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Abstract—This paper presents research into modelling and
predicting wave heights based on historical data. Wave height
is one of the key criteria for allowing access to off-shore wind
turbines for maintenance. Better tools for predicting wave height
will allow more accurate identification of suitable “weather
windows” in which access vessels can be dispatched to site. This
in turn improves the ability to schedule maintenance, reducing
costs related to vessel dispatch and recall due to unexpected wave
patterns.

The paper outlines the data available for wave height mod-
elling. Through data mining, different modelling approaches are
identified and compared. The advantages and disadvantages of
each approach, and their accuracies for a given site implemen-
tation, are discussed.

I. INTRODUCTION

Within Europe, development of offshore wind farms has
gained significant momentum in recent years with a particular
focus on the North Sea. The first round of projects in the UK
were considered ‘near-shore’, built in relatively shallow water
depths of less than 20m and within 20km of shore. However,
current and future offshore wind farms are increasing in
distance to shore and water depth due to planning constrictions
and favourable wind conditions. Consequently, the number
and size of individual turbines in future wind farms will
be larger to reduce overall cost of energy. This will result
in maintenance becoming more challenging logistically, and
critical for mitigating lost revenue associated with downtime
of a large turbine.

This paper investigates methods of wave height modelling
with the aim of predicting future wave heights accurately
enough to assist with maintenance planning. While physical
modelling is possible [1], the creation of a physical wave
model requires detailed information about the location and ge-
ography. This paper takes a data mining approach to modelling,
resulting in the implementation, test, and comparison of auto-
regressive (AR) models and artificial neural network (ANN)
models at varying lookahead time steps.

While both approaches were found to perform similarly
using the RMS error metric, the results were analysed in light
of the types of vessel and their wave height restrictions which
are used for maintenance. Key wave heights of 1.5m and
3.5m were studied separately, showing that the AR models
can capture the shape of wave extremes more accurately than
the ANN models, which capture shape only up to a 12 hour
lookahead window.

TABLE I. TYPICAL COSTS AND RESTRICTIONS ON ACCESS[2][3]

Vehicle Day Rate (£) Main restrictions Height Limit

Access Operability

transfer 1750 limited by 1.5 m

boat wave height

Field Limit depending 1.5 – 3 m

support 9500 on turbine

vessel access method

Helicopter 9600 (small) – Limited by health and 3.5 m

28800 (large) safety for sea rescue

Mobile 100000 – 250000 Jack-up and 2 m

Jack-up dependent movement limited

vessel on water depth by sea state

II. OFF-SHORE MAINTENANCE

Maintenance of offshore wind farms is restricted by the
access constraints of service vehicles. Currently, the predomi-
nant means of accessing an offshore turbine has been using an
access transfer boat. Larger failures require more specialised
access either through field support vessels, helicopter, or
mobile jack-up. Table I identifies when each is typically used,
typical day rate cost associated with each, and how wave
climate affects accessibility.

All maintenance actions for offshore wind are directly or
indirectly dependant on wave climate. Minimising the hire du-
ration of maintenance vehicles is critical to controlling O&M
costs. Improved methods for predicting the access windows
based on wave climate are therefore essential for the industry
moving forward.

III. DATA MINING FOR WAVE HEIGHT PREDICTION

Given the need for accurate models for wave height pre-
diction, this work aimed to compare and contrast different
approaches to data-driven modelling, and draw conclusions
about the suitability of such techniques. The data mining steps
taken were:

• Familiarisation with the data and domain,

• Data cleaning and reduction,

• Technique selection and testing,

• Comparison of results.

Due to the inherent harsh operating environment and re-
mote location, gathering wave climate data is expensive and
it is difficult to obtain significant continuous sections of data,
particularly in locations representative of offshore wind farms.
One solution to this lack of high quality data would be to
use hindcast data based on wind and satellite observations.



However, creating a model based on inferred data can be
considered poor practice, raising questions about the accuracy
of the inference and hence the model.

One source of measured data with an adequate duration in
the North Sea was identified as the FINO 1 offshore research
platform [4] located 45km off the German coast in the zone
marked for development of future offshore wind farms. As
well as having sufficient wave data to test the predictive
capabilities of the described modelling approaches (spanning
multiple years), there is concurrent wind data which can be
used for future work linking wave and wind access.

