dominant. It will be shown that, when the two e�ects are combined, and the constraint of

non-decreasing semi-major axis is introduced, analytical solutions exist under certain conditions. In

other cases, numerical methods have to be used. Finally, test case results will show the change of

inclination that a spacecraft can potentially achieve in a year-long mission, starting from circular

orbit at di�erent altitude and considering moderate values for characteristic accelerations.

II. Dynamics model

In this section, the dynamics of the spacecraft, including the models of the solar radiation

pressure (SRP) and aerodynamic forces will be outlined.

A spacecraft with a large, deployable surface, that can be modeled as a re�ective �at plate,

orbiting around the Earth (which is considered spherical uniform mass of radius 6378.16 km) is

considered. The spacecraft's motion is subject to three accelerations: gravity, SRP and aerodynamic.

Its motion can be modeled according to the following di�erential equation:

r̈ = − µ
r2

r̂ + a (1)

where r is the position vector of the spacecraft with respect to the Earth, µ = 3.9860·105km3/s2

is the gravitational constant of the Earth and the 'dot' represents di�erentiation with respect to

time. The vector a is the total, non-gravitational acceleration, and in this paper it is split into two

contributions, one due to SRP and one due to atmospheric e�ects:

a = aaero + aSRP (2)
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Fig. 1 The N̂ and r̂s� vectors in the [t, n, h]T frame.

The reference frame used in the following is centered on the spacecraft: the �rst axis, t̂, is

aligned with the orbital velocity of the spacecraft ṙ = v (and therefore tangent to the osculating

orbit); the second axis, n̂, is normal to the velocity vector, in the orbital plane, and points in the

direction of, but not necessarily directly at, the Earth; �nally, the third axis, ĥ, is normal to the

orbital plane, aligned with the orbital angular momentum h = r×v, and completes the right-handed

reference frame. Let us now consider a unit vector N̂, which de�nes the normal to the re�ective

�at plate, and therefore the attitude of the spacecraft, and a unit vector r̂s�, which points from the

spacecraft to the Sun (Fig. 1). Both these vectors are described through their yaw (αN , α�) and

pitch (βN , β�); right ascension is measured from the positive t̂ direction counterclockwise in the

orbital plane, and declination is the out-of-plane angle, positive towards ĥ. Therefore, it is clear

thatβN , β� ∈
[
−π2 ,

π
2

]
and αN , α� ∈ [0, 2π]. The vector components of N̂ and r̂s� are thus:

N̂ =


cosαN cosβN

sinαN cosβN

sinβN

 r̂s� =


cosα� cosβ�

sinα� cosβ�

sinβ�

 (3)

In the next subsections, the expressions for the acceleration due to the aerodynamic force and

to the solar radiation pressure will be derived.

7



A. Aerodynamic acceleration

The spacecraft, modeled as a �at plate, is subject to an aerodynamic acceleration while moving

through the atmosphere. The aerodynamic force, or acceleration, can be decomposed into lift

(perpendicular to the velocity) and drag (opposite to the velocity):

aaero =
1

2
ρv2

A

m

(
cLL̂ + cDD̂

)
(4)

where cL and cD indicate respectively the coe�cients of lift and drag, v is the spacecraft velocity

with respect to the atmosphere, ρ is the local atmospheric density, A is the �at plate area, and m

is the spacecraft mass. L̂ and D̂ are unit vectors along lift and drag, respectively.

Under hyperthermal �ow conditions (translational velocity of solar sail much larger than thermal

velocities of atmospheric particles) [9] an analytical expression of cL and cD can be used as de�ned

in [10].

cD = 2
(
σt + σn (vb/v) cos ζ + (2− σn − σt) cos2 ζ

)
cos ζ

cL = 2 (σn (vb/v) + (2− σn − σt) cos ζ) | sin ζ| cos ζ

(5)

where σn and σt are the accommodation coe�cients for normal and tangential momentum

exchange, vb is the average normal thermal velocity of the atmospheric particles which are in thermal

equilibrium with the sail surface; in this paper, σn = σt = 0.8, vbv = 0.05 [9]. The angle ζ ∈
[
−π2 ,

π
2

]
is complementary to the angle of attack of the �at plate:

cos ζ = |̂t · N̂| (6)

Note that in Eq. (6), the absolute value is used because the angle of attack is the same when

N̂ is re�ected. The absolute value in the term | sin ζ| in Eq. (5), instead, is added because only in

the magnitude of cL is of interest as the sign of cLL̂ will be adjusted later.

The component of the acceleration due to atmospheric drag is simply:

cDD̂ = −2
(
σt + σn (vb/v) cos ζ + (2− σn − σt) cos2 ζ

)
cos ζ t̂ (7)
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For the lift component, cLL̂, it is required to derive an expression which is valid within the full

space of possible orientations of the sail. The lift acceleration unit vector, L̂, is perpendicular to

the velocity, and lies in the plane containing the velocity v and sail normal N̂. It follows that when

t̂ · N̂ > 0, L̂ = t̂×(̂t×N̂)

‖t̂×N̂‖ . However, the sign shall be adjusted in the case of t̂ · N̂ < 0, to ensure

that the �at plate produces the same lift when the normal switches direction with respect to the t̂

direction (see Fig. 2).

L̂ = sgn(̂t · N̂)
t̂× (̂t× N̂)

‖t̂× N̂‖
(8)

By noting that in Eq. (5) | sin ζ| = ‖t̂× N̂‖, the components of the acceleration due to atmo-

spheric lift can be written as

cLL̂ = 2
(
σn (vb/v) + (2− σn − σt) |̂t · N̂|

)
(̂t · N̂)(̂t× (̂t× N̂)) (9)

The full expression of the acceleration due to aerodynamic e�ects can be constructed from Eqs.

