
Strathprints Institutional Repository

Wang, Yunliang and Shukla, Padma and Eliasson, Bengt (2013) Instability and dynamics of two
nonlinearly coupled intense laser beams in a quantum plasma. Physics of Plasmas, 20 (1). ISSN
1070-664X

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Instability and dynamics of two nonlinearly coupled intense laser beams in
a quantum plasma
Yunliang Wang, P. K. Shukla, and B. Eliasson 
 
Citation: Phys. Plasmas 20, 013103 (2013); doi: 10.1063/1.4774064 
View online: http://dx.doi.org/10.1063/1.4774064 
View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v20/i1 
Published by the AIP Publishing LLC. 
 
Additional information on Phys. Plasmas
Journal Homepage: http://pop.aip.org/ 
Journal Information: http://pop.aip.org/about/about_the_journal 
Top downloads: http://pop.aip.org/features/most_downloaded 
Information for Authors: http://pop.aip.org/authors 

Downloaded 10 Sep 2013 to 130.159.82.179. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

http://pop.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/96767268/x01/AIP-PT/PoP_CoverPg_082813/APL_HouseAd_1640_x_440_r2_v1.jpg.jpg.jpg/6c527a6a7131454a5049734141754f37?x
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Yunliang Wang&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=P. K. Shukla&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=B. Eliasson&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4774064?ver=pdfcov
http://pop.aip.org/resource/1/PHPAEN/v20/i1?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://pop.aip.org/about/about_the_journal?ver=pdfcov
http://pop.aip.org/features/most_downloaded?ver=pdfcov
http://pop.aip.org/authors?ver=pdfcov


Instability and dynamics of two nonlinearly coupled intense laser beams
in a quantum plasma

Yunliang Wang,1,2 P. K. Shukla,1,3,4 and B. Eliasson1

1International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics,
Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany
2Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing,
Beijing 100083, China
3Department of Mechanical and Aerospace Engineering & Center for Energy Research,
University of California San Diego, La Jolla, California 92093, USA
4School of Chemistry and Physics, KwaZulu-Natal University, Durban 4000, South Africa

(Received 11 December 2012; accepted 17 December 2012; published online 8 January 2013)

We consider nonlinear interactions between two relativistically strong laser beams and a quantum

plasma composed of degenerate electron fluids and immobile ions. The collective behavior of

degenerate electrons is modeled by quantum hydrodynamic equations composed of the electron

continuity, quantum electron momentum (QEM) equation, as well as the Poisson and Maxwell

equations. The QEM equation accounts the quantum statistical electron pressure, the quantum

electron recoil due to electron tunneling through the quantum Bohm potential, electron-exchange,

and electron-correlation effects caused by electron spin, and relativistic ponderomotive forces (RPFs)

of two circularly polarized electromagnetic (CPEM) beams. The dynamics of the latter are governed

by nonlinear wave equations that include nonlinear currents arising from the relativistic electron

mass increase in the CPEM wave fields, as well as from the beating of the electron quiver velocity

and electron density variations reinforced by the RPFs of the two CPEM waves. Furthermore,

nonlinear electron density variations associated with the driven (by the RPFs) quantum electron

plasma oscillations obey a coupled nonlinear Schr€odinger and Poisson equations. The nonlinearly

coupled equations for our purposes are then used to obtain a general dispersion relation (GDR) for

studying the parametric instabilities and the localization of CPEM wave packets in a quantum

plasma. Numerical analyses of the GDR reveal that the growth rate of a fastest growing

parametrically unstable mode is in agreement with the result that has been deduced from numerical

simulations of the governing nonlinear equations. Explicit numerical results for two-dimensional

(2D) localized CPEM wave packets at nanoscales are also presented. Possible applications of our

investigation to intense laser-solid density compressed plasma experiments are highlighted. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4774064]

