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Abstract. By means of particle simulations of the equations of motion for ions
interacting among themselves under the influence of newly discovered Shukla–
Eliasson attractive force (SEAF) in a dense quantum plasma, we demonstrate that
the SEAF can bring ions closer at atomic dimensions. We present simulation results
of the dynamics of an ensemble of ions in the presence of the SEAF without
and with confining external potentials and collisions between ions and degenerate
electrons. Our particle simulations reveal that under the SEAF, ions attract each
other, come closer, and form ionic clusters in the bath of degenerate electrons
that shield ions. Furthermore, an external confining potential produces robust ion
clusters that can have cigar- and ball-like shapes, which remain stable when the
confining potential is removed. The stability of ion clusters is discussed. Our results
may have applications to solid density plasmas (density exceeding 1023 per cm3),
where the electrons will be degenerate and quantum forces due to the electron recoil
effect caused by the overlapping of electron wave functions and electron tunneling
through the Bohm potential, electron-exchange and electron-exchange and electron
correlations associated with electron-1/2 spin effect, and the quantum statistical
pressure of the degenerate electrons play a decisive role.

1. Introduction

During the early 1930s, there were several discoveries
related to non-Coulombic shielded potential distribu-
tions that exhibit the role of collective interactions
between electrons and ions in electro-chemistry (Debye
and Hückel 1923) (viz. electrolytes and colloidal sus-
pensions), solid state (Fermi 1927; Thomas 1927), and
gaseous (Langmuir 1929) plasmas, and between neutrons
and protons in elementary particle physics (Yukawa
1935). The screened non-Coulombic potentials, which
were obtained by using linearized theory based on the as-
sumption that the potential energy between the particles
is much smaller than the particle kinetic energy, are
now known as the Debye–Hückel (DH), Thomas–Fermi
(TF), and Yukawa potentials in the context of electro-
chemistry and plasma physics, condensed matter physics,
and nuclear physics respectively. The DH, TF, and
Yukawa potentials describe short-range (of the order of
the DH radius, the TF radius, and the Yukawa radius,
which are fixed by the size of a shielded cloud) repulsive
interactions between two particles that have the same
polarity. The DH theory has also been extended to dusty
plasma physics where charged dust particles are shielded
by non-degenerate electrons and ions. The DH, TF, and
Yukawa interaction potentials, which significantly devi-
ate from the long-range Coulomb interaction potential,

have important applications to the understanding of
phase transitions (Kremer et al. 1986; Avinash 2007;
Klumov 2010) in the different areas of physical sciences.

In order for charged particles to form ordered struc-
tures under the influence of Coulombic, DH, TF, and
Yukawa repulsive forces, one must confine the like-
charged particles in an external potential so as to bring
them to a minimum energy state. Examples include
the Wigner crystals (Wigner 1934) composed of an
ensemble of electrons on the surface of liquid helium,
ion crystals in laser cooled Paul (Drewsen et al. 1998)
and Penning (electromagnetic) traps (Tan et al. 1995),
charged dust particle crystals (Wuerker et al. 1959),
which were formed when like-charged dust particles
were kept together via external confining potentials
despite short-range Coulombic or shielded Coulombic
repulsive forces between charged dust particles. In fact,
both electron and ion crystals, as well as crystals of col-
loidal suspensions and oil droplets have been observed
experimentally under different physical circumstances
(Berg and Gaukler 1969; Crandall and Williams 1971;
Grimes and Adams 1979; Winter and Ortjohann 1991;
Tan et al. 1995; Drewsen et al. 1998; Robertson and
Younger 1999; Mølhave and Drewsen 2000; Deshpande
and Bockrath 2008; Staanum et al. 2010). Moreover, an
ensemble of strongly correlated micron-sized negative
dust particles form dust Coulomb crystals (Chu and I
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1994; Hayashi and Tachibana 1994; Thomas et al. 1994;
Barkan and Merlino 1995; Fortov et al. 1997; Mohideen
et al. 1998) when they were confined by the sheath
parabolic potential in low-temperature laboratory dusty
plasma discharges (Shukla and Mamun 2002; Shukla
and Eliasson 2009). The condensation of charged dust
particles occurs since the dusty plasma Γd (the ratio
between the Coulomb energy between highly charged
dust grains and the average dust particle kinetic en-
ergy) becomes relatively large due to the high dust
charge state and low dust temperature. The attrac-
tion between like-charged dust particles forming dust
Coulomb crystals may also be attributed to attractive
forces arising from overlapping of the dusty plasma
Debye spheres (Resendes et al. 1998), ion focusing and
wakefield effects (Nambu et al. 1995; Vladimirov and
Nambu 1995; Shukla and Rao 1996), and dust dipole–
dipole interactions (Mohideen et al. 1998; Shukla and
Mamun 2002; Shukla and Eliasson 2009). The Cooper’s
pairing of charged dust particles, which are glued by
ions, led to the discovery of a soft-condensed matter of
dust particle crystals in low-density and low-temperature
classical plasma with Maxwell–Boltzmann distributions
for electrons and ions. It turns out that several milestones
were reached in the areas of ordered crystalline struc-
tures composed of charged particles (e.g. an ensemble
of electrons, ions, as well as charged colloidal and
dust particles in low-temperature physical systems) in
physical systems, which share some common physics.