(7), (9), and (3):

aaero =
1

2
ρv2

A

m



−2 |cosαN | cosβN
(
σt + σn (vb/v) |cosαN | cosβN + (2− σn − σt) cos2 αN cos2 βN

)
−2 cosαN cos2 βN sinαN (σn (vb/v) + (2− σn − σt) |cosαN | cosβN )

−2 cosαN cosβN sinβN (σn (vb/v) + (2− σn − σt) |cosαN | cosβN )


(10)

Eq. (10) describes all possible orientations of the sail in a three-dimensional space and ensures

that two opposite directions of N̂, which corresponds to the same �at plate orientation, give the

same aaero. This can be seen in Fig. 2 where for simplicity, the two-dimensional case is represented.

B. Solar radiation pressure acceleration

The re�ective �at plate of the spacecraft is subject to the solar radiation pressure, and therefore

acts as a solar sail. The attitude of the sail determines both the magnitude and direction of the
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Fig. 2 Conventions for aerodynamic lift and drag a) lifting-plate and b) non-lifting plate

thrust obtained from the solar radiation pressure (SRP). If both sides of the solar sail are identical,

the normal can be restricted to always point towards the Sun, that is

r̂s� · N̂ ≥ 0 (11)

the acceleration of a solar sail due to SRP in Earth's orbit is given as (see Ref. [11], pp. 39-40):

aSRP = −a0(r̂s� · N̂)2N̂ (12)

where a0 is the characteristic acceleration of the sail, i.e.

a0 =
2ηPA

m
(13)

where P is the local pressure exerted on the surface due to momentum transport by photons

(P ≈ 4.56 × 10−6 Nm−2 at 1 AU, and considered constant), and η = 0.85 is a factor that takes

into account the non-perfect re�ectivity of the sail. Note also that the characteristic acceleration

is proportional to the area-to-mass ratio of the spacecraft. The constraint in Eq. (11) allows N̂

to point in one half of the local 3D space and, due to the sail's �at plate nature and symmetry of

atmospheric e�ects, covers all possible orientations of the sail and thus all possible combinations of

atmospheric and SRP forces. By substituting the expression of N̂ and r̂s� in terms of the sail and

Sun angles, as de�ned in Eq. (3), and with some trigonometric manipulations, the full expression

for the sail acceleration due to solar radiation pressure is
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aSRP = −a0 [cosβ� cosβN cos(α� − αN ) + sinβ� sinβN ]
2


cosαN cosβN

sinαN cosβN

sinβN

 (14)

III. Maximization of inclination change

Now that the forces acting on the spacecraft have been modeled, locally optimal control laws to

maximize the change of inclination at any given instant of time shall be investigated. This means

�nding the optimal attitude of the spacecraft (i.e. αN , βN ) as a function of its osculating orbital

elements and relative position of the Sun.

As mentioned, the spacecraft is subject to the gravitational acceleration of the Earth, which

is considered a point mass, and to the SRP and atmospheric accelerations. Therefore, the change

in Keplerian orbital elements due to the non-gravitational accelerations can be expressed with

the Gauss' form of Lagrange's variational equations of planetary motion [12]. In particular, the

instantaneous change in orbit inclination i is given as:

di

dt
=
r cos θ

h
ah (15)

with θ = f + ω, where f is the true anomaly (measured from pericenter) and ω the argument

of the pericenter (measured from the ascending node). h is the orbit angular momentum and ah is

the out-of-plane acceleration.

In order to maximize the change in orbit inclination, the goal is then to maximize the third

component (out of plane) of the acceleration vector in Eq. (2) when cos θ > 0, and minimize it

when cos θ < 0. Stationary points can be found by solving the following system involving �rst-order

derivatives of ah with respect to the sail angles αN , βN :


∂ah
∂αN

= 0 (16a)

∂ah
∂βN

= 0 (16b)
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However, the variation in semi-major axis cannot be neglected. In fact, in most of the cases,

while a change of inclination is needed, this shall not be achieved at the expense of a decrease

in orbital energy. Therefore, the case in which the change of inclination is maximized, with the

constraint of the change in semi-major axis to be positive or at most null, is investigated.

Referring again to the Gauss' equations, the instantaneous change in semi-major axis a is given

as:

da

dt
=

2a2v

µ
at (17)

where at is the tangential acceleration. Therefore in order to never have da
dt < 0, the solution is

subject to the constraint:

at ≥ 0 (18)

Before studying the complete case with SRP and aerodynamic acceleration from Eq. (2), it

is useful to analyze the cases in which either only SRP or aerodynamic acceleration is present, as

analytical solutions are available for these simpli�ed cases. The case of acceleration dominated by

SRP and acceleration dominated by atmospheric e�ects will be addressed in the next subsections.

A. SRP-dominated case

This case occurs at high altitude, where ρ ≈ 0. As a result, the expression for the total

acceleration can be approximated with Eq. (14), and the out-of-plane component is:

aSRP,h = −a0 sinβN [cosβ� cosβN cos(α� − αN ) + sinβ� sinβN ]
2

(19)

For this case, an analytical solution exists. Developing Eq. (16a) with the expression in Eq.

(19):

−2a0 sinβN [cosβ� cosβN cos(α� − αN ) + sinβ� sinβN ] cosβ� cosβN sin(α� − αN ) = 0 (20)
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which has the following two solutions for αN :

cos(αN − α�) = − tanβ� tanβN (21a)

αN = α� (21b)

Developing the other derivative (Eq. (16b)):

cosβN [cosβ� cos(α� − αN ) cosβN + sinβ� sinβN ] = 2 sinβN [cosβ� cos(α� − αN ) sinβN − sinβ� cosβN ]

(22)

Solving for tanβN (see Appendix VIA for full development):

tanβN =
3 tanβ� ±

√
9 tan2 β� + 8 cos2(α� − αN )

4 cos(α� − αN )
(23)

Note that this equation is the solution found by Morgan [8]. In that work, the angle named

here as αN was �xed to −π2 to have null aerodynamic drag.