I. INTRODUCTION

The rapid development of laser technology, especially

chirped pulse amplification (CPA), has provided excellent

opportunities to construct table-top laser sources of femto-

second pulses with intensities up to 1022 W=cm2,1 and the next

generation of powerful laser pulses that may reach intensities

up to 1026 W=cm2.2 Such high power laser pulses will open a

new window for carrying out research dealing with nonlinear

interactions between intense laser beams and plasmas in the

relativistic3,4 and quantum regimes.5 For hot plasmas (with

the average plasma temperature Tp exceeding several tens of

electron Volts) with extremely high plasma number densities

(say, in the range 1023�1028 cm�3), the quantum mechanical

effects ought to be considered, since the de Broglie thermal

wave length kB of degenerate electrons and positrons could be

comparable to the inter-electron/positron distance in a dense

plasma;6,7 typically, kB is much smaller than the Landau length

e2=kBTp, where e is the magnitude of the electron charge and

kB is the Boltzmann constant. Accordingly, there have been a

number of recent investigations5–7 that focused on nonlinear

interactions between intense laser pulses and a dense quantum

plasma that are relevant for the next-generation intense laser-

solid density plasma experiments,8 for quantum x-ray free-

electron lasers (FELs),9,10 for inertial confinement fusion (ICF)

schemes,11,12 and for localized x-ray pulses emanating from

compact astrophysical objects.13

While investigating collective interactions in quantum

plasmas, it is often convenient to use the quantum hydrody-

namic (QHD) equations (or the Madelung equations for the

quantum electron fluid) that is composed of the electron conti-

nuity, non-relativistic momentum equation for degenerate

electron fluids, and Poisson’s equation. The non-relativistic

electron momentum equation (NREME) includes linear and

nonlinear electron inertia, the electrostatic and Lorentz forces,

as well as the quantum forces14,15 arising from the quantum

statistical pressure,16 electron-exchange and electron correla-

tion effects,17 and the quantum recoil effect.18 The latter

reflects electron tunneling through the quantum Bohm poten-

tial and causes dispersion of electron wave functions at atomic

scales. From the NREME, one can also derive a nonlinear

Schr€odinger equation (NLSEs) by invoking an eikonal repre-

sentation that separates the amplitude and phases of electron

wave functions. Quantum magnetohydrodynamic (QMHD)
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equations19 including electron spin-1/2 effect have been

