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We present a nonlinear theory for relativistic x-ray free-electron lasers in the quantum regime, using a
collective Klein-Gordon (KG) equation (for relativistic electrons), which is coupled with the Maxwell-Poisson
equations for the electromagnetic and electrostatic fields. In our model, an intense electromagnetic wave is
used as a wiggler which interacts with a relativistic electron beam to produce coherent tunable radiation. The
KG-Maxwell-Poisson model is used to derive a general nonlinear dispersion relation for parametric instabilities
in three space dimensions, including an arbitrarily large amplitude electromagnetic wiggler field. The nonlinear
dispersion relation reveals the importance of quantum recoil effects and oblique scattering of the radiation that
can be tuned by varying the beam energy.
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Introduction. With the recent development of x-ray free-
electron lasers (FELs) [1] there are new possibilities to explore
matter on atomic and single molecule levels. On these length
scales, of the order of a few angstroms, quantum effects
play an important role in the dynamics of the electrons.
Quantum effects have been measured experimentally both
in the degenerate electron gas in metals and in warm dense
matter [2], and must also be taken into account in intense
laser-solid density plasma interaction experiments [3]. The
theory of the FEL was originally developed in the framework of
quantum mechanics [4], but where Planck’s constant canceled
out in the final FEL gain formula, producing a classical result.
It was subsequently shown that classical theory can be used and
quantum effects can be neglected [5], if the photon momentum
recoil is not larger than the beam momentum spread [6–9]. To
overcome the technical limitation on the wiggler wavelength
for a static magnetic field wiggler, it was suggested that it
can be replaced by an electromagnetic (EM) wiggler or by
a plasma wave wiggler [10] to generate short wavelength
radiation. In such a situation, it turns out that quantum recoil
effects can be important. The Klein-Gordon equation (KGE)
for a single electron was used to derive a general set of quantum
mechanical equations for the FEL [11], while a single-electron
Schrödinger-like equation for the dynamics of the FEL was
derived using the field theory [12]. The nonlinear quantum
regime of x-ray Compton lasers have been investigated using
Volkov-dressed electrons based on the Dirac equation [13].
Furthermore, by using a multielectron FEL Hamiltonian, it
was shown that quantum effects can lead to the splitting of
the radiated spectrum into narrow bands for short electron
bunches [14,15]. Relativistic and collective quantum effects
have been studied for FELs using Wigner [16,17] and quantum
fluid [18] models.

In this Rapid Communication, we shall use a collective
KGE to derive a dynamic model for the quantum free-electron
laser. In our model, we assume that the wave function ψ

represents an ensemble of electrons, so that the resulting
charge and current densities act as sources [19] for the

self-consistent electrodynamic vector and scalar potentials A
and φ, respectively.

Mathematical model. The KGE in the presence of the
electrodynamic fields reads

W2ψ − c2P2ψ − m2
ec

4ψ = 0, (1)

where the energy and momentum operators areW = ih̄∂/∂t +
eφ and P = −ih̄∇ + eA, respectively. Here h̄ is Planck’s
constant divided by 2π , e the magnitude of the electron charge,
me the electron rest mass, and c the speed of light in vacuum.
The electrodynamic potentials are obtained self-consistently
from the Maxwell equations

∂2A
∂t2

+ c2∇ × (∇ × A) + ∇ ∂φ

∂t
= μ0c

2je, (2)

and

∇2φ + ∇ · ∂A
∂t

= − 1

ε0
(ρe + ρi), (3)

where μ0 is the magnetic permeability, ε0 = 1/μ0c
2 the

electric permittivity in vacuum, and ρi = en0 a neutralizing
positive charge density due to ions, where n0 is the equilibrium
electron number density. The electric charge and current densi-
ties of the electrons are ρe = −e[ψ∗Wψ + ψ(Wψ)∗]/2mec

2

and je = −e[ψ∗Pψ + ψ(Pψ)∗]/2me, respectively. They
obey the continuity equation ∂ρe/∂t + ∇ · je = 0.