Solutions to the system in Eq. (16) for SRP only can be found by inserting either solution in

Eq. (21a) or Eq. (21b) into Eq. (23). The �rst gives a non-acceptable solution (see Appendix

VIA), while the second leads to


αN = α�

tanβN =
3 tan β�±

√
9 tan2 β�+8

4

(24)

These are therefore the only two solutions, and they are not de�ned for β� = ±π/2. It is now

important to show that the two stationary points in Eq. (24) are the maximum and the minimum

of ah(αN , βN ), and identify them.

First of all, note that for any −π/2 < β� < π/2,
3 tan(β�)+

√
9 tan2(β�)+8

4 > 0 , and

3 tan(β�)−
√

9 tan2(β�)+8

4 < 0. This means that, for the "+" solution, βN > 0 and thus, from Eq.

(19), ah < 0. In the same way, for the "-" solution, βN < 0 and thus ah > 0.
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The extreme value theorem states that if a function is de�ned on a closed and bounded domain

and is continuous there, then it is either constant, or it attains its maximum and minimum in

that set. If the function is also di�erentiable, then the extrema can either be at stationary points

inside the domain, or on the bound of the domain (not necessarily at stationary points). For the

case of ah(αn, βN ), let us consider the bounds �rst. The bounds of the domain are de�ned by

αN ∈ [0, 2π] , βN ∈
[
−π2 ,

π
2

]
and by the nonlinear Sun-sail constraint (Eq. (11)). Now, if extrema

of ah are on the �rst type of bound, then they shall be on a stationary point, since ah is periodic

and the whole period is considered. Instead, the extrema could be on the nonlinear bound, however

this is not the case, since it is easy to see that on that bound ah = 0, and ah is positive on one

stationary point and negative on the other one. Therefore the extrema must be inside the domain,

at a stationary point. With only two stationary points present, one positive and one negative,

it can be concluded that the "+" solution represents the minimum out-of-plane acceleration (and

negative), while the "-" solution is the maximum out-of-plane acceleration (and positive).

By observing the squared term in the square brackets of Eq. (19), it can be stated that, if the

Sun is above the orbital plane (β� > 0), the maximum downward out-of-plane acceleration would

have a higher magnitude than the maximum upward one. Similarly with the Sun below the plane,

an upward ah would be of greater magnitude. In fact, αN = α� (for optimality), cosβ� cosβN > 0,

and the term sinβ� sinβN contributes positively if sinβ� and sinβN have the same sign. Hence,

the maximum absolute value of acceleration can only be achieved when the Sun is in a favorable

relative position. In any case, to maximize the inclination change, the required alternation between

ah > 0 and ah < 0 (as mentioned earlier) is achieved through switching between the positive and

negative solutions.

Furthermore, the same solution in Eq. (24) can be obtained in terms of cone and clock angle

of the sail with respect to the Sun vector by following the procedure described in [11] pp. 115-116.

Finally, as remarked, the derived solutions (Eq. (24)) are not de�ned in the case of β� = ±π/2,

when the Sun vector is perpendicular to the orbital plane, which can happen for a highly inclined

orbit. In this case, the solutions can be found considering a limit analysis (see Appendix VIA). It

results in:
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(a) (b)

Fig. 3 aSRP,h/a0 as function of αN and βN . The Sun is located at α� = π
4
, β� = π

6
. (a) Contour

plot. The unfeasible region due the Sun-sail constraint is shaded; (b) Three-dimensional view.

The unfeasible region in not plotted.

β� = π
2 :


arg max

βN

(ah) = 0, ah = 0

arg min
βN

(ah) = π
2

β� = −π2 :


arg max

βN

(ah) = 0

arg min
βN

(ah) = π
2 , ah = 0

(25)

As an example, the function aSRP,h(αN , βN ) is plotted in Figure 3 for a speci�c solar sail and

position of the Sun with respect to the orbit. The domain in which the function exists is de�ned

by the nonlinear Sun-sail constraint (Eq. (11)). Both extrema are visible and because the Sun is

above the sail (β� > 0) the maximum upward out-of-place acceleration is signi�cantly less than

the maximum downward acceleration. Figure 3 represents the out-of-plane acceleration aSRP,h

(normalized with respect to a0) as function of αN and βN , for a speci�c position of the Sun. The

shaded area in the �gure represents the domain in which r̂s� · N̂ < 0 according to constraint Eq.

(11). The maximum and minimum solutions for the out-of-plane acceleration, as given by Eq. (24)

are marked in the plots with a star.

Let us now study Eq. (18). The expression for the tangential acceleration is:
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aSRP,t = −a0 cosαN cosβN [cosβ� cosβN cos(α� − αN ) + sinβ� sinβN ]
2

(26)

This expression is positive if:

cosαN cosβN ≤ 0 (27)

From Eq. (3), this condition can be rewritten as:

N̂ · t̂ ≤ 0 (28)

This is justi�ed noting that the solar sail acceleration is directed opposite to its normal, and

the velocity vector is directed as t̂. In this way, the solar sail acceleration always has a positive, or

at least null, component towards the velocity vector.

Figure 4 represents the tangential SRP acceleration aSRP,t as function of αN and βN . Also in

this case, it is normalized with respect to a0, and the shaded area represents the unfeasible domain

constrained by Eq. (11). The black bold lines represent the sail orientation for which aSRP,t = 0.

The constraint Eq. (28) is veri�ed only in the domains at the top left and top right of the plot.

B. Atmospheric-e�ect-dominated case

The case in which the e�ect of SRP can be neglected, and only the atmospheric force is taken

into account, models a spacecraft in an orbit of low altitude, such that ρv2 � 4ηP . The result is

a �at plate orbiting the Earth with an out-of-plane acceleration that is independent of the Sun's

location and given by:

aaero,h =
1

2
ρv2

A

m
(−2 cosαN cosβN sinβN (σn (vb/v) + (2− σn − σt) |cosαN | cosβN )) (29)

The magnitude of acceleration in the ĥ direction can be maximized with respect to (αN , βN ),

as shown in detail in Appendix VIB, to give
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Fig. 4 Contour plot of aSRP,t/a0 as function of αN and βN . The Sun is located at α� = π
4
, β� = π

6
.