obtained from Pauli’s equation, and used to investigate the

spin-induced ponderomotive force.20 Besides the above men-

tioned nonrelativistic hydrodynamic models, a relativistic

quantum hydrodynamic equation has also been derived by

using the Wigner distribution, where the quantum Bohm

potential has been modified by the relativistic gamma factor.21

In fact, the Dirac and Maxwell equations can be used to inves-

tigate the nonlinear propagation of intense laser pulses in

quantum plasmas with electron spin effects.22,23

It is well known that nonlinear effects associated with the

relativistic circularly polarized electromagnetic (CPEM) pon-

deromotive force and the relativistic electron mass increase in

the CPEM wave fields produce stimulated scattering instabil-

ities, two-plasmon decay instability,24–28 as well as modula-

tional and filamentational instabilities. In their classical Paper,

Shukla and Eliasson5 presented an investigation of nonlinear

couplings between intense CPEM waves and quantum elec-

tron plasma oscillations (QEPOs) in a dense plasma. They

accounted for relativistic electron mass increase in the CPEM

fields and the RPF driven electron density variations and

reported the parametric instabilities and trapping of a single

CPEM wave into an electron hole at nanoscales in one-space

dimension. Thus, two coupled nonlinear Schr€odinger equa-

tions for the EM vector potential and the ES scalar potential

were coupled with Poisson’s equation to describe the behavior

of nonlinearly coupled CPEM waves and QEPOs. It turns out

that due to the quantum recoil effect in the dynamics of

QEPOs, the electron number density remained non-zero in the

RPF created density cavity, which is in sharp contrast to the

classical plasma case,29 where there could be a complete

depletion of the electron number density.29 Eliasson and Shu-

kla28 have investigated relativistic laser-plasma interactions in

the quantum regime by using the Klein-Gordon equation to

model the dynamics of relativistic electrons, where the main

results of quasi-steady-state propagation are the same as that

in Ref. 5. Furthermore, Eliasson and Shukla9 also used the

same mathematical model for relativistic X-ray free-electron

lasers in the quantum regime, which can be used to explore

matter at atomic and single molecule levels.30 A two-stream

instability and the quantum relativistic Buneman instabilities

have also been investigated by using the Klein-Gordon-Max-

well system of equations.31 Recently, stimulated Raman and

Brillouin backscattering instabilities of coherent CPEM waves

carrying orbital angular momentum have been investigated by

considering quantum electron statistical pressure, electron-

exchange, and electron-correlation effects, the quantum recoil

effect in the dynamics of degenerate electrons that are partici-

pating in the driven QEPOs in a quantum plasma without and

with strongly coupled ions.15

In this paper, we present an investigation of the paramet-

ric instabilities of two nonlinearly coupled intense laser beams

in an unmagnetized quantum plasma. Nonlinear interactions

between two laser beams in classical plasmas were investi-

gated for realizing a plasma-based beat-wave accelerator

scheme.32 Here, large amplitude electron plasma waves can

be nonlinearly excited by colliding two counter-propagating

laser pulses.33 Two counter-propagating intense laser pulses

with tilted amplitude fronts can excite a standing plasma wave

for accelerating electrons with energies reaching several

GeV.34 For two nonlinearly coupled laser beams in classic

plasmas,35 the dispersion relations for stimulated Raman and

stimulated Brillouin scattering instabilities show rather weak

interactions between the two-laser beams. New classes of the

parametric instabilities were found in two-temperature elec-

tron plasmas.36 Since the investigation of two nonlinearly

coupled relativistically intense laser beams in quantum plas-

mas has important applications in the next-generation intense

laser-solid density plasma interaction experiments, in X-ray

free electron laser schemes, in laser-based inertial confinement

fusion schemes, in high-energy charged particle acceleration

schemes, as well as in astrophysical and cosmological envi-

ronments, we shall use a useful model developed in Ref. 5

for studying the relativistic quantum modulational and

stimulated scattering instabilities of two nonlinearly coupled

CPEM waves and QEPOs and their nonlinear dynamics. In

the dynamics of relativistic ponderomotive forces (RPF)

driven QEPOs, we shall account for fully nonlinear quantum

statistical pressure, the quantum electron recoil effect, as well

as electron-exchange and electron correlation effects37 and

spin effects.38 Thus, our previous investigation has been sig-

nificantly enlarged to account for nonlinear interactions

between intense two co-propagating intense laser beams and

nonlinear QEPOs that will play a significant role in the non-

linear nanophysics of the next generation high density com-

pressed plasmas produced by multiple intense laser beams for

achieving ICF.

II. GOVERNING NONLINEAR EQUATIONS

Let us consider the nonlinear propagation of two non-

linearly coupled relativistically intense high-frequency

CPEM pulses interacting with QEPOs in an unmagnetized

quantum plasma with degenerate electron fluids and immo-

bile ions. Accordingly, nonlinear phenomena would occur

on time scales of the electron plasma period and uniformly

distributed ions would not have time to respond to CPEM

waves and QEPOs. Within the framework of a slowly vary-

ing envelope approximation, the two nonlinearly coupled

intense CPEM waves can be described by two-coupled non-

linear Schr€odinger equations5

2iX01

@

@t
þ v1 � r

� �
A1 þr2A1 �

jwj2

c
� 1

 !
A1 ¼ 0; (1)

2iX02

@

@t
þ v2 � r

� �
A2 þr2A1 �

jwj2

c
� 1

 !
A2 ¼ 0; (2)

where the vector potentials of the CPEM waves are

Aj ¼ Ajðx̂ þ iŷÞexpð�ix0jtþ ik0j � rÞ with j¼ 1, 2 and

c¼ ð1þ jA1j2þ jA2j2Þ1=2
is the relativistic gamma factor.

