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Steady rimming flows with surface tension
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We examine steady flows of a thin film of viscous fluid on the inside of a cylinder
with horizontal axis, rotating about this axis. If the amount of fluid in the cylinder
is sufficiently small, all of it is entrained by rotation and the film is distributed
more or less evenly. For medium amounts, the fluid accumulates on the ‘rising’
side of the cylinder and, for large ones, pools at the cylinder’s bottom. The paper
examines rimming flows with a pool affected by weak surface tension. Using the
lubrication approximation and the method of matched asymptotics, we find a
solution describing the pool, the ‘outer’ region, and two transitional regions, one of
which includes a variable (depending on the small parameter) number of asymptotic
zones.

1. Introduction
Rimming flows, i.e. flows of a viscous fluid on the inside of a rotating horizontal

cylinder, have important industrial applications and are also of great interest to
theoreticians. The case when the fluid layer is sufficiently thin and is fully entrained
by the cylinder’s rotation has been examined by Moffatt (1977), who found a family
of asymptotic solutions describing a steady-state distribution of liquid film on the
cylinder’s surface. If, however, the net mass M of the fluid inside the cylinder exceeds
a certain threshold, M∗, the film is no longer thin enough for viscous entrainment
to ‘overcome’ gravity. As a result, fluid parcels cannot climb past the point where
the tangent to the cylinder’s surface is vertical and the effect of gravity is, thus, the
strongest. These parcels accumulate on the rising side of the cylinder, where the film
becomes so thick, that the fluid starts falling back and forms a ‘shock’ (Benjamin,
Pritchard & Tavener 1993, O’Brien & Gath 1998) similar to that of a hydraulic jump
or a tidal bore.

It turns out, however, that the net mass of a shock solution may not exceed a
certain threshold value, M∗∗. Physically, this means that the cylinder’s rising side can
accommodate no more than a certain amount of fluid, with the excess fluid pooling at
the bottom. As shown by Ashmore, Hosoi & Stone (2003), the ‘pool’ can be strongly
affected by surface tension, but (as we shall see in § 7) their results are applicable only
if M � M∗∗.

The present paper re-examines the setting considered by Ashmore et al. (2003), i.e.
a steady rimming flow affected by weak surface tension, for M � M∗∗. In § 2, we
formulate the problem and, in § § 3–4, 6, solve it asymptotically. In § 5, asymptotic
results are verified and complemented numerically.
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Figure 1. Liquid film in a rotating horizontal cylinder.

2. Formulation of the problem
Consider a thin liquid film on the inside of a cylinder of radius R with horizontal

axis, rotating about this axis with a constant angular velocity Ω (see figure 1). We
are concerned with two-dimensional flows, described by polar coordinates (r∗, θ∗), so
the thickness h∗ of the film depends on the azimuthal angle θ∗ and time t∗ (asterisks
denote dimensional variables). We shall also introduce the acceleration due to gravity,
g, the fluid’s density ρ, kinematic viscosity ν, and surface tension σ .

In what follows, we use the following non-dimensional variables:

h =
h∗

αR
, θ = θ∗, t = Ωt∗, (2.1)

where

α =

(
νΩ

gR

)1/2

. (2.2)

We also introduce a non-dimensional parameter characterising surface tension,

ε =
σ

ρgR2

(
νΩ

gR

)1/2

. (2.3)

2.1. The governing equations

Following most studies of rimming flows, we employ the so-called lubrication theory,
assuming the film to be thin and the slope of its surface small – resulting in the
following evolution equation:

∂h

∂t
+

∂

∂θ

[
h − 1

3
h3 cos θ + 1

3
εh3

(
∂h

∂θ
+

∂3h

∂θ3

)]
= 0 (2.4)

(Johnson 1990). In equation (2.4), the first term in square brackets describes viscous
entrainment of the film by the rotation of the cylinder, the second term describes the
effect of gravity, and the term involving ε, surface tension.



Steady rimming flows with surface tension 93

We are concerned with steady-state solutions, h = h(θ), in which case equation (2.4)
yields

h − 1
3
h3 cos θ + 1

3
εh3

(
dh

dθ
+

d3h

dθ3

)
= q, (2.5)

where the constant of integration q is, physically, the non-dimensional flux. Equation
(2.5) should be supplemented by the periodicity condition,

h(θ + 2π) = h(θ). (2.6)

Problem (2.5)–(2.6) describes a family of solutions with various values of q . It is more
convenient, however, to characterize the solutions by the non-dimensional net mass
M , i.e. impose an additional constraint,∫ 2π

0

h dθ = M. (2.7)

The flux in this case should be treated as a function of the mass, q(M), to be
determined from (2.5)–(2.7).

Following all previous work on this and similar problems, we shall assume

ε � 1.

2.2. The leading-order results (ε = 0)

To leading order, equation (2.5) becomes

h − 1
3
h3 cos θ = q. (2.8)

This cubic equation was examined by Moffatt (1977), who demonstrated that, if q < 2
3
,

(2.8) has a smooth unique solution (see figure 2a). For q = 2
3
, h(θ) has a ‘corner’ at

θ =0 (see figure 2b); note also that the net mass of this solution is

M∗ ≈ 4.44,

as computed numerically. Recall that M∗ is the threshold separating continuous and
shock solutions.

In order to understand the nature of the shock solutions, note that, in the first and
fourth quadrants, equation (2.8) has two positive roots, with the smaller of the two
corresponding to continuous solutions (see the left-hand panels of figure 2). For q = 2

3
,

the two roots touch at θ = 0 and allow a continuous transition from the smaller root
to the larger one (see the left-hand panels of figure 3). Observe that, as θ → 1

2
π, 3

2
π, the

larger root becomes infinite – hence, the solution must ‘jump’ back to the smaller root
before that. As a result, two types of solutions exist (Benjamin et al. 1993; O’Brien &
Gath 1998), with shocks in the first and fourth quadrants – see figures 3(b) and (a)
respectively. The former, however, is unstable (Benjamin et al. 1993; O’Brien 2002),
making the latter the only meaningful shock solution.†

Note that all shock solutions correspond to the same value of flux, q = 2
3
, i.e. there

exists a limiting amount of fluid per unit time which can be transferred across the
roof of the cylinder. The excess fluid accumulates on the cylinder’s rising side, between

† In ‘real’ rimming flows, shocks have never been observed, as they are always smoothed by
surface tension and/or a breakdown of lubrication theory due to large slopes of the film’s surface.
In the latter case, a cusp can form at the ‘foot’ of the shock, similar to that examined by Jeong &
Moffatt (1992).
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Figure 2. Rimming flows with continuous profile: (a) q = 0.6; (b) q = 2
3
. The left-hand

panels show the non-dimensional solution h(θ ): the solid/dashed line corresponds to the
smaller/larger root of equation (2.8), the first and fourth quadrants are shaded. The right-hand
panels show the ‘real’ solution, the scale of which implies α = 0.4, where α is given by (2.2)
(the relatively large value of α has been chosen to improve visibility of the fine structure of
the flow).

the shock and the point θ = 0, which seems to suggest that the latter is a stagnation
point. To clarify this issue, we computed the streamlines (see Appendix A), according
to which θ =0 is not a stagnation point – see figure 3.

