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On the Construction of Minimum Information

Bivariate Copula Families

Tim Bedford, Kevin J. Wilson

Department of Management Science, University of Strathclyde,

Glasgow, G1 1QE, UK

Abstract

Copulas have become very popular as modelling tools in probabil-
ity applications. Given a finite number of expectation constraints for
functions defined on the unit square, the minimum information copula
is that copula which has minimum information (Kullback-Leibler diver-
gence) from the uniform copula. This can be considered the most “in-
dependent” copula satisfying the constraints. We demonstrate the exis-
tence and uniqueness of such copulas, rigorously establish the relation with
discrete approximations, and prove an unexpected relationship between
constraint expectation values and the copula density formula. Bivariate
copulas information uncertainty modelling expert judgement

1 Introduction

Uncertainty distributions are widely used in areas such as Operations Research
and finance to represent the uncertainty inherent in any model of the real world.
In such distributions it is important to include any dependencies between un-
certain quantities. Common methods used to specify uncertainty distributions
in the presence of dependency include Bayesian Belief Nets (BBNs) Jen99 and
copulas Joe97,Joe11.
More generally, a vine is a nested set of trees in which each tree is made up of
a series of bivariate copulas.

Uncertainty distributions can be specified either by fitting to data or by elic-
iting expert judgement. The data or the experts provide a number of specifica-
tions for functions of the problem variables which the uncertainty distribution
must satisfy. These are known as constraints. In the case of bivariate copulas
for use in vines, specification of the constraints will in general lead to either
under- or over-specified distributions. In this paper we investigate the issue of
under-specification of a copula. [Bedford et al (2013)] show how such methods
can be applied in practice. [Bedford (2002)] and [Bedford et al (2012)] consider
ways to avoid specifications which have no solution.

The approach taken to deal with the issue of under-specification is to use
a quantity known as relative information. We seek the copula satisfying the
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constraints which has minimum information relative to the uniform copula.
This is referred to as the minimum information copula. We show rigorously
that this copula exists and is unique, for problems which are not over-specified.
Such a copula takes a form similar to that of an exponential family distri-
bution. Minimum information methods have been used previously to spec-
ify uncertainty distributions, popularised by [Jaynes (2003)] and considered by
[Borwein and Lewis (2006)].

In order to operationalize the use of such minimum information copulas we
consider the discretized version of the problem. We show that we can approxi-
mate the continuous minimum information copula arbitrarily closely using the
discrete copula with maximum entropy relative to the uniform copula. We give
a result showing how it is possible to compute the expectations of the constraint
functions using the derivative of the natural logarithm of the copula normalising
constant.

There has been recent work considering maximum entropy copulas. [Pougaza and Djafari (2011)]
considered the construction of maximum entropy copulas when only marginal
distributions are specified, under different definitions of entropy. In the case
of the Shannon entropy, due to the lack of constraints on the relationships
between the variables, the resulting copula is simply the independent copula.
[Piantadosi et al (2012)] looked at a simplified class of copulas that the authors
called checkerboard. Within this class one has a finite number of regions on
which probability is to be uniformly distributed - the problem of dealing with a
continuous copula density is changed to one of dealing with a copula having a
step function density. This means that one can apply many of the methods for
a finite probability space.

The remainder of the paper is organised as follows. In Section 2 we review
copulas, information and entropy. In Section 3 we outline the solution to the
continuous optimization problem, initially considering the associated measur-
able optimization problem, and in Section 4 we solve the discretized problem
and show that this converges to the continuous solution. We consider the expec-
tations of the constraint functions in relation to the copula normalising constant
in Section 5 and give an example of specifying a minimum information copula
in two dimensions. We plot the feasible region of combinations of the con-
straints and indicate how we can parameterize this. In Section 6 we give some
conclusions and areas for further work.

2 Copulas, Information and Entropy

2.1 Copulas

A copula Nels99,Nels06 is the restriction to the unit hypercube of a joint dis-
tribution function C with uniform marginals. In two dimensions, therefore, the
copula is C(x, y), where X,Y ∼ U(0, 1). The corresponding joint probability
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density function, if it exists, is

c(x, y) =
∂

∂x

∂

∂y
C(x, y).

Copulas also obey certain properties. From above we see that C(0, 0) = 0 and
C(1, 1) = 1. It is also the case that C(x, y) = 0 if either x or y = 0. The
fact that each marginal is uniform means that C(x, 1) = x and C(1, y) = y. A
copula must also be n-increasing, where n is the dimension of the copula.

Copulas can be used to define a joint distribution between variables with
any marginal distributions we wish. If X ∼ f1 and Y ∼ f2 for densities f1, f2,
then the copula of X,Y is the distribution of (F1(X), F2(Y )). If X and Y
are independent their unique copula is Π(x, y) = xy whose density is uniform
π(x, y) = 1 on [0, 1]2.