However, solid density plasmas are of fundamental
importance for industrial applications (e.g. semiconduct-
ors, nano-diodes, and metallic nanostructures for thin
films), for inertial confinement fusion (ICF) schemes
that utilizes high-density compressed (HDC) plasmas,
as well as for planetary systems (e.g. the core of Jupiter
(Fortov 2009)) and superdense astrophysical objects (e.g
the cores of white dwarf stars, warm dense matter).
In dense plasmas, one has to account for degener-
acy (Chandrasekhar 1931, 1939) of electrons that obey
the Fermi–Dirac distribution function. Correspondingly,
quantum mechanical effects play a vital role, since in
such dense plasmas the Wigner–Seitz radius d =
(3/4πn0)

1/3 is comparable to the thermal de Broglie
wavelength, λB = �/mVT (which is a measure of the
extent of electron wave functions), where � is Planck’s
constant divided by 2π, m is the electron mass, VT =√
kBT/m, the electron thermal speed due to random

electron motions, and kB is the Boltzmann constant.
Also, in dense plasmas with degenerate electrons, λB
turns out to be much smaller than the Landau length,
λL = e2/kBT , which can be conveniently expressed as
kBT�e2/aB , where aB = �2/me2 is the Bohr radius
of a hydrogen atom. The electron degeneracy effects
at nanoscales in dense plasmas can thus be captured
through the consideration of the Fermi–Dirac statistics
for electrons with spin-1/2 (Fermions), and overlapping
of electron wavefunctions due to Heisenberg’s uncer-
tainty principle and Pauli’s exclusion principle, as well

as electron-exchange and electron-correlations. Hence,
there are quantum forces (Chandrasekhar 1931, 1939;
Wilhelm 1971; Gardner and Ringhofer 1996; Manfredi
and Haas 2001; Manfredi 2005; Shukla and Eliasson
2006, 2007; Shaikh and Shukla 2007; Brodin et al. 2008;
Crouseilles et al. 2008; Melrose 2008; Tsintsadze and
Tsintsadze 2009; Shukla and Eliasson 2010, 2011; Haas
2011; Mendonça 2011; Vladimirov and Tyshetskiy 2011)
associated with the quantum statistical electron pressure
(Chandrasekhar 1931, 1939; Landau and Lifshitz 1980),
the quantum Bohm potential (Wilhelm 1971; Gardner
and Ringhofer 1996; Manfredi and Haas 2001; Man-
fredi 2005; Shukla and Eliasson 2010, 2011; Haas 2011)
through which degenerate electrons can tunnel through
(often known as the quantum electron recoil effect), as
well as the electron-exchange and electron-correlation
potentials (Hedin and Lundqvist 1971; Brey et al. 1990;
Crouseilles et al. 2008). It has been found that the
above-mentioned quantum forces acting on degenerate
electrons in quantum plasmas introduce new dispersive
features to electron plasma oscillations (EPOs) (Bohm
1952; Klimontovich and Silin 1952a,b; Bohm and Pines
1953) with frequencies in the x-ray regime, which can be
assessed by using collective x-ray spectroscopic scatter-
ing techniques (Glenzer et al. 2007; Glenzer and Redmer
2009). In fact, Glenzer et al. (2007) have reported EPOs
in warm dense matter (with the peak electron number
density ∼ 3 × 1023 cm−3 and the equilibrium electron
and ion temperatures of 12 eV (∼ 1.5 × 105 degrees
Kelvin). The latter is different from the electron Fermi
temperature, TF = (�2/2kBme)(3π

2n0)
2/3 ≈ 1.7 × 105

degrees Kelvin corresponding to an electron number
density n0 ≈ 2.5 × 1023 cm−3. Thus, the recent exper-
iments of Glenzer et al. (2007) have unambiguously
demonstrated the importance of the quantum statistical
pressure and quantum electron recoil effects on the
frequency spectra of EPOs (Bohm 1952; Klimontovich
and Silin 1952a,b; Bohm and Pines 1953; Shukla and
Eliasson 2010, 2011), although a previous experimental
investigation (Watanabe 1956) had already established
the quantum dispersion properties of EPOs in metals.