The FINO 1 research platform has been collecting wave
height data continuously since 2004, although gaps exist within
the data set due to the poor reliability of wave buoys used to
carry out the measurements. In order to carry out predictions
of wave height based on historical data it was necessary
to fill these gaps. Any measurements missing for less than
four time steps (corresponding to less than 12 hours, since
measurements are taken at 3 hour intervals) were filled using
a cubic interpolation. Gaps longer than this were replaced
with the corresponding averaged value at the same time step
across all other years in order to create a complete time series
covering seven years.

An alternative to statistical modelling for wave height fore-
casts is physics-based models of wave creation, propagation
and dispersion. These models have been improved radically
in the past decades and include so-called 3rd generation
approaches, which attempt to capture nonlinear interactions
of wind input and energy dissipation of waves. These are
comprehensively reviewed by [1]. Other models attempt to
characterise near shore waves specifically utilising approaches
tuned to coastal processes [5]. These approaches explicitly
model the physics of the wave formation and interaction
process, and as a result tend to be more computationally heavy,
and require more data, compared with statistical methods [6].
Furthermore, for short term forecasting (0–10 hours) which
will often be used for wind farm accessibility, statistical
forecasts tend to outperform those from physical models [6].

A. Technique Selection

It was decided to focus on data-driven models instead of
physics-based models, given the advantages discussed above.
However, there are still a great many such techniques which
may be applicable. For this initial study, two commonly-used
techniques were chosen: auto-regression (AR), and artificial
neural networks (ANNs) [6]. These techniques are different
enough that there is scope for different predictive capabilities,
yet they can be trained and tested on the same data.

The data was partitioned into two versions of training and
test sets, as described in Table II, one covering one year of
data (2004) and the second covering two (2004 and 2005).
The remainder of the dataset, up to January 2011, was used
as test data in each case.

It was thought necessary to include at least one full year
of data in the training set, as the data exhibits a strong pattern
of seasonality. For the AR model in particular, this seasonality
should be removed to improve the model’s predictive capabil-
ities, and this is easier to achieve with a full example of the

TABLE II. PARTITIONING OF TRAINING DATA SETS

Training data years No. Samples Test data years

2004 2928 2005–2010 inclusive

2004 and 2005 5848 2006–2010 inclusive

seasonal effect. In addition, it was anticipated that two years
of training data would show a greater range of wave behaviour
than one year alone.

Both techniques were used to train models which predict
future wave height, on the basis of four sequential historical
readings. These readings were taken at three hour intervals,
which means the input data represents 12 hours of historical
wave heights.

For each technique, models were trained with varying
lookahead windows from one time step up to 10. The one time
step model takes four sequential wave heights and predicts the
next (giving 3 hours of lookahead), with the two time step
model predicting wave height in 6 hours, up to the 10 time step
model predicting wave height in 30 hours’ time. The following
sections describe in detail the training of each set of models.

1) AR model: The general form of an AR model as
described in [7] is shown in Eq. 1, normalised with respect to
the mean, µ and in terms of model parameters ϕi and Gaussian
white noise term εt.

Xt = µ+ εt +

p∑

i=1

ϕi(Xt−i − µ) (1)

Eq. 1 is valid for a stationary process due to the presence
of εt. This is not applicable to wave data and consequently
data must be pre-processed before the modelling approach
can be applied. A Box-Cox transformation and removal of
seasonal average is applied to the data [7] in order that the
data approximates a normal distribution. For wave data, the
Box-Cox shape parameter, λ = 0 and the transformation takes
the form of Eq. 2 where Yt is the transformed time series and
µ̂ln(Hst) is a Fourier Series estimate of the time series of the
logarithm means [8].

Yt = T (Hst) = ln(Hst)− µ̂ln(Hst) (2)

This process is demonstrated in Figure 1 showing the
probability density function (pdf) of a sample data set before
and after transformation.

For the AR model itself, determination of the model coef-
ficients was carried out using the MATLAB System Identifica-
tion Toolbox by iteratively solving the Yule-Walker equations.
Simulation of the look-ahead value predictions were performed
using the predict routine with fitted coefficients within the
same toolbox.

2) ANN model: Since an ANN can handle non-linearity,
there was no need to perform the Box-Cox transformation to
remove the seasonality. Raw wave height data was used as
training data directly.