Bivariate copulas can also be used to construct more complex multivariate
distributions by combining them in structures known as vines, see [Bedford and Cooke (2002)]
and [Kurowicka and Cooke (2006)]. Vines provide a methodology to model any
distribution with any general dependencies between the variables we wish.

2.2 Relative Information

For a vector quantity x, the relative information of a distribution g1(x) to an-
other g2(x) measures the similarity of the two distributions. It is given by

I(g1; g2) =

∫

g1(x) log

(

g1(x)

g2(x)

)

dx.

Clearly if g1(x) = g2(x) then log(g1(x)/g2(x)) = log(1) and so the relative
information of g1(x) to g2(x) is zero. A useful property of information is that
it is invariant under monotone transformations. Thus if c1(x) and c2(x) are the
copula densities associated with g1(x) and g2(x) respectively then

I(c1; c2) = I(g1; g2).

Therefore minimizing the relative information of g1 with respect to g2 is equiva-
lent to minimizing the relative information of c1 with respect to c2. This means
that minimizing the relative information of a copula with respect to the uni-
form copula is equivalent to minimizing the relative information of the original
density with respect to the independent distribution.

2.3 Relative Entropy

Suppose we have a discrete probability distribution over two dimensions defined
by P (xi, xj) = pij . We can define the relative entropy of one distribution to
another as we did above for information. The relative entropy of the discrete
distribution p to a second distribution q is

H(p; q) = −
∑

i

∑

j

pij log
pij
qij

.
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Note that H(p; q) 6= H(q; p) in general as the above definition is not symmetric
in p and q. The relative entropy H(p; q) ≥ 0.

The notions of entropy and information are closely linked. First recall that
for two partitions ρ1 and ρ2 on (xi, yj) for different values of n, ρ1 is a refinement

of ρ2 if every element of ρ1 is a subset of an element of ρ2. Relative entropy
is non-increasing under refinements Uff95, so that, if p(ρk) is a the probability
distribution p under refinement of ρk,

−
∑

i

∑

j

p(ρ1) log
p(ρ1)

q(ρ1)
≥ −

∑

i

∑

j

p(ρ2) log
p(ρ2)

q(ρ2)
.

Thus, if f, g are continuous two dimensional densities being approximated by
pij , qij respectively, the continuous relative entropy can be defined Jay03 as the
limit under increasing refinement of the discrete relative entropy,

lim
n→∞

−
∑

i

∑

j

pij log
pij
qij

= −

∫

I

dx

∫

I

f(x, y) log
f(x, y)

g(x, y)
dy

=

∫

I

∫

I

f(x, y)

g(x, y)
log

f(x, y)

g(x, y)
dg(x, y).

Hence we see that the minimum information distribution can be approximated
by an equivalent discrete distribution with maximum entropy.

3 The Continuous Optimization Problem

Suppose we have uniform variables x, y and the copula density we wish to find
is f(x, y). Further suppose that we wish to find a copula which, for some
functions of the uniform variables h1(x, y), . . . , hm(x, y) which are assumed to
be continuous on [0, 1]2, satisfies E[hi(x, y)] = αi, for some values αi. We
call these the constraints of the problem. If we make the assumption that a
copula satisfying the constraints exists then this problem is, in general, under-
determined. In order to select a unique distribution we wish to find the copula
with minimum information with respect to the uniform copula satisfying these
expectations.

The relative information of f(x, y) with respect to the uniform copula is
∫

[0,1]

dx

∫

[0,1]

f(x, y) log f(x, y)dy.

The requirement that f(x, y) is to be a copula density introduces the further
constraints that the marginal distributions for x and y are uniform. That is,

∀y ∈ [0, 1],
∫

[0,1]
f(x, y)dx = 1,

∀x ∈ [0, 1],
∫

[0,1]
f(x, y)dy = 1.

We wish to solve the continuous optimization problem. However, in order to do
so, we shall first consider the associated measurable optimization problem. We
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can then use this to give a solution in the continuous case. Thus, the measurable
optimization problem we wish to solve is

Minimize

∫

[0,1]

dx

∫

[0,1]

f(x, y) log(f(x, y))dy,

Subject to

∫

[0,1]

f(x, y)dx = 1, a.e.y ∈ [0, 1],

∫

[0,1]

f(x, y)dy = 1, a.e.x ∈ [0, 1],

∫

[0,1]

dx

∫

[0,1]

hi(x, y)f(x, y)dy = αi, i = 1, . . . ,m,

f(x, y) ≥ 0,

f(x, y) ∈ L1([0, 1]
2),

where a.e. means “for almost every”, with respect to the uniform measure. We
shall determine the unique solution to this measurable optimization problem.
We do so by generalising the work of [Bedford and Meeuwissen (1997)], who
considered just a single constraint on the rank correlation. Their derivation was
based on the work in [Nussbaum (1989)] and [Borwein et al (1994)].