The unfeasible region due the Sun-sail constraint is shaded.


αN,opt = 0, π (30a)

βN,opt =

± arccos

(
2

9(2−σn−σt)

(
−σn (vb/v) +

√
2
(

9 (2− σn − σt)2 + 2 (σn (vb/v))
2
)
· cos χ3

))(30b)
where χ is given by:

χ = arctan
9 (2− σn − σt)

√
288 (2− σn − σt)4 − 33 (2− σn − σt)2 (σn (vb/v))

2
+ 96 (σn (vb/v))

4

135 (2− σn − σt)2 (σn (vb/v))− 16 (σn (vb/v))
3

(31)

The out-of-plane component of the acceleration due to atmospheric forces aaero,h is shown in

Fig. 5 (aaero,h is normalized with respect to 1
2ρv

2 A
m ). As expected from the third component of

Eq. (10), aaero,h is symmetric around αN = 0 and anti-symmetric around βN = 0. The solutions

(αN , βN ) for max |aaero,h| are represented with the star symbols. It is found that the magnitude of

the out-of-plane component of acceleration is maximized at an angle of attack of about ±54◦. It

is worthwhile to note that the two maxima for aaero,h at (0, β−N,opt) and (π, β+
N,opt), where β

+
N,opt

and β−N,opt are respectively the positive and negative solution of Eq. (30b), represent the same sail

orientation with respect to the incoming particles of the atmosphere (the normal to the sail is in

opposite directions). The same observation is valid for the two minima at (0, β+
N,opt) and (π, β−N,opt).
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(a) (b)

Fig. 5 Normalized aaero,h as function of αN and βN for a �at plate subject only to atmospheric

force. (a) Contour plot; (b) Three-dimensional view.

Regarding the tangential acceleration, the constraint in Eq. (18) can be satis�ed only if aaero,t =

0 as in the �rst component of Eq. (10)

aaero,t = −ρv2 A
m
|cosαN | cosβN

(
σt + σn (vb/v) |cosαN | cosβN + (2− σn − σt) cos2 αN cos2 βN

)
(32)

where the last term in parenthesis is always positive and |cosαN | cosβN is positive or null, hence

the only way to satisfy the constraint is aaero,t = 0. This is veri�ed if

αN = ±π
2

(33)

or

βN = ±π
2

(34)

Equations. (33) and (34) represent the trivial solution of a sail at zero angle of attack. Figure

6 represents the tangential acceleration as function of αN and βN . Also in this case aaero,t is

normalized with respect to 1
2ρv

2 A
m .
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Fig. 6 Normalized aaero,t as function of αN and βN for a �at plate subject only to atmospheric

e�ects.

C. Combined SRP and atmospheric-e�ect acceleration

In this section, the e�ect of combining the two acceleration contributions is analyzed, as well as

the non-linear constraints Eq. (11) and Eq. (18).

In the presence of both SRP and atmospheric e�ects, the solution for maximizing the change

of inclination under the non-linear constraints could not be found analytically. The solution is

then determined numerically through a global search using a multi-start technique. 1000 randomly

distributed starting points in the range of βN ∈
[
−π2 ,

π
2

]
and αN ∈ [0, 2π] are sampled, and a

local constrained optimization is started from each feasible point. The algorithm is implemented in

MATLAB functions MultiStart and fmincon.

Figure 7 shows two contour plots of the full out-of-plane and tangential acceleration respectively,

ah and at, functions of αN , βN . For this �gure a solar sail with a0 = 0.2 mm/s2 is considered and

the Sun is located at α� = π
4 , β� = π

6 . The reason for considering a smaller value of the sail

characteristic acceleration with respect to the range considered in Mengali et al. [9] is explained

in Section V. The �gure refers to a circular orbit around the Earth (v =
√
µ/r) at an altitude

h = 700 km and from Eq. (13), A
m = 25.79 m2/kg hence 0.5ρv2A/m = 2.63 · 10−2 mm/s2. An

exponential model for the atmospheric density with altitude is used [13]. At the altitude considered

here, neither of the two contributions is negligible with respect to the other. The two non-linear
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(a) (b)

Fig. 7 Contour plot of ah and at as function of αN and βN . Circular orbit at 700 km altitude;

the Sun is located at α� = π
4
, β� = π

6
. The unfeasible region due the Sun-sail constraint is

shaded and the region with at > 0 is indicated with arrows

constraints in Eq. (11) (Sun-sail pointing) and Eq. (18) (semi-major axis change) are represented

in the plots. In particular the shaded area shows the unfeasible region due to the Sun-sail pointing,

while the semi-major axis constraint de�nes the two disconnected regions indicated with the arrow.

In this particular case, the semi-major axis constraint removes a signi�cant portion of the search

space, and the maximum out-of-plane acceleration value is considerably a�ected by this constraint.

Figure 8 shows the results of the optimization process for a circular orbit at 700 km, and di�erent

relative positions of the Sun. Figure 8(a) shows the maximum attainable ah (optimal solution) for

each value of the combination α� and β�, while Fig. 8(b) shows the corresponding at at the same

angles. It is worth noting that there will always be a sail orientation which will have at ≥ 0 and

ah ≥ 0 (or ah ≤ 0). The worst possible case for at is with the Sun directly in front of the sail

(β� = 0, α� = 0), such that r̂s� = t̂ and it is not possible take advantage of the solar radiation

pressure to have at > 0 and therefore increase the semi-major axis. In this case, any N̂ such that

t̂ · N̂ = 0 will ensure a �at plate traveling with zero drag and provide at = 0. In the worst possible

case for a maximum ah, the Sun is directly above the orbital plane (β� = π/2) such that it is not

possible to generate any ah > 0 with the SRP. In this case, the atmospheric e�ects can be used

to generate lift. If the atmospheric e�ect is insigni�cant, then the sail can be positioned such that
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Fig. 8 Maximum attainable ah (a) and at (b) function of α�, β� for a sail (a0 = 0.2 mm/s2)

subject to both SRP and atmospheric e�ects on a 700-km-altitude circular orbit. Sail is

constrained to maintain at ≥ 0 and Sun pointing.

r̂s� ·N̂ = 0 and provide ah = 0. Depending on the relative strength of the two types of accelerations,

the best option may be a sail orientation such that both t̂ · N̂ = 0 and r̂s� · N̂ = 0. This would

result in ah = at = 0 and it is the worst possible case.

