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CYLINDRICALLY AND SPHERICALLY CONSTRAINED FAMILIES 
OF NON-KEPLERIAN ORBITS 

Jeannette Heiligers,* and Colin R. McInnes† 

This paper introduces new families of Sun-centered non-Keplerian orbits 

(NKOs) that are constrained to a three-dimensional surface such as a cylinder or 

sphere. As such, they are an extension to the well-known families of two-

dimensional NKOs. For both the cylindrical and spherical types of orbits, the 

equations of motion are derived in an appropriate reference frame, constraints 

are introduced to confine the orbit to a cylindrical or spherical surface and fur-

ther constraints allow the definition of the set of feasible orbits. Additionally, the 

phase spaces of the orbits are explored and a numerical analysis is developed to 

find periodic orbits within the set of feasible orbits. The richness of the problem 

is further enhanced by considering both an inverse square acceleration law 

(mimicking solar electric propulsion) and a solar sail acceleration law to keep 

the spacecraft on the cylindrical or spherical surface. These new families of 

NKOs generate a wealth of new orbits with a range of interesting applications 

ranging from solar physics to astronomy and planetary observation. 

INTRODUCTION 

By exploiting a continuous propulsive force, non-Keplerian orbits (NKOs) strongly perturb the two- or 

three body problem, thereby creating a wealth of new orbits for the spacecraft motion about the central 

body. A particular subset of non-Keplerian orbits in the two-body problem are the so-called displaced 

NKOs,
1
 where the continuous acceleration is applied perpendicular to – or in - the orbit plane to displace 

the orbit away from the natural Keplerian orbit. The dynamics of such two-body displaced NKOs have 

been investigated before
2
 by considering the spacecraft’s equations of motion in a rotating frame of refer-

ence to make the problem autonomous. Equilibrium solutions of these equations of motion will then pro-

vide the sought for displaced NKOs and a transformation to an inertial frame will subsequently show that 

the spacecraft executes a circular orbit displaced away from the natural Keplerian orbit. The applications of 

such displaced NKOs are abundant and their potential has been shown in a range of studies, both Sun-

centered and planet-centered. In the Sun-centered case, applications include solar physics and one year or-

bits synchronous with the Earth for space weather monitoring,
3
 while the planet-centered case include ap-

plications such as displaced geostationary orbits,
4, 5

 hovering above Saturn’s rings for high-resolution imag-

ing
6
 and NKOs displaced behind the Earth to observe the structure of the geomagnetic tail.

7
 

In order to increase the wealth of NKOs and their applications even further, this paper will extend the 

families of displaced NKOs, which are two-dimensional (2D), with families of three-dimensional (3D) 

NKOs, particularly those that are confined to a cylindrical or spherical surface. Feasible orbits will be 
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found by constraining the dynamics of the spacecraft in a cylindrical or spherical coordinate system and 

imposing further constraints on the orbit angular velocity and acceleration magnitude. Furthermore, the 

system’s phase space will be explored to identify new families of NKOs and Poincaré maps will be used to 

demonstrate the periodicity of the orbit. Finally, true periodic orbits will be found through a newly devel-

oped numerical analysis.  

As this paper will demonstrate, a range of 3D NKOs is created, including orbits that cover only a nar-

row band on the cylindrical or spherical surface for dedicated observations and those that cover nearly the 

entire surface for a full mapping of the central body. While orbits confined to a cylindrical surface are ex-

tremely useful for hovering above a target such as the previously mentioned rings of Saturn, orbits that lie 

on a spherical surface remain at a constant distance to the central body, which is ideal for precise remote 

sensing of the central body, e.g. for solar physics and solar polar investigations. Other identified applica-

tions include interplanetary communication and astronomical observations.  

Despite the interesting applications for the planet-centered case, this paper will focus on the Sun-

centered case and leave the planet-centered case for future work. Furthermore, in order to generate the 

3D NKOs, two types of propulsion will be considered: one for which the acceleration is proportional to the 

Sun-spacecraft distance squared (mimicking solar electric propulsion (SEP)), thereby extending previous 

work on cylindrically and spherically constrained non-Keplerian orbits,
8
 and one which follows an ideal 

solar sail acceleration law. While SEP is a well-established propulsion technology with flight heritage on 

missions such as JAXA’s Hayabusa (2003),
9
 NASA’s Dawn mission (2007)

10
 and ESA’s GOCE mission 

(2009),
11

 solar sail technology is usually considered more far-term. However, with recent advances through 

JAXA’s IKAROS mission (2010)
12

 and NASA’s NanoSail-D2 mission (2010)
13

 and new solar sail initia-

tives scheduled for the future, including NASA’s Sunjammer mission,
14

 solar sail technology is rapidly 

developing, bringing the solar sail 3D NKOs more and more into reach.  

To introduce these novel 3D cylindrical and spherical NKOs, the structure of the paper will be as fol-

lows. First, the cylindrical case will be presented: the equations of motion, control law and constraints re-

quired to remain on a cylindrical surface will be obtained. Depending on a sign choice in the differential 

equation for the out-of-plane motion, two families of orbits can be distinguished, which both will be con-

sidered as well as the two different types of propulsive accelerations. For each case, the set of feasible or-

bits will be derived, example orbits will be shown and periodic orbits will be sought for. A very similar 

analysis will be performed for the spherical case and the paper ends with the conclusions.  