The continuous problem we shall use to solve this is the measurable opti-
mization problem above but with each “for almost every” replaced with a “for
all” and f(x, y) constrained to being a continuous function rather than in L1.

We shall impose a further condition on both the measurable and continuous
optimization problems. This will allow us to use theoretical results developed
in [Nussbaum (1989)], [Borwein et al (1994)] and [Lanford (1973)] and, in prac-
tice, does not unduly restrict the use of the developed approach.

The minimum information solution shall require the constraints on the ex-
pectations, α1, . . . , αm, to lie in the interior of the convex hull of h1, . . . , hm. In
order for this to be true we impose the condition that the constraint functions,
h1, . . . , hm, are linearly independent modulo the constants. That is,

∑

i

λihi 6= c,

for any constant c. This implies that CH(h1, . . . , hm) has an interior, where
CH(·) denotes convex hull. To see this consider CH(Range(h1, . . . , hm)). Sup-
pose that CH(Range(h1, . . . , hm)) does not have an interior in R

m. Then
Range(h1, . . . , hm) is restricted to a linear subspace of Rm, which means there
exist λ1, . . . , λm and c such that

∑

i

λihi = c,

which would mean that h1, . . . , hm were linearly dependent modulo the con-
straints. This contradicts our condition and so CH(h1, . . . , hm) has an interior.
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In order to solve the measurable optimization problem it shall be necessary
to define a few quantities starting with the variation distance between two dis-
tributions. Let G1, G2 and G3 be probability distributions, with corresponding
densities g1, g2 and g3, on a measurable space S = (M,B) for the set M over
the σ-algebra B. Let G1 << G3 and G2 << G3. Then the variation distance

between G1 and G2 is

| G1 −G2 |=

∫

M

| g1 − g2 | dG3.

Define Ω to be a convex set of probability distributions with respect to G3.
The set Ω is then said to be variation closed if Ω is closed in the topology of
the variation distance.

We are now almost in a position to prove that there is a solution to the mea-
surable optimization problem. First we shall quote a theorem from [Nussbaum (1989)]
in the form given in [Bedford and Meeuwissen (1997)]. If Ω is variation closed,
and if there exists some G1 ∈ Ω with I(G1;G3) < ∞, then infG2∈ΩI(G2;G3) is
found in Ω.

We can use these results to show that the measurable optimization problem
has a solution. There is a solution to the measurable optimization problem.
In our case Ω is the set of copula densities satisfying the constraints which is
clearly convex. If Ω is variation closed then, by Theorem 3, the measurable
optimization problem has a solution.

Consider g(n)(x, y), a sequence of densities converging in variation to g(x, y).
We show that if g(n)(x, y) satisfy the constraints then so does g(x, y).

As g(n)(x, y) converge in variation to g(x, y) this means that

lim
n→∞

∫

dx

∫

φ(x, y)g(n)(x, y)dy →

∫ ∫

φ(x, y)g(x, y)dy,

for any functions φ(x, y) ∈ L∞, the dual of L1. Clearly, g(x, y) satisfies the
expectation constraints by setting φ(x, y) = hi(x, y) for i = 1, . . . ,m.

Now consider the constraints associated with the uniform marginals forX,Y .
By Fubini’s Theorem

∫

dx

∫

φ(x, y)g(n)(x, y)dy =

∫

dy

∫

φ(x, y)g(n)(x, y)dx.

We shall consider the marginal constraint for Y . The argument for X is similar.
Take φ of the form φ(x, y) = φ(x). Thus, if g(n)(x, y) satisfies the marginal
constraint for Y ,

∫

g(n)(x, y)dy = 1, then the following holds,

∫

dx

∫

φ(x)g(n)(x, y)dy =

∫

φ(x)

[
∫

g(n)(x, y)dy

]

dx =

∫

φ(x)dx.

This implies that

∫

φ(x)

[
∫

g(x, y)dy

]

dx =

∫

φ(x)dx,
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and so
∫

[

1−

∫

g(x, y)dy

]

φ(x)dx = 0.

From this we can deduce that
∫

g(x, y)dy = 1

almost surely. Thus g(x, y) satisfies all of the constraints and the measurable
optimization problem has a solution by Theorem 3. Now we know that a
solution to the measurable optimization problem exists we wish to find a more
explicit form. In order to do so we shall consider a property of the dual space of
the linear map associated with the constraints given in the below theorem from
[Borwein et al (1994)].

First, however, let P be the support of a probability space, Z be an arbitrary
local convex topological vector space whose topological dual is denoted Z∗ and A
be a linear map such that A : L1(P) → Z. The dual of A is denoted A∗. Suppose
that the information expression we wish to minimize is I(u) : L1(P) → (−∞,∞)
subject to the constraints satisfying the linear map Au = b.