Note that, at this altitude, the maximum value of ah is greatest when the Sun is best able to

contribute to the out-of-plane acceleration by being directly below the sail (β� = −π2 ). As the Sun

angle increases, however, there is a decrease in maximum attainable ah until ah ≈ 0 for most values

of α� at β� ≥ π
4 . At these high values of β� the sail normal is essentially aligned perpendicular to

the Sun-line vector to avoid a downward out-of-plane acceleration from the solar radiation pressure.

Now, observing Fig. 9, the region of at > 0 is largely around the α� = π line when the Sun

is behind the satellite and solar radiation pressure can directly contribute to an acceleration in the

positive t̂ direction. In this region the satellite can attain its maximum ah as no compromise has

to be made in terms of sail attitude to keep at ≥ 0. Out of this region however, the at plot is �at

at 0 and the sail cannot obtain its maximum out-of-plane acceleration as it is constrained to keep

at ≥ 0.

21



 
0   

3

2


   

ˆ,t v

 

ˆ,t v

 

ˆ,t v

 

ˆ,t v  
   

sun-sail line 

ˆ sr  

2


   

Fig. 9 De�nition of α� angles and the Sun direction for an arbitrary orbit.

IV. Optimal solution regions

It was noted earlier that an analytic expression is not found for the general case where the two

e�ects are combined and the constraints are satis�ed. Nevertheless, the following sections provide

some further insight on the optimal attitude in di�erent conditions.

The �rst observation is related to the altitude of the spacecraft: it is expected that, at very low

altitude, the e�ect of the atmosphere would be more dominant than that of SRP, and therefore the

optimal solution will be close to the atmospheric-only solution. However, the sole atmospheric-only

solution that is compatible with the semi-major axis constraint is the one that produces no drag

and no lift. In this solution, αN = π/2, 3π/2 as in Eq. (33) and βN not de�ned. Therefore, the

angle βN can be optimized using the SRP-only case. The solution for βN is that in Eq. (23), and

coincides to the one of Morgan [8]. This solution will be referred to as no-drag solution (NDS) in

what follows.

The second observation is related to the semi-major axis constraint (Eq. (18)). It was shown that

lift always comes with drag, and therefore in order to use a lift component to change the inclination,

some drag is always generated. However, drag is opposite to velocity, and shall be compensated with

an acceleration, directed towards the velocity, such that the net e�ect is no decrease of semi-major

axis. This can only be provided by the SRP. However, it is possible to show that, in the part of

the orbit when the spacecraft is traveling towards the Sun (i.e. −π/2 < α� < π/2), the optimal

solution is always the NDS. Let us consider the optimistic case in which the Sun is below the orbital
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Fig. 10 Ellipse representing the possible SRP accelerations for each sail orientation (adapted

from Ref. [11]). It shows that the orientation that maximizes the out-of-plane component

satisfying the semi-major axis constraint is the one with the sail normal perpendicular to the

velocity vector.

plane, and upwards out-of-plane acceleration is required. Figure 10, adapted from Ref. [11], is in

the plane that contains the velocity and angular momentum vectors; the sail acceleration vector,

when the sail is tilted in this plane, describes the ellipse represented in the �gure. The part of

the ellipse represented with a dashed line is obviously not feasible, as the sail acceleration has an

in-plane component against the velocity vector. The only feasible part is the one plotted with a

continuous line, and it is clear that the maximum out-of-plane acceleration, is obtained when the

sail normal is perpendicular to the velocity vector (i.e. αN = π/2, 3π/2 as in Eq. (33), and βN

found with Eq. (23)), and this is again the NDS. Therefore it can be concluded that in the fraction

of the orbit where −π/2 < α� < π/2, regardless the altitude, the optimal solution is always the

NDS. This also means that, for this part of the orbit, an analytic solution exists for the combined

atmosphere and SRP case.

Finally, at high altitude, the atmosphere will have a negligible e�ect, and the optimal solution

will resemble the SRP-only solution (Eq. (24)) whenever this solution satis�es the semi-major axis

constraint, i.e. in the part of the orbit where 0 < α� < π/2. In the other part, as stated before,

the solution is the NDS.

To summarize: in the part of the orbit where −π/2 < α� < π/2, the optimal solution is
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always the NDS, regardless the altitude, and the analytical solution is given by αN = π/2, 3π/2

and βN as in Eq. (23). In the other part of the orbit, the solution is the NDS at low altitude,

the SRP-dominated one (Eq. (24)) at high altitude, and a combination of the two at intermediate

altitudes. For this region, numerical methods have to be used to �nd the optimal solution of the

full constrained problem. Knowing when the NDS is the optimal solution, on any given point of

an arbitrary orbit (not just a circular one) would avoid the use of numerical techniques when they

are not needed, and so speed up the computation. However, no simple relationship was found to

determine when the NDS dominates.

The work of Morgan [8] uses the NDS throughout the orbit, and therefore it does not include the

atmospheric e�ects. Although this law is optimal for a part of the orbit, even when the atmospheric

e�ects are considered, there is a loss of ah which could be gained through the full solution, especially

at high altitudes where the e�ect of the drag starts to be relatively low.