CYLINDRICALLY CONSTRAINED NKOS 

Cylindrically constrained orbits can be found by considering the two-body equations of motion in a cy-

lindrical coordinate system ( ), , zρ θ  as shown in Figure 1a. By assuming a central gravitational force field 

and an acceleration in the ( ), zρ -plane only, the equations of motion can be written as: 
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with α  the acceleration angle with respect to the radial direction, also known as the cone angle, and γ  the 

elevation angle of the spacecraft.  

To remain on a cylindrical surface, the following constraint on the projected radius ρ  is introduced: 

constant = 0ρ ρ ρ= → =� �� . Furthermore, introducing the parameter 
3ω µ ρ= , which equals the angular 

velocity of a Keplerian orbit with radius ρ , the equations of motion reduce to: 
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The first equation in Eq. (2) provides the control law required to stay on a cylindrical surface, the se-

cond equation shows that the in-plane angular velocity is constant, which will be denoted by ω , and the 

third equation describes the spacecraft’s motion in the out-of-plane direction. With initial conditions 

( ) ( )0
0 , 0 0z z z= =� , this out-of-plane motion resembles a highly non-linear oscillator. Note that the plus-

sign in the third equation has been replaced by a ± -sign as this generates two distinct families of cylindri-

cal orbits. As will become clear in the next few sections, the minus-sign (which mirrors the acceleration in 

the ( ),x y -plane) results in cylindrical orbits that oscillate around the ( ),x y -plane, i.e. ( )0 0
z zz t≤ ≤− , 

while the plus-sign offers the possibility for the orbit to oscillate around a plane parallel to – and above - 

the ( ),x y -plane, thereby covering a narrower band on the cylindrical surface. The family of orbits associ-

ated with the minus-sign will hereafter be referred to as oscillating orbits, while the family of orbits associ-

ated with the plus-sign will be referred to as banded orbits. They will first be considered for an inverse 

square acceleration law, followed by a similar analysis for a solar sail acceleration law. 

a)  b)  

 

 

 

 

 

 

 

 

 

 

Figure 1. a) Definition of cylindrical reference frame. b) Definition of north and south banded orbits. 

Inverse square acceleration law 

The inverse-square acceleration law that is adopted to mimic an SEP acceleration is given by:  
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with 
SEP

β  a scaling factor. Indeed, for the Sun-centered case, it can be roughly assumed that the SEP accel-

eration scales with the distance to the Sun, r , squared (for now, assuming a constant spacecraft mass).  
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Using the acceleration in Eq. (3), feasible orbits are found only if ( )1 cos 1α γ− ≤ + ≤ . From the first 

equation in Eq. (2), the following constraints on the in-plane angular velocity, ω , and the scaling factor, 

SEP
β , can then be derived: 

 

3 3
1

2 2 2 2 22 2

1 1 , 1 1SEP

z z z z ω
ω ω β β

ρ ρ ρ ρ ω

− − − 
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       ≤ + + + ≥ + + −                                  

 

 (4) 

Since , ,ρ ω ω  and 
SEP

β  are constant, both constraints vary only with the out-of-plane displacement, z . 

However, this implies that the values for ω  and 
SEP

β  should be chosen carefully to make sure that the con-

straints are satisfied along the entire orbit. Since the minimum value for the right-hand sight of the left 

equation in Eq. (4) occurs at the maximum value for z , 
max

z , the constraint on ω  should be evaluated at 

max
z . A similar reasoning can be adopted for the constraint on the scaling factor, 

SEP
β . Only now, the max-

imum value for the right-hand side of the right equation in Eq. (4) occurs at the minimum absolute value 

for z , 
min

z . The constraint on 
SEP

β  should therefore be evaluated at 
min

z . The actual values for 
min

z  and 

max
z  depend on the family of orbits considered as will become clear in the following.  

 

Family of oscillating orbits 

As indicated above, by applying the minus sign in the third equation of Eq. (2), orbits originate that os-

cillate around the ( ),x y -plane such that ( )0 0
z zz t≤ ≤− . Then, it is immediately clear that 

min
0z =  and 

max 0
z z= . The constraints in Eq. (4) therefore reduce to: 

 

3
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 (5) 

These constraints can be evaluated analytically, resulting in the region of feasible oscillating cylindrical 

orbits with an inverse square acceleration law as shown in Figure 2 for ρ = 0.9 and 
0

z = 0.5, a case which 

will be considered throughout this paper. Note that the results in the figure and any subsequent figures are 

made dimensionless by setting 1ρ =  and 1ω = . The non-dimensional time of one full revolution therefore 

equals 2π. 

 

Figure 2 Feasibility region for oscillating, cylindrical NKOs with inverse-square acceleration law for 

ρρρρ = 0.9 and z0 = 0.5. 



 5

A first impression of the types of oscillating, cylindrically constrained NKOs that are feasible is provid-

ed in Figure 3 for two particular values of the scaling factor. The figures clearly show that these types of 

orbits oscillate around the ( ),x y -plane and move between 
0

z z=  and 
0

z z= − . The figure also includes the 

Poincaré maps of the orbits, showing the system’s phase space after each full revolution (with a maximum 

of 20 revolutions), which indicate that the orbits are quasi-periodic, especially the orbit in Figure 3b. True 

periodic orbits are therefore sought for using the numerical analysis described below.  

a) 
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Figure 3 Orbital plots and Poincaré maps for oscillating, cylindrical NKOs with inverse-square ac-

celeration law for ρρρρ = 0.9, z0 = 0.5 and ω =1. a) ββββSEP = 0.32. b) ββββ SEP = 0.44. 
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b) 

Figure 4 Oscillating, cylindrical NKOs with inverse-square acceleration law for ρρρρ = 0.9 and z0 = 0.5. 
a) Ratio of out-of-plane and in-plane angular velocities. b) Example periodic orbit (see black dot in 

plot a)) with ωωωω = 0.6675 and ββββSEP = 1.3. 