Using this notation the optimization problem given at the beginning of Sec-
tion 3 takes the form

minimize I(u) subject to A(u) = b,

where

I(u) =

∫

[0,1]

dx

∫

[0,1]

u(x, y) log u(x, y)dy

P : [0, 1]2

A : L1([0, 1]
2) → L1(0, 1)× L1(0, 1)× R

m

b = (1, 1, α1, . . . , αm)

u ∈ L1([0, 1]
2).

We can now express the Theorem from [Borwein et al (1994)] as follows. Sup-
pose that a feasible solution to the above problem, û, exists. Then there exists a
unique optimal solution, u0. Furthermore, u0 > 0 almost everywhere and there
exists a sequence µ0, µ1, . . . ∈ Z∗ with

|| u0(A
∗µn − log u0) ||1→ 0.

In order to use this to make explicit statements about the form of the desired
densities we shall also require Corollary 2.13 from [Borwein et al (1994)]. This
is If u0 is a feasible solution as in the previous Theorem and R(A∗), the range
of A∗, is closed as a subspace of L1(P) then u0 is optimal if and only if there
exists µ ∈ Z∗ with

A∗µ = log u0.
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The linear map associated with our optimisation problem is given by A :
L1([0, 1]

2) → L1([0, 1])×L1([0, 1])×R× . . .×R. For a two dimensional density
u(x, y) ∈ L1([0, 1]

2) the linear constraints in this space form a vector of length
m+ 2, the first two elements of which are

∫

[0,1]

u(x, y)dy,

∫

[0,1]

u(x, y)dx.

The remaining elements are the constraints on the expectations, namely

∫

[0,1]

dx

∫

[0,1]

u(x, y)hi(x, y)dy,

i = 1, . . . ,m. We can now prove the following theorem giving the form of the
solution to the measurable optimization problem. The solution, f(x, y), to the
measurable optimization problem can be written in the form

f(x, y) = d(1)(x)d(2)(y)K(x, y),

where the kernel is given by

K(x, y) = exp{λ1h1(x, y) + . . .+ λmhm(x, y)},

for Lagrange multipliers λ1 . . . , λk and measurable functions d(1)(x), d(2)(y) :
[0, 1] → R. We can appeal to Theorem 3 to state that there is a sequence of
vectors µ1, µ2, . . . in the dual of A, for which

|| f(x, y)(A∗µn − log f(x, y)) ||1→ 0. (1)

Thus, in order to find the form of f(x, y), we shall calculate the dual A∗. We
determine this by calculating

< u,A∗(a, b, c1, . . . , cm) > = < Au, (a, b, c1, . . . , cm) >

=

∫

a(x)

∫

u(x, y)dydx

+

∫

b(y)

∫

u(x, y)dxdy

+
∑

i

ci

∫ ∫

hi(x, y)u(x, y)dxdy

=

∫

dx

∫

u(x, y)

[

a(x) + b(y) +
∑

i

cihi(x, y)

]

dy,

which, by Fubini’s Theorem, gives

(A∗(a, b, c1, . . . , cm))(x, y) = a(x) + b(y) +

m
∑

i=1

cihi(x, y),
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for all (u, a, b, c1, . . . , cm), and a.e. (x, y). Combining this with Eq. (1) gives us
an equation which indicates how sequences of this form converge to the desired
density,

an(x) + bn(y) +

k
∑

i=1

ci,nhi(x, y) → log f(x, y),

almost everywhere. We now wish to use Corollary 3 to make the link between
these asymptotic multipliers and multipliers a, b, c1, . . . , ck. In order to do so
we need to show that R(A∗) is closed. Consider the space associated with A,

L1([0, 1])× L1([0, 1])× R× . . .× R.

This is finite dimensional and hence R(A∗) is closed. Thus, by Corollary 3,

a(x) + b(y) +
k

∑

i=1

cihi(x, y) = log f(x, y),

almost everywhere. If we take d(1)(x) = ea(x), d(2)(y) = eb(y) and λi = ci then
rearranging gives

f(x, y) = d(1)(x)d(2)(y)K(x, y).

This concludes the proof. Now that we have an explicit form for the solution to
the measurable optimization problem we can use this to give the solution to the
continuous optimization problem. There is a unique solution to the continuous
optimization problem of the form

f(x, y) = d(1)(x)d(2)(y)K(x, y),

where d(1)(x), d(2)(y) : [0, 1] → R are continuous. The proof follows one of
Nussbaum in [Nussbaum (1989)]. First we show that d(1)(x) and d(2)(y) are in
L1([0, 1]) and then use this fact to determine that they are continuous.