Very recently, Shukla and Eliasson (2012a,b,c) dis-
covered an oscillating shielded Coulomb (OSC) poten-
tial (also referred to as the Shukla–Eliasson attractive
potential (SEAP) (Akbari-Moghanjoughi 2012)), which
is valid for the potential energy much smaller than kBT

and mc2, around a stationary test ion in an unmagnet-
ized quantum plasma, where c is the speed of light in
vacuum. The SEAP arises due to collective interactions
between an ensemble of degenerate electrons that shield
an isolated ion at atomic dimensions. The profile of the
SEAP in quantum plasmas resembles the Lennard–Jones
(LJ) potential in atomic gases. The Shukla–Eliasson
attractive force (SEAF), defined as minus the gradient
of the SEAP, brings ions closer to form ion clusters
in quantum plasmas. In this paper, we demonstrate
the formation of ion clusters at atomic dimensions by
performing computer simulations of the equations of
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Figure 1. (Colour online) The value of α as a function of
aB/r0. The critical value α = 1/4 is indicated with a dotted

line.

motion for an ensemble of ions that are interacting with
each other through the SEAF.

2. The SEAF
The existence of the SEAP, which is obtained from Four-
ier transformation of Poisson’s equation with the quasi-
stationary electron density perturbation deduced from
the linearized continuity and generalized momentum
equation (Shukla and Eliasson 2012a,b,c) for non-
relativistic, degenerate electrons in a dense quantum
plasma, critically depends on the electron number dens-
ity through the parameter α = �2ω2

pe/4m
2u4

∗, where

u∗ = (v2
∗/3 + v2

ex)
1/2. The parameter α measures the

quantum electron recoil effect caused by the quantum
Bohm potential (Wilhelm 1971; Gardner and Ringhofer
1996; Manfredi and Haas 2001; Manfredi 2005) VB =
(�2/2m)(1/

√
n)∇2

√
n compared to the quantum statist-

ical Fermi electron pressure and the electron-exchange
and electron-correlation effects arising from 1/2-spin
of degenerate electrons. Here v∗ = �(3π2)1/3/mr0 is the
electron Fermi speed and vex = (0.328e2/mr0)

1/2[1 +

0.62/(1+18.36aBn
1/3
0 )]1/2 includes the effects of electron

exchange and electron correlations, where r0 = n
−1/3
0

represents the average inter-electron distance. The ex-
pression for vex is derived by linearizing the sum of the
electron exchange and electron correlation potentials
(Hedin and Lundqvist 1971; Brey et al. 1990) Vxc =
0.985e2n1/3

[
1 + (0.034/aBn

1/3)ln(1 + 18.37aBn
1/3)

]
. We

note that α depends only on aB/r0, as α � 9.3π(aB/r0)/
[1+(3π2)2/3(aB/r0)+0.62/(1+18.36aB/r0)]

2. Shukla and
Eliasson (2012a, b, c) found that attractive potentials
between ions exist only for α > 1/4. Figure 1 displays
the value of α as a function of aB/r0, where one observes
that it is above a critical value 0.25 only for a limited
range 2×10−2 < aB/r0 < 1, corresponding to an electron
number density in the range 5.4 × 1019 cm−3 < n0 <
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Figure 2. (Color online) The electric potential φ as a function
of r for α = 0.627 (solid curve), α = 0.25 (dashed curve), and
α = 0 (dash-dotted curve). The value 0.627 is the maximum
possible value of α in our model, obtained for aB/r0 ≈ 0.15.

6.7×1024 cm−3 (with aB = 5.3×10−9 cm). The maximum
value is α ≈ 0.627 at aB/r0 ≈ 0.15, corresponding to
the electron number density n0 ≈ 2 × 1022 cm−3, a few
times below solid densities. The validity of the SEAP
has been further expanded (Akbari-Moghanjoughi 2012)
for wider density ranges by including Chandrasekhar’s
generalized pressure law (Chandrasekhar 1931, 1939) for
degenerate electron fluids and Salpeter’s (1961) electron-
exchange and electron-correlation potentials that are of
astrophysical interest (e.g. the cores of white dwarf stars).
The nonlinear shielding effects on the SEAF is discussed
by Shukla et al. (2012).