To resolve the paradox, consider the ‘local’ flux

Q(h, θ) = h − 1
3
h3 cos θ,

which is, essentially, the left-hand side of equation (2.8). For points on the rising side
of the cylinder, i.e. for θ ∈ (− 1

2
π, 1

2
π), this expression has a maximum at h = (cos θ)−1/2,



Steady rimming flows with surface tension 95

1 2 3 4 5 60

1

2

3

h

(a)

1 2 3 4 5 6
θ

0

1

2

3

h

(b)

Figure 3. Rimming flows with shocks (as in figure 2, the spatial scale of the right-hand panels
corresponds to α = 0.4). (a) The shock is located at θ = 5

3
π, in the fourth quadrant (stable

solution); (b) the shock is located at θ = 1
3

π, in the first quadrant (unstable solution).

such that

Qmax = 2
3
(cos θ)−1/2.

Clearly, the maximum global flux may not exceed the local flux at the most
unfavourable point, i.e. where cos θ = 1 and Qmax is precisely 2

3
. The occurrence

of the maximum flux at θ = 0 expslains why the excess fluid cannot pass through and
accumulates below it, and also why the limiting flux is q = 2

3
(this value can only be

changed by higher-order effects, such as surface tension).
Finally, as follows from equation (2.8) for its larger root, h ≈ (θ − 3

2
π)−1/2 as θ → 3

2
π,

which is an integrable singularity. Hence, no matter how close the jump is to the
cylinder’s bottom, the net mass will not exceed a certain critical value, which can be
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Figure 4. Numerical solution of equation (2.5) with M = 9.5, ε = 10−3, and the corresponding
streamlines. The dotted line shows the boundary of the re-circulation region. The spatial scale
of the right-hand panel corresponds to α = 0.04, where α is given by (2.2). The lower left panel
shows the asymptotic structure of the solution (the transitional regions are shaded).

found through numerical integration of the limiting solution,

M∗∗ ≈ 6.93.

Note that the leading-order equation (2.8) does not have solutions with M > M∗∗ –
however, this does not necessarily mean that the full problem (2.5)–(2.7) has no such
solutions too. In other words, a steady state with M >M∗∗ may well exist, but it must
be crucially affected by surface tension.

3. Asymptotic analysis of problem (2.5)–(2.7)
In this section, we shall take advantage of the smallness of ε and examine the

problem through matched asymptotics. With this method, it is crucial to correctly
guess the solution’s asymptotic structure (a task usually assisted by numerical results
and physical intuition), then verify the guess by matching the solutions found for
different asymptotic zones.

In the present problem, we should expect a pool located about the cylinder’s
bottom, θ ≈ 3

2
π, and strongly affected by surface tension. Because of the cylinder’s

rotation, fluid is being withdrawn from the pool and taken into the outer zone,
θ − 3

2
π = O(1), where surface tension is weak. The two main zones should be matched

in the regions where the film leaves/re-enters the pool (the right/left-hand transitional
regions respectively).

In order to make the general picture more comprehensible to the reader, a typical
solution (calculated numerically – see § 5) and the corresponding streamlines are
shown in figure 4. The asymptotic structure of the solution is shown in the lower left
panel.
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Figure 5. The outer solution (3.2).

3.1. The outer zone

In the outer zone, capillary effects are weak – hence, the full equation (2.5) can be
replaced with its truncated version, (2.8). Then, if there is a supply of fluid at the
cylinder’s bottom (the pool), we can assume that the cylinder’s rotation withdraws
from it as much fluid as it can, and the flux is close to its limiting value,

q ≈ 2
3
. (3.1)

It is also clear that fluid accumulates on the rising side of the cylinder – hence, the
larger root of (2.8), (3.1) should be chosen there.

Thus, in the outer zone,

h ≈

⎧⎪⎨
⎪⎩

the smaller positive root of(2.8), (3.1) if θ ∈
[
0, 1

2
π
)
,

the only positive root of(2.8), (3.1) if θ ∈
[

1
2
π, 3

2
π
]
,

the larger positive root of(2.8), (3.1) if θ ∈
(

3
2
π, 2π

]
.

(3.2)

Note that, at θ = 3
2
π, the right-hand and left-hand limits of solution (3.2) do not

match,

h → 2
3

as θ → 3
2
π − 0, (3.3)

h →
(

3

θ − 3
2
π

)1/2

as θ → 3
2
π + 0 (3.4)

(see figure 5). Thus, in the inner zones, the solution coming from the right will need
to be ‘brought down’ and matched to that coming from the left.



98 E. S. Benilov, M. S. Benilov and N. Kopteva

3.2. The pool zone

In the inner zones (i.e. in the ‘pool’ and transitional regions), it is convenient to
replace θ with

x = θ − 3
2
π.

Then, equation (2.5) becomes

h − 1
3
h3 sin x + 1

3
εh3

(
dh

dx
+

d3h

dx3

)
= q. (3.5)

Since all inner zones are located near x = 0, we can assume, to leading order, sin x ≈ x.
Note also that the widths of the inner zones are small – hence, the first derivative
in (3.5) is much smaller than the third derivative and, thus, can be omitted. Then,
replacing the flux with its limiting value (as justified in § 3.1), we rewrite (3.5) in the
form

h − 1
3
h3x + 1

3
εh3 d3h

dx3
= 2

3
. (3.6)

In what follows, inner zones will be given (positive or negative) numbers, with 0
denoting the pool zone. For example, the stretched variables for the pool are

h0 =
h

H0

, x0 =
x

X0

, (3.7)

where H0 and X0 are the the pool’s characteristic depth and width. We assume that
the shape of the pool is determined by the balance of gravity (the second term on the
left-hand side of (3.6)) and surface tension (the third term). Then, substituting (3.7)
into equation (3.6) and balancing its second and third terms, we obtain

X0 =
εH0

X3
0

. (3.8)

Physically, the most interesting regime is the one where the pool contains an order-one
amount of fluid (i.e. its mass is comparable to that elsewhere in the flow),

H0X0 = 1. (3.9)

Equations (3.8)–(3.9) yield

H0 = ε−1/5, X0 = ε1/5. (3.10)

Equation (3.10) will be referred to as the supercritical regime as, in this case, the net
mass of the flow exceeds M∗∗ by an order-one value. We shall also consider (in § 6) a
near-critical regime, such that M ≈ M∗∗ and H0X0 � 1.