We know that f(x, y) is measurable and in L1([0, 1]
2) and that K(x, y) is

bounded. This implies that the product d(1)d(2) belongs to L1([0, 1]
2), and so

individual functions d(1), d(2) belong to L1([0, 1]). Now consider the marginal
constraint on Y . This is

∫

[0,1]

d(1)(x)d(2)(y)K(x, y)dy = 1,

and so
1

d(1)(x)
=

∫

[0,1]

d(2)(y)K(x, y)dy.

Now, as d(2)(y) belongs to L1([0, 1]) and K(x, y) is continuous this implies that
1/d(1)(x) is continuous. Combining this with the fact that 1/d(1)(x) > 0, we
can conclude that d(1)(x) exists and is continuous.

The same argument can be applied to the marginal constraint for X to show
that d(2)(y) is continuous.
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4 Approximation Using Discrete Densities

Suppose that the input space has been discretized into the points (xi, yj) for
i, j = 1, . . . , n, so that the different combinations of i, j make up points on the
unit square. This forms a partition of [0, 1]2.

The solution to the continuous minimum information problem can then be
approximated by the distribution, P (xi, yj) = pij , which maximises the Shannon
entropy

−
∑

i

∑

j

pij log pij ,

and which satisfies the constraints on the marginal distributions and expecta-
tions. The requirement of uniform marginals in the discrete case brings about
the constraints

n
∑

i=1

pij =
1

n
,

n
∑

j=1

pij =
1

n
,

so that all of the rows and columns sum to one. Thus the discrete optimization
problem we wish to solve is

maximise−

n
∑

i=1

n
∑

j=1

pij log(pij),

subject to
n
∑

j=1

pij =
1

n
, i = 1, . . . , n,

n
∑

i=1

pij =
1

n
, j = 1, . . . , n,

n
∑

i=1

n
∑

j=1

hl(xi, yj)pij = αl, l = 1, . . . ,m,

and pij ≥ 0.

Having moved from the continuous to the discrete case it is no longer the case
that α1, . . . , αm are necessarily in the convex hull for the discrete problem. It
is also no longer necessarily the case that h1, . . . , hm are linearly independent
modulo the constants for the discrete problem. Thus, in order to make the
link between the continuous and discrete problems we provide the following two
propositions.

Write R = (h1, . . . , hm)(Ω) and Rn = (h1, . . . , hm)(Ωn) for the ranges of
(h1, . . . , hm) in the continuous and discrete cases respectively. We also write
CH to be the convex hull of R, and CHn the convex hull of Rn. Also define
α = (α1, . . . , αm).

If α ∈ int(CH) then for all large enough n, α ∈ int(CHn).
The first step is to show that in a small neighbourhood ofα, all the points can

be obtained as a convex combination of a fixed finite collection of points in R. To
see this, note that if α ∈ int(CH) then we can find m+1 points α1, . . . ,αm+1 ∈
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int(CH) close to α so that α is in the convex hull of α1, . . . ,αm+1. But each
of these points is in CH so can be written as a convex combination of m + 1
points in R. Hence any point in a small neighbourhood of α can be written as
a convex combination of the set B of (m+ 1)2 points from R.

The next step is to show that each point of B can be arbitrarily well ap-
proximated by points from Rn. Given β ∈ B there is a point (x, y) ∈ Ω so that
(h1, . . . , hm)(x, y) = β. By taking a sequence (xn, yn) ∈ Ω converging to (x, y),
and using continuity of the (h1, . . . , hm) we see that (h1, . . . , hm)(xn, yn) is a
sequence in Rn converging to β. Define Bn to be the set of points constructed
in this way at the nth step.

It now follows that the convex hull of Bn converges to that of B and, in
particular, that it contains any given small neighbourhood U of α when n is large
enough. Hence U is also contained in CHn, which implies that α ∈ int(CHn)
for large enough n.

If h1, . . . , hm are linearly independent, modulo the constants as functions on
Ω, then they also have that property as functions on Ωn for large enough n.

If not then there is a set of constants c1,n, . . . , cm,n and c0,n (not all zero) so
that

∑

i

ci,nhi(x, y) + c0,n = 0,

for all (x, y) ∈ Ωn.
Without loss of generality we can assume that the constants are normalized

so that
∑m

i=0 c
2
i,n = 1. This means that there is a subsequence along which the

ci,n simultaneously converge (i = 0, . . . ,m), with ci,n → ci say.
This implies that

∑

i

cihi(x, y) + c0 = 0,

for all (x, y) ∈ Ωn, and therefore by continuity that it also holds for all (x, y) ∈
Ω.