In order to obtain true periodic orbits, the initial conditions are integrated forward until the orbit crosses 

the ( ),x y -plane, which occurs at time 
0z

t t == . Due to symmetry, a full period of the orbit, P , equals 

0
4

z
P t == . Using the dimensionless time as introduced above Figure 2, this period can be expressed as a 
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fraction of a full revolution as 
0

4 / 2
z

t π= , which also equals the ratio of the out-of-plane angular velocity, 

z
ω , and the in-plane angular velocity, ω : 

0
4 / 2

z z
tω ω π== . If this fraction equals an irreducible fraction 

(e.g. 1 2 , 2 3 , 4 5 , etc.) the orbit is periodic, where the period is given by the nominator of the irreducible 

fraction. An example is given in Figure 4, which provides the ratio of out-of-plane and in-plane angular 

velocities for ρ = 0.9 and 
0

z = 0.5 and for a range of in-plane angular velocities and scaling factors. The 

black line in the figure represents one particular ratio, 
z

ω ω = 1 2 . Each intersection of the curved lines 

and this black line is a true periodic orbit with a period of one revolution. An example of such an orbit is 

given in Figure 4b, which corresponds to the black dot in Figure 4a.  

 

Figure 5 Periodic orbits for oscillating, cylindrical NKOs with inverse-square acceleration law for 

ρρρρ = 0.9 and z0 = 0.5. The black dots correspond to the orbits in Figure 6. 
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Figure 6 Orbits (see black dots in Figure 5) and Poincaré maps for oscillating, cylindrical NKOs with 

inverse-square acceleration law for ρρρρ = 0.9 and z0 = 0.5. a) ωωωω = 0.991, ββββSEP =1.198. b) ωωωω = 0.885, 

ββββSEP =0.547. c) ωωωω = 1.038, ββββSEP =0.326. d) ωωωω =1.062, ββββSEP =0.263. 
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Through a fine grid search over values for ω  and 
SEP

β  and by using an interpolation scheme to accu-

rately determine the intersections, the periodic orbits in Figure 5 are obtained. A maximum period of 10 

revolutions is considered, implying that all irreducible fractions with a maximum nominator of 10 are ac-

counted for. The figure furthermore shows that lines of equal periods exist in the feasibility region of oscil-

lating, cylindrical orbits. Finally, some examples of true periodic orbits are shown in Figure 6, which corre-

spond to the black dots in Figure 5. 

 

Family of banded orbits 

When considering the plus-sign in the third equation of Eq. (2), an additional family of cylindrical 

NKOs orbits can be found, so-called banded cylindrical orbits. This family will include the well-known 2D 

displaced NKOs that were discussed in the introduction of this paper, since these 2D orbits can be consid-

ered to lie on a cylindrical surface. Furthermore, since these 2D NKOs maintain a constant out-of-plane 

displacement, ( ) 0
z t z= , the required scaling factor to achieve these 2D NKOs, 

, 2SEP D
β , can be found by 

setting 0z =��  in Eq. (2): 

 

2
3

1
2 2 22 2

, 2
1 1 1

SEP D

z z zω
β

ρ ρ ω ρ

−   
           
    = + + + −                        

 (6) 

By substituting Eq. (6) into the constraints defined in Eq. (4), it can be shown that these 2D NKOs are 

feasible for all ω .  

By increasing or decreasing 
SEP

β  with respect to 
, 2SEP D

β , while still satisfying the control law in the 

first equation of Eq. (2), the family of banded cylindrical NKOs can be found. As will become clear later, 

by increasing 
SEP

β  with respect to 
, 2SEP D

β , orbits that lie entirely above the 2D NKO from which they bi-

furcate are created. This sub-family will be referred to as ‘north orbits’, see Figure 1b. Contrary, by de-

creasing 
SEP

β  with respect to 
, 2SEP D

β , a sub-family of orbits that lie entirely below the 2D NKO are creat-

ed, which will be referred to as ‘south orbits’, see again Figure 1b. This distinction has implications on the 

evaluation of the constraints in Eq. (4), as will be explained hereafter. 

As stated before, to evaluate the maximum allowable value for ω , the value for 
max

z  is required, which 

is known for south orbits (
max 0

z z= ) but is unknown for north orbits, since it is unknown a priori how 

much the north orbit will deviation from the 2D NKO, see also Figure 1b. For north orbits, the constraint 

on ω  can therefore only be determined numerically through an integration of the orbit and by determining 

whether or not the maximum allowable in-plane angular velocity is exceeded. Instead, for south orbits (in-

dicated by the subscript ‘south’), the constraint can be evaluated analytically as: 

 

3
1

2 2 2

0 01 1
south

z z
ω ω β

ρ ρ

− −
      
   ≤ + + +            

 (7) 

Contrary, to evaluate the minimum required value for 
SEP

β , the value of 
min

z  is required, which is 

known for north orbits (
min 0

z z= ), but can again only be obtained through an integration of the orbit for 

south orbits. The analytical constraint on 
SEP

β  for north orbits (indicated by the subscript ‘north’) is thus: 

 

3

2 2 22

0 0
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1 1

SEP north
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ρ ρ ω

− 
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   ≥ + + −                  

 

 (8) 
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The result of a combined analytical and numerical computation of the feasibility region for banded, cy-

lindrical NKOs with an inverse square acceleration law and for the case ρ = 0.9 and 
0

0.5z =  is given in 

Figure 7, where the red line represents the value for 
, 2SEP D

β . All feasible orbits above this red line (i.e. 