Now, rewrite equation (3.6) in terms of the stretched variables (3.7), (3.10) and omit
small terms:

−x0 +
d3h0

dx3
0

= 0, (3.11)

which yields

h0 = const0 + const1 x0 + const2 x2
0 + 1

24
x4

0 . (3.12)

As verified a posteriori, this polynomial can be matched to the solutions in the other
zones only if it has two pairs of double roots – in which case (3.12) can be rearranged
as

h0 = 1
24

(
x2

0 − W 2
)2

, −W � x0 � W, (3.13)
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Figure 6. The pool solution (3.13) (the curves are marked with the corresponding
values of W ).

where W is the scaled half-width of the pool. In the rest of our analysis, W will remain
free (i.e. we expect to find a one-parameter family of solutions); W also determines
the net mass of the solution,

M ≈ M∗∗ +

∫ ε1/5W

−ε1/5W

(
ε−1/5h0

)
d(ε1/5x0) = M∗∗ + 2

45
W 5,

where M∗∗ is the outer-zone’s contribution. Examples of solution (3.13) are shown in
figure 6.

Finally, we express the asymptotics of (3.13) at the boundaries of the pool in terms
of the non-scaled variables,

h ≈ 1
6
ε−3/5W 2

(
x + ε1/5W

)2
for x ≈ −ε1/5W, (3.14)

h ≈ 1
6
ε−3/5W 2

(
x − ε1/5W

)2
for x ≈ ε1/5W, (3.15)

which will be used for matching the pool solution to the neighbouring zones.

3.3. Discussion

Observe that the pool solution (3.13) involves a free parameter, W , whereas the outer
solution (3.2) is entirely fixed, i.e. the latter cannot adjust to various values of the
former. The adjustment has to occur in the transitional regions, which should be
expected to have fairly complicated structure.

Alternatively, one could try to utilize an outer solution with a non-limiting flux
(q < 2

3
), so q could adjust to the current value of W (as done by Ashmore et al. (2003),

see § 7). It turns out, however, that such outer solution cannot be matched to the pool
with supercritical parameters (3.10).

Still, since solutions with non-limiting flux might occur in other parameter regimes,
they will be examined in § 7.
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3.4. The left-hand transitional region

Since Landau & Levich (1942), the structure of transitional regions between a
viscosity-dominated zone and a surface-tension-dominated zone has been examined
using the so-called Landau–Levich (LL) equation. In the present problem, it can be
obtained from the general equation, (3.6), by neglecting its second (gravity) term,

h + 1
3
εh3 d3h

dx3
= 2

3
. (3.16)

Matching the solution of (3.16) to the outer solution (3.3) implies

h → 2
3

as x → −∞.

Matching of (3.16) to the pool is less obvious, as none of the three possible asymptotics
of the LL equation,

h → 2
3

as x → +∞, (3.17)

h → const x2 as x → +∞, (3.18)

h → x (9 ln x)1/3 as x → +∞, (3.19)

matches the pool solution (3.14).† Still, a zone with the LL equation does exist in
the problem at hand, and the correct boundary condition is, in fact, (3.19). There is,
however, an auxiliary zone, separating the LL zone from the pool and transforming
the linear/logarithmic behaviour of (3.19) into the quadratic behaviour necessary for
matching to the pool.

In the remainder of this subsection, the above qualitative picture will be cast into
the formal framework of matched asymptotics. The auxiliary and LL zones will be
denoted by −1 and −2 respectively.

Anticipating that the logarithm in asymptotics (3.19) will give rise to a
logarithmically small parameter, we introduce

δ = O[(ln ε)−1].

Then, the stretched variables for the auxiliary zone are

h−1 =
h

ε−1/15δ−2/3
, x−1 =

x + ε1/5W

ε4/15δ−1/3
(3.20)

(observe that this zone is ‘located’ near the pool’s left-hand boundary, x = −ε1/5W ).
Substituting (3.20) into equation (3.6) and omitting small terms, we obtain

d3h−1

dx3
−1

= 0. (3.21)

Matching of h−1 with the pool requires

h−1 → 1
6
W 2x2

−1 as x−1 → +∞, (3.22)

whereas matching of h−1 to the LL zone, as ascertained a posteriori, requires the
solution to approach zero with a certain value of its derivative, namely,

dh−1

dx−1

→ 91/3 as h−1 → 0. (3.23)

† Equation (3.18) appears to match the quadratic behaviour of (3.14), but one can verify that
the orders of the two solutions do not match.
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Figure 7. The left-hand transitional region: (a) the Landau–Levich zone (3.26)–(3.28);
(b) the auxiliary zone (3.24) (the curves are marked with the corresponding values of W ).

The solution of the boundary-value problem (3.21)–(3.23) is

h−1 = 91/3(x−1 + D) + 1
6
W 2(x−1 + D)2, (3.24)

where the integration constant D is, essentially, the distance by which zone −1 shifts
the left-hand boundary of the pool (it should eventually be related to W ). Examples
of solution (3.24) are shown in figure 7b.

The stretched variables of the LL zone are

h−2 = h, x−2 =
x + ε1/5W + ε4/15δ−1/3D

ε1/3
(3.25)

(observe that this zone is ‘located’ near the shifted left-hand boundary of the pool,
x = −ε1/5W − ε4/15δ−1/3D). As expected, substitution of (3.25) into (3.6) and omission
of small terms yields the LL equation,

h−2 + 1
3
h3

−2

d3h−2

dx3
= 2

3
. (3.26)

The boundary conditions for h−2 are

h−2 → 2
3

as x−2 → −∞, (3.27)

h−2 → x−2(9 ln x−2)
1/3 as x−2 → +∞, (3.28)

which have been discussed above and will be verified below (by matching to the
neighbouring zones). The boundary-value problem (3.26)–(3.28) has been solved
numerically via ‘shooting’, and the solution is plotted in figure 7(a).

It remains to ascertain that h−1 matches h−2. As follows from (3.24),

h−1 → 91/3 (x−1 + D) as x−1 → −D,

which, in terms of the non-scaled variables, corresponds to

h ≈ 91/3ε−1/3δ−1/3
x for 
x = O
(
ε4/15δ−1/3

)
, (3.29)

where


x = x + ε1/5W + ε4/15δ−2/3D.
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The corresponding expression for zone −2 follows from (3.28) and (3.25),

h ≈ ε−1/3
x

[
9 ln

(

x

ε1/3

)]1/3

for 
x = O(ε1/3). (3.30)

Observe that the logarithmic function in (3.30) corresponds to the logarithmic constant
δ in (3.29).

