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Abstract 

This paper describes a new multi-objective evolutionary optimization approach to the 
simultaneous layout and pipe size design of water distribution systems. Pressure-deficient and 
topologically infeasible solutions are fully incorporated in the genetic algorithm without recourse 
to constraint violation penalties or tournaments. The proposed approach is demonstrated by 
solving three benchmark problems taken from the literature. New optimal layouts and/or new 
feasible solutions that are cheaper than the best solutions in the literature were found for both 
branched and looped network configurations. Specifically, a new best solution was generated for 
each of the above-mentioned benchmark problems. In addition, the case of the looped design of a 
hitherto branched network in the literature was considered. Detailed results are included that show 
that the proposed approach achieves good solutions efficiently and consistently.  

 

Key words: water distribution system, topology optimization, penalty-free 

evolutionary approach, multi-objective optimization, genetic algorithm, EPANET 
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1. Introduction 

Water distribution systems (WDSs) are a vital part of the infrastructure in 

developed societies. However, WDSs deteriorate with time and require periodic 

maintenance to maintain the system capacity at the required levels. This increases 

considerably the overall cost of the system. Even though the capital cost is made 

up of the costs of system components such as pipes, valves, tanks and pumps, the 

capital cost is mainly due to pipeline provision and construction (Djebedjian et al 

2008). The operation cost is mainly due to energy and water treatment costs. 

Constructing and putting WDSs into operation is very expensive and it follows 

that good planning of the layout of the network of pipes can lead to a substantial 

reduction in the capital cost in addition to the long-term maintenance and 

operation costs. 

 

WDSs can be either branched or looped. Branched systems have a structure 

similar to a tree. The main advantages of branched systems are that the capital 
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cost is relatively low, they are easy to operate and are suitable for sparsely 

populated areas (Swamee and Sharma 2008). Branched systems have only one 

supply path from the source to any demand point (Swamee and Sharma 2008). 

This has the disadvantage of cutting off the water supply to the consumers 

downstream of any section of pipe that is not in service, e.g. due to a mains break. 

To reduce the effect of such situations, looped systems that have multiple supply 

paths from the source to the demand points are preferred. The reliability and cost 

of looped systems is highly dependent on the number of loops (Tanyimboh and 

Sheahan 2002; Tanyimboh and Setiadi 2008).  

 

Most of the current investigations on WDS optimization have focused on 

designing a fixed layout. However, there are some situations in which designing a 

predefined layout is rarely optimal in real systems. For example, designing new 

systems or expanding existing systems where in general it will be impossible to 

determine the best configuration a priori. Determining the best layout is not only 

important for new systems. Expanding existing systems due to rehabilitation or 

upgrading purposes represents an opportunity to improve existing layouts, for 

example. Also, optimizing the layout of branched WDSs can achieve significant 

cost savings (Afshar 2007a). Despite the obvious benefits, joint layout and pipe 

size optimization has received little attention, probably because of the extra 

complexity involved (Morgan and Goulter 1985; Afshar 2007a) which in part is 

attributable to the strong coupling between the layout and pipe sizes.  

 

Previous evolutionary approaches that optimized the layout and pipe sizes 

simultaneously considered mostly feasible solutions during the optimization 

process. Constraint violation penalties were designed to gradually exclude 
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infeasible solutions from the optimization process. Moreover, the fact that penalty 

functions incorporate factors that are problem-specific made the previous studies 

time-consuming. Layout and pipe size optimization in such approaches is 

preceded by a trial and error procedure to design a penalty function that is valid 

only for the network under consideration. This has the disadvantage of being 

laborious when employing such approaches to design new WDSs. In addition, 

there is no guarantee that the designed penalty function is optimal.   

 

This paper describes a new penalty-free multi-objective evolutionary approach to 

the simultaneous layout and pipe size optimization of WDSs. We adopted an 

approach in which the entire solution space that consists of both feasible and 

infeasible solutions is exploited in full. In particular, infeasible solutions are not 

targeted and removed arbitrarily purely by virtue of their infeasibility or by the 

use of extraneous penalties. The effectiveness of the approach is demonstrated by 

solving three benchmark problems. Better solutions than the best solutions in the 

literature were found for all the above-mentioned benchmark problems. By 

optimizing the layout and pipe sizes simultaneously and assessing infeasible 

solutions rationally, new least cost designs and/or new optimal layouts were 

found. In addition, a hitherto branched design optimization problem in the 

literature was solved as a looped design. 