A standard multi-layer perceptron (MLP) architecture was
chosen, with four input nodes for the historical wave heights,
and the output node containing a linear activation function (as



Fig. 1. The effect of removing seasonality and transforming input data

TABLE III. EFFECT OF HIDDEN NODES ON RMS ERROR

Hidden nodes RMS error

2 0.2422

3 0.2448

4 0.2445

5 0.2463

6 0.2454

7 0.2496

8 0.2569

9 0.2725

10 0.2700

recommended for a regression model). The number of hidden
nodes was found through experimentation, ranging from two
up to and including 10.

Model training was performed using the R nnet library,
with weight decay of 0.0005 and the maximum number of
iterations increased to 1000. Model predictions were generated
using the nnet.predict routine.

The RMS error on test data was taken as the metric
for assessing the appropriate number of hidden nodes. For
this analysis, the training data set was the 2004 data, and a
lookahead prediction of one time step was used. Three separate
runs were performed for each number of hidden nodes and on
each training set. The lowest RMS error results are shown in
Table III. This shows that the highest accuracy is achieved with
two hidden nodes, giving a 4-2-1 MLP architecture.

3) Discussion of the models: The choice of four input
terms was driven largely by the auto-regressive model analysis.
The auto and partial correlation function plots of input data
(Figure 2), and the classification information in Table IV
suggest that four time steps (AR(4)) captures sufficient time
dependency while remaining computationally efficient.

This can be linked to the physical processes driving wave
height, which are very different between far offshore and near
shore locations. A very clear diurnal trend is observed in
wind speed data in coastal locations which drives wave heights
near shore [9]. Further offshore these diurnal patterns are not
present [10], however, there is a strong seasonal component
which can be considered deterministic. It is to remove this
seasonal effect that the Box-Cox transform is applied, before
fitting the AR model.

Fig. 2. Auto and partial correlation functions (ACF and PCF)

TABLE IV. AUTO REGRESSIVE MODEL ORDER CLASSIFICATION [11]

Model ACF Description PCF Significant Terms

AR(1) Exponential or Φkk ≈ 0 for k > 1
oscillatory decay

AR(2) Exponential or Φkk ≈ 0 for k > 2
sinusoidal decay

AR(p) Exponential and/or Φkk ≈ 0 for k > p

sinusoidal decay

For a direct comparison with the ANN, the input parame-
ters were kept the same for both techniques.

B. Results

The RMS error of each model is shown in Figure 3.
As may be expected, the further into the future the model
is predicting, the higher the RMS error, regardless of the
modelling technique or training data set chosen. It can be seen
that both the AR and ANN approaches perform very similarly
when evaluated on the RMS error metric, with the AR models
very slightly outperforming the ANNs. The RMS error at one
lookahead step (3 hours) for all models is under 0.25m, rising
to 0.7m at 10 lookahead steps (30 hours).

Figure 3 also shows a persistance line, which is the accu-
racy of prediction made simply by assuming the wave height
persists from its value n time steps in the past. For example, for
the one time step lookahead, the previous recorded wave height
is assumed to persist for the next measurement. For the 10 time
step lookahead, the previous wave height it assumed to predict
the wave height in 10 time steps’ time. While the persistance
model matched the capabilities of the others at one and two
time step lookahead, all AR and ANN models outperformed
the persistance model from three steps and upwards.

The effect of different training data sets was different from
the authors’ initial hypothesis. It was expected that a longer
training period would result in more accurate models, reflected
by a lower RMS error. The RMS error is in fact greater for
the longer training data set, although the effect is very slight.

The training period did have an effect on the ANN results.
While the lowest RMS errors for each training data set are very
similar, the shorter training period resulted in more of a spread
of ANN accuracy across different training runs and different
numbers of hidden nodes; that is, some of the ANNs performed
particularly poorly with less training data, while others were
still able to learn the regression model as accurately as the AR



Fig. 3. RMS error of each model for different lookahead time steps

TABLE V. RMS ERRORS ABOVE KEY WAVE HEIGHTS (1 YEAR

TRAINING DATA)

Look- ANN RMS errors AR RMS errors

ahead > 1.5m > 3.5 > 1.5m > 3.5

1 0.4899 1.0856 0.3162 0.6995

2 0.5967 1.3926 0.4918 1.1564

3 0.6898 1.6920 0.6154 1.4721

4 0.7599 1.9238 0.7109 1.7342

5 0.8110 2.0816 0.7845 1.9420

6 0.8551 2.2321 0.8438 2.1114

7 0.8812 2.3136 0.8868 2.2486

8 0.9069 2.3782 0.9197 2.3509

9 0.9266 2.4428 0.9494 2.4272

10 0.9426 2.4957 0.9720 2.4925

technique. This highlights the variability of the ANN training
process, and the need for multiple runs to identify a “true”
ANN accuracy.