Since use of van Dyke’s principle is not entirely safe for solutions involving
logarithms (Hinch 1991, § 5.2.6), we shall verify (3.30) via matching by an intermediate
variable. Estimating the terms omitted in the derivation of (3.21), one can show that
solution (3.24) is applicable for 
x � ε4/15 – hence, the intermediate variable can be
taken to be


x = ε4/15δ−k × const, k ∈
(

− 1
3
, 0

)
.

Substituting this expression into (3.29) and (3.30) and equating them, one should
neglect the logarithms of const and δ, but retain those of ε, which yields

δ = − 15

ln ε
. (3.31)

Thus, (3.29) matches (3.30) subject to δ satisfying (3.31).
Finally, recall that the ‘shift’ D of h−1(x−1) still remains undetermined (see (3.24));

furthermore, the h−2 problem (3.26)–(3.28) is invariant with respect to replacing
x−2 → x−2 + const. Thus, to fix the ‘location’ of the solution, we need more boundary
conditions, which, however, can only be obtained in the next order, where the
equivalents of (3.21) and (3.26) involve the spatial variable. Following Landau &
Levich (1942), and other authors who encountered similar difficulties in similar
problems, we shall not carry out this cumbersome calculation, as its result does
not affect the leading-order matching. Still, one should keep in mind that the ‘true’
solutions can be located at an order-one distance from those shown in figure 7.

3.5. The right-hand transitional region

First, observe that, in the vicinity of the pool, the outer solution is strongly asymmetric
(see figure 5), which suggests that the right-hand transitional region differs from its
left-hand counterpart. This is indeed the case: the latter, for example, includes only two
asymptotic zones, whereas the former will be shown to comprise a variable (depending
on ε) number of zones. This is an unusual feature, having both mathematical and
physical implications, which will be discussed in this subsection and § 4.1 respectively.
Note also that this subsection involves some lengthy calcualtions, so the readers with
interests more in physics than mathematics are advised to skip it and move to § 4.

First we shall consider zone 1, located next to the pool. It can be shown that the
only set of stretched variables that guarantees the two zones’ matching is

h1 =
h

ε−1/15
, x1 =

x − ε1/5W

ε4/15
. (3.32)

Then, equation (3.6) yields, to leading order,

1 + 1
3
h2

1

d3h1

dx3
1

= 0, (3.33)

which is similar to the LL equation (3.16). The ‘left-hand’ boundary condition follows
from the matching of (3.32) to the pool asymptotics (3.15),

h1 → 1
6
W 2x2

1 as x1 → −∞. (3.34)
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Figure 8. The right-hand transitional region (the curves are marked with the corresponding
values of W ): (a) the numerical solution of problem (3.33)–(3.35); (b) the explicit solution
(3.42)–(3.43).

As x1 → +∞, equation (3.33) admits either quadratic or linear/logarithmic asymp-
totics, similar to (3.17) and (3.18) respectively. To choose the correct one, note that, in
the next zone, the former gives rise to another peak, with parameters comparable to
those of the pool, which has never been observed in numerical simulations (see § 6).
Thus, we shall assume

h1 → x1 (9 ln x1)
1/3 as x1 → +∞. (3.35)

Thus, h1 grows as x → +∞, which, again, indicates a peak in the next zone – but
the amplitude of this peak will be much smaller than that of the pool, as indeed
corroborated by our numerical results.

Problem (3.33)–(3.35) was solved numerically via ‘shooting’. Several examples of
h1(x1) are shown in figure 8(a).

In the next zone, the stretched variables are

h2 =
h

ε−1/10ξ
−1/2
2

, x2 =
x − ε1/5W

ε7/30ξ
−1/6
2

, (3.36)

where the (logarithmically small) parameter ξ2 is related to ε by

ξ2 = − 5

3 ln ε
. (3.37)

Substitution of (3.36) into equation (3.6) yields, to leading order,

−W +
d3h2

dx3
2

= 0. (3.38)

The solution to this equations is given by a cubic polynomial which, generally, has
three roots. However, it can be shown that this zone can be matched to the next one
only if the two larger roots coincide. Hence, denoting the resulting double root by F ,
we require

h2 = 0,
dh2

dx2

= 0 at x2 = F. (3.39)
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Matching of this zone with the previous one is similar to that of zones −1 and −2,
and yields

h2 = 0,
dh2

dx2

= 91/3 at x2 = G, (3.40)

where G is the solution’s smaller root. Finally, observe that the previous zone, zone 1,
is much narrower than either of its neighbours, zone 2 and the pool – compare (3.32)
to (3.36) and (3.7), (3.10). Thus, to leading order, we shall require that the left-hand
boundary of zone 2 coincide with the right-hand boundary of the pool, i.e.

G = 0. (3.41)

The solution of (3.38)–(3.41) is

h2 = 1
6
Wx2(x2 − F )2, 0 � x2 � F, (3.42)

where

F =
21/235/6

W 1/2
(3.43)

is the width of this zone. Examples of this solution are shown in figure 8(b). Observe
also that (3.42)–(3.43) imply

h2 → W 1/2

21/231/6
(x2 − F )2 as x2 → F, (3.44)

which we shall use when matching this zone to the next one.
The next zone’s scaling is, in fact, fully determined by matching to (3.44),

h3 =
h

ε−1/10ξ
1/6
2

, x3 =
x − ε1/5W3

ε7/30ξ
1/6
2

, (3.45)

where

W3 = W − ε1/30ξ
−1/6
2 F

(the second term in W3 reflects the fact that zones 1 and 3 are ‘separated’ by the
width of zone 2). Then, the boundary-value problem for h3 is

1 + 1
3
h2

3

d3h3

dx3
3

= 0, (3.46)

h3 → W 1/2

21/231/6
x2

3 as x1 → −∞, (3.47)

h3 → x3 (9 ln x3)
1/3 as x1 → +∞. (3.48)

Comparison of these equations with (3.33)–(3.35) shows that h3 can be obtained by
re-scaling h1.

Zones 2 and 3 are followed by a sequence of similar asymptotic zones: the even-
numbered ones are described by the explicit solution (3.42)–(3.43); and the odd-
numbered ones, by the boundary-value problem (3.46 )–(3.48). The corresponding
stretched variables are

h2n =
h

ε−1/10ξ
−1/2
2n

, x2n =
x − ε1/5W2n−2

ε7/30ξ
−1/6
2n

for 2n � 4, (3.49)

h2n+1 =
h

ε−1/10ξ
1/6
2n

, x2n+1 =
x − ε1/5W2n

ε7/30ξ
1/6
2n

for 2n + 1 � 3, (3.50)
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where

W2n = W − ε1/30
(
ξ

−1/6
2 + ξ

−1/6
4 + · · · + ξ

−1/6
2n

)
F

is the cumulative width of the even-numbered zones (the odd ones are much narrower).
ξ2n are linked recursively to ξ2n−2 (and, eventually, to ξ2) by

ξ2n = − 6

ln ξ2n−2

. (3.51)

To visualize the asymptotic structure of the solution, observe that, as follows from
(3.49), the characteristic heights and widths of the peaks located in even-numbered
zones are

H2n = ε−1/10ξ
−1/2
2n , X2n = ε7/30ξ

−1/6
2n .