2. LITERATURE REVIEW 

The problem of joint layout and pipe size optimization of WDSs has been the 

subject of a few studies. Rowel and Barnes (1982) developed a two-stage model 

that determined a least-cost branched layout first. Then, pipes to interconnect the 

branches of the network were added in the second stage. Morgan and Goulter 
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(1982) developed an approach that contained two linear programs, one for 

determining the optimum layout and the other for pipe sizing. However, there was 

no guarantee that the designs generated would be fully looped as the criterion 

used was a simple requirement to connect each node using two pipes as opposed 

to two independent paths. Kessler et al. (1990) and Cembrowicz (1992) tackled 

the problem by choosing links for either addition or removal from a predefined 

base graph. The base graph is the network consisting of the full set of feasible 

links. All the above-mentioned approaches were based on an assumption that the 

problem could be divided into two separate optimization problems in which 

layout optimization is followed by pipe size optimization. However, the 

relationship between the layout and the pipe diameters is strong and sequential 

procedures as described above can be expected to yield suboptimal results.  

 

More recently evolutionary optimization approaches have been attempted (Walter 

and Lohbeck 1993). For example, Davidson and Goulter (1995) proposed a 

method to optimize the layout of rectilinear branched networks. As no guarantee 

could be given for the feasibility of the designs obtained using genetic algorithm 

(GA) operators, two additional steps called recombination and perturbation were 

applied. Walters and Smith (1995) employed graph theory in an evolutionary 

algorithm for designing branched networks. Graph theory was combined with the 

conventional crossover and mutation operators to avoid the creation of infeasible 

designs in the reproduction process. Geem et al. (2000) employed a heuristic 

method called harmony search to optimise the design of branched networks. To 

avoid infeasible designs in the search process, a tree-growing algorithm starting 

from the base graph was used.  
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Also, Afshar et al. (2005a) developed an iterative two-stage approach such that, in 

the first stage, the optimal diameters for a predefined layout are determined using 

a non-linear programming method. In the second stage, an iterative pipe removal 

search process is carried out to reduce the cost without undermining the node 

connectivity constraint. Any infeasible solutions generated in the early stages due 

to the randomness in creating the initial population of solutions by the GA are 

gradually discarded using constraint violation penalties. To ensure the feasibility 

of branched solutions, at least one independent path from the source nodes to each 

of the demand nodes is required. Afshar (2005b and 2007a,b) also proposed 

several approaches that basically restricted the evolutionary algorithms used to 

feasible solutions. These included a genetic algorithm using three modified 

roulette wheel selection schemes (Afshar 2007a), the conventional roulette wheel 

(Afshar 2007b) and a max-min ant algorithm (Afshar 2005b). 

3.  MAIN HYDRAULIC EQUATIONS 

The performance of WDSs is governed by the following system of nonlinear 

equations. 
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where N = number of nodes; l represents the set of pipes in the closed circuit of 

pipes that form a loop;   Qj = demand or supply at node j; in(Nj) and out(Nj) = all 

pipe flows to and from node j, respectively; α = dimensionless conversion factor 

(10.6844 in SI units); Cij, Dij, hij, Lij and Qij = Hazen-Williams roughness 

coefficient, diameter, headloss, length and flow rate respectively for pipe ij; jH  

and des

jH = actual and desired head respectively at node j. The desired head is the 

head at a node above which demands are satisfied in full. Equation (1) is for 

conservation of mass while Equation (2) is for conservation of energy; and 

Equation (3) is the Hazen-Williams pipe friction headloss formula. Equation (4) 

ensures there is sufficient pressure at each demand node. In the UK, for example, 

Hj
des is often taken as a minimum residual pressure head of 15m (Ofwat 2008). 

Equations (1) to (3) are usually handled by employing a hydraulic simulator -- e.g. 

EPANET 2 (Rossman 2000), EPANET-MSX (Shang et al. 2008), PRAAWDS 

(Tanyimboh and Templeman 2010), EPANET-PDX (Siew and Tanyimboh 2012), 

etc. -- which ensures these equations are automatically satisfied. Various 

approaches have been used in the literature to address Equation (4) in the design 

process. We developed a novel unified feasibility measure that accounts for both 

nodal pressures and network topology. This is explained in detail in the following 

section.    

4. PROBLEM FORMULATION  

A discrete combinatorial optimization problem with two objectives namely the 

capital cost and infeasibility both of which are minimized was developed. We 

used a novel unified feasibility measure that accounts for both nodal pressures and 

network topology. The optimization is considered under the following 
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assumptions. (1) The network configuration including all of the feasible links is 

known. This network is termed the fully connected network herein. (2) The pipe 

diameters and the links to be included or excluded are the decision variables of the 

problem. The aim is to find and size the optimal subset of links. (3) Water 

demands are located at the nodes. In reality, demands occur along the pipes but 

for ease of analysis, they are aggregated and allocated at the nodes. (4) Node 

demands are known with certainty. Although nodal demands may be uncertain in 

practice, demands and other WDS aspects that can lead to uncertainty are not 

addressed herein. (5) The required pressure head at each demand node is given. 

(6) Finally, design is to be optimized based on the initial construction cost only. 