[Lanford (1973)] considered the problem of finding the maximum entropy
distribution satisfying the constraints E[gl(xi, yj)] = ul, for bounded vector g.
If we define

Z(θ) =
∑

i

∑

j

exp

{

−
∑

k

θkgk(xi, yj)

}

,

where θ = (θ1, . . . , θm) is the vector of Lagrange multipliers, then the probability
distribution with maximum entropy is of the form

pij =
exp{

∑

k θkgk(xi, yj)}

Z(θ)
. (2)

We see that Z(θ) is the normalising constant constraining the pij to sum to
one. This Z-function has useful properties. If we take logs and differentiate

11



with respect to the Lagrange multipliers we obtain Lan73

∂

∂θl
logZ(θ) = −

∑

i

∑

j gl(xi, yj) exp{
∑

k θkgk(xi, yj)}
∑

i

∑

j exp{−
∑

k θkgk(xi, yj)}

= −E[gl].

Thus we can find the expectations associated with the constraints easily using
the Z-function. Lemma A4.6 of [Lanford (1973)] gives conditions for when there
is a unique vector of parameters θ = (θ1, . . . , θm) satisfying the constraints
which give a maximum entropy distribution of the form of Eq. (2). It states If
u = (u1, . . . , um) is in the interior of the convex hull of the essential range of g
then there is a unique θ = θ(u) ∈ R such that

u = −gradθ(logZ(θ)).

Lanford gives a further Theorem, A4.7, which gives further results concerning
the maximum entropy distribution and which will be useful to us. Let g

be a bounded measurable function on Ω with values in R
t; assume that the

components of g are linearly independent modulo the constants. For u in the
interior of the convex hull of the range of g, let θ(u) be the unique solution of

u = −gradθ logZ(θ).

Then
s(g,u) = logZ(θ(u)) + u · θ(u),

where s(g,u) is a real-analytic and strictly concave function of u. The quan-
tity s(g,u) is the maximum possible entropy for a probability vector g giving
expectation u.

We wish to apply the above results in order to solve our discrete optimization
problem. To do so we need to show that

(i) we can represent all of the constraints in our problem, and in particular
the constraints on the marginal distributions, as expectations,

(ii) all of the constraints are linearly independent modulo the constraints, and

(iii) the expectation vector u for our problem is in the interior of the convex
hull of the essential range of the relevant g.

We now consider each of these conditions in turn.
(i) The constraints on the functions of the discretized variables, E[hl] = αl,

l = 1, . . . ,m are already expressed as expectations and so we need only to
consider the constraints on the marginals,

n
∑

j=1

pij =
1

n
,

n
∑

i=1

pij =
1

n
.

12



Define the Kronecker deltas

δ(r)q (i, j) =

{

1, if i = q,

0, if i 6= q,

δ(c)q (i, j) =

{

1, if j = q,

0, if j 6= q,

which indicate whether we are in the q’th row and q’th column respectively.
The marginal constraints are then the expectations of these indicator functions.
That is

E
[

δ(r)q

]

=
∑

i

∑

j

δ(r)q (i, j)pi,j =
1

n
, E

[

δ(c)q

]

=
∑

i

∑

j

δ(c)q (i, j)pi,j =
1

n
,

for q = 1, . . . , n. Thus the set of constraints for the discrete problem can be
represented by a vector which has length 2n+m, with the first 2n elements of
the expectation vector being 1/n and the final m being α1, . . . , αm. We shall
denote this vector u.

(ii) The second condition is that all of the constraints must be independent
modulo the constants. This is not the case when we consider the full complement
of 2n+m constraints. We can see this as within a column or row the Kronecker
deltas will all be zero apart from where i = q or j = q respectively. That is,

q
∑

i=1

δ(r)q (i, j) = 1,

q
∑

j=1

δ(c)q (i, j) = 1. (3)

However, let us instead consider the 2n + m − 2 functions given by δ
(r)
q (i, j)

and δ
(c)
q (i, j) for q = 1, . . . , n − 1 and hl(xi, yj) for l = 1, . . . ,m. We no longer

have the restriction given in Eq. (3) and all of the constraints are now linearly
independent modulo the constants. Thus we redefine u to be the reduced vector
of expectations associated with these constraints.

(iii) The final condition is to show that the vector u is in the interior of the
convex hull of g, where

g = (δ
(r)
1 , . . . , δ

(r)
n−1, δ

(c)
1 , . . . , δ

(c)
n−1, α1, . . . , αm).

That is, we must show that u is in the space of all possible expectation spec-
ifications. In fact, the proof of this follows immediately from Proposition 2 of
[Bedford and Meeuwissen (1997)] for a single function.

We are now in a position to bring all of the results of this section together
and, using Lanford’s results, give the form of the discrete copula density which
solves the discrete optimization problem. We can also then link this to the
solution of the continuous optimization problem. There are functions hl(xi, yj)
and further functions d(1)(xi), d

(2)(yj) such that the probability distribution on
{(xi, yj) : 1 ≤ i, j ≤ n} with maximum entropy under the constraints

∑

i

pij =
∑

j

pij =
1

n
,

∑

i,j

hl(xi, yj)pij = αl,

13



for l = 1 . . . ,m has the form

pij =
1

n2
d(1)(xi)d

(2)(yj) exp

{

∑

k

λkhk(xi, yj)

}

.

