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We present an automated and efficient method to develop force fields for molecule–surface

interactions. A genetic algorithm (GA) is used to parameterise a classical force field so that the

classical adsorption energy landscape of a molecule on a surface matches the corresponding

landscape from density functional theory (DFT) calculations. The procedure performs a

sophisticated search in the parameter phase space and converges very quickly. The method is

capable of fitting a significant number of structures and corresponding adsorption energies. Water

on a ZnO(0001) surface was chosen as a benchmark system but the method is implemented in a

flexible way and can be applied to any system of interest. In the present case, pairwise Lennard

Jones (LJ) and Coulomb potentials are used to describe the molecule–surface interactions. In the

course of the fitting procedure, the LJ parameters are refined in order to reproduce the adsorption

energy landscape. The classical model is capable of describing a wide range of energies, which is

essential for a realistic description of a fluid–solid interface.

1. Introduction

Surface coatings, biomineralisation, wettability, electrochemical

processes, surfactants, catalysis and medical implants are just

a few examples where important chemistry happens in the

interfacial region.1–11 To understand the influence of the

interface on the macroscopic material properties it is essential

to have a realistic microscopic description of a fluid–solid

interaction. From the perspective of both classical simulations

and experiment, a detailed picture of the adhesion of

molecules on surfaces is still missing. Molecular modelling

techniques are particularly useful in addressing these systems,

since they provide a microscopic description of the system of

interest.

Classical molecular dynamics (MD) simulations commonly

use atomistic force fields that were developed to describe bulk

properties of solids or liquids. Intermolecular interactions

between different species in the bulk can be modelled by means

of simple combination rules. This ansatz is applicable as long

as it is validated against some experimental properties. In

principle, the same approach can be used to develop fluid–

solid interfacial potentials. However, the lack of experimental

data describing the interfacial region turns the parametrisation

of such surface potentials into a non-trivial problem.

To date, quantum-classical approaches have often been

used to model surface interactions. Interfacial potentials

have been fitted such that data from electronic structure

calculations are reproduced.12–20 Normally, the data obtained

from these calculations include adsorption energies for the

minimum energy structure or distance dependent information

of the adsorption strength of the molecule with respect to

some positions or atomic sites on the surface. In these studies

the fitting of the classical potentials is usually based on a

fairly limited number of quantum calculations and it is not

always clear if the classical potentials obtained in this way

are sufficiently transferable to describe the adsorption

energy landscape in the x,y-dimension of the surface. In

particular for solid–liquid interface systems where this

landscape is characterised by a broad spectrum of energies

that are all thermally accessible, new, computationally efficient

quantum-classical parameterisation methods need to be

considered.

In this work we present a model for a H20–ZnO(0001)

interaction that is fitted to quantum calculations that attempt

to provide a realistic description of the adsorption energy

landscape. By doing so, we will demonstrate the importance of

the right choice of the fitted data sample. In order to deal with

such a large data set we implemented a genetic algorithm (GA)

to automate the fitting procedure.21 Often, classical interfacial

force field parameters are fitted manually. This approach

works well for simple systems, but for complicated systems

with many atom pairs or many configurations the number of

parameters increases rapidly and a manual fit is no longer

feasible. A genetic algorithm is well suited for this problem,
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since it is particularly good at finding the global minimum in a

large phase space and, unlike other optimisation techniques,

such as local gradient methods, it does not face the problem of

getting stuck in a local minimum. Furthermore, an initial

starting guess for the parameters is not required, which is

particularly important if the nature of the molecule–surface

interaction is unknown. While genetic algorithms have been

applied to many general optimisation problems and are

implemented in other software packages, such as GULP22

and FFGenerAtor,23 it has never, to the best of our

knowledge, been applied to the parameterisation of molecule–

surface force fields.

As a benchmark system we have chosen water on a

ZnO(0001) (
ffiffiffi
3
p
�

ffiffiffi
3
p

) R301-O + (2�1)-H surface. This

surface, which was thoroughly studied by Valtiner and

coworkers,24 is stabilized by a partial OH adsorption and is

therefore thermodynamically stable in the presence of water.

The electronic structure calculations show no dissociation of

water on the surface. The electronic structure and adsorption

energy of various configurations of a water molecule on the

ZnO surface were obtained from DFT calculations. These

configurations of the water molecule on the surface were used

to map out the potential energy landscape of the molecule–

surface interaction. The GA was applied to perform a search

of the parameter space so that the classical surface potentials

reproduced the adsorption energies from DFT. The methodology

is presented in detail in section 2 and the resulting force field is

discussed in section 3. We will study the importance of the choice

of the data set that enters in the GA fitting method.

2. Methodology

A schematic representation of the procedure for generating the

force field parameters is shown in Fig. 1. In the first step an

initial set of parameters for the classical force field (FF) is

generated. The next step is to calculate the adsorption energy

landscape of the molecule in different conformations on the

surface using these parameters. The FF and DFT calculations

are described in section 2.1. The classical energy landscape is

compared to the corresponding DFT energy landscape and if

the classical energies differ significantly from the DFT results we

refine the FF parameters until the classical and quantum energy

landscapes converge. The FF parameters are optimised using a

genetic algorithm, which is described in detail in section 2.2.