The di�erent optimal solutions which may be obtained along an orbit are now shown. Con-

sidering circular orbits, of increasing a0/(0.5ρv
2A/m), such that this coe�cient is constant along

each orbit, and the angle α� spans a full circle every orbit. For simplicity, it is also considered that

either maximum ah (positive) or minimum ah (negative) are sought along the whole orbit. The

analysis is performed in the half-orbit where the NDS does not hold, see Fig. 11. Furthermore, due

to symmetry, it is possible to limit the study to the quadrant π < α� < 3π/2. Figure 12 represents,

for the orbit quadrant under consideration, the di�erent solutions. The three plots represent the

cases in which the Sun is in the orbital plane, the Sun is out of the plane of 23.48 deg (for example

when the orbit is equatorial at summer or winter solstices) and the out-of-plane force required is

either in the same direction or in the opposite one. The �gures con�rm what was found previously:

where the atmospheric acceleration prevails, the solution is the NDS. Then, there is an intermediate

region in which the solution is partly the NDS and partly the complete solution. As the atmospheric

acceleration falls, the full solution becomes similar to the SRP-dominated solution. Also note that,

when the SRP is dominant, there is a fraction of the orbit near α� = 3π/2 where the NDS and the

SRP-dominated solutions are similar. The three plots also highlight that the regions vary their size

depending on β� and the required direction of ah. Finally, note that the region which requires a full
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Fig. 11 For a circular orbit, symmetry in the half-plane where π/2 < α� < 3π/2.

numerical solution is, for a given sail in a circular orbit, limited to a narrow interval of altitudes.

For the case in Fig. 12(a) (i.e. β� = 0), Fig. 13 shows the non-dimensional out-of-plane

acceleration for four di�erent values of a0/(0.5ρv
2A/m), and for the three solutions: NDS, full

numerical and SRP-dominated. In these plots, the full solution always represents the highest value

of acceleration that can be achieved, satisfying the constraints. However, it is interesting to note how

this curve transforms, starting from NDS to SRP-dominated. Also note that the SRP-dominated

solution is infeasible in some fractions of the orbit, due to at < 0.

V. Results

The control law de�ned in Sections III and IV is applied for a period of one year, starting

from circular equatorial orbits. The motion of the Sun on the ecliptic is taken into account and the

simulation starts in spring (i.e., at the beginning of the integration period the Sun is at its ascending

node on the equatorial Earth-centred system). This implies that initially β� = 0. The controlled

equation of motion (Eq. (1)) is integrated and, at each instant of time, the optimal constrained sail

attitude is computed, either analytically or through the numerical procedure described in Section

III C. If the multi-start solver does not �nd a feasible solution (this may happen when the feasible

region is extremely limited), then the NDS is used. This choice is made because the NDS is available

analytically and guaranteed to be always feasible; furthermore, when the feasible region is small,

the optimal solution is very close to the NDS.

Di�erent initial orbit altitudes of 500 km, 600 km and 700 km and characteristic accelerations

25



0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7  

a
0
 / (0.5 ρ v2 A/m)

 
NDS ~= SRP

FULL

NDS

SRP

α
sun

 = 3π/2

α
sun

 = π

(a)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7  

a
0
 / (0.5 ρ v2 A/m)

 

NDS ~= SRP

NDS

FULL

SRP

α
sun

 = 3π/2

α
sun

 = π

(b)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7  

a
0
 / (0.5 ρ v2 A/m)

 
NDS ~= SRP

FULL

NDS

SRP

α
sun

 = 3π/2

α
sun

 = π

(c)

Fig. 12 Solution regions for circular orbits with di�erent a0/(0.5ρv
2A/m) (radial direction) and

for π < α� < 3π/2 (angular direction). (a) β� = 0, max(ah); (b) β� = 23.5 deg, max(ah); (c)

β� = 23.5 deg, min(ah).

of the sail of 0.1 mm/s2, 0.2 mm/s2 and 0.3 mm/s2 are considered to fully investigate the behavior

in the region in which drag and SRP have comparing e�ects. Figure 14 represents the evolution of

semi-major axis, eccentricity and inclination throughout the orbits for a0 = 0.2 mm/s2.

The three solution regions presented in Section IV are apparent. For example, considering the

case starting at 500 km (line marked with `+'), for about 180 days, the NDS region is seen as there

is no change in semi-major axis. The SRP-dominated solution region is then apparent starting

approximately at 280 days since the launch date, as a linear increase in semi-major axis and an

increased slope in the inclination evolution. The transition between the NDS and SRP-dominated

cases belongs to the full solution region. As explained in Section IV, the di�erence is due to the
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Fig. 13 ah/a0 at for di�erent values of a0/(0.5ρv
2A/m): (a) 2.1482; (b) 2.3872; (c) 2.6527; (d)

2.846. The NDS, the full solution and the SRP-dominated solution are represented with

di�erent lines in each plot. Crosses on the SRP solution show its infeasibility (due to at < 0).

relative strength of SRP and aerodynamics e�ects. At lower altitudes, the control law must settle

for the NDS (dadt = 0) but as some fraction of the orbit is raised to higher altitudes (likely due to

the increase in eccentricity), the control law is able to exploit the numerical solution and obtain the

additional gain in the magnitude of ah (hence higher inclination change), accompanied by at > 0.

The orbit evolution starting from a circular orbit at 600 km (dot-marked line in the �gure)

shows similar trends but, as expected, the SRP-dominated solution region is sooner reached. In the

line for an orbit starting at 700 km (diamond-marked line), the immediate increase in semi-major

axis followed by a quick transition into the linearly-increasing section suggests longer time in the

SRP-dominated solution region, as would be expected for an orbit which starts at an altitude where
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Fig. 14 Evolution of semi-major axis (a), eccentricity (b) and inclination (c) over one year,

starting from circular equatorial orbits of di�erent altitude. Characteristic acceleration a0 =

0.2mm/s2

drag is less e�ective than SRP.