The corresponding parameters of the troughs (located in odd-numbered zones) can
be derived from (3.50),

H2n+1 = ε−1/10ξ
1/6
2n , X2n+1 = ε7/30ξ

1/6
2n .

Note also that equations (3.37) and (3.51) imply that

ξ2 = O

(
1

ln ε

)
, ξ4 = O

(
1

ln ln ε

)
, ξ6 = O

(
1

ln ln ln ε

)
, . . . ,

i.e. ξ2n increase with n and, hence, the peaks become smaller and narrower, while the
troughs become shallower and wider. Sooner or later (say, at n= N), ξ2N becomes
comparable to unity, and the corresponding peak and trough are indistinguishable,
as

H2N+1 = H2N = ε−1/10, X2N+1 = X2N = ε7/30.

Thus, we need to introduce a ‘limiting’ asymptotic zone, with the stretched variables
given by

h2N =
h

ε−1/10
, x2N =

x − ε1/5W2N

ε7/30
. (3.52)

Substituting (3.52) into (3.6) and omitting small terms, we obtain

h2N − 1
3
Wh3

2N + 1
3
h3

2N

d3h2N

dx3
2N

= 0. (3.53)

The matching of h2N to the outer solution (3.4) requires

h2N →
(

3

W

)1/2

as x2N → +∞. (3.54)

Before we discuss the left-hand boundary condition, observe that the previous
equations (3.33) and (3.38) are both included in (3.53) as limiting cases, as they
can be derived from it by re-scaling the variables. In fact, the solutions of the
previous zones are simply an asymptotic description of h2N for large negative values
of x2N . Thus, we should require that, as x2N → −∞, h2N ‘consists’ of a sequence of
maxima and minima described by (3.42)–(3.43) and (3.46)–(3.48).

In practice, however, we just need to integrate equation (3.53) from left to right,
starting from a maximum, and show that, eventually (at the positive infinity), we can
satisfy condition (3.54). Furthermore, since the spatial variable x2N does not explicitly
appear in (3.53)–(3.54), we can start integration from x2N = 0, i.e. the left-hand
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Figure 9. The numerical solution of the boundary-value problem (3.53)–(3.55) for W = 1,
A =10, 100, 1000, 10000.

boundary condition amounts to

h2N = A,
dh2N

dx2N

= 0 at x2N = 0, (3.55)

where A is a large positive constant.
It turned out that the boundary-value problem (3.53)–(3.55) cannot be solved

numerically through ‘shooting’, owing to the exponential dependence of the solution
on the initial condition and other complicating factors. As a result, we used the same
iterative procedure as used for the exact boundary-value problem (2.5)–(2.6) (see § 5.1).
The results are shown in figure 9: one can see that, no matter how large the amplitude
of the initial maximum is, the solution invariably reaches the correct limiting value
as x2n → +∞. It also has the correct (oscillating) structure, with a narrow minimum
following a wide maximum.

Effectively, the boundary-value problem (3.53)–(3.55) describes all of the right-hand
transitional region starting from zone 1.

4. Discussion
4.1. The right-hand transitional region from a physical viewpoint

Mathematically, the most interesting aspect of the above solution is the variable
number of asymptotic zones in the right-hand transitional region (recall that N

depends on how small ε is). This unusual feature has been found earlier for a similar
setting – namely, a liquid film sliding down a vertical wall into a pool (Wilson & Jones
1983). In that case, the asymptotic structure of the solution also involved indefinitely
many zones, but, in the exact solution, only one or two peaks (capillary ripples) could
be observed. The discrepancy was due to the fact that the sequence of formally small
parameters which determined the zones rapidly increased, so in some cases even the
second one was comparable to unity.
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Figure 10. The azimuthal velocity profile (4.2) of a rimming flow.

In the present case, the sequence of small parameters ξ2n, on which the separation
of scales of the asymptotic zones is based, increase exponentially, i.e. even faster
than those in the work of Wilson & Jones (1983). For ε = 10−12, for example,
equation (3.37) yields ξ2 ≈ 0.0603 which is indeed small, but then (3.51) with n=2
yields ξ4 ≈ 2.13 =O(1). Thus, few ripples should be expected in the numerical solution
of the present problem (see the next section).

Note also that Wilson & Jones (1983) observed ripples on a film entering a pool,
whereas a film being withdrawn from a pool turned out to be smooth (Wilson 1982).
This is at odds with the present case, where the variable number of zones (physically,
corresponding to ripples) were observed in the right-hand transitional region, where
the film is being withdrawn from the pool.

To resolve the contradiction, we need the expression for the non-dimensional
azimuthal velocity v, i.e. the component tangential to the cylinder’s wall, as a function
of the film’s non-dimensional depth z (see Appendix A, formula (A 2)). Then, since h

satisfies the steady-state equation (2.8), expression (A 2) can be rearranged into

v = 1 +

(
z2

2
− zh

)
3 (h − q)

h3
. (4.1)

Now, recall that, in both transitional regions, h �, q , and hence (4.1) becomes

v ≈ 1 +

(
z2

2
− zh

)
3

h2
. (4.2)

The dependence v vs. z is shown in figure 10. One can see that, even though the net
flux q is positive (directed to the right), the near-surface velocity is directed to the
left.

Given that capillary ripples are most sensitive to what happens near the fluid’s
surface, it comes as no surprise that they occur in the right-hand transitional region,
where the near-surface layer flows towards the pool – just as it does in the setting
considered by Wilson & Jones (1983).



108 E. S. Benilov, M. S. Benilov and N. Kopteva

4.2. The applicability of the solution obtained

The lubrication theory, on which all results in this paper are based, requires the film
to be thin and its slope small. Thus, we should make sure that our asymptotic solution
complies with these requirements.