The growth rate of the scattering instability is calculated in
the beam frame and the result is then Lorentz transformed
into the laboratory frame. We assume that the beam is
propagating along the z axis, in the opposite direction of
the laser wiggler beam. For the laser wiggler field, we
consider for simplicity a circularly polarized EM wave of
the form A0 = (1/2)Â0 exp(−iω0t + ik0 · r) + complex con-
jugate, with Â0 = (̂x + îy)Â0, where ω0 is the laser wave
frequency and k0 = k0̂z the wave vector, and x̂, ŷ, and ẑ the
unit vectors in the x, y, and z directions, respectively. Due to
the circular polarization, the oscillatory parts in the nonlinear
term proportional to A2 in the KGE vanish. Hence, our starting
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point is the nonlinear dispersion relation in the beam frame,
with primed variables, where the plasma is at rest. It reads [20]

1 − (ω′
pe)2

4γ 3
Am2

ec
2

D′
A(
′,K′)

D′
L(
′,K′)

∑
+,−

e2|k′
± × Â′

0|2
(k′±)2D′

A(ω′±,k′±)
= 0, (4)

where the electron plasma oscillations in the presence of the
EM field are represented by

D′
L(
′,K′) = (ω′

pe)2

γA

− (
′)2

+ h̄2[c2(K ′)2 − (
′)2]

4γ 2
Am2

ec
4

D′
A(
′,K′). (5)

Here 
′ and K′ are the frequency and wave vector of the plasma
oscillations, respectively, γA = (1 + a2

0)1/2 is the relativistic
gamma factor due to the large amplitude EM field, and
a0 = e|Â′

0|/mec is the normalized amplitude of the EM wave
(the wiggler parameter). The dispersion relation for the beam
oscillations in the presence of a large amplitude EM wave is
given by D′

L(
′,K′) = 0. The EM sidebands are governed by

D′
A(ω′

±,k′
±) = c2(k′

±)2 − (ω′
±)2 + (ω′

pe)2/γA, (6)

where ω′
± = ω′

0 ± 
′ and k′
± = k′

0 ± K′, and ω′
0 and k′

0 are
related through the nonlinear dispersion relation (ω′

0)2 =
c2(k′

0)2 + (ω′
pe)2/γA. We also denoted D′

A(
,K) = c2(K ′)2 −
(
′)2 + (ω′

pe)2/γA. We have neglected the two-plasmon decay
[21], which would give rise to terms proportional to |k′

± · Â′
0|2

in Eq. (4).
To move from the beam frame to the laboratory frame,

the time and space variables are Lorentz transformed as
t ′ = γ0(t − v0z/c

2), x ′ = x, y ′ = y, and z′ = γ0(z − v0t),
where v0 = v0̂z is the beam velocity, and γ0 = 1/

√
1 − v2

0/c
2

the gamma factor due to the relativistic beam speed. The
corresponding frequency and wave-number transformations
are thus ω′ = γ0(ω − v0kz), k′

x = kx , k′
y = ky , and k′

z =
γ0(kz − v0ω/c2), They apply to the frequency and wave
vector pairs (
, K), (ω0, k0), and (ω±, k±). The plasma
frequency is transformed as ω′

pe = ωpe

√
γA/γ , where γ =

(1 + p2
0/m2

ec
2 + a2

0)1/2 is the total gamma factor and p0 =
γmev0 the relativistic electron momentum. Since the compo-
nents of Â0 are perpendicular to the beam velocity direction,
they are not affected by the Lorentz transformation, hence
Â′

0 = Â0. We also use the relation γAγ0 = γ , and observe
that the expressions of the form (ω′)2 − c2(k′)2 = ω2 − c2k2

are Lorentz invariant. This yields D′
L(
′,K′) = γ 2

0 DL(
,K),
with

DL(
,K) = ω2
peγ

2
A

γ 3
− (
 − v0Kz)

2

+ h̄2(c2K2 − 
2)