An insight into the time evolution of the eccentricity can be obtained from the analysis of the

orbit evolution of a passively-stabilized attitude solar sail analysed in [6]. In this study, the sail is

considered to always be maintained passively-oriented in the direction of the dominant perturbation;

in other words, the cross sectional area with respect to SRP at high altitudes, or with respect to

atmospheric drag at lower altitudes is considered constant. In this study the orbit evolution showed

an interesting behavior in the e − φ phase space, where φ was de�ned as the angle between the

orbit pericenter and the direction of the solar radiation. For an orbit close to the equatorial plane,

φ ≈ Ω + ω − (λ� − π), where λ� is the angle measured on the ecliptic between the position of the

Sun and the direction of the �rst point of Aries. The long-term secular evolution in the phase space

showed a libration in e − φ around the equilibrium orbit at φ = 180 deg due to the e�ect of SRP.

Within the domain π < φ < 2π the eccentricity increases, for 0 < φ < π, instead, the eccentricity

28



decreases. The e�ect drag is superimposed to the libration causing a continuous decrease of the

semi major axis.

The orbit evolution for the strategy described in Sections III and IV in Figure 15 shows some

similarities with the passively-stabilized attitude solar sail [6]. It is possible to recognize an increase

in eccentricity in the domain π < φ < 2π, due to the exploitation of solar radiation pressure. In this

case, with respect to the passively-stabilised sail, the control of the attitude of the sail allows the

semi-major axis to be increased or to remain constant. Also, the lifting e�ect due the atmosphere

is here exploited. However, it is still possible to observe a quasi-libration around the region close to

φ = π.

Although the �nal values of eccentricities at the end of the one-year integration period are still

very close to zero, missions lasting multiple years may stray well away from circular, as the orbit

is expected to librate around quasi equilibrium-orbits existing at higher value of the eccentricity

for increasing semi-major axis. Moreover, due to periodic oscillations in eccentricity, if the staring

altitude is low and the characteristic acceleration of the sail high, due to libration in eccentricity

caused by SRP and a limited increase in semi-major axis, the perigee altitude will decrease and the

orbit may evolve into a collision with Earth. Note that, since the libration is due to SRP, a higher

maximum value of the eccentricity is reached for higher value of the characteristic acceleration of

the sail. This is the case of the mission starting at a circular orbit at 500 km with a0 = 0.3mm/s2,

which impacts the Earth surface after about 100 days, as can be seen in Fig. 16.

In order to avoid an excessive increase of the eccentricity, the constraint in Eq. 18 could be

modi�ed to be d(a(1−e))
dt ≥ 0, taking into account eccentric orbits, in a similar way to what is done

in Ref. [3], where a constraint is added for orbit raising. Note that this problem was not faced in

Ref. [9] as the initial orbit was considered to be perpendicular to the Sun radiation.

Table 1 reports the total increase in inclination and semi-major axis that can be archived over

a one-year mission with a characteristic acceleration of a0 = 0.1 mm/s2 , a0 = 0.2 mm/s2, and

a0 = 0.3 mm/s2 subject to the control law for start altitudes of 500 km, 600 km, and 700 km.

As expected, a higher initial orbit and a higher characteristic acceleration of the sail allow a more

consistent increase in eccentricity and semi-major axis. Considering the case with a0 = 0.2 mm/s2,
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Fig. 15 Evolution of eccentricity, sun-perigee angle and perigee altitude during the mission

with characteristic acceleration of a0 = 0.2mm/s2. (a) 3D view; (b) 2D view.
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Fig. 16 Evolution of perigee altitude over one year, starting from circular orbits of di�erent

altitude. Characteristic acceleration of a0 = 0.3mm/s2. Note that the spacecraft starting from

500 km impacts the surface of the Earth after about 100 days.

numerical results shows a total inclination changes of 7.9, 8.1 and 9.3 over a year for orbits starting

at 500 km, 600 km and 700 km respectively. Each of the orbits experienced a signi�cant increase in

semi-major axis, ending the year at altitudes where SRP is the dominant force. The total change
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Table 1 Total increase in inclination and semi-major axis for year-long missions with a sail

with characteristic acceleration of a0 = 0.1mm/s2 , a0 = 0.2mm/s2, and a0 = 0.3mm/s2 subject

to the control law for start altitudes of 500 km, 600 km and 700 km. Values with an asterisk

(*) are at Earth impact.

Inclination gain, deg Semi-major axis gain, km

0.1mm/s2 0.2mm/s2 0.3mm/s2 0.1mm/s2 0.2mm/s2 0.3mm/s2

500 km 3.4968 7.8917 3.1713 (*) 56.4 786.55 12.937 (*)

600 km 4.0631 8.1803 12.4152 401.9 1053.9 1777.8

700 km 4.8803 9.3107 13.8496 828.2 1637.2 2526.5

of inclination shows approximatively a linear increase with initial altitude. As already pointed out,

the case of characteristic acceleration of a0 = 0.3 mm/s2 and initial circular orbit at 500 km reach

a small inclination change because the perigee altitude decreases below zero after about 110 days.

VI. Conclusion

In this work a solar sail spacecraft orbiting at low altitudes was considered. The e�ects of solar

radiation pressure and aerodynamic forces were developed in a convenient model which allowed a

description of all possible orientations of the sail in a three-dimensional space.

A control law was studied based on Gauss' equations to continuously increase the orbit inclina-

tion while maintaining no loss in semi-major axis. The optimal in-plane and out-of-plane angle of

the sail for maximizing the instantaneous change in inclination can be found analytically in the case

of solar radiation pressure only and was veri�ed with previous literature. When the sail motion is

dominated by atmospheric e�ects, a new analytical solution of the optimal angles of the sail was

found. The case in which both solar radiation pressure and atmospheric e�ects have an in�uence

on the orbit was solved numerically through a global optimization approach.

Through an analysis of the optimal solutions performed for a range of circular orbit altitudes,

di�erent values of the characteristic acceleration, and three possible value for the Sun's elevation

with respect to the equator, it was possible to identify di�erent regions of the solution domain. These

regions correspond to di�erent orbit regimes: one dominated by solar radiation pressure, one by
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aerodynamics e�ects, and one where the e�ects of both perturbations are comparable. The results

provided e�ective insight into two di�erent solution regions: a no-drag region in which an analytical

solution can be adopted, and a region in which numerical optimization is needed to determine an

optimal solution.