Even though the operational and other whole-life costs (Tanyimboh and Kalungi 

2008) contribute significantly to the whole cost of the system, their inclusion is 

beyond this study.  

 

If cij denotes the cost per unit length for pipe ij, the cost objective function can be 

written as 

 

∑==
ij

ijij1 Lcf  Cost                                                                                  (5) 

 

Any designs proposed should be both hydraulically and topologically satisfactory. 

This was addressed by ensuring there is a sufficient number of supply paths and 

sufficient pressure at all demand nodes. Firstly, the total shortfall in head for all 

demand nodes that have less than the desired head is  
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in which RHD is the residual head deficit for the entire network. In the case of a 

node having Hj ≥
des

jH , it is assigned a deficit of zero. In other words, the residual 

head deficit RHD will be zero only if a design is feasible.  

 

Secondly, to optimize the layout and pipe sizes simultaneously a pipe diameter of 

zero was introduced to enable different layouts to be generated by removing any 

link from the fully connected network (Afshar 2007b). A diameter of zero in 

Equation (5) yields zero cost, which reflects the real situation for a non-existent 

link. However, this results in an undefined value of the headloss in Equation (3). 

Therefore, to resolve this problem, the link removal case was modelled as a closed 

pipe when simulating the WDS. Since link removal takes place randomly 

especially in the early phases of the optimization, some nodes or even parts of the 

network can become disconnected from the source nodes. To avoid this, Equation 

(6) was extended to account for layout infeasibility. For a branched layout to be 

feasible, a minimum of one supply path is required for each demand node. For 

looped networks, at least two independent supply paths per demand node are 

required. The extent of layout infeasibility was quantified as the sum of the 

individual nodal shortfalls in the required number of independent supply paths. 

Accordingly, Equation (6) was augmented as follows. 
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where NPj is the number of independent supply paths for node j while R is the 

minimum number of independent paths required. For a node with NPj ≥ R, the 

second term in Equation (7) is assigned a value of zero. R = 1 for branched 

networks and R = 2 for looped networks. The total infeasibility in Eq. 7 is equal to 

zero if and only if a design is both topologically and hydraulically feasible. 

 

Due to the large difference in the respective ranges of the objective function 

values in Equations (5) and (7), each objective was normalized to maintain the 

objectives within the interval [0, 1], i.e. 

 

min,max,

min,,

ii

iji

ff

ff

−

−
                                                                                     (8) 

 

 in which fi,min and fi,max are the respective minimum and maximum values of the 

ith objective function and fi,j  is the value of the ith objective function for the jth 

candidate solution in the current population. 

5. COMPUTATIONAL SOLUTION 

The Non-dominated Sorting Genetic Algorithm NSGA-II (Deb et al. 2002) was 

employed. It is fast, robust and incorporates elitism. We have not provided an 

overview of NSGA II in this article. However, a detailed description is available 

in Deb et al. (2002). We employed simple binary coding (Goldberg 1989) and 

used fixed mapping in which each binary string is mapped to one of the decision 

variables of the problem. The hydraulic solver EPANET 2 was used to analyse the 

solutions the GA generated.  
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It is worth observing that EPANET 2 often produces unrealistic results of node 

pressures and pipe flows within parts of the network that are not connected to a 

source. For example, isolated nodes are assigned arbitrarily large negative 

pressures while pipes having an isolated upstream node are dealt with as if they 

are connected to the source. We resolved this problem by developing an algorithm 

for detection of both isolated nodes and pipes that assigns zero flow and pressure, 

respectively, to any pipes and nodes that are not connected to a source. By 

addressing the problem of disconnected network components we were able to 

assess the fitness of both feasible and infeasible solutions in a consistent and bias-

free manner.  

 

We adopted a penalty-free strategy that enables infeasible solutions to participate 

fully in the optimization process. The reason for incorporating infeasible solutions 

is that in the latter stages some essential genes in the optimal solution may no 

longer be present in the current population of feasible solutions if, arbitrarily, 

some solutions are discarded purely because they are infeasible. This strategy also 

has the advantage of approaching the optimal design from both the feasible and 

infeasible regions of the solution space. In this way, the optimum design can be 

found by either lowering the cost of a near-optimal feasible design or converting a 

near-optimal infeasible design to a feasible design. The motivation is that optimal 

solutions for WDSs often occur at the boundary of the feasible region of the 

solution space. Figure 1 provides a diagrammatic overview of the proposed 

approach. 
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6. BENCHMARK EXAMPLES 

The two benchmark networks (Figure 2) considered are described briefly in turn 

in this section ahead of the results in Section 7. Both branched and fully-looped 

designs were considered for each of the two networks. A bit-wise mutation 

operator was used and mutation rates in the range 0.001 to 0.3 were investigated. 