4γ 2m2
ec

4
DA(
,K), (7)

and D′
A(ω′

±,k′
±) = DA(ω±,k±) ≡ c2k2

± − ω2
± + ω2

pe/γ , and,
similarly, D′

A(
′,K′) = DA(
,K). In the laboratory frame,
Eq. (4) is of the form

1 − ω2
pe

4γ 3m2
ec

2

DA(
,K)

DL(
,K)

∑
+,−

e2|k′
± × Â0|2

(k′±)2DA(ω±,k±)
= 0. (8)

Using K = Kx x̂ + Ky ŷ + Kẑz, we have K2 = K2
z + K2

⊥
with K2

⊥ = K2
x + K2

y , so that |k′
± × Â0|2 = {2γ 2

0 [k0 ± Kz +
(v0/c

2)(ω0 ± 
)]2 + K2
⊥}|Â0|2, and (k′

±)2 = γ 2
0 [k0 ± Kz +

(v0/c
2)(ω0 ± 
)]2 + K2

⊥.
For the resonant backscattering instability, we have

|DA(ω+,k+)| � |DA(ω−,k−)|. Also, for 
 ≈ v0Kz, v0 ≈ −c,
and γ0Kz � k0,K⊥, we have |k′

± × Â0|2/(k′
±)2 ≈ 2|Â0|2. In

this limit, Eq. (8) is written as

DL(
,K)DA(ω−,k−) = ω2
peDA(
,K)

2γ 3
a2

0 . (9)

By using 
 ≈ v0Kz, the expression for DL(
,K) can be
simplified as

DL(
,K) = 
2
p − (
 − v0Kz)

2, (10)

where


p =

√√√√ω2
peγ

2
A

γ 3
+ h̄2

(
K2

z γ 2
A + K2

⊥γ 2
)2

4γ 6m2
e

. (11)

Equation (10) is valid for h̄ωpeγA/γ 3/2mec
2 
 1

(which is always fulfilled), and ωpeγA/|v0|γ 3/2 
 Kz 

me|v0|γ 3/2/h̄γA. The latter condition, with |v0| ≈ c, gives
γA/λeγ

3/2 
 Kz 
 γ 3/2/λCγA, where λe = c/ωpe is the
electron skin depth and λC = h̄/mec the reduced Compton
length. We note that 
p contains a combination of the
collective beam plasma oscillation and quantum recoil effects,
which lead to a splitting of the beam mode into one slightly
upshifted and one downshifted mode.

The resonant 
 and K are obtained by simultaneously set-
ting DL(
,K) = 0 and DA(ω−,k−) = 0. Invoking the approx-
imation DL(
,K) � −(
 − v0Kz)2 = 0 and DA(ω−,k−) �
c2(k0 − Kz)2 + c2K2

⊥ − (ω0 − 
)2 = 0, we obtain 
 = v0Kz

and the resonance condition (Kz − 2γ 2
0 k0)2 + γ 2

0 K2
⊥ = 4γ 4

0 k2
0

for ω0 ≈ ck0 and v0 ≈ −c. The corresponding resonant wave
vector components of the radiation field, k− = k0 − K, shown
in top panels of Fig. 3, form an ellipsoid in wave vector
space rotationally symmetric around the kz− axis. The resulting
radiation frequency ω− = ω0 − v0Kz � ω0 + cKz is strongly
upshifted in the parallel direction (K⊥ = 0), where we have
Kz = 4γ 2k0/γ

2
A and ω− ≈ 4γ 2ck0/γ

2
A. The result differs by

a factor two when compared with the case involving a static
wiggler [22].