Numerical results for a one-year-long mission, starting from circular equatorial orbits of 500, 600

and 700 km, show that a consistent increase in orbit inclination up to 14 degrees can be achieved

with moderate characteristic accelerations of the sail ranging from 0.1 to 0.3 mm/s2. All the

solutions present resulted in a positive change in semi-major axis, allowing the spacecraft to reach

the end of its mission at altitudes where solar radiation pressure is the dominant force. The results

presented show that a short-term solar sail can be employed in the upper stages of the atmosphere

for inclination and semi-major axis change manoeuvres.

Appendix

A. SRP-dominated case

In this appendix, we show the solution of Eq. (22), the non-feasible solution of system of Eqs.

(16), and the limit case of Eq. (24).

Equation (22) can be re-written with the following notation: A = cosβ�, B = cos(α�−αN ), C =

sinβ�, to obtain:

cosβN [AB cosβN + C sinβN ] = 2 sinβN [AB sinβN − C cosβN ] (35)

which, for βN 6= ±π/2, results in the quadratic form in tan(βN ):

tan2 βN −
3C

2AB
tanβN −

1

2
= 0 (36)

which solves to:

tanβN =

3C
A ±

√
9C2

A2 + 8B2

4B
(37)

By noting that C
A = tan(β�), the �nal result is:
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tanβN =
3 tanβ� ±

√
9 tan2 β� + 8 cos2(α� − αN )

4 cos(α� − αN )
(38)

System of Eqs. (16) has a non-acceptable solution found inserting solution in Eq. (21a) into

Eq. (23):

tanβN =
3 tanβ� ±

√
9 tan2 β� + 8 tan2 β� tan2 βN
−4 tanβ� tanβN

(39)

under the assumption that β� 6= 0 and βN 6= 0. This simpli�es to:

tanβN =
3±
√

9 + 8 tan2 βN
−4 tanβN

(40)

or, for βN 6= 0:

4 tan2 βN + 3 = ±
√

9 + 8 tan2 βN (41)

By squaring both sides and rearranging, one �nds that the only real solution is βN = 0, which

cannot be accepted.

Finally, solutions of Eq. (24) at the limit are derived here. For the "-" solution:

lim
β�→(π2 )

−

3 tan β�−
√

9 tan2 β�+8

4 =

3

4
lim

β�→(π2 )
−

tanβ�

[
1−

(
1 + 8

9 tan2 β�

) 1
2

] (42)

Considering the Taylor expansion, for x→ 0:

(1 + x)
1
2 = 1 +

1

2
x− 1

8
x2 + ... (43)

And substituting it into the argument of the limit:

3
4 lim
β�→(π2 )

−
tanβ�

[
− 4

9 tan2 β�
+ 2

9 tan4 β�
+ ...

]
= 0 (44)
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which means that βN = 0. With the same procedure, for the "+" solution it is found that

lim
β�→(π2 )

−

3 tan β�+
√

9 tan2 β�+8

4 =

3
4 lim
β�→(π2 )

−
tanβ�

[
2 + 4

9 tan2 β�
− 2

9 tan4 β�
+ ...

]
= +∞

(45)

and therefore βN = π/2. Repeating the analysis for the case β� →
(
−π2
)+

�nds similar results.

B. Atmospheric e�ects-dominated case

The acceleration in h-direction due to aerodynamic lift is given by Eq. (29) as

aaero,h =
1

2
ρv2

A

m
(−2 cosαN cosβN sinβN (σn (vb/v) + (2− σn − σt) |cosαN | cosβN )) (46)

Firstly, restricted to the case of cosαN > 0, the conditions for stationary point Eqs. (16a) and

(16b) by substituting aaero,h in Eq. (46) give respectively:


(ε1 + 2ε2 cosαN cosβN ) sinαN sin (2βN ) = 0 (47a)

cosαN (−2 (ε1 + ε2 cosαN cosβN ) cos (2βN ) + ε2 cosαN sinβN sin (2βN )) = 0 (47b)

where for clarity substituted ε1 = σn (vb/v) and ε2 = 2− σn − σt were substituted.

Equation (47a) gives the solutions

ε1 + 2ε2 cosαN cosβN = 0 (48a)

sin 2βN = 0 (48b)

sinαN = 0 (48c)

Equation (48a) substituted in Eq. (47b) gives αN = π/2 for any value of βN or βN = ±π/2 for

any value of αN . However, from Eq. (48a) this results in ε1 = 0 that is not a valid solution.

Equation (48b) instead gives βN = 0, which substituted in Eq. (47b) gives αN = π/2 which is

a trivial solution as the sail is traveling parallel with its attitude parallel to the velocity vector.

Finally, Eq. (48c) gives the solution αN,opt = 0 which substituted in Eq. (47b) is solved to

34



cosβN,opt =
1

18ε2
(−4ε1 +

4 · 21/3(9ε22 + 2ε21)

A
+ 22/3A) (49)

where

A =

(
135ε22ε1 − 16ε31 + 9ε2

√
−288ε42 + 33ε22ε

2
1 − 96ε41

)1/3

(50)

Equation (49) is then manipulated through some algebraic and complex number manipulations

to simplify the square root of a negative number and hence to eliminate any complex part through

simpli�cations. The �nal result which contains only a real part is:

cosβN,opt =
2

9ε2

(
−ε1 +

√
2 (9ε22 + 2ε21) · cos

χ

3

)
(51)

where the constant χ is de�ned as:

χ = arctan
9ε2
√

288ε42 − 33ε22ε
2
1 + 96ε41

135ε22ε1 − 16ε31
(52)

Note that the case with cosαN < 0 is just anti-symmetric with respect to αN and βN as can

be seen in Figure 5.
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