Here, we have ignored the cross-coupling term A1 �A2,

which has been considered in the context of the beat wave

electron acceleration scheme,32 and also in the ionospheric

heating experiments.36 Furthermore, X0j ¼ x0j=xpeðj¼ 1;2Þ
is the normalized CPEM waves frequency, and vj ¼ vgj=c is

the normalized group velocity with vgj ¼ k0jc
2=x0j, in which
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x0j is the CPEM waves frequency, k0j is the wave number,

xpe ¼ ð4pn0e2=mÞ1=2
is the electron plasma frequency, e is

the magnitude of the electron charge, n0 is the equilibrium

electron number density, m is the electron rest mass, and c is

the speed of light in vacuum. In the derivation of the coupled

NLSEs, we used x2
0j ¼ k2

0jc
2þx2

pe. In Eqs. (1) and (2), the

time and space variables are in units of the inverse plasma fre-

quency x�1
pe and the electron inertial length ke ¼ c=xpe,

respectively. The vector potential Aj is normalized by mc2=e.

The quantity jwj2 is electron number density. The electron

wave function w is also normalized by n
1=2
0 , and given by

iH
@w
@t
þ H2

2
r2wþ ð/� cþ 1� CFjwj4=D � Cs/xcÞw ¼ 0;

(3)

where the scalar potential / is normalized by mc2=e. The

non-dimensional quantum parameter H ¼ �hxpe=mc2 deter-

mines the relative importance of the quantum electron recoil

effect. The second term in the left hand side of Eq. (3) is asso-

ciated with the quantum Bohm potential. The relativistic pon-

deromotive potential 1� c comes from the cross-coupling

between electron quiver velocity and the magnetic field of the

CPEM waves.13,25 The term CFjwj4=Dw stands for the quan-

tum statistic pressure coming from the Fermi electron pressure

Pe ¼ meV2
Fen0=3ðne=n0ÞDþ2=D

,16,37,38 VF ¼ ð�h=mÞð3p2n0Þ1=3

the Fermi speed, D is the number of space dimension of the

system, the non-dimensional coefficient is CF ¼ ðV2
F=c2Þ

ðDþ 2Þ=6, and ne ¼ jwj2 is the electron number density.

The last term Cs/xcw is electron-exchange and electron-

correlation potentials due to electron spin, where the coeffi-

cient Cs ¼ 0:985 e2=r0mc2 and r0 ¼ n
�1=3
0 is the Wigner-Seitz

radius. Hence, the normalized potential is /xc ¼ jwj2=3

þ 0:034a�1
B lnð1þ 18:376aBjwj2=3Þ and aB ¼ �h2=me2r0 is the

normalized Bohr radius by the Wigner-Seitz radius.15,17,38,39

We stress that Eq. (3) for QEPOs includes the combined

effects of the quantum electron wave function dispersion, the

quantum statistical electron pressure, electron-exchange, and

electron-correlation effects due to electron spin, and the rela-

tivistic ponderomotive forces of two intense laser pulses that

are colliding in our quantum plasma. Equations (1)–(3) are

closed by Poisson’s equation

r2/ ¼ jwj2 � 1: (4)

Equations (1)–(4) reveal that nonlinear couplings

between two intense CPEM waves and QEPOs emerged due

to the nonlinear current density jwj2Aj=c. The coupled Eqs.

(1)–(4) can self-consistently describe two relativistically

intense laser beams nonlinearly propagating in a quantum

plasma, which can be used to investigate stimulated Raman

scattering and modulational instabilities of two laser beams,

as well as their nonlinear dynamics at nanoscales.