These discrete probability distributions converge pointwise to the solution of
the continuous optimization problem.

We have shown that conditions (i), (ii) and (iii) are satisfied and so we can
apply the results of Lanford to our problem. Inserting our constraints into the
form of the maximum entropy distribution given in Eq. (2),

pij ∝ exp

{

−
∑

q

(

θ(r)q δ(r)q (i, j) + θ(c)q δ(c)q (i, j)
)

−
∑

k

θkhk(xi, yj)

}

.

Now, each of the Kronecker deltas will be equal to one exactly once, when i = q
and j = q respectively, and so the discrete distribution becomes

pij =
e−θ

(r)
i e−θ

(c)
j

Z(θ)
exp

{

−
∑

k

θkhk(xi, yj)

}

.

We see that each θl is an analytic function of the corresponding αl. Define
λl = −θl. Then, by Theorem 4, we have the relation

λl = −θl = −
∂s(g,u)

∂αl

.

If we take the derivative of λl with respect to αl,

∂λl

∂αl

= −
∂2s(g,u)

∂α2
l

> 0,

everywhere as s(g,u) is a strictly concave function. Thus λl is an analytic
function of αl and θl is an analytic function of λl. This means we can now write
the maximum entropy distribution as

pij =
e−θ

(r)
i e−θ

(c)
j

Z(θ)
exp

{

∑

k

λkhk(xi, yj)

}

.

The form of the discrete density follows by setting

d(1)(xi) =
ne−θ

(r)
i

√

Z(θ)
, d(2)(yj) =

ne−θ
(c)
j

√

Z(θ)
.

In order to show that these discrete distributions converge to the continuous

distribution consider the sequences of functions d
(1)
(t) (x), d

(2)
(t) (x) : [0, 1] → R,

t = 1, 2, . . . for fixed λ1, . . . , λm given by

xi 7→ d
(1)
i(t) for xi ∈ Ii

yj 7→ d
(2)
j(t) for yj ∈ Ij .

14



The proof of [Nosowad (1966)] states that these sequences converge pointwise
to the continuous functions d(1)(x) and d(2)(y) in the solution of the continuous
optimization problem. The result follows from this.

5 Calculating the expectations of the constraint

functions

We saw in Section 4 that the normalising constant in the maximum entropy
distribution, Z(·), has useful properties associated with calculating the means
of the constraint functions. This is also true in the continuous case. That
is, for the bivariate minimum information distribution g(x, y) with normalising
constant

Z(θ) =

∫

[0,1]

dx

∫

[0,1]

exp

{

−
∑

k

θkhk(x, y)

}

dy,

the expectation of hl(x, y) is found to be Kul59,Lan73,

−
∂

∂θl
logZ(θ).

In the case of the minimum information copulas which are our interest in this
paper the role of the normalising constant has been fulfilled by d(1)(·) and d(2)(·).
We can show how these two quantities can be used in an equivalent manner in
order to calculate the expectations of the constraint functions in the copula case.
We give the following theorem. For a bivariate minimum information copula
f : [0, 1]2 → R of the form

f(x, y) = d(1)(x)d(2)(y)K(x, y),

where K(x, y) = exp {λk

∑

k hk(x, y)}, the mean of the constraint functions can
be calculated as

E[hl(x, y)] = −

∫

[0,1]

dx

∫

[0,1]

∂

∂λl

log
{

d(1)(x)d(2)(y)
}

dy.

All integrals in the proof are over [0, 1]. We begin by considering the marginal
constraints. We can use them to deduce that

d(1)(x)d(2)(y) =
1

∫

d(1)(x)K(x, y)dx
∫

d(2)(y)K(x, y)dy
.

If we take logarithms then

log
{

d(1)(x)d(2)(y)
}

= − log

∫

d(1)(x)K(x, y)dx− log

∫

d(2)(y)K(x, y)dy.
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We differentiate this with respect to the Lagrange multipliers. This gives

∂

∂λl

log d(1)(x)d(2)(y)

= −
∂

∂λl

∫

d(1)(x)K(x, y)dx
∫

d(1)(x)K(x, y)dx
−

∂
∂λl

∫

d(2)(y)K(x, y)dy
∫

d(2)(y)K(x, y)dy
. (4)

As d(1)(x), d(2)(y) and K(x, y) are all functions of the Lagrange multipliers,
λ1, . . . , λm, it is necessary to evaluate the derivatives above using the product
rule. That is, in the case of the first derivative,

∂

∂λl

[
∫

d(1)(x)K(x, y)dx

]

=

∫

hl(x, y)d
(1)(x)K(x, y)dx+

∫

K(x, y)
∂

∂λl

d(1)(x)dx. (5)

To proceed further we re-express the differential of d(1)(x) in terms of y. This
gives