, 2SEP SEP D
β β> ) are north orbits, those below the red line are south orbits (i.e. 

, 2SEP SEP D
β β< ). Furthermore, 

the figure includes the constraints in Eqs. (7) and (8) through the use of a thick blue and yellow line, re-

spectively. Note that the yellow line, which gives the minimum value for 
SEP

β  for north orbits lies within 

the infeasible region for south orbits and below the red line for 
, 2SEP D

β , again indicating that 2D NKOs are 

feasible for all ω . 
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Figure 7 Feasibility region including periodic orbits for banded, cylindrical NKOs with inverse-

square acceleration law for ρρρρ = 0.9 and z0 = 0.5. The thick blue line equals Eq. (7), the thick yellow 
line equals Eq. (8). The black dots correspond to the orbits in Figure 9. 

The feasibility region in Figure 7 can also be represented through the system’s phase space, which gives 

an insight in the actual shape of the cylindrical orbits, see Figure 8a. The phase space gives the out-of-plane 

motion, z , and out-of plane velocity, z� , for each combination of ω  (on z -axis) and 
SEP

β  (through color). 

However, rather than using the absolute value for 
SEP

β  , Figure 8a expresses the scaling factor as a per-

centage deviation from 
, 2SEP D

β , 
SEP

β∆ . Furthermore, black dots are used on a gray transparent surface to 

represent the 2D NKOs. Therefore, the phases to the right of this surface are north orbits, for which 

0
SEP

β∆ >  (red color), while phase spaces to the left of this surface are south orbits for which 0
SEP

β∆ <  

(blue color). Some examples of both north and south orbits are provided in Figure 8b, where the black line 

indicates the 2D NKO from which the cylindrical orbit bifurcates. 

From the phase space in Figure 8a and the example orbits in Figure 8b it becomes clear that north and 

south orbits move in a confined band above or below the 2D displaced NKO, respectively. Furthermore, for 

some cases, the value for 
SEP

β  can be decreased to such extent that the phase space crosses the ( ),x y -

plane after which it immediately transforms into the phase space of an oscillating orbit, i.e. 
0 0

z z z− ≤ ≤ . 

This is, for example, the case for ω = 1.0 and 
SEP

β∆ = -40% (see also plot 1 in Figure 8b ). The phase space 

finally shows that, the larger 
SEP

β∆ , the farther the orbit deviates from the 2D NKO, i.e. the wider the band 

covered on the cylindrical surface. Additionally, the larger the value for ω , the narrower the band covered 

for a particular value for 
SEP

β∆ . This has an interesting application as will be explained in the next para-

graph.  
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a) b) 

  

Figure 8 Banded, cylindrical NKOs with inverse-square acceleration law for ρρρρ = 0.9 and z0 = 0.5. 

a) Phase spaces. Colors indicate percentage deviation from ββββSEP,2D with a step size of 5%. b) Example 

orbits for ω = 1.0 and different values for ∆∆∆∆ββββSEP: 1) -40%, 2) -15%, 3) 30%, 4) 50%.  

An interesting application of the cylindrical orbits follows from the phase space in Figure 8 and, for ex-

ample, from the orbit in plot 2 of Figure 8b: by reducing 
SEP

β  below 
, 2SEP D

β , less demanding propulsion 

technology than for the 2D NKO is required, while in some cases the cylindrical orbit stays very close to 

the 2D NKO. For example, the orbit in plot 2 of Figure 8b allows for a 15 percent reduction in the required 

scaling factor while not deviating much from the original 2D NKO. This advantage occurs mainly for large 

values for the in-plane angular velocity, see Figure 8, where the blue lines remain close to the 2D NKO. In 

case such a deviation is allowed, the cylindrical NKO could introduce significant savings over the 2D case 

for a range of applications, e.g. the previously mentioned application of Saturn’s rings observations if a 

planet-centered case is considered.  

a)  b)  

 

 

−0.5 0 0.5 1

−0.2

0

0.2

z

d
z
/d

t

 

 

 

−0.5 0 0.5 1

−0.2

0

0.2

z

d
z
/d

t

 

c)  d)  

 

 

−0.5 0 0.5 1

−0.2

0

0.2

z

d
z
/d

t

 

 

 

−0.5 0 0.5 1

−0.2

0

0.2

z

d
z
/d

t

 

Figure 9 Orbits (see black dots in Figure 7) and Poincaré maps for banded, cylindrical NKOs with 

inverse-square acceleration law for ρρρρ = 0.9 and z0 = 0.5. a) ωωωω = 1.058, ββββSEP =0.283. a) ωωωω = 1.020, 

ββββSEP =0.296. c) ωωωω = 0.915, ββββSEP =0.508. d) ωωωω =0.850, ββββSEP =0.703. 
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Some of the orbits in Figure 8b, e.g. plot 4, again suggest the existence of periodic orbits. To find true 

periodic orbits for the banded cylindrical case, an approach very similar to the one described for the oscil-

lating cylindrical orbits on page 5 is used. Only now, since the orbit does not cross the ( ),x y -plane in all 

cases, the integration is not truncated upon crossing the ( ),x y -plane, but after one full oscillating motion. 