For α > 0.25, the profile of electric potential as a
function of distance r around a stationary test ion charge
Q is (Shukla and Eliasson 2012a,b,c)

φ(r) =
Q

r

[
cos(kir) + b∗ sin(kir)

]
exp(−krr), (2.1)

which is referred to as the SEAP. Here Q is the ion
charge, b∗ = 1/

√
4α − 1, ki = (ks/

√
4α)(

√
4α − 1)1/2, and

kr = (ks/
√

4α)(
√

4α + 1)1/2, with ks = ωpe/u∗ being the
modified inverse TF screening length. The spatial profile
of the SEAP in Fig. 2 shows a distinct minimum for the
case α = 0.627. The negative part of the SEAP, given
by (1), resembles the LJ potential and leads to a short-
range SEAF between neighboring ions. On the other
hand, the potential distribution around a test ion for
α < 0.25 reads (Shukla and Eliasson 2012a,b,c)

φ(r) =
Q

2r
[(1 + b) exp(−k+r) + (1 − b) exp(−k−r)], (2.2)

where b = 1/
√

1 − 4α and k± = ks(1 ∓
√

1 − 4α)1/2/
√

2α.
For this case, the potential is positive and monotonically
decreasing (cf. Fig. 2), giving rise to a repulsive force only
(similar to the TF force) between ions. In the high- or
low-density limit, where α → 0, we recover the modified
TF screened Coulomb potential φ(r) = (Q/r) exp(−ksr).

3. Demonstration of ion clustering
We here present a computer simulation study of the
dynamics of a system of ions interacting with each other
under the action of the SEAF. For this purpose, we
numerically solve the equations of motion for a system
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Figure 3. (Color online) The initial positions of ions in
particle simulations.

of ions with equal charges and masses, given by

M
dvj
dt

= −Q
∑

i�=j

∇jφ(|Rij |) − ∇jVc(rj) − Mνvj , (3.1)

where instantaneous position of each ion is determined
from drj/dt = vj . Here Rij = ri − rj is the radius
vector between particle i and j, rj(t) is the position
and vj(t) is the velocity of the jth ion, M is the ion
mass, ∇j denotes the gradient of φ at position rj , and ν

denotes an effective collision frequency, which tends to
retard the ion motion. The external confining potential,
Vc(r) = (M/2)(ω2

⊥r
2
⊥ + ω2

z z
2), of charged particles may

have different amplitudes ω⊥ and ωz perpendicular and
parallel to the z-axis, respectively, where r2⊥ = r2x + r2y .

In order to demonstrate the clustering of ions under
the SEAF, we now carry out particle simulations of
(3) with 1000 particles, initially randomly placed in
space, as shown in Fig. 3. In the first set of simulations,
displayed in Fig. 4, we consider interactions of the ions
in the absence of the external confining potential Vc,
viz. ωz = ω⊥ = 0, and with ν = 0.01 τ−1. The positions
of ions at the end of the simulations are shown in
Fig. 4 at time t = 15 000 τ. Here the positions and

time are in units of Ls = k−1
s and τ = M1/2/Qk

3/2
s =

(π/16)1/8(aB/r0)
3/8ω−1

pi /α
3/8Zi, respectively, where ωpi =

(4πQ2ni0/M)1/2 is the ion plasma frequency, and ni0 is the
equilibrium ion number density, related to the electron
number density n0 via the quasi-neutrality condition
Zini0 = n0, where Zi is the ion charge state. For α =
0.627, which leads to a potential minimum (cf. Fig. 2),
we observe the clustering of ions and the formation
of large-scale ionic structures. The clustering of ions is
a relatively slow process in comparison with the ion
plasma period 2π/ωpi. Ion pairs and smaller clusters
are initially formed, and later the larger ion clusters are
gradually formed by the agglomeration of smaller ion
clusters. As a contrast, for α = 0.25, we see in Fig. 4
that there does not exist condensation/coalescence of
ions. This is due to the fact that there is no potential
minimum for this value of α (cf. Fig. 2), and hence the
inter-ion force is always repulsive for this case.