With regard to Table I, particularly notable wave heights
are 1.5m, which limits access transfer boats; and 3.5m, which
is the firm upper limit on access due to accessibility for rescue
helicopters. Therefore, the models were examined for their
performance above these thresholds.

As anticipated, the more extreme wave heights are pre-
dicted with poorer accuracy, and the increasing lookahead
window only compounds the errors (see Table V). While the
accuracy for waves above 1.5m is still under half a meter (for
a single lookahead time step), this rises to over 1m of RMS
error for waves above 3.5m in height. At the furthest lookahead
of 30 hours, the RMS error for waves over 3.5m in height is
almost 2.5m, which is so large in comparison to the predicted
height that the prediction is essentially meaningless.

Another way of visualizing the performance of the AR
models is given in Figure 4. This plot shows the actual wave
height data in black, followed by the AR models’ predictions of
successive timesteps as colored traces. An ideal set of models
would show the colored traces exactly replicating the shape
of the actual data, spaced out by single timesteps. Instead
of this ideal pattern, each AR model can be characterized as
replicating the general shape of the trace, but not correctly

capturing the extreme wave height values.

As an example, the largest peak between data points 8270
and 8300 sees the true wave height exceed 8m, after two lower
peaks nearer 2m and 4m. The blue trace for the one timestep
prediction matches the two lower peak values, but predicts
a less extreme value for the largest peak. Each successive
timestep prediction places the three peaks at the correct times;
however the predicted wave height becomes less and less
extreme in its peak value.

This smoothing effect is largely due to the choice of
an AR(4) model, where only four previous time steps are
impacting the subsequent value. Increasing the auto-regressive
order does not improve this performance as there is insufficient
structure in the data as identified in Figure 2. The model fails
to predict extreme peaks and troughs in the data as they are
the result of consecutive increases in values, which a Gaussian
noise term will not predict.

In contrast, the ANN model does not capture the shape of
large deviations as well as the AR model (see Figure 5). From
one to four time steps of prediction the shape is preserved
relatively well, but at intervals greater than this the averaging
effect dominates. The range of predicted wave heights is
curtailed, with all predictions lying closer to the mean.

In particular, the peak between data points 8270 and 8300
is present in the one, two, three, and four timestep models,
but the shape of the peak differs quite significantly between
the one and two timestep models (the blue trace is a broader
peak than the thinner red trace). None of the ANN predictions
exceeds 6m, for a true wave height above 8m. In addition, the
dark red of the nine timestep model shows a definite peak at
8295, with no corresponding peak in the black data trace. This
is very different from the AR models, which only peak with
a corresponding peak in the true wave height.

Improvements in both models, in order to capture the
observed extreme behaviour, are an area for future research.

IV. CONCLUSIONS

The need for applied research in the field of wave height
forecasting for offshore wind accessibility and maintenance
will only increase in future years as more offshore assets are
installed, and those assets move through their life cycle. The
economic value of increased accuracy becomes clear as turbine
capacities increase, leading to large lost revenues for unplanned
outages. The need to plan robustly taking weather conditions
into account will be a key tool in controlling O&M spend for
offshore wind in the future.

Future work will study differences of wave regimes in
different water depths, consider the cost/benefit case for ac-
curate forecasting in more detail, and examine possible use
of regime switching [12] or threshold time series models [13]
as well as more advanced neural networks and copula models
more commonly used in wind forecasting [14], and evidence
combination techniques for integrating the output of multiple
models [15]. Such research will primarily help wind farm
owners operate their plant more efficiently, with lower costs.



Fig. 4. Part of the testing time series with AR model predictions overlayed. The shape is well-captured, but the range decreases with increased lookahead.
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Fig. 5. Part of the testing time series with ANN model predictions overlayed. The shape is somewhat well-captured up to four steps of lookahead.
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