The ratio of out-of-plane and in-plane angular velocities then becomes: / 2
z P

tω ω π= , which is used to 

establish the periodicity of the orbits. The result can be found in Figure 7, with some typical banded cylin-

drical orbits in Figure 9.  

 

Solar sail acceleration law 

The second type of acceleration that will be considered for the cylindrical NKOs is an ideal solar sail 

acceleration. From Reference 15 and following the definitions in Figure 1, the solar sail acceleration is giv-

en by: 

 

1
2

2 2 2

2
cos 1 coss s

z
a

r

µ
β α β ω ρ α

ρ

−
  
 = = +     

 (9) 

with 
s

β  the sail lightness number, which is the ratio of the solar radiation pressure acceleration and the 

solar gravitational acceleration, or can equivalently be described as a function of the ratio of the spacecraft 

mass and the solar sail area. Substituting this acceleration into the first equation of Eq. (2), gives the re-

quired control law in implicit form: 

 ( )

3

2 2 22

2 1 2 1
cos cos cos tan cos 1 1

s

z z z ω
α γ α α α

ρ β ρ ρ ω

−

−

 
             
   + = + = + + −                            

 

 (10) 

To solve Eq. (10) for cosα , the roots of the following sixth order polynomial need to be found: 

 ( )6 2 4 3 2
1 2 0x a x abx b+ − − + =  (11) 

with cosx α= , cosa γ=  and ( ) ( )( ) ( )( ) ( )
3

2 2 22
1 1 1sb z zβ ρ ρ ω ω

− 
= + + − 

 
 

. From Descartes rule of 

signs,
16

 it follows that this polynomial has a maximum of 2 positive and 2 negative real roots. The negative 

roots can be discarded, since for a solar sail acceleration law, the constraint on cosα  is tightened (i.e. 

cos 0α ≥ ) due to the inability of a solar sail to generate an acceleration component in the direction of the 

Sun. Only a maximum of two positive real roots remain. However, since the original equation in Eq. (10) 

only has 3 real roots, in general only one of the two positive real roots remain.  

 

Family of banded orbits 

For brevity, only the family of banded cylindrical orbits will be considered for the solar sail acceleration 

law. Especially, since by significantly decreasing 
s

β  with respect to the value for βs,2D, oscillating orbits 

can also be obtained within the family of banded orbits, as already seen in Figure 8 for the inverse square 

acceleration law. This means that only the plus-sign in the third equation of Eq. (2) will be considered as 

well as 0α ≥ , i.e. the cone angle is always away from the radial direction in counterclockwise direction. 

The condition 0α ≥  follows automatically from evaluating 1cos x
−  since the information on the sign of α  

is not contained in x . Evaluating 1cos x
− will therefore by default return positive values for α .  
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In addition to the constraint on the cone angle, the constraints ( )1 cos 1α γ− ≤ + ≤  also need to be taken 

into account. Due to the lack in an explicit expression for cosα  (and thus also for ( )cos α γ+ ), these con-

straints cannot be expressed as an analytical formulation for the maximum allowed in-plane angular veloci-

ty and the minimum required sail lightness number. These constraints can therefore only be enforced within 

the integration of motion, leading to a truncation of the integration when either of the constraints is violat-

ed. This results in the region of feasibility for banded, solar sail cylindrical orbits as shown in Figure 10, 

again for the test case ρ = 0.9 and 
0

z = 0.5. The red line once again represents the lightness number, 
s

β , 

required to maintain the 2D NKO, which is given through:
15

 

 

3
1 22 22 22 2 22

, 2 1 1 1s D

r r

z z zω ω
β

ρ ρ ω ρ ω

−                       = + + − + −                               

 (12) 

with 
3

r
rω µ=  and 

2 2
r zρ= + . Note that the sharp edge on the right side of the feasibility region is 

very close to the maximum value for the in-plane angular velocity for which the 2D NKO still exists, 

2 ,maxD
ω . This limit is given by:

15
 

 
2 ,max 2D

r

µ
ω

ρ
≤  (13) 

Close to this limit, the required value for 
, 2s D

β  increases greatly as Figure 10 shows, and only lightness 

numbers close to these large values for 
, 2s D

β  provide feasible cylindrical orbits, which far exceed the in-

terval considered for 
s

β  in Figure 10. 
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Figure 10 Feasibility region including periodic orbits for banded, cylindrical NKOs with solar sail 

acceleration law for ρρρρ = 0.9 and z0 = 0.5. The black dots correspond to the orbits in Figure 11. 

Finally, the same analysis as for the banded cylindrical orbits with an inverse square law is applied to 

find true periodic orbits for the solar sail case. The result is included in Figure 10 with some typical solar 

sail periodic orbits in Figure 11. 

 



 12 

a)  b)  
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Figure 11 Orbits (see black dots in Figure 10) and Poincaré maps for banded, cylindrical NKOs with 

solar sail acceleration law for ρρρρ = 0.9 and z0 = 0.5. a) ωωωω = 0.943, ββββs =0.530. b) ωωωω = 0.897, ββββs = 0.492. c) ωωωω 

= 0.765, ββββs = 0.793. d) ωωωω = 0.631, ββββs = 0.924. 