This sensitivity analysis would appear to suggest that the optimum mutation rate 

is pm ≈ 1/ng where pm = mutation rate and ng = chromosome length as determined 

by the number of genes. A Core 2 Duo desktop computer that has a processor 

speed of 2.99GHz and 3GB of RAM was used. 

 

Network 1 is a single source network made up of 9 nodes and 12 pipes as shown 

in Figure 2. The source located at node 9 has an elevation of 50 m. All of the other 

nodes are demand nodes with an elevation of zero. The minimum desired head at 

all of the demand nodes is 30 m. All of the pipes have a length of 100 m and 

Hazen-Williams coefficient of 130. The solution space for this network comprises 

1412 = 5.67×1013 feasible and infeasible solutions, made up of 13 discrete pipe 

sizes plus the link removal option of diameter zero (Afshar 2007a). A 4-bit binary 

substring was used. This gave 24 or 16 substrings of which two were redundant. 

The redundant substrings were mapped to the link removal option to increase the 

chances of creating new layouts. Since the network is composed of 12 pipes, each 

design is represented by a chromosome that has a 48-bit binary string. A single-

point crossover operator was used to produce two offspring from two parents 

using a crossover probability of 1. A bit-wise mutation operator was used to 

switch the selected bit either from 0 to 1 or from 1 to 0. The mutation probability 

was 1/ng = 1/48, i.e. a 2.1% chance that any single bit would mutate. 
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Network 2 (Figure 2) is part of the Winnipeg system (Morgan and Goulter 1985). 

This network has 2 sources, 20 nodes and 37 pipes. The Hazen-Williams 

roughness coefficient for all pipes is 130. Allowing for pipe removal, the solution 

space of this network comprises a combined total of 1437 = 2.55×1042 

hydraulically and/or topologically feasible and infeasible solutions. Using a 4-bit 

binary substring, since this network has 37 pipes, each solution was represented 

with a chromosome whose length is 148 genes. The resulting redundant codes 

from this representation were mapped to the link removal option. A uniform 

crossover operator was used to create two offspring from two parents using a 

crossover probability of 1.  Bit-wise mutation was used to flip the selected bit 

either from 0 to 1 or from 1 to 0 using a mutation probability of 1/ng = 1/148.  

7. RESULTS AND DISCUSSION 

The results for the four design problems are discussed below in turn. We have 

included indicative statistics for the consistency and quality of the solutions. In 

the results tables that follow, the relative frequencies of the various solutions 

found in multiple runs of the GA are displayed graphically in terms of the 

deviations of the respective costs from the cost of the best known solution. Given 

any number of random GA runs and their respective least cost solutions, the 

relative cost deviation of each solution is defined here as the ratio of the deviation 

of the cost to the maximum cost deviation among the solutions under 

consideration.  

  

7.1 BRANCHED DESIGN OF NETWORK 1 

Table 1 and Figure 3 show results of the achieved least cost branched design of 

Network 1. In all of the previous approaches the critical node was Node 1. It is 

Node 2 in the present optimal design (Figure 3). The small surplus head of 0.06 m 
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at the critical node would appear to suggest that the achieved solution is at least a 

near-global optimum. Figure 4 shows the best achieved Pareto Optimal Front 

(POF) for Network 1. With reference to Equation (7), the maximum infeasibility 

value of  f2 = 248 (Figure 4) is the summation of the prescribed minimum nodal 

residual pressure head of 30 m and the minimum required nodal connectivity of R 

= 1, for all the eight demand nodes, i.e. (30 + 1) × 8 = 248. With a cost of zero 

this solution is always non-dominated. This zero cost solution has no pipes. 

Consequently, selecting the zero cost solution for crossover results in link removal 

in the offspring. This zero cost solution is very important as it safeguards the 

potential for creating new layouts in every generation. 

 

Table 2 summaries the results to date and demonstrates clearly the effectiveness 

of the proposed approach. The best design generated costs $38,600 and is actually 

the cheapest solution to date. The GA was run 10 times using different randomly 

created initial populations. A maximum of 200,000 function evaluations were 

allowed for each GA run. Using a population of 100, the optimum design having a 

cost of $38,600 was identified in 8 different runs out of 10. The best run took a 

CPU time of about 10 seconds after 10,400 function evaluations. The two 

remaining runs both found a feasible solution that costs $39,800. The average, 

median and maximum value of the least cost for the 10 GA runs were $38,840, 

$38,600 and $39,800 respectively. The standard deviation (SD), coefficient of 

variation (CV) and SD/f1
* were $505.96, 0.0130 and 0.0131, respectively. f1

* = 

$38,600 is the cost of the optimal solution. It can be seen that the values of CV 

and SD/f1
* are small and similar. CV is indicative of the consistency of the results 

whereas SD/f1
* is indicative of the quality of the results; self-evidently the smaller 

the values and the more the similarity, the better. Several near-optimal solutions 
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were also found by the 10 GA runs as shown in Table 2. 