III. THE INSTABILITY AND DYNAMICS OF TWO LASER
BEAMS

Here, we consider the parametric instabilities and the

dynamics of two nonlinearly interacting intense CPEM

waves in a quantum plasma. We first linearize our system of

Eqs. (1)–(4) by introducing Ajðr; tÞ ¼ ½A0j þ A1jðr; tÞ�exp

ð�iajtÞðj ¼ 1;2Þ; wðr; tÞ¼ ½1þw1ðr; tÞ�expð�ibtÞ, and /ðr; tÞ
¼/1ðr; tÞ, where A0j are the large amplitude CPEM pump

waves and A1j are the small amplitude fluctuations of the

CPEM waves. The frequency shifts can be determined by the

equilibrium of Eqs. (1)–(4). The nonlinear frequency shift

turns out to be aj¼ðc�1
0 �1Þ=2X0jðj¼ 1;2Þ, and b

¼ðc0�1Þ=H with c0 ¼ ð1þ jA01j2þ jA02j2Þ1=2
. For first order

quantities, we now introduce the Fourier representations as

A1j¼ ÂjþexpðiK � r� iXtÞþ Âj� expð�iK � rþ iXtÞðj¼ 1;2Þ;
w1¼ ŵþ expðiK � r� iXtÞ þ ŵ� expð�iK � rþ iXtÞ, and /1

¼ /̂expðiK � r� iXtÞþ /̂
�
expð�iK � rþ iXtÞ, where X and K

are the frequency and wave number of the QEPOs, respec-

tively. Inserting these Fourier representations into the linear-

ized equations (1)–(4), and then separating different Fourier

modes and eliminating the Fourier coefficients, we obtain

the nonlinear dispersion relation (NLDR)

1

Q
þ 1

D1þ
þ 1

D1�

� �
jA01j2 þ

1

D2þ
þ 1

D2�

� �
jA02j2 ¼ 0; (5)

where Dj6 ¼ 72X0jðX�K � vjÞ þ K2ðj ¼ 1; 2Þ, the cou-

pling constant is

Q ¼ 1

2c3
0

c0K2

DL
� 1

� �
; (6)

and the QEPOs are represented by

DL ¼ X2 � 1� 1

4
H2K4 � 2

3

V2
F

c2
þ C2

xc

c2

� �
K2: (7)

Here, the quantity C2
xc ¼ 0:985½1þ 0:62=ð1þ 18:376 aBÞ�e2=

r0m. We note that the dispersion of the QEPOs DL ¼ 0 is

identical to that obtained by NLSE-Poisson system in a quan-

tum plasma with degenerate electron fluids.40 The quantum

dispersion effects associated with the QEPO have recently

been observed experimentally in a compressed plasma.41

Equation (5) covers both stimulated Raman scattering

and modulational instabilities of two intense CPEM waves

against QEPOs. If one of the amplitudes jAjjðj ¼ 1; 2Þ is

zero, then we can recover the nonlinear dispersion relation

for a single laser beam propagating in a quantum plasma.5

In the following, we present results of the numerical

analysis of Eq. (5) by assuming that the frequency has a

complex value, of which the imaginary part represents the

growth rate of instability. Without loss of generality, we

choose K ¼ Kyŷ þ Kzẑ and K2 ¼ K2
z þ K2

y . We also use the

dispersion relation x2
0j ¼ k2

0jc
2 þ x2

pe that we used in the der-

ivation of Eqs. (1) and (2). Instability essentially obeys the

conservation of energy and momentum Xj ¼ Xs þ X and

kj ¼ ks þK, where Xj and kj are the frequency and wave

numbers of the pump waves, Xs and ks are the frequency and

wave numbers for the scattered and frequency downshifted

electromagnetic daughter wave, X and K are the frequency

and wave numbers of the QEPOs. We thus have the match-

ing condition ð1þ k2
j Þ

1=2 ¼ ½1þ ðkj�KÞ2�1=2þ ½1þH2K4=
4þ ð2=3ÞðV2

Fþ C2
xcÞK2=c2�1=2

, which relates the components

Ky and Kz of the QEPOs to each other and gives rise to

approximately circular regions, which can be seen in Fig. 1.
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Now let us evaluate the quantum parameters H ¼ �hxpe=
mc2; VF=c, and Cxc=c by using the typical dense plasma sys-