 

SPHERICALLY CONSTRAINED NKOS 

The approach to find spherically constrained NKOs is very similar to the one taken to find cylindrically 

constrained orbits. However, now the equations of motion are considered in a spherical coordinate system 

( ), ,r θ φ  as shown in Figure 12. Again, assuming a central gravitational force field and an acceleration in 

the ( ),r φ -plane only, the equations of motion can be written as: 

 

2 2 2

2

2

cos cos

cos 2 cos 2 sin 0

2 sin cos sin

r r r a
r

r r r

r r r a

µ
θ φ φ α

φθ θ φ θφ φ

φ φ θ φ φ α

− − = − +

+ − =

+ + = ±

� ���

�� � � ��

�� � ��

 (14) 

To remain on a spherical surface, a constraint on the radius r  is introduced, constant 0r r r= → = =� �� , 

and the parameter ω  that was used for the cylindrical case is changed into 
3

r
rω µ= , which now equals 

the angular velocity of a Keplerian orbit with radius r . The equations of motion then reduce to: 

 

( )2 2 2 2

2

cos cos

2 tan

sin cos sin

r

r

a

a

r

α ω θ φ φ

θ θφ φ

φ θ φ φ α

= − −

=

= − ±

� �

�� � �

�� �

 (15) 

The first equation once again provides the required control law. The second equation shows that, con-

trary to the cylindrical case, the in-plane angular velocity, θ� , is not constant. And finally, with initial con-

ditions ( ) ( )0
0 , 0 0φ φ φ= =� , the third equation again resembles a highly non-linear oscillator and a ±-minus 

sign is included in front of the acceleration term to generate the two families of orbits discussed for the 

cylindrical case: oscillating orbits (for the minus-sign) and banded orbits (for the plus-sign).  
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Figure 12 Definition of cylindrical reference frame. 

 

Inverse square acceleration law 

Using the new definition for 
r

ω , the inverse-square acceleration law can now be written as:  

 
2

2SEP SEP ra r
r

µ
β β ω= =  (16) 

which is constant on the spherical surface and reduces the equations of motion to: 

 

( )2 2 2

2

2 2

1 1
cos 1 cos

2 tan

sin cos sin

SEP r

SEP r

α θ φ φ
β ω

θ θφ φ

φ θ φ φ β ω α

 
= − − 

 

=

= − ±

� �

�� � �

�� �

 (17) 

Again, feasible spherical orbits are found only if 1 cos 1α− ≤ ≤ , which can be translated into the fol-

lowing constraints on the scaling factor, 
SEP

β , and the in-plane angular velocity, ( )tθ� : 

 ( )2 2 2

2

1
1 cosSEP

r

β θ φ φ
ω

≥ − +� �  (18) 

 ( )
( )2 2

2

1

cos

r SEP
t

ω β φ
θ

φ

+ −
≤

�
�  (19) 

Due to the fact that the in-plane angular velocity is not constant throughout the orbit, the evaluation of 

the constraints in Eqs. (18) and (19) is less straight forward than for the cylindrical case. Especially 

Eq. (19) is difficult to evaluate analytically since both the left-hand side and right-hand side of the equation 

change during the orbit and the location where the difference between the two is minimum needs to be 

sought for. The evaluation of the constraints will therefore be investigated for each family of spherical 

NKOs separately, first for oscillating orbits, followed by banded orbits. 

Oscillating orbits 

For oscillating orbits, it follows from analyses that the maximum value of the right-hand side of 

Eq. (18) occurs at the initial condition, i.e. at 
0

φ φ= . Therefore, the minimum value for the scaling factor is  

r  

φ

θ  

a  

α  

x  

y
 

z  
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given by: 

  
2

20

02
1 cosSEP

r

θ
β φ

ω
≥ −

�

 (20) 

and can be evaluated analytically. Instead, the minimum value of both the left and right-hand sides of 

Eq. (19) occur upon crossing the ( ),x y -plane, i.e. at 0φ = , leading to the following constraint on the in-

plane angular velocity: 

 ( )2 2

0 01 SEPφ φθ ω β φ= =≤ + −� �  (21) 

Since both 
0φθ =
�  and 

0φφ =
�  cannot be known before integration, the constraint in Eq. (21) can only be de-

termined numerically by integrating the equations of motion and truncating the integration when the con-

straint is violated. The result, in terms of the feasibility region for the oscillating spherical NKOs is shown 

in Figure 13 for the same case as used for the cylindrical NKOs: ρ = 0.9 and 
0

z = 0.5 (i.e. r = 1.03 and φ0 

= 0.16π). Interesting to note is the case where 
SEP

β = 0 and 
0

θ� = 1.095, which represents the circular 

Keplerian orbit that lies on the spherical surface.  

A first impression of the types of oscillating, cylindrically constrained NKOs that are feasible is provid-

ed in Figure 13b) for ρ = 0.9 and 
0

z = 0.5 and for two particular values of the scaling factor. The figures 

again clearly show the oscillating behavior of these orbits around the ( ),x y -plane and hint at the possibil-

ity of finding periodic orbits for the spherical case.  

a) b) 

 

 

 

 

 

Figure 13 Oscillating, spherical NKOs with inverse-square acceleration law for ρρρρ = 0.9 and 

z0 = 0.5. a) Feasibility region. b) Orbits and Poincaré maps for dθθθθ/dt0 =1, ββββSEP = 0.2 (top) and ββββSEP = 
0.3 (bottom). 