First, estimating the depth of the pool (where the film is thickest) from (3.10) and
also recalling how h was non-dimensionalized (see (2.1)), we obtain

αε−1/5 � 1. (4.3)

Secondly, it can be verified that the steepest slope occurs in zone −1 of the left-hand
transitional region. Extracting the scales for h and x from (3.20) and (3.31),

H = ε−1/15

(
− 15

ln ε

)−2/3

, X = ε4/15

(
− 15

ln ε

)−1/3

,

and estimating the slope as αH/X, we obtain

αε−1/3

(
− 15

ln ε

)−1/3

� 1. (4.4)

Note also that, apart from surface tension, rimming flows are affected by hydrostatic
pressure. The latter can be described using the lubrication theory (Benjamin et al.
1993), resulting in

h − 1
3
h3 cos θ + 1

3
εh3

(
dh

dθ
+

d3h

dθ3

)
+ α

(
1
3
h3 dh

dθ
sin θ + 1

2
h4 cos θ − 1

2
h2

)
= q, (4.5)

where α is given by (2.2). By comparison with (4.5), our equation (2.5) misses the
expression involving α; hence, to validate our results, we need that to be much smaller
than the largest of ‘our’ terms. In the outer zone, where the solution is determined
by the first two terms of (4.5), this implies α � 1, which condition is weaker than
(4.3)–(4.4) and, thus, can be discarded. In the inner zones, in turn, pressure should be
compared to surface tension (which is always a leading-order effect); one should also
keep in mind that the spatial scale X of the solution is small. Comparing the largest
of the surface-tension terms (the second one) to the largest of the pressure terms (the
first one), we obtain

ε

X2
� α. (4.6)

Condition (4.6) is most stringent in the inner zone with the largest X, which is zone
2N of the right-hand transitional region. Substituting X = X2N = ε7/30 into (4.6), we
obtain

ε8/15 � α. (4.7)

This condition is stronger than (4.3)–(4.4) and, thus, can be regarded as the sole
applicability criterion of our results. Note, however, that all of the above conditions
are ‘local’: if they do not hold, this affects only some of the asymptotic zones, while
the solution in other zones remains intact.
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5. Numerical results
5.1. The method

The simplest way to compute the solution of the steady-state equation (2.5) is to
simulate the evolutionary equation (2.4) with a suitable initial condition, say,

h = const at t = 0. (5.1)

In the limit t → ∞, the solution becomes steady and, by varying the constant in (5.1),
one can compute steady states for various values of the net mass M . This approach
was used by Ashmore et al. (2003), and we also attempted to use a somewhat
enhanced version of it (with the implicit Euler method for the time derivative, five-
point second-order upwind discretization of spatial derivatives, and a sophisticated
mesh refinement algorithm).

However, even though simulating the evolution equation (2.4) yields an accurate
solution for h, it does not for the flux q . The problem is that, to calculate q , one needs
to compute ∂3h/∂θ3, the accuracy of which is much lower than that of h. Moreover,
since all interesting particular cases in this problem are concentrated near q ≈ 2

3
, a

high-accuracy computation of this quantity is essential.
As a result, we solved the steady-state problem (2.5)–(2.7) for h and q (for a given

mass M) via an iterative procedure based on Newton linearization. Equation (2.5)
was divided by 1

3
h3, then replaced with a linear ODE,

3

h2
n

− 6 (hn+1 − hn)

h3
n

− cos θ + ε

(
dhn+1

dθ
+

d3hn+1

dθ3

)

=
3qn

h3
n

− 9qn (hn+1 − hn)

h4
n

+
3 (qn+1 − qn)

h3
n

, (5.2)

where (hn, qn) represent the ‘current’ iteration and (hn+1, qn+1), the next one.
Equation (5.2) was discretized using the five-point (fourth-order) symmetric
approximations of the derivatives and solved together with the discrete equivalents of

hn+1(θ + 2π) = hn+1(θ), (5.3)∫ 2π

0

hn+1(θ) dθ = M (5.4)

through Crout’s UL-decomposition algorithm (see Press et al. 1992). This approach
turned out to be faster and more accurate than simulating the evolution equation (2.4).

In some cases, where a small change in M gives rise to a large change in q , it is
more convenient to solve equation (2.5) for a given q , without imposing condition
(2.7). In this case, the last term in equation (5.2) should be omitted and condition
(5.4) discarded.

5.2. The results

A typical pool solution and the corresponding streamlines are shown in figure 4. One
can see that most of the pool is occupied by a large re-circulation area.

Using the computed solution, we have also verified the accuracy of the asymptotic
outer solution (3.2); it turned out that, for ε = 10−4 − 10−3, the asymptotic and
numerical solutions are indistinguishable everywhere except for the pool zone (see
figure 11a)

The agreement between the numerical and asymptotic solutions for the pool (see
figure 11b) is worse than that for the outer solution. To understand why this is so,
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Figure 11. Numerical solution of the exact equation (2.4) with M = 9.5 and (a) ε = 10−4, (b)
ε = 10−3. The dotted line shows the outer asymptotic solution (3.2) (the left-hand panels) and
the pool solution (3.13) (the right-hand panels).

note that the accuracy of the former is ε1/5 (which can be verified by substituting
the stretched variables (3.7), (3.10) into equation (3.6) and estimating the magnitude
of the next-to-leading-order term). The accuracy of the outer solution, in turn, is ε,
which is much higher.

However, the relatively low accuracy of the asymptotic solution for the pool
manifests itself, mainly, in the pool’s incorrect position (see figure 11b), whereas
its shape is predicted quite well. To illustrate this, we introduce the width w0.5 of
the pool at half of the maximum depth hmax , and similar widths, w0.7 and w0.9, at
0.7hmax and 0.9hmax (see figure 12a). These parameters are plotted as functions of
hmax alongside their asymptotic counterparts (based on solution (3.13)) in figure 12(b).
Clearly, the numerical and asymptotic results agree reasonably well even for ε =10−3

(note that the neighbouring regions affect w0.5 more than the other two widths; hence,
the accuracy of its asymptotic value is the lowest). The disagreement between the
numerical and asymptotic positions of the pool will be qualitatively explained in
the next section. Note also that no more than one ripple has been observed in the
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Figure 12. The ‘shape’ of the pool. (a) The definitions of w0.9, w0.7, and w0.5; (b) w0.9, w0.7,
and w0.5 (the triangles, squares, and circles respectively) vs. hmax , for the numerical solution
of the exact equation (2.5) for ε = 10−3. The dotted lines show the corresponding asymptotic
results based on the pool solution (3.13). The vertical dashed line separates solutions with a
shock from those with a pool.

right-hand transitional region, and sometimes (for larger ε and smaller M) we did
not observe any ripples at all.

6. The near-critical regime
Note that the maxima of subcritical shock solutions (for which M < M∗∗) are

positioned inside the fourth quadrant – see figure 3(a). On the other hand, the
maxima of the supercritical solutions constructed in § 3 (for which M >M∗∗) are
located at exactly θ = 3

2
π. Thus, to trace how the former solutions transform into the

latter, one should consider a near-critical regime, for which M ≈ M∗∗. It should be the
most general regime, such that the ‘neighbouring’ ones can be obtained as its limiting
cases.