tem. For intense laser solid density plasma interaction experi-

ments, and for the next generation of laser-based plasma

compression (LBPC) experiment, the electron number density

n0 can reach 1023cm�3 � 1028cm�3.5,13,42 Henceforth, the

quantum parameters H may be in the range 2:29� 10�5

� 0:007, while VF=c is in the range 0:005 � 0:25 and Cxc=c
is in the range 0:004 � 0:02.

We have solved the nonlinear dispersion relation (5) and

presented the numerical results in Figs. 1 and 2. The nonlin-

ear couplings between two laser beams with QEPOs give

Raman scattering instability, of which the growth rate is

given in Fig. 1. We assume that the two laser beams propa-

gate in the y and z directions and have the wave numbers

ðkjy;kjzÞ ¼ ð1� 1=X2
0jÞ

1=2ðcoshj; sinhjÞðj¼ 1;2Þ with ðh1;h2Þ
¼ ðp=4;p=4Þ; ðp=4;p=2Þ, and ðp=4;3p=4Þ for the left, mid-

dle, and right column of the panels, respectively. For all

cases in Fig. 1, we used jA01j ¼ 1; jA02j ¼ 2 and X01 ¼ 2;
X02 ¼ 3. One can use the dispersion relation x2

0j ¼ k2
0jc

2

þx2
pe to determine the wave numbers of the two laser

beams. In order to illustrate the effects of the quantum dis-

persion, the quantum statistical pressure, electro- exchange,

and electron-correlation potentials on the Raman scattering

growth rate, we used the parameters, H¼0.001, VF=c
¼ 0:069, and Cxc=c¼ 0:013 in the upper row of the panels

and considered the quantum dispersion effect with H¼0.007

both in the middle and lower rows of the panels. But we took

VF=c¼ 0:257; Cxc=c¼ 0:025 for middle row and VF=c¼ 0;
Cxc=c¼ 0 for lower row of the panels in Fig. 1. We observe

that the dispersion relation shows a rather strong interaction

between the two laser beams and the growth rate is larger for

H¼0.001 than that for H¼0.007. The propagation of the

scattered wave is almost identical to the laser beam with the

vector potential A2. For stronger quantum effects, we

observe a new class of the parametric instability that is, how-

ever, weaker than that of a weaker quantum effect. From the

left, middle, and right column of the panels in Fig. 1, one can

confirm that the interaction between two laser beams is

strongest and the corresponding growth rate is the largest

when the two laser beams propagate along the same direc-

tion. To consider the effects of the quantum statistic pressure

and electron-exchange, and electron-correlation potential on

the growth rate, we let VF=c¼ 0; Cxc=c¼ 0 in the lowest

row, which shows that the presence of the quantum statistical

and electron-exchange and electron-correlation potential will

decrease the growth rate moderately. In fact, in Fig. 2, we see

that the quantum statistical effect and electron-exchange and

electron-correlation potential effects will have great influence

on the modulational instability that dominates as the pump

frequencies are smaller than twice the plasma frequencies,

which can be illustrated by the dispersion relations of the

QEPOs, DL ¼ 0. The dispersion relation gives two distinct

dispersion effects. One is the long wavelength regime with

H2K2� ð8=3ÞðV2
F=c2þC2

xc=c2Þ and the other is the short

wavelength regime with H2K2	 ð8=3ÞðV2
F=c2þC2

xc=c2Þ.7
Then two regimes are separated by the normalized critical

wave number

Kc ¼
2

3

� �1
2 1

Hc
ðV2

F þ C2
xcÞ

1
2 � c

xpe
n

1
3

0: (8)