True periodic orbits are once again sought for using an approach very similar to the one used for oscil-

lating cylindrical orbits. However, while for the cylindrical case the in-plane angular velocity was constant 

(causing the in-plane angle to be equal to the dimensionless time), this is not the case for the spherical 

NKOs. Therefore, rather than working with the time, the in-plane angle is monitored: the orbit is integrated 

forward from its initial conditions until it crosses the ( ),x y -plane, which occurs at 
0φθ θ == . A full period 
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of the orbit, P , would thus equal 
0

4P φθ == , which can be expressed as a fraction of a full revolution as 

0
4 / 2φθ π=  and equals the ratio of in-plane and out-of-plane angular velocities: 

0
4 / 2

z φω ω θ π== . The rest 

of the approach is equal to the cylindrical case: if this fraction equals an irreducible fraction (e.g. 1 2 , 2 3 , 

4 5 , etc.) the orbit is periodic, where the period is given by the nominator of the irreducible fraction. A 

fine grid search over values for 
0

θ�  and 
SEP

β  provides the periodic oscillating, spherical orbits with an in-

verse square acceleration law in Figure 14 with some example periodic orbits in Figure 15.  
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Figure 14 Periodic orbits for oscillating, spherical NKOs with inverse-square acceleration law for 

ρρρρ = 0.9 and z0 = 0.5. The black dots correspond to the orbits in Figure 15. 
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Figure 15 Orbits (see black dots in Figure 14) and Poincaré maps for oscillating, spherical NKOs 

with inverse-square acceleration law for ρρρρ = 0.9 and z0 = 0.5. a) dθθθθ/dt0 = 0.703, ββββSEP = 0.733. b) dθθθθ/dt0 = 

1.027, ββββSEP = 0.295. c) dθθθθ/dt0 =1.066, ββββSEP = 0.175. d). dθθθθ/dt0 = 1.072, ββββSEP = 0.123. 
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Banded orbits 

When considering the plus-sign in the third equation of Eq. (17), banded spherical NKOs can be found. 

As for the banded cylindrical orbits, the analyses start from the 2D NKOs which are part of the set of spher-

ical NKOs. The required scaling factor to achieve these 2D NKOs, 
, 2SEP D

β , can be found by setting 

0φ φ= =� ��  in Eq. (17): 

 

2
2

2

, 2
sin cos 1 cos

SEP D

r r

ω ω
β φ φ φ

ω ω

2      
   = + −   
         

 (22) 

Note that, when considering the difference in definition for ω  and 
r

ω , Eq. (22) can be shown to equal 

Eq. (6). Again, by deviating from 
, 2SEP D

β , additional spherically confined orbits can be found: the sub-

family of ‘north orbits’ are created by increasing 
SEP

β  with respect to 
, 2SEP D

β , while the sub-family of 

‘south orbits’ are created by decreasing 
SEP

β  with respect to 
, 2SEP D

β . The evaluation of the constraints in 

Eqs. (18) and (19) is different for each type of orbit, but is very similar to the cylindrical case, as will be 

discussed below. 

To obtain the minimum required value for 
SEP

β , the constraint in Eq. (18) needs to be evaluated at 
min

φ , 

which is known for north orbits (
min 0

φ φ= ) but unknown for south orbits. The constraint for 
SEP

β  can 

therefore only be determined analytically for north orbits and is evaluated numerically for south orbits: 

 
2

20

, 02
1 cosSEP north

r

θ
β φ

ω
≥ −

�

 (23) 

Furthermore, it appears that the constraint on ( )tθ�  can be evaluated at 
max

φ , which is known for south 

orbits 
max 0

φ φ= , but is unknown for north orbits. For south orbits, the constraint on ( )tθ�  can therefore be 

determined analytically through: 

 
( )

0 0

0

1

cos

r SEP

southφ φ

ω β
θ θ

φ
=

+
= ≤� �  (24) 

The resulting feasibility region is shown in Figure 16, which includes the result of the same periodicity 

analysis as for the oscillating spherical orbits, and as the system’s phase space in Figure 17 for the case 

ρ = 0.9 and 
0

z = 0.5. In Figure 16, the constraint in Eq. (23) is indicated with a thick yellow line (again 

indicating that 2D NKOs are feasible for all 
0

θ� ), while the constraint in Eq. (24) is shown with a thick blue 

line. Although the figure seems to suggest that there is no limit on the allowable value for 
SEP

β  for north 

orbits, such a limit does exist, similarly to the cylindrical case in Figure 7, but only for unrealistically large 

values for 
SEP

β . Both figures again clearly demonstrate the existence of north and south orbits and by de-

creasing 
SEP

β  far below 
, 2SEP D

β , the phase space once again resembles the phase space of an oscillating 

orbit. 

Considering applications of the Sun-centered spherical NKOs, three distinct uses can be imagined: first, 

similarly to the cylindrical case, the south orbits that allow a reduction in the required value for βSEP with 

respect to the 2D NKO and stay close to the 2D NKO can be considered an alternative to the 2D NKO as 

they require a less demanding propulsion technology. Second, the orbits that cover the poles of the spheri-

cal surface, such as the orbits in Figure 18a and Figure 18d, would be very suitable for solar polar observa-

tion. Since the poles of the Sun cannot be viewed from conventional orbits that traditionally lie in the eclip-

tic plane, these NKOs can provide new insights in the interesting physical processes at the poles of the Sun. 
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Lastly, the orbits that cover a significant part of the spherical surface, such as the oscillating orbits and, for 

example, the orbit in Figure 18c, would be highly suitable for three-dimensional imaging of the features 

and structures of the Sun.  