 

7.2 LOOPED DESIGN OF NETWORK 1 

Network 1 was also optimized as a looped network. Two different optimal layouts 

each with an associated optimal design (Designs 1 and 2) were created (Figure 5 

and Table 3). Figure 6 shows the best POF achieved. As all hydraulically and 

topologically feasible designs have an infeasibility value of zero the non-

domination sorting procedure ensures that only the cheapest feasible design can 

survive at the feasibility boundary as the least cost looped design. There are a few 

hydraulically feasible branched designs next to the least cost looped design 

(Figure 6). The maximum infeasibility value of 258 is the sum of the nodal head 

deficit for all nodes with insufficient pressure and supply paths shortfall for all 

nodes with less than two independent supply paths. Since all of the 8 demand 

nodes in this design are not connected to the source node the first term of 

Equation (7) results in a residual head deficit of 8 × 30 = 240 m. In addition, all 9 

network nodes contribute a further infeasibility value of 9 × 2 = 18 through the 

second term in Equation (7). Inherently, infeasible solutions dominate the POF 

(Figure 6); all feasible solutions except for the cheapest are dominated as 

explained above.  

 

Using a population of 100, the GA was run 20 times due to the increased problem 

complexity and larger solution space using different randomly created initial 

populations. The complexity arises from the existence of alternative feasible flow 

distributions for looped networks. A maximum of 200,000 function evaluations 

per GA run were allowed. Interestingly, two different optimum designs having a 

cost of f1
* = $41,400 were found (Designs 1 and 2 in Table 3). Designs 1 and 2 
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were achieved after 5,000 and 10,500 function evaluations respectively. The CPU 

time was about 4.8s and 10.1s for Designs 1 and 2 respectively. Designs 1, 2 and 

3 in Table 3 were identified 5, 3, and 10 times respectively by the 20 random GA 

runs. Each of Designs 4 and 5 in Table 3 was found once. The average, median 

and maximum value of the least cost were $41,885, $42,200 and $42,300 

respectively. The SD, CV and SD/f1
* values were $406.88.96, 0.0097 and 0.0098, 

respectively. It is worth highlighting that the least cost branched design of this 

network having a cost of $38,600 was identified 13 times by the 20 GA runs. This 

result is significant in that it suggests it may be possible to combine and solve the 

branched and looped least cost network design problems together.  

 

7.3 BRANCHED DESIGN OF NETWORK 2 

Tables 4 and 5 and Figure 7 show the results for the branched design of Network 

2. The solution of $1,684,228 (Design 1) is the cheapest design to date while the 

near-optimal solution of $1,692,058 (Design 2) is also cheaper than the best 

solution in the literature. The layout of Design 1 has not been identified 

previously. Its creation here is, therefore, a remarkable achievement. Two single-

source branched networks were created by removing 19 pipes (51%) out of 37 in 

each of Designs 1 and 2. 20 GA runs were performed using different randomly 

created initial populations. The termination criterion was 500,000 function 

evaluations. The least cost of f1
* = $1,684,228 (Design 1) was identified two times 

out of 20. Using a population of 100, this required 154,500 function evaluations 

and a CPU time of about 2.12 minutes according to the best POF. Design 2 was 

identified once among the 20 runs. The average, median and maximum values of 

the least cost were $1,753,359, $1,733,044 and $1,889,386 respectively. The SD, 

CV and SD/f1
* values were $60,731.81, 0.0346 and 0.0361, respectively. Figure 8 
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shows the best achieved POF. A good distribution of solutions is evident. This 

may be attributable to the larger solution space made up of a large number of 

branched layouts and pipe size combinations. 

 

7.4 LOOPED DESIGN OF NETWORK 2 

Tables 6 to 8 and Figure 9 show the results for the looped design of Network 2.  

Remarkably, three new feasible solutions that are cheaper than the previous best 

solution in the literature were created. A new layout was created also, as shown in 

Figure 9b. The new layout is that of the new cheapest solution of  f1
* = $1,972,559 

(Design 3) that has only 25 pipes. The previous best solution has 26 pipes (Figure 

9a). 20 random runs of the GA using different starting points were performed. 

Using a population of 100, the cheapest design of $1,972,559 was identified two 

times out of 20 the best of which took 901,300 function evaluations. This took a 

CPU time of about 12.41 minutes. Two of the 20 runs resulted in Near-optimal 

Designs 1 and 2 respectively. The termination criterion was 1,000,000 function 

evaluations. The average, median and maximum values of the least cost were 

$2,019,891, $1,998,076 and $2,095,167 respectively. The SD, CV and SD/f1
* 

values were $43,683.82, 0.0216 and 0.0222. 