It can be verified a posteriori that the most general regime corresponds to the
following scaling of the pool:

h0 =
h

ε−1/9γ −4/9
, x0 =

x

ε2/9γ −1/9
, (6.1)

where the (logarithmically) small parameter γ is

γ = − 9

ln ε
. (6.2)

Substitution of (6.1) into (3.6) yields the same equation and solution as in the
supercritical regime, i.e. (3.11) and (3.12) respectively. Even the right-hand boundary
condition is the same, i.e. we should require that the solution approach zero with zero
derivative. At the left-hand boundary, however, the derivative should be equal to 91/3

(which can be shown to be the only choice that ensures matching to the left-hand
transitional region).
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Figure 13. The pool solution (6.5), (6.7) for the near-critical regime (the curves are marked
with the corresponding values of W ′).

Thus, denoting the left-hand and right-hand boundaries of the pool by A and B ,
we require

dh0

dx0

= 91/3, h0 = 0 at x = A, (6.3)

dh0

dx0

= 0, h0 = 0 at x = B. (6.4)

Under conditions (6.3)–(6.4), solution (3.12) becomes

h0 = 1
24

(x0 − A) (x0 + A + 2B) (x0 − B)2 , A � x0 � B, (6.5)

where A and B satisfy
1
12

(A + B)(A − B)2 = 91/3. (6.6)

It is convenient to introduce here W ′ = 1
2
(B − A), where W ′ is the scaled half-width

of the pool (the equivalent of W introduced for supercritical solutions). Then, (6.6)
can be satisfied by putting

A =
35/3

2W ′2 − W ′, B =
35/3

2W ′2 + W ′. (6.7)

As W ′ → 0, solution (6.5), (6.7) moves to the right, while its amplitude decays (see
figure 13) – this limit describes solutions with shocks located near the bottom of the
cylinder. In the opposite limit, W ′ → ∞, solution (6.5), (6.7) becomes more symmetric
and tends to the supercritical pool solution (3.13).

The structure of the transitional regions for the near-critical regime is similar to
that of the supercritical one with one exception: the left-hand transitional region of
the former consists of a single zone. This zone is described by the Landau–Levich
equation, the linear/logarithmic solution (3.28) of which matches the pool exactly, so
there is no need for an auxiliary zone.
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It should be noted, however, that the near-critical solution has a much lower
accuracy than the supercritical one, as the parameter γ on which the former is based
is rarely small (if, for example, ε = 10−6, then (6.2) yields γ ≈ 0.65, which can hardly be
regarded as small). Thus, solution (6.5), (6.7) should, rather, be viewed as a qualitative
aid for explaining subtle features of rimming flows, such as the above-mentioned shift
of the pool zone, etc.

7. Comparison with Ashmore et al. (2003)
Before discussing the paper by Ashmore et al. (2003, henceforth referred to as

AHS), we shall rewrite the pool solution (3.13) in terms of the original non-scaled
variables (see (3.7)–(3.8)) and the maximum depth hmax = 1

24
H0W

4 of the pool,

h = hmax

[
x2

(24εhmax )1/2
− 1

]2

, − (24εhmax )1/4 � x � (24εhmax )1/4 . (7.1)

Then, at the boundaries of the pool, we have

h →
(

2hmax

3ε

)1/2 [
x + (24εhmax )1/4

]2
as x → −(24εhmax )1/4, (7.2)

h →
(

2hmax

3ε

)1/2 [
x − (24εhmax )1/4

]2
as x → (24εhmax )1/4, (7.3)

which are equivalent to (3.14)–(3.15) (with hmax replacing W as the free parameter of
our family of solutions).

The pool solution (7.1) agrees with the corresponding solution of AHS, but their
outer solution does not agree with our (3.2). This is a result of AHS’s assumption
that the flux is small,

q � 1, (7.4)

as opposed to our hypothesis q ≈ 2
3

(see § 3.3). Under assumption (7.4), the solution
of equation (2.5) can be sought in the form of a series in powers of q ,

h = q + O(q3), (7.5)

i.e. the film’s thickness in the outer zone is almost uniform.
AHS then, effectively, used the assumption

q = ε−1/6h−1/2
max q̂, (7.6)

where q̂ is an order-one constant to be determined later. Keeping (7.6) in mind,
consider the right-hand transitional region (unlike our case, it includes only one
zone). It can be verified a posteriori that the stretched variables there are

h1 =
h

ε−1/6h
−1/2
max

, x1 =
x −

(
24εhmax

)1/4

ε1/6h
−1/2
max

. (7.7)

The matching of (7.7) to the outer and pool solutions, (7.5)– (7.6) and (7.3), requires

h1 → q̂ as x1 → +∞, (7.8)

h1 →
(

2
3

)1/2
x2

1 as x1 → −∞. (7.9)

Next, substituting (7.7) into (3.6), we obtain

h1 + 1
3
h3

1

d3h1

dx3
1

= q̂. (7.10)
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Type of solution M hmax q

(a) continuous M � M∗ hmax = O(1) q � 2
3

(b) shock M ∈ (M∗, M∗∗) hmax = O(1) q = 2
3

(c) near-critical M ≈ M∗∗ hmax = O(ε−1/9γ −4/9) q ≈ 2
3

(d) supercritical M = M∗∗ + O(1) hmax = O(ε−1/5) q ≈ 2
3

(e) strongly supercritical M � ε−1/6 hmax � O(ε−1/3) q � 1

Table 1. The maximum thickness, flux, and net mass for various types of rimming flows. The
characteristics of solutions (a)–(b) have been calculated with surface tension neglected, ε =0;
those of solutions (c)–(e) calculated for weak surface tension, 0< ε � 1. For the near-critical
solution, γ = −9/ ln ε.

It can be shown that the boundary-value problem (7.8)–(7.10) has a solution only for
a certain value of q̂ , which can be found numerically, q̂ ≈ 0.82 (see Appendix B).
Then, (7.6) yields the following expression for the flux:

q ≈ 0.82 ε−1/6h−1/2
max . (7.11)

This result is compared to the numerical solution of the exact problem in figure 14(b),
below.

Observe also that (7.11) is consistent with the small-q assumption (7.4) only if

hmax � ε−1/3.

In terms of the net mass (which is mainly determined by the pool solution (7.1)), this
restriction has the form

M � ε−1/6.

Naturally, since we assumed q = 2
3
, our results are applicable in the opposite limit,

hmax � ε−1/3, M � ε−1/6.

One can see that the present work is complementary to AHS’s analysis.

8. Concluding remarks: the complete classification of rimming flows with
surface tension

Steady rimming flows with surface tension are governed by equation (2.5) and are
characterized by two parameters: the non-dimensional capillary coefficient ε defined
by (2.3) and the non-dimensional mass M defined by (2.7).

A classification of rimming flows depending on M and ε is presented in table 1
and briefly summarized below (the numbering corresponds to that of table 1).

(a) Continuous rimming flows (see figure 2) were examined by Moffatt (1977) using
the leading-order equation (2.8). As M → M∗ ≈ 4.44, then q → 2

3
and the solution

develops a ‘corner’ at θ = 0.
(b) Flows with shocks (see figure 3a) were examined by Benjamin et al. (1993) and

O’Brien & Gath (1998), using the leading-order theory (which allows the solution to
have discontinuities). As M → M∗∗ ≈ 6.93, the shock approaches the bottom of the
cylinder (θ = 3

2
π), while its amplitude grows.