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

β
SEP

 < β
min

 (south) dθ/dt >

dθ/dt
min

(south)

dθ/dt
0

β
S

E
P

Period

0

1

2

3

4

5

6

7

8

9

10

 

Figure 16 Feasibility region including periodic orbits for banded, spherical NKOs with inverse-

square acceleration law for ρρρρ = 0.9 and z0 = 0.5. The tick blue line equals Eq. (24), the thick yellow 
line equals Eq. (23). The black dots correspond to the orbits in Figure 18. 

 

Figure 17 Phase spaces for banded, spherical NKOs with inverse-square acceleration law for ρρρρ = 0.9 

and z0 = 0.5. Colors indicate percentage deviation from ββββSEP,2D with a step size of 10%. 

Solar sail acceleration law 

The final case that will be considered includes the banded spherical orbits with a solar sail acceleration 

law. Using the new definition for 
r

ω , the solar sail acceleration law can now be written as:  

 
2 2 2

2
cos coss SEP ra r

r

µ
β α β ω α= =  (25) 

which reduces the equations of motion in Eq. (15) to: 
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Figure 18 Orbits (see black dots in Figure 16) and Poincaré maps for banded, spherical NKOs with 

inverse-square acceleration law for ρρρρ = 0.9 and z0 = 0.5. a) dθθθθ/dt0 = 0.382, ββββSEP = 0.987. 

b) dθθθθ/dt0 = 1.225, ββββSEP = 0.542. c) dθθθθ/dt0 = 1.097, ββββSEP = 0.126. d). dθθθθ/dt0 = 0.064, ββββSEP = 1.091. 

 

( )2 2 2
3

2

2 2 2

1 1
cos 1 cos

2 tan

sin cos cos sin

s r

s r

α θ φ φ
β ω

θ θφ φ

φ θ φ φ β ω α α

 
= − − 

 

=

= − +

� �

�� � �

�� �

 (26) 

The feasibility region can once again be derived from the constraint 0 cos 1α≤ ≤ , where the lower lim-

it on cosα  once again takes into account the inability of the solar sail to generate an acceleration in the 

direction of the Sun. This constraint results in a maximum value for the in-plane angular velocity for south 

orbits that is very similar to the constraint in Eq. (24): 

 
0 0

0
cos

r

southφ φ

ω
θ θ

φ
= = ≤� �  (27) 

This constraint equals the maximum allowable in-plane angular velocity for a solar sail 2D NKO, see 

Eq. (13), but also represents the Keplerian orbit that lies on the spherical surface as mentioned on page 14. 

Investigating the upper limit on cosα , it appears that for north orbits the same constraint applies as in 

Eq. (23): 

 
2

20

, 02
1 coss north

r

θ
β φ

ω
≥ −

�

 (28) 

The feasibility region in Figure 19 clearly shows these constraints with a yellow and blue line. Note that 

the constraints on the minimum required lightness number for south orbits and the maximum initial in-

plane angular velocity for north orbits can once again only be determined numerically. The latter constraint 

limits the maximum achievable lightness number for north orbits, although Figure 19 might give the im-

pression that the lightness number can be increased unlimitedly. Furthermore, the red line is the lightness 

number required for a 2D NKO.  
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Finally, using the exact same approach as for the other spherical orbits, periodic banded, solar sail 

spherical orbits can be found, see Figure 19. Some final example periodic orbits are provided in Figure 20. 
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Figure 19 Feasibility region including periodic orbits for banded, spherical NKOs with solar sail 

acceleration law for ρρρρ = 0.9 and z0 = 0.5. The thick blue line equals Eq. (27), the thick yellow line 
equals Eq. (28). The black dots correspond to the orbits in Figure 20. 
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Figure 20 Orbits (see black dots in Figure 19) and Poincaré maps for banded, spherical NKOs with 

solar sail acceleration law for ρρρρ = 0.9 and z0 = 0.5. a) dθθθθ/dt0 = 0.939, ββββs = 0.518. b) dθθθθ/dt0 = 0.601, ββββs = 

0.962. c) dθθθθ/dt0 =1.005, ββββs = 0.313. d). dθθθθ/dt0 = 0.343, ββββs = 1.132. 

CONCLUSIONS 

As an extension to the well-known families of two-dimensional (2D) displaced non-Keplerian orbits 

(NKOs), this paper has introduced three-dimensional Sun-centred NKOs that are constrained to a cylindri-

cal or spherical surface. To maintain these orbits, two types of propulsion have been investigated, including 

an inverse square acceleration law (mimicking solar electric propulsion) and an ideal solar sail acceleration 
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law. For both types of orbits and both types of propulsion, the geometrically constrained equations of mo-

tion have been derived and by setting further constraints on the in-plane angular velocity and the accelera-

tion magnitude, the set of feasible orbits has been defined. Within this set of feasible orbits, true periodic 

orbits have been found that can serve a range of space applications: those cylindrical and spherical orbits 

that allow a reduction in the acceleration magnitude with respect to a 2D NKO but stay close to the 2D 

NKO from which they bifurcate might provide a viable alternative to the 2D NKO as less demanding pro-

pulsion technology is required. Furthermore, spherical orbits that maintain a position high on the spherical 

surface are considered to be of interest for solar polar observation, while those that cover a significant part 

of the spherical or cylindrical surface could serve for a 3D mapping of the features and structures of the 

Sun. A future extension from a Sun-centred case to a planet-centred case will increase the wealth of space-

craft applications that these cylindrically and spherically constrained NKOs can provide even further. 
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