 

Figure 10 shows the best POF achieved; Figure 11 shows the full set and 

demonstrates the consistency and stability of the GA. For the topologically 

infeasible solutions the increase in cost is relatively gentle as the overall hydraulic 

performance improves while the infeasibility measure is decreasing. For the 

feasible branched solutions, the cost increases sharply as more pipes are added to 

create loops. A number of hydraulically feasible branched solutions lie near the 

cost axis, between the infeasible solutions and the least cost looped solution that 
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has zero infeasibility. The cheapest feasible branched solution among the 20 

conducted GA runs has a cost of $1,694,966, which is slightly more expensive 

than the cheapest branched design of $1,684,228 (Tables 4 and 5).  

8 CONCLUSIONS 
This article provides strong evidence to support the incorporation of infeasible 

solutions in the design optimization of water distribution networks. Arbitrarily 

penalizing or removing hydraulically or topologically infeasible solutions can lead 

to the loss of some essential features of the optimal solution from the gene pool. 

By contrast, the penalty-free fully inclusive approach developed does not avoid 

infeasible solutions and retains the advantage of progressing towards the optimum 

solution from both the feasible and infeasible sections of the solution space. It is 

believed the performance of the algorithm is enhanced in this way by virtue of the 

presence of both feasible and infeasible non-dominated near-optimal solutions in 

successive generations. For problems involving layout optimization, a procedure 

for handling topologically infeasible solutions in a rational manner is a 

precondition if the entire solution space is to be exploited in full. We addressed 

this issue in this article. 

 

The benefits of solving the layout and pipe size optimization problems 

simultaneously rather than sequentially has been demonstrated. The results show 

that the present approach is efficient and yields good results consistently. Three 

benchmark problems in the literature were considered and in each case we found a 

new best solution. In all, six new feasible solutions that are cheaper than the best 

in the literature were found. The results suggest further improvements may be 

achieved by combining and solving the branched and looped design optimization 

problems together. A weakness of the proposed formulation is that it yields only 
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the least cost feasible solution. Besides cost, a possible remedy might include the 

introduction of additional hydraulic performance objectives in order to 

differentiate the feasible solutions further. In addition, design should be based on 

minimizing the whole-life costs rather than the initial construction cost only.  It is 

recognised also that the infeasibility measure adopted is dimensionally 

inconsistent. Further improvements are thus indicated. 
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Figure 1: Diagrammatic overview of proposed approach 
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                               (a) Network 1                                  (b) Network 2 
 

Figure 2: Topologies of benchmark networks solved 
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Figure 3: Optimal branched layout for Network 1 (CN denotes Critical Node) 
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Figure 4: Best achieved Pareto optimal front for the branched design of Network 1  
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                                            (a)                                                                    (b) 

Figure 5: Optimal looped layouts for Network 1 (CN denotes Critical Node) 
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Figure 6: Best achieved Pareto optimal front for the looped design of Network 1 
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(a) New best solution 

 
(b) Previous best solution (Afshar et al. 2005) 

 
Figure 7: Optimal branched layouts for Network 2 (CN denotes Critical Node) 
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Figure 8: Best achieved Pareto optimal front for the branched design of Network 2 
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(a) 

 

 
(b) 

Figure 9: Optimal looped layouts for Network 2 (CN denotes Critical Node) 
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Figure 10: Best achieved Pareto optimal front for the looped design of Network 2 
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Figure 11:  Consistency of the Pareto optimal fronts from the random GA runs for 

the looped  design of Network 2 
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Table 1: New and previous cheapest feasible branched designs for Network 1 

Pipe 
Diameter (mm) 

Node 
Head (m) Surplus head (m) 

Afshar 
(2007a) 

Present 
Afshar 
(2007a) 

Present 
Afshar 
(2007a) 

Present 

1-3 100 100 1 30.21a 30.21 0.21a 0.21a 

2-5 120 100 2 30.94 30.06a 0.94 0.06 

3-6 120 120 3 32.12 32.12 0.12 0.12 

4-7 100 100 4 32.89 32.90 0.89 0.90 

5-7 120 140 5 33.78 36.94 0.78 0.94 

6-8 140 140 6 34.95 34.95 0.95 0.95 

7-9 140 140 7 39.78 39.77 0.78 0.77 

8-9 140 140 8 39.78 39.77 0.78 0.77 
a Critical node 
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Table 2: Summary of the cheapest feasible branched and looped designs for Network 1 

aA direct comparison is not possible as a hybrid approach involving a tree growing algorithm and 
harmony  search was used.  bNew best least-cost feasible solution 

Design Case Author Approach Cost ($) 
Function 

evaluations 

Branched 

Geem et al 
(2000) 