Comparing the two terms under the square root in Eq. (11),
we see that the quantum recoil effect starts to be important in
the parallel direction (K⊥ = 0, Kz ≈ 4γ 2k0/γ

2
A) when k0 ≈

k0,crit, where

k0,crit =
(

ωpeγ
3
Ame

8h̄γ 5/2

)1/2

. (12)

In the classical limit k0 
 k0,crit (corresponding to the Raman
regime discussed below), we have 
p = ωpeγA/γ 3/2, while
for k0 � k0,crit, the quantum effects dominate and we have

p = h̄K2

z γ 2
A/2γ 3me = 8h̄γ k2

0/γ
2
Ame. An expression analo-

gous to (12) can be derived for the static wiggler case [22].
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For 
 ≈ v0Kz and ω2
0 � ω2

pe, we have DA(
,K) ≈
4c2Kzk0 in Eq. (9), so that

DL(
,K)DA(ω−,k−) = 2ω2
pec

2Kzk0

γ 3
a2

0 . (13)

Setting 
 = v0Kz + 
p + i�, where the real part �R of � is
the growth rate, and choosing Kz and 
 so that DA(ω−,k−) =
DL(
,K) = 0 for � = 0, we obtain DL = −2i
p� + �2

and DA = 2i�(ω0 − v0Kz − 
p) + �2 ≈ 2i�(ω0 − v0Kz) ≈
2i�cKz for Kz � k0 and v0 ≈ −c. Hence, inserting the
expressions for DL and DA into Eq. (13), we have

�2(2
p + i�) = ω2
peck0

γ 3
a2

0 . (14)

For |�| � 
p, we are in the Compton regime where the
ponderomotive potential of the laser dominates, with the
growth rate of the instability given by

�R =
√

3

2

(
ω2

peck0
)1/3

γ
a

2/3
0 . (15)

For this case, the quantum recoil effect is negligible [18]. On
the other hand, for |�| 
 |
p|, we have an instability with the
growth rate

�R =
(

ω2
peck0

2γ 3
p

)1/2

a0. (16)

Clearly, since 
p is in the denominator, the quantum recoil
effect leads to a decrease of the growth rate. Comparing
Eqs. (15) and (16), we find that the limiting amplitude between
the two regimes is given by a0 = acrit, where

acrit =
(

27γ 3
3
p

8ω2
peck0

)1/2

. (17)

Equation (15) is valid for a0 � acrit and Eq. (16) for a0 
 acrit.
In the Raman regime k0 
 k0,crit, Eq. (16) gives the growth rate
�R ≈ (ωpeck0/2γ 3/2γA)1/2a0, while in the quantum regime
k0 � k0,crit, Eq. (16) yields �R ≈ (ω2

peγ
2
Amec/16γ 4h̄k0)1/2a0.

In Fig. 1, we have illustrated different regimes for the FEL
instability, including the quantum and Raman regimes for
small amplitude wiggler fields, and the Compton regime for
large amplitudes. The transition from the quantum to the
Compton regime in Fig. 1 corresponds to the quantum FEL
parameter [8] ρ̄ = ρmecγr/h̄Kz, going from smaller to larger
values than unity, where ρ = (a0ωpe/4ck0)/γr is the classical

a
0

k 0

Raman

Quantum

Compton

FIG. 1. (Color online) Schematic picture of different regimes for
the FEL instability, showing the quantum regime k0 > k0,crit, the
Raman regime k0 < k0,crit, and the Compton regime a0 > acrit.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1
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0.2

0.25

0.3

a
0

Γ R
/ω

pe

FIG. 2. (Color online) The maximum growth rate as a function of
a0 for K⊥ = 0 and γ = 5, using the full dispersion relation (8) (solid
curve), and the approximations (14)–(16) (dashed, dashed-dotted,
and dotted curves, respectively). The vertical dotted line indicates
a0 = acrit = 0.038.

Bonifacio-Pellegrini-Narducci (BPN) parameter [23], and γr

the resonant energy in mec
2 units.