(c) Near-critical rimming flows are examined in § 6 of this paper. They can be
interpreted as shock solutions with the shock being close to the bottom of the
cylinder, modified by surface tension. As the amplitude of the solution grows, its peak
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Figure 14. The flux q vs. the net mass M , for ε =10−3. The numerical solution is shown as
a solid line, the asymptotic solution (7.11) is shown as dotted line in (b). A blow-up of the
region shaded in (a) is shown above it.

(the ‘pool’) changes shape: initially, it is skewed to the left (which shows its relation to
shocks); but, for larger amplitudes, the pool becomes symmetric (see figure 13). From
a mathematical viewpoint, this regime, as well as the next one, are unusual, as they
involve a variable number of asymptotic zones, depending on the small parameter ε.

(d) Supercritical rimming flows are examined in § 3 of this paper. This regime can be
treated as a limiting case of near-critical flows (in particular, it has a symmetric pool).
It can be demonstrated that, even though this regime was studied using the scaling
hmax = O(ε−1/5), the results obtained are applicable to all cases with hmax � ε−1/3.

(e) Strongly supercritical flows, i.e. such that hmax � ε−1/3 were considered by
Ashmore et al. (2003) and in § 7 of this paper. The main characteristic feature
of this regime is the small thickness hout of the film outside the pool and small flux q

(for all other regimes with shocks and pools, hout = O(1), q ≈ 2
3
). Mathematically, this

case is much simpler than its two predecessors (c) and (d), as it involves only four
asymptotic zones.

Observe that our classification has a ‘gap’, namely the regime with

M = O(ε−1/6), hmax = O(ε−1/3), (8.1)

which describes the transition from the thick-outer-film regime (d) to the thin-outer-
film regime (e).

The regimes introduced above are best illustrated by plotting the flux q as a function
of the net mass M – see figure 14. One can see that the intermediate regime (8.1)
is an interesting one, as it allows for up to three solutions with the same net mass
(see the three ‘branches’ which exist in the interval 10 � M � 11.5 in figure 14a). The
lower branch is an extension of the small-q solution considered by Ashmore et al.
(2003) and, thus, corresponds to a non-limiting outer solution. The middle and upper
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Figure 15. Examples of steady rimming flows (numerical solution) with the same net mass
(M = 10.5) but different fluxes q , corresponding to the three ‘branches’ shown in figure 14 (in
all three cases, ε = 10−3). (b) A blow-up of the region shaded in (a). Curve L corresponds to
q ≈ 0.6598 (lower branch); curve M, to q ≈ 0.6652 (middle branch); and curve U, to q ≈ 0.6686
(upper branch).

branches both involve the limiting outer solution and differ only in the right-hand
transitional region (see figure 15). Note that figure 14 also validates the assumptions
about the flux q on which the present paper and Ashmore et al. (2003) are based: that
q ≈ 2

3
for the near- and supercritical regimes and q � 1 for the strongly supercritical

one.
Finally, simulations of the evolution equation (2.4) indicate that, for all regimes up

to and including the supercritical regime, the solution always converges to the steady
state with the corresponding value of M , which implies stability. What happens in
further regimes is unclear, as the straightforward numerical methods are either too
slow or too inaccurate, and this question requires further investigation.

Appendix A. The streamlines of a rimming flow
Let us introduce the non-dimensional radial and azimuthal velocities,

u =
u∗

αRΩ
, v =

v∗

RΩ
,

and, also, the non-dimensional depth of the film

z =
R − r∗

αR
,

where α is given by (2.2) and asterisks, as before, mark dimensional variables. Within
the framework of the lubrication approximation, u and v are given by (e.g. Benilov
& O’Brien 2005)

u = −
(

z3

6
− hz2

2

)[
sin θ + ε

(
d2h

dθ2
+

d4h

dθ4

)]
− hθz

2

2

[
cos θ − ε

(
dh

dθ
+

d3h

dθ3

)]
,(A 1)

v = 1 +

(
z2

2
− hz

)[
cos θ − ε

(
dh

dθ
+

d3h

dθ3

)]
, (A 2)
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It can be verified by inspection that (A 1)–(A 2) correspond to the following stream-
function:

ψ = z +

(
z3

6
− hz2

2

) [
cos θ − ε

(
dh

dθ
+

d3h

dθ3

)]
. (A 3)

Now, the streamlines can be obtained by equating ψ to a constant,

ψ(z, θ) = const. (A 4)

For a given h(θ), (A 3)–(A 4) constitute a cubic equation for z as a function of θ

(obviously, only those roots should be taken for which Im z =0, 0 � Re z � h).

Appendix B. Solution of problem (7.8)–(7.10)
Let us rewrite (7.8)–(7.10) in terms of

ξ =
x1

q̂
, η =

h1

q̂
,

which yields

η → 1 as ξ → +∞, (B 1)

η → q̂
(

2
3

)1/2
ξ 2 as ξ → −∞. (B 2)

η + 1
3
η3 d3η

dξ 3
= 1. (B 3)

To find asymptotics of η as x → +∞, seek a solution in the form

η = 1 + η̃(x), (B 4)

substitute (B 4) in equation (B 3), linearize it,

η̃ +
d3η̃

dξ 3
= 0,

and solve:

η̃ = exp
(

1
2
ξ
) [

c1 sin

(
31/2ξ

2

)
+ c2 cos

(
31/2ξ

2

)]
+ c3 exp (−ξ ) , (B 5)

where c1, c2, c3 are constants of integration. Observe that (B 4)–(B 5) satisfy the
boundary condition (B 1) only if c1 = c2 = 0; note also that (B 1)–(B 3) are invariant
with respect to the transformation ξ → ξ + real constant , and we can assume
real constant = ln |c3| which yields either

η = 1 + exp(−ξ ) as ξ → +∞ (B 6)

or

η = 1 − exp(−ξ ) as ξ → +∞. (B 7)

Using (B 6) or (B 7), we can ‘shoot’ the solution (numerically) from a large positive
value of ξ towards −∞. Once the solution’s second derivative becomes close to a
constant (hence the boundary condition (B 2) is almost satisfied), we can ‘collect’ the
value of q̂ from

q̂ = 1
2

(
3
2

)1/2
lim

ξ→−∞

d2η

dξ 2
.
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It turns out that the boundary condition (B 7) does not yield a solution with the
required (parabolic) asymptotics for ξ → −∞, as η(ξ ) passes through zero at a
finite value of ξ and becomes negative. Condition (B 6), in turn, yields the required
asymptotics, with q̂ ≈ 0.82.
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