Layout optimization followed by pipe 
sizing using harmony search 

39,800 N/Aa 

Afshar (2005b) 
Simultaneous layout and pipe size 

optimization using max-min ant system 
39,800 7,900 

Afshar (2007a) 
Simultaneous layout and pipe size 
optimization using GA with four 

crossover selection  schemes 
39,400 7,500 

Afshar (2007b) 
Simultaneous layout and pipe size 
optimization using GA with three 

crossover selection schemes 
39,400 7,500 

10 random runs 
of the proposed 

approach 

 39,800 9,500 

39,700 9,900 

39,600 21,100 

39,400 28,200 

38,600b 10,400 

Looped 
20 random runs 
of the proposed 

approach 
 

42,300 198,100 

42,200 112,100 

42,200 7,200 

41,400 10,500 

41,400 5,000 
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Table 3: Results of the optimum looped designs achieved for Network 1   

Pipe 
Diameter (mm) Node  

 

 
Head (m) 

 

Des. 1 Des. 2 Des. 3 Des. 4 Des. 5 Des.1 Des.2 Des.3 Des.4 Des.5 

1-2 100 80 80 100 80 1 30.04a 30.13a 30.07 30.07a 30.03a 

1-3 80 100 100 80 80 2 31.26 30.66 30.06a 30.67 31.00 

2-4 140 100 80 120 80 3 30.37 31.18 32.02 31.41 32.33 

2-5 - 80 100 - 100 4 33.72 35.00 30.76 35.08 33.69 

3-5 100 - - 80 - 5 32.25 33.70 34.99 33.67 36.17 

3-6 80 100 120 100 100 6 30.72 36.40 34.88 32.82 36.96 

4-7 140 140 100 140 120 7 40.44 38.88 39.81 41.18 38.52 

5-7 - 100 120 - 140 8 39.08 40.63 39.73 38.27 40.95 

5-8 100 - - 100 -       

6-8 100 140 140 120 140       

7-9 140 140 140 140 140       

8-9 140 140 140 140 140       

Cost($) 41,400 41,400 42,200 42,200 42,300       
a Critical node 
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Table 4: New and previous optimum branched designs for Network 2  

Pipe 

Diameter (mm) 

Node 

Head (m)  Surplus head (m) 

Afshar 
(2005a) 

Present 
approach 

Afshar 
(2005a) 

Present 
approach 

 
Afshar 
(2005a) 

 

 
Present 

approach 

Des. 1 
(Fig. 10) 

Des. 2 
(Fig. 11) 

Des. 1 Des. 2 
Des. 

1 
Des. 

2 

1-2 400 400 400 1 83.68 79.37 83.69 8.68 4.37 8.69 

1-4 300 350 300 2 94.67 90.34 94.67 20.67 16.34 20.67 

2-5 550 500 500 3 80.85 80.85 80.86 7.85 7.85 7.86 

2-6 250 300 250 4 75.23 75.38 75.25 3.23 3.38 3.25 

3-5 250 250 250 5 102.00 102.00 102.00 - -  

5-7 350 350 400 6 74.85 82.20 74.86 1.85 9.20 1.86 

5-10 350 450 350 7 72.28 72.31 86.50 5.28 5.31 19.5 

7-13 350 350 300 8 76.04 73.03 73.03 4.04 1.03 1.03 

8-9 350 350 350 9 80.36 77.35 77.35 10.36 7.35 7.35 

9-14 400 400 400 10 82.37 80.27 82.38 13.37 11.27 13.38 

10-11 - 300 - 11 82.42 74.26 82.43 11.42 3.26 11.43 

10-12 300 400 300 12 72.85 71.56 72.87 2.85 1.56 2.87 

11-16 300 - 300 13 65.51 65.53 72.15 1.51 1.53 8.15 

12-17 - 350 - 14 90.88 87.85 87.85 17.88 14.85 14.85 

14-15 250 300 300 15 74.32 81.05 81.05 1.32 8.05 8.05 

14-16 550 500 500 16 96.00 96.00 96.00 - -  

16-18 400 350 400 17b 67.15 67.34 67.17 0.15 0.34 0.17 

16-19 300 300 300 18 80.97 83.07 80.98 10.97 13.07 10.98 

17-18 300 - 300 19 81.93 81.93 81.93 11.93 11.93 11.93 

18-20 300 300 300 20 68.78 70.89 68.79 1.78 3.89 1.79 

Cost ($) 1,693,393 1,684,228a 1,692,058a        
 aTwo new best least cost feasible solutions. bCritical node. 
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Table 5: Summary of the new and previous optimal branched designs for Network 2 

      aTwo new best least cost feasible solutions. b A direct comparison is not possible as two     
sequential stages incorporating an iterative search procedure were used. 