The modulational instability occurs for small wave numbers

and the quantum statistics effect will dominates in the long

wavelength regime. In Fig. 2, we used jA01j ¼ 1; jA02j ¼ 2

and X01 ¼ X02 ¼ 1:2 for all cases. For investigating the quan-

tum effects on the modulational instability growth rate, we

used the parameters H ¼ 2:3� 10�5; VF=c ¼ 0:005, and

Cxc=c ¼ 0:003 as n0 ¼ 1023cm�3 in the upper row of panels

and considered the parameters H¼ 0.007 with n0 ¼ 1028cm�3

both in middle and in lower rows of the panels in Fig. 2. In

FIG. 1. The growth rate of stimulated Raman scattering instability as a function

of the wave numbers Ky and Kz. The parameters are H¼ 0.001, VF=c ¼ 0:069;
Cxc=c ¼ 0:013 for upper row and H¼ 0.007, VF=c ¼ 0:257; Cxc=c ¼ 0:025

for middle row of panels. The parameters for the lower row are H¼ 0.007,

VF=c ¼ 0; Cxc=c ¼ 0. The directions of the two laser beams propagation are

ðh1; h2Þ ¼ ðp=4; p=4Þ; ðp=4; p=2Þ, and ðp=4; 3p=4Þ for the left, middle, and

right column of the panels, respectively.

FIG. 2. The growth rate of the modulational instability as a function of the wave

numbers Ky and Kz. The parameters are H ¼ 2:3� 10�5 with VF=c ¼ 0:005

and Cxc=c ¼ 0:003, H¼ 0.007 with VF=c ¼ 0:257 and Cxc=c ¼ 0:025,

H¼ 0.007 with VF=c ¼ 0 and Cxc=c ¼ 0 for upper row, middle row, and lower

row of panels, respectively. The directions of the two laser beams propagation

are the same as those in Fig. 1.
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the middle row of the panels, the quantum statistical parameter

is VF=c ¼ 0:257 and the electron-exchange and electron-

correlation potentials which yield Cxc=c ¼ 0:025, and in the

lower row of panels the quantum statistical and electron-

exchange and electron-correlation potentials are absent. We

also assume the two laser beams propagate in the y and z direc-

tions and have the wave numbers ðkjy; kjzÞ ¼ ð1� 1=X2
0jÞ

1=2

ðcos hj; sin hjÞðj ¼ 1; 2Þ with the same angle ðh1; h2Þ as those

in Fig. 1 for left, middle, and right column of panels, respec-

tively. One can conclude that the modulational instability

growth rate will decrease with the quantum effect increasing

when one consider quantum statistical pressure. However, the

growth rate will increase with the quantum effect when the

quantum statistical effect is absent. The fastest growing waves

propagate almost along the laser beam two.

In order to investigate the nonlinear dynamics of the

two-laser beams interaction in our quantum plasma, we have

carried out numerical simulations of the reduced system of

Eqs. (1)–(4) in two-space dimension. In Fig. 3, we display the

numerical results for stimulated Raman scattering, where we

have used as an initial condition that the amplitudes of the

two laser beams are jA01j ¼ 1; jA02j ¼ 2, and the correspond-

ing frequency are X01 ¼ 2;X02 ¼ 3, respectively. As one can

see, the scattering instability illustrated in Fig. 1, the corre-

sponding growth rate is the largest when the two laser beams

propagate along the same direction. The background plasma

density is slightly perturbed with a low-level noise (random

numbers). We consider the two pump laser beams propagating

along the same direction. Our results show that the growing

waves propagate along the same direction as the pump laser

beam two with larger frequency and larger amplitude, which

agree with the fastest growing wave in Fig. 1. During the ini-

tial exponential growth phase at t¼ 20, the two laser beams

are strongly coupled with each other. The potential / also

reach maxima when the two laser beams simultaneously reach

maxima. At time t¼ 50, the two laser beams do not have same

locations in space, as nonlinear saturation occurs. In Fig. 4, we

present the modulational instability dynamics by considering

the frequency of the pump waves smaller than twice the

plasma frequency. The pump waves are propagating in the z
direction in an initially homogeneous plasma with a low-level

noise. We only consider the instability giving rise to perturba-

tions in the (x, y) plane. Our numerical results show that the

self-focusing and collapse of wave packets occur at different

times. In the lower row of panels in Fig. 4, the CPEM

wave packets are trapped in a quantum electron hole when the

nonlinear saturation of the modulational instability occur.