2.1 Computational details

DFT calculations. The water–ZnO surface interaction was

sampled at 198 evenly spaced positions on the surface. For

each configuration the x and y coordinates of the water oxygen

atom and the x, y and z coordinates of the surface atoms are

held fixed while the z coordinate of the water oxygen and all

the coordinates of the water hydrogen atoms are allowed to

relax. At each point the structure was optimised using the

PBE25 density functional, PAW,26,27 and a 550 eV plane wave

cutoff. The DFT calculations were performed by A. Berezkin

et al. using the the VASP package28,29 and will be described in

detail in a forthcoming publication.30

The ZnO(0001) (
ffiffiffi
3
p
�

ffiffiffi
3
p

) R301-O + (2�1)-H surface slab

is shown in Fig. 2. The ZnO slabs are partially OH-terminated

on the surface exposed to water and on the bottom surface the

dangling bonds were passivated by pseudo H atoms with a

valence of 0.5 e�. The charge distribution of the ZnO surface is

calculated with DFT by means of modified Mulliken population

analysis.31–33 The partial charges of the surface atoms qj are

obtained from DFT calculations and are shown in Table 1.

The adsorption energy Eads is defined as

Eads = Etotal � Eslab � Emol (1)

where Etotal is the total energy, Eslab is the energy of the

isolated surface and Emol is the energy of the isolated water

molecule. The adsorption energy can be dependent upon the

exchange and correlation functional and also on van der Waals

Fig. 1 Automated procedure for generating classical surface

potentials from DFT calculations.

Fig. 2 The ZnO(0001) (
ffiffiffi
3
p
�

ffiffiffi
3
p

) R301-O + (2�1)-H surface slab

viewed in (a) the x�z plane (side view) and (b) the x�y plane

(top view). Zn, O and H atoms are coloured in grey, red and white,

respectively. The oxygen atom beneath the H is labelled O2. Figure

created with VMD.35
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forces. In this work the DFT energies do not include

van der Waals interactions, however, in a strongly charged

system we expect that the electrostatics is the dominant

interaction. The 198 configurations cover a range of adsorption

energies from around �12 to �55 kJ mol�1. The lowest

adsorption energy compares well with the experimental

results of Schiek et al. who studied water adsorption on the

H(1�1)O-Zn(0001) surface and found the binding energy of a

single molecule to be �55.2 kJ mol�1.34

Classical force field. In order to obtain the water–ZnO

adsorption energies for the GA fitting procedure, we

performed single point calculations as implemented in the

GROMACS simulation package.36 This interaction between

the water atoms i and the surface atoms j is described by a

potential with a Lennard-Jones 12-6 pairwise non-bonded

term and Coulomb term, and has the following form

VðrijÞ ¼ 4eij
sij
rij

� �12

� sij
rij

� �6
" #

þ 1

4pe0

qiqj

rij
: ð2Þ

The parameters eij, sij for each type of atom pair are adjusted

using the genetic algorithm, which is described in the following

subsection. For this system we have six atom pairs, which give a

total of twelve parameters. The non-bonded interactions are cut

off at a distance of 0.9 nm. The system is set up in such a way that

one water molecule is positioned above a five atomic layer thick

ZnO slab, as shown in Fig. 2(a). We have used a surface of

dimensions 22.794 Å � 19.94 Å, which corresponds to 4 � 2

times the surface unit cell shown in Fig. 2(b). Periodic boundary

conditions were applied in the x, y and z directions. To avoid

image interactions in the z-direction, a vacuum of E13 Å is

added above the surface. Coulombic interactions were treated

with the particle-mesh Ewald (PME) method.37 The water partial

charges were taken from the SPC water model.38 The water and

surface partial charges were not modified in the fitting procedure.

2.2 The genetic algorithm

The genetic algorithm is based on the principle of evolution,

which selects good or ‘fit’ individuals to be parents and rejects

the others. In the present case an ‘individual’ refers to a

particular parameter set and the ‘fitness’ is the agreement

between the classical and DFT energy landscapes. The good

parameter sets are then paired ‘mated’ and they procreate.

New sets of parameters are generated, where also ‘crossover’

and ‘mutation’ had occurred. The algorithm is shown

schematically in Fig. 3 and the various terms are described

in detail in the text below.

The first step is to generate N sets of parameters. These can

be generated randomly since the algorithm will search over all

parameter space and does in principle not require an input

close to the final results. However, we have chosen the

parameters, for convergence reasons, to be of the order of

the OPLS-AA force field39 parameters. The number of sets

should be large enough to introduce sufficient variation in the

sets and the success of the algorithm depends on N. For each

parameter set n we calculate the energy of interaction EFF
mn for

each single structure m of the total M conformations of the

molecule on the surface. In this implementation the total

number of sets is kept constant.

The value that measures the quality of an individual

parameter set n is called the fitness, Fn and in our case it

depends on the difference between the DFT and classical

adsorption energies DEmn = EDFT
m � EFF

mn. The convergence

of the method depends critically on the definition of the fitness

function. We have used a fitness function of the form

Fn ¼ 1� D2
nPN

n¼1
D2
n

0
BBB@

1
CCCA N

N � 1

� �
; ð3Þ

where N
N�1 is the normalisation factor and

D2
n ¼

1

M

XM
m¼1

DE2
mn ð4Þ

Table 1 Partial charges for the ZnO slab obtained by Mulliken
population analysis. The top surface, which is in contact with the
water, is partially hydroxylated and the bottom surface is fully
hydroxylated. Each of the central layers is neutral

Layer Atom qj

Top O1 �0.718
O2 �0.616
H +0.251
Zn1 +0.760
Zn2 +0.729
O3 �0.752

2,3,4 Zn +0.777
O �0.777

Bottom Zn +0.740
O �0.714
H +0.162

Fig. 3 Genetic algorithm fitting procedure used to generate classical

force field parameters.
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is the mean square deviation of the energy difference. The

fitness value ranges from