 

Author Approach  Cost ($) 
Function 

evaluations 

Afshar (2007b) 
Simultaneous layout and pipe size 
optimization using GA with four 
crossover selection  schemes  

1,783,086 100,000 

Afshar (2007a) 
Simultaneous layout and pipe size 
optimization using GA with three 
crossover selection schemes  

1,783,086 100,000 

Afshar (2005b) 
Simultaneous layout and pipe size 
optimization using max-min ant system  

1,710,121 22,800 

Afshar (2005a) 

Iterative two-stage procedure with 
sequential layout and pipe size 
optimization  

1,693,393 N/Ab 

20 random runs of the 
proposed approach 

 

1,692,058a 170,300 

1,684,228a 154,500 
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Table 6: New and previous optimal looped designs for Network 2 

Pipe 

Diameter (mm) 

Afshar 
(2005a) 

Present approach 

Design 1a Design 2a Design 3a 

1-2 400 400 400 400 

1-4 350 300 300 300 

2-5 500 500 500 500 

2-6 250 250 250 250 

3-5 250 250 250 250 

3-7 125 200 125 125 

4-8 125 125 125 125 

5-7 350 350 350 400 

5-10 350 400 350 350 

6-9 125 125 125 - 

6-10 - - - 150 

7-13 300 300 300 300 

8-9 350 400 350 350 

8-15 - - - - 

9-14 400 400 400 400 

10-11 150 250 150 - 

10-12 300 300 300 250 

11-12 - - - 200 

11-16 250 150 250 300 

12-17 125 150 125 - 

13-17 125 150 150 125 

14-15 350 250 250 250 

14-16 500 500 150 500 

15-19 150 125 125 125 

16-18 450 400 450 400 

16-19 250 300 300 300 

17-18 300 300 300 300 

18-20 300 300 250 300 

19-20 125 150 200 125 

Cost ($) 1,983,935 1,979,767 1,974,644 1,972,559 
aThree new best least cost feasible solutions 



38 

Table 7: Nodal  heads of the new and previous optimal looped designs of Network 2  

Node 

Head (m) Surplus head (m) 

Afshar 
(2005a) 

Present approach 
 

Afshar 
(2005a) 

 

 
Present approach 

Des. 1 Des. 2 Des. 3 Des. 1 Des. 2 Des. 3 

1 79.07 80.14 80.27 80.30 4.07 5.14 5.27 5.30 

2 90.44 90.79 90.88 91.08 16.44 16.79 16.88 17.08 

3 78.56 77.25 78.95 82.69 5.56 4.25 5.95 9.69 

4 74.80 72.20 72.38 72.16 2.80 0.20 0.38 0.16a 

5 102.00 102.00 102.00 102.00 - - - - 

6 73.02 73.23 73.97 76.34 0.02a 0.23 0.97 3.34 

7 74.65 76.34 76.12 85.51 7.65 9.34 9.12 18.51 

8 72.52 73.99 74.50 72.85 0.52 1.99 2.50 0.85 

9 76.58 76.37 79.10 77.32 6.58 6.37 9.10 7.32 

10 79.46 81.44 79.33 84.42 10.46 12.44 10.33 15.42 

11 72.72 72.19 72.68 76.10 1.72 1.19 1.68 5.10 

12 70.40 70.38 70.15 70.65 0.40 0.38 0.15a 0.65 

13 68.37 64.00 64.34 70.40 4.37 0.00a 0.34 6.40 

14 87.29 87.76 90.69 88.02 14.29 14.76 17.69 15.02 

15 78.57 73.23 74.96 73.57 5.57 0.23 1.96 0.57 

16 96.00 96.00 96.00 96.00 - - - - 

17 71.15 67.83 70.53 68.96 4.15 0.83 3.53 1.96 

18 86.90 81.84 87.98 81.94 16.90 11.84 17.98 11.94 

19 70.79 78.01 75.83 78.73 0.79 8.01 5.83 8.73 

20 73.77 71.78 69.14 71.22 6.77 4.78 2.14 4.22 

  a Critical node 
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Table 8: Summary of the new and previous least cost feasible looped designs of Network 2              

Author Approach  Cost ($) 
Function 

evaluations 

Afshar (2007b) 
Simultaneous layout and pipe size 
optimization using GA with four crossover 
selection  schemes  

2,056,379 100,000 

Afshar (2007a) 
Simultaneous layout and pipe size 
optimization using GA with three crossover 
selection schemes  

2,056,379 100,000 

Afshar (2005b) 
Simultaneous layout and pipe size 
optimization using max-min ant system  

2,055,917 31,500 

Afshar (2005a) 
Iterative two stage procedure with 
sequential   layout and pipe size 
optimization  

1,983,935 NAb 

20 random runs of the 
proposed approach 

 

1,979,767a 370,500 

1,974,644a 508,200 

1,972,559a 901,300 

 a Three new best least cost feasible solutions. b A direct comparison is not possible as two 
sequential stages incorporating an iterative search procedure were used. 