Here, we used jA01j ¼ 1; jA02j ¼ 2, and X01 ¼ X02 ¼ 1:2.

The results show that the quantum dispersion effects can

greatly influence the Raman instability and have small impact

on the modulational instability, which was due to the fact that

modulational instability takes place at small wave number.28

Furthermore, the quantum statistical effect and electron-

exchange and electron-correlation potentials have great influ-

ence on the modulational instability of the two laser beams.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have investigated parametric instabil-

ities and the dynamics of two nonlinearly coupled intense

laser beams in a quantum plasma. For our purposes, we have

obtained three coupled nonlinear Schr€odinger equations and

Poisson’s equation for CPEM waves that are interacting with

nonlinear QEPOs. The coupling between the CPEM wave

fields and nonlinear QEPOs comes through the nonlinear

current jwj2Aj=c in the Maxwell equations. The dynamical

equations for the driven (by relativistic ponderomotive

forces of two intense CPEM waves) QEPOs include the new

physics of the quantum statistical electron pressure, the

quantum electron recoil effect, as well as electron-exchange

FIG. 3. The dynamics involving stimulated Raman scattering instability of

the two laser beams propagating in the same directions as ðh1; h2Þ
¼ ðp=4; p=4Þ at times t¼ 0.1, t¼ 20, t¼ 50 (upper to lower panels). The other

parameters are H¼ 0.001 and VF=c ¼ 0:069; Cxc=c ¼ 0:013. The upper, mid-

dle, and lower rows of the panels are in corresponding to the amplitudes of

the laser beam jA1j; jA2j, and the scalar potential /, respectively.

FIG. 4. The dynamics involving modulational instability of the two laser

beams in the (x, y) plane perpendicular to the directions of the propagation

of the two laser beams at times t¼ 0.1, t¼ 40, t¼ 60 (upper to lower panels).

The other parameters are H¼ 0.002 with VF=c ¼ 0:119 and Cxc=c ¼ 0:016.

The upper, middle, and lower rows of the panels are in corresponding to the

amplitudes of the laser beam jA1j; jA2j, and the electron number density jwj2,

respectively.
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and electron-correlation effects caused by degenerate electron

spin. We have carried out the Fourier analysis of our nonli-

nearly coupled wave equations to obtain the general nonlinear

dispersion relation that predict stimulated Raman scattering

and modulational instabilities of two co-propagating intense

CPEM waves in a quantum plasma. We numerically analyzed

the growth rate and the fastest growing mode of stimulated

Raman scattering instability and found maximum values

when the two pump CPEM waves propagate along the same

direction. Both quantum dispersion and quantum statistical

pressure effects lead to a decrease of the Raman instability

growth rate. The quantum statistical pressure has larger influ-

ence on the modulational instability than on stimulated Raman

instability, which is due to the fact that the quantum statistical

pressure will dominate in the long wavelength regime as the

modulational instability occurs at small wave numbers. The

numerical results of the dynamics of two laser beams for

the pump frequency X0j < 2 confirm that when the nonlinear

saturation of the modulational instability occurs, localized

CPEM wave packets are trapped in a quantum electron hole

that is supported by the quantum forces of degenerate elec-

trons and relativistic ponderomotive forces of two intense

CPEM waves in a quantum plasma at nanoscales. The results

of our investigation should be useful in understanding non-

linear instability and the dynamics of two nonlinearly coupled

intense CPEM waves in the next-generation of compressed

plasmas which surpass solid densities.
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