∂

∂λl

d(1)(x) =
∂

∂λl

[

1
∫

d(2)(y)K(x, y)dy

]

= −d(1)(x)

[

∫

hl(x, y)d
(1)(x)d(2)(y)K(x, y)dy

+

∫

K(x, y)d(1)(x)
∂

∂λl

d(2)(y)dy

]

,

after some simple manipulation. We first substitute this back into Eq. (5) and
then substitute this back into Eq. (4). We also tidy the denominators of Eq.
(4). The resulting equation, again after some basic calculations, is

∂

∂λl

log
[

d(1)(x)d(2)(y)
]

= −

∫

hl(x, y)d
(1)(x)d(2)(y)K(x, y)dx

+

∫

d(1)(x)d(2)(y)K(x, y)

[

∫

hl(x, y)d
(1)(x)d(2)(y)K(x, y)dy

+

∫

d(1)(x)K(x, y)
∂

∂λl

d(2)(y)dy

]

dx

−

∫

hl(x, y)d
(1)(x)d(2)(y)K(x, y)dy −

∫

d(1)(x)K(x, y)
∂

∂λl

d(2)(y)dy.
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The final stage is to integrate over x and y. After some straightforward compu-
tations we find that

∫

dx

∫

∂

∂λl

log
[

d(1)(x)d(2)(y)
]

dy = −E[hl(x, y)]

+

∫

d(1)(x)

∫

d(2)(y)K(x, y)dy

[

∫

hl(x, y)d
(1)(x)d(2)(y)K(x, y)dy

+

∫

d(1)(x)K(x, y)
∂

∂λl

d(2)(y)dy

]

dx

− E[hl(x, y)]−

∫

dx

∫

d(1)(x)K(x, y)
∂

∂λl

d(2)(y)dy,

and, since we can again use the first marginal constraint to cancel the d(1)(x)
outside of the square brackets, the result in the continuous case follows imme-
diately from this.

If the problem is discretized by taking x1, . . . , xn and y1, . . . , yn then we
obtain an n on the denominator when substituting back for d(1)(xi) and d(2)(yj)
in the discrete equivalent of Eq. (4). A similar derivation shows that

E[hl] = −
1

n

∑

i

∑

j

∂

∂λl

log d(1)(xi)d
(2)(yj),

where E[hl] is a discrete expectation. We can use this discrete form in the
following example.

5.1 Example

Suppose that the two unknowns in our analysis are X,Y ∼ U(0, 1) and that we
wish to specify the minimum information copula between them subject to the
constraints

E[h1(x, y)] = α1, E[h2(x, y)] = α2, (6)

for constraint functions h1(x, y) = xy, and h2(x, y) = xy2. If we wished to
specify a copula with minimum information for non-uniform variables V,W then
the relevant constraint functions would be h1(v, w) = vw and h2(v, w) = vw2

and the copula would be specified using

h
′

1(x, y) = F−1
V (x)F−1

W (y), h
′

2(x, y) = F−1
V (x)[F−1

W (y)]2,

where F (·) denotes the relevant distribution function.
We can investigate the range of possible values the two constraints in Eq.

(6) can take. To do so we use Theorem 5 to calculate all of the expectations.
We use the discretized version of the density and discretize over 50× 50 points.

Clearly when α1 changes this will have an effect on the values which α2

can take. Thus we can map out the two dimensional feasible region for the
constraints (α1, α2). This is given in Figure 1.
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[Figure 1 about here]

We see from the figure that the feasible region is clearly convex. Let us
suppose that the expectations we wish to satisfy are

E[XY ] = 0.2, E[XY 2] = 0.12.

We can find the resulting minimum information copula. The Lagrange multi-
pliers are found to be λ1 = −25.489, λ2 = 14.306. A plot of the copula with
these parameter values is given in Figure 2.

[Figure 2 about here]

The copula which results is a smooth function of X and Y .

6 Conclusions

We have considered the specification of a copula under a number of constraints
on the expectations of functions of the variables. In particular, we have con-
sidered the issue of under-specification of such a copula in which there are
multiple possible copulas which satisfy all of the constraints imposed. We have
oparationalized such modelling by proposing to use the copula with minimum
information satisfying the constraints.

We have shown that such a problem has a unique solution and found an
explicit function form for this. We achieved this by initially deriving the unique
solution for the measurable version of the problem. We then considered dis-
cretization of the continuous problem so that such a process can be carried
out in practice. We showed that we can approximate the continuous minimum
information copula arbitrarily closely using a series of discrete densities.

Finally, we proved a theorem linking the expectations of the constraint func-
tions to the normalising functions in the copula case. This generalizes a similar
result in the non-copula case.

We are grateful to reviewers and the editor for comments and suggestions
which improved the paper.
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Figure 1: The feasible region for α1 and α2.
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Figure 2: The minimum information copula satisfying the constraints.
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