Furthermore, we have carried out a set of simulations
with a symmetric potential Vc with ω⊥ = ωz = 2 ×
10−3 τ−1. Here, as seen in Fig. 5, almost spherical non-
Coulombic ion crystals are formed for both α = 0.627
and 0.25. We also performed simulations, including an
asymmetric external potential Vc with ω⊥ = 6×10−3 τ−1
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Figure 4. (Color online) The positions of ions t = 15 000 for (a) α = 0.627 and (b) α = 0.25, showing the clustering and
solidification of ions for α = 0.627, but not for α = 0.25.
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Figure 5. (Color online) The positions of ions at t = 15 000 for (a) α = 0.627 and (b) α = 0.25, including a symmetric parabolic
potential with ω⊥ = ωz = 2 × 10−3 τ−1. Almost spherical non-Coulombic ion crystals are formed.
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Figure 6. (Color online) The positions of ions at t = 15000 for (a) α = 0.627 and (b) α = 0.25, including an asymmetric
parabolic potential with ω⊥ = 6 × 10−3 τ−1 and ωz = 2 × 10−3 τ−1. Here elongated non-Coulombic ion crystals are formed.

and ωz = 2×10−3 τ−1, providing a stronger confinement
in the perpendicular direction. Figure 6 displays the final
state for α = 0.627 and 0.25, where ions, in both cases,
form non-Coulombic ion crystals elongated along the
z-direction. In general, the formation of non-Coulombic
ion crystals is attributed to the balance between the
external and inter-ion potentials, where the system tends
to a configuration of a minimum potential energy. We
note that similar configurations have been previously
reported for both charged macro-particles (Wuerker
et al. 1959) and ions (Drewsen et al. 1998; Mølhave

and Drewsen 2000; Staanum et al. 2010) confined by
external potentials in the Paul trap. Finally, in Figs.
7 and 8, we continued the simulations in Figs. 5 and
6 and set the external confining potential to zero at
time t = 15 000 τ. For both cases, with symmetric and
asymmetric potentials, we see that ion crystals remained
tightly packed for α = 0.627, where it performed damped
oscillations as elastic solids before settling down to
the final states in Figs. 7(a) and 8(a). In contrast, for
α = 0.25, the ion cloud expanded to larger and less
dense ion clouds as seen in Figs. 7(b) and 8(b) at
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Figure 7. (Color online) The positions of ions at t = 20 000 τ for (a) α = 0.627 and (b) α = 0.25 for the case of a symmetric
parabolic potential in Fig. 5, where the potential is set to zero at t = 15 000 τ. The ion cluster remains tightly packed for
α = 0.627, while the ion cloud expands for α = 0.25.
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Figure 8. (Color online) The positions of ions at t = 20 000 τ for (a) α = 0.627 and (b) α = 0.25 for the case of an asymmetric
parabolic potential in Fig. 6, where the potential is set to zero at t = 15 000 τ. The ion cluster remains tightly packed for
α = 0.627, while the ion cloud expands for α = 0.25.

t = 20 000 τ. Hence, the short-range potential around
ions for α = 0.627 (cf. Fig. 2) lead to the solidification
of ions, which is not the case for the the short-range
repulsive potential for α = 0.25.

4. Summary and conclusions
In this paper, we have carried out particle simulations to
demonstrate clustering of ions due to the newly found
SEAF arising from collective interactions between an
ensemble of degenerate electrons that shield ions in

dense quantum plasmas. Specifically, the SEAF leads
to clustering/condensation or coagulation of ions in the
absence of an external confining potential for charged
particles. However, ion clustering can be put on the firm
footing by calculating the dynamical ion structure factor
(DISF) based on the fluctuation–dissipation theorem
and the dielectric constant of degenerate electrons and
strongly correlated ions in a viscous quantum plasma.
It may well turn out that the DISF will reveal long-
range correlations between ions. It is our belief that
the formation of ion nano-clusters is going to play a
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valuable role in the area of high-density compressed
plasmas with degenerate electrons (Son and Fisch 2004,
2005, 2006; Malkin et al. 2007; Glenzer and Redmer
2009) for ICF to succeed, and also in the emerging
field of nano-material sciences (e.g. nanodiodes, metallic
nanostructures for thin films (Crouseilles et al. 2008), and
nanowires), where closely packed ions will lend support
to enhanced fusion probabilities (with anomalous fusion
cross sections) for controlled thermonuclear ICF, and
may also influence the electric properties (e.g. resistivity)
of new high-density plasma materials at relatively high
temperatures. Finally, we stress that the Cooper pairing
of ions at atomic dimensions shall provide possibility
of novel superconducting plasma-based nanotechnology,
since the electron transport in nanostructures would be
rapid due to shortened distances between ions in the
presence of the novel SEAF.
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