Numerical results. For illustrative purposes, we choose
a beam density n0 = 2.2 × 1022 m−3, giving ωpe = 8.37 ×
1012 s−1, a0 = 0.15, and a wiggler wavelength of λ0 = 1 μm,
giving k0 = 2π/λ0 = 6.36 × 106 m−1 [17]. For γ = 5 one has
k0,crit = 1.27 × 107 m−1 > k0, so that the plasma oscillation
effect dominates over the quantum recoil effect. Figure 2
displays the growth rate as a function of a0, obtained from
the exact dispersion relation (8) and from the approximations
(14)–(16). We note that the growth rate obtained from (14)
agrees very well with the one obtained from (8). Since
acrit = 0.038 < a0, the ponderomotive force dominates over
the plasma and quantum oscillations, so that Eq. (15) can be
used to calculate the growth rate, giving �R = 2.6 × 1012 s−1

and an interaction length scale c/�R ≈ 0.1 mm.
On the other hand, due to the quantum recoil effect, the gain

can rapidly decrease for higher values of γ . Using the same
parameters as above but γ = 36 [17], we have k0,crit = 1.07 ×
106 m−1 < k0, so that the quantum recoil effect dominates
the beam oscillations. Here we have acrit = 1.6 � a0, so that
Eq. (16) can be used to estimate the growth rate, which gives
�R = 1.5 × 1011 s−1 and an interaction length c/�R = 2 mm.
For this case, the expression (15) overestimates the growth
rate to �R/ωpe ≈ 3.5 × 1011 s−1, giving c/�R ≈ 1 mm.

The instability of oblique scattering is shown in Fig. 3 for
resonant radiation wave numbers kz− = k0 − Kz and k⊥− =
−K⊥, obeying the resonance condition (Kz − 2γ 2

0 k0)2 +
γ 2

0 K2
⊥ = 4γ 4

0 k2
0 derived above. The growth rate, deduced from

Eq. (14), is almost independent of the radiation wave numbers
for γ = 5, where quantum recoil effects are unimportant. For
γ = 36, there is a significant decrease of the growth rate for
larger radiation wave numbers due to quantum recoil effects,
primarily in the parallel direction. For too wide electron beams,
it could lead to a broadband radiation emission due to oblique
scattering, while for narrow electron beams this is prevented
due to a decrease of the possible interaction length in the
perpendicular direction.

Discussions. Summarizing, we have presented a nonlinear
model for relativistic quantum x-ray FELs, using a collective
Klein-Gordon model for relativistic electrons, coupled with the
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FIG. 3. (Color online) Resonant parallel and perpendicular radiation wave numbers kz− and k⊥− for γ = 5 and γ = 36 (top panels) with
the corresponding growth rate � (s−1) shown in color (grayscale). The bottom panels show the growth rate as a function of kz−. (The scalings
of the vertical axes are enhanced in the top panels.) The vertical bars show the location of the largest resonant wave numbers ≈ −4k0γ

2/γ 2
A.

Maxwell equations for the EM fields, for an arbitrarily large
amplitude laser wiggler field. We have derived a nonlinear
dispersion relation for the amplification of the radiation due
to scattering instability in three space dimensions. It is found
that quantum recoil effects can decrease the growth rate of the
resonant instability, primarily parallel to the beam direction,
increasing the interaction length over which the radiation
amplification occurs. The present study has assumed that the
coherence of the relativistic electron beam and its transverse
emittance [24] are unaffected by the quantum effects over the
scale length of out interest. The quantum effect could be impor-
tant if the thermal de Broglie wavelength λth = h̄

√
2π/mekBTe

is comparable to the interparticle distance n
−1/3
0 [25]. For

n0 = 2.2 × 1022 m−3 this happens only for Te < 4 K when the
beam electrons are Fermi degenerate. At room temperature and

above, the thermal effects clearly dominate over the quantum
degeneracy effects on the beam emittance. On the other hand,
quantum diffusion due to spontaneous photon emission could
lead to an increase of the energy spread of the electron beam.
To estimate the relative energy spread, we use the formula
[26] γ 2 = (14/15)λCreγ

4k3
0a

2
0F (a0)z, where F (a0) ≈ 1

for a0 < 1, re ≈ 2.8 × 10−15 m is the classical electron radius,
and z is the interaction distance, which can be taken to be 10
e-foldings, z = 10 × c/�R . For the case γ = 5 above we
obtain the energy spread γ = 6 × 10−5, while for γ = 36
we have the relatively large value γ = 0.014, which might
influence the performance of the FELs.
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