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Sensor Coverage in Electricity 

Networks   

How many 

Sensors are 

Needed ? 

Which sensors 

can be removed ? 

 

Estimate unknown 

Cable impedances 

What 

happens 

when a given 

sensor fails ?  

How to handle 

Too much data ? 

How accurate 

Should a given 

Sensor be ? 



State estimation 

 From limited power flow and voltage measurements 

derive voltage magnitudes and angles at each bus 

 Derive power flow at every node in the network from 

estimated impedances and calculated voltages. 
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Sensitivity Analysis 

Suppose the state estimation problem is given as  

  

Where:  

x are the parameters to be estimated  

H is a (linearized)  observation matrix  

E is a  constraint matrix  

z and y are vectors storing measured data values 

 

The solution depends linearly on y and z: 

 

And the variance matrix is:  

(z and y supposed uncorrelated) 

 

The matrices Sz and Sy show precisely how the uncertainties 

associated with the data vectors z and y contribute to the uncertainties 

associated with the parameter estimates x. 
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Sensitivity analysis 
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Example simulated 

networks 

Network 1 – United Kingdom Generic Distribution System 

(UKGDS) 77 bus network 



Example simulated networks 

Network 2 –UKGDS 290 bus 

network 



Example simulated 

networks 

Network 3 – IEEE 

30 bus system 



Example simulated 

networks 

Network 4 – IEEE 

300 bus system 



Choosing optimum measurement 

locations using sensitivity analysis 

Network 1 

Choose positions of high accuracy “real” measurements and low 

accuracy “pseudo” measurements 



Choosing optimum measurement 

locations using sensitivity analysis 

Network 2 

Choose positions of high accuracy “real” measurements and low 

accuracy “pseudo” measurements 



Choosing optimum measurement 

locations using sensitivity analysis 

Network 3 

Choose positions of high accuracy “real” measurements and low 

accuracy “pseudo” measurements 



Choosing optimum measurement 

locations using sensitivity analysis 

Network 4 

Choose positions of high accuracy “real” measurements and low 

accuracy “pseudo” measurements 



University of Strathclyde 

experimental smart-grid 

Control system Network model 



Testing on microgrid 

Active power flow 

Reactive power flow 

Voltage magnitude 

Voltage angle 

Apply state estimation 

Apply sensitivity analysis  Measurement uncertainty 

 Measurement error  

Start with fully 

instrumented grid 



Start with fully 

instrumented grid 

Average measurement error of 1.7 % 

Average state variable uncertainty of 0.4 % 

Active power flow 
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Testing on microgrid 



Apply algorithm to find 

optimum minimum 

measurement set 

Average measurement error of 1.0 % 

Average state variable uncertainty of 0.7 % 

Active power flow 
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Compare with random 

selection of 

measurements 

Average measurement error of 3.1 % 

Average state variable uncertainty of 2.2 % 
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Testing on microgrid 



Microgrid measurement errors 

Comparison of measurement error and state variable 

uncertainty 

Minimum set from 

sensitivity 

analysis 

Fully instrumented 

network 



Summary 

 Successfully modelled Strathclyde microgrid in 

MATLAB 

 Applied state estimator to Strathclyde microgrid and 

larger simulated networks 

 Verified uncertainty calculations against monte-carlo 

calculations 

 Expanded state estimator to include uncertain 

impedances in the network interconnections 

 Verified state variable uncertainty calculations 

against real measurements 



Next steps 

 Improve speed of optimal measurement placement 

algorithm 

 Sensitivity analysis with cable impedances included 

 Apply techniques to estimate line impedances 

 Expand to include unbalanced networks 

 Test with distributed generation included 

 Investigate use of PMU and smart meter data. 

 Try on full size real networks – need to engage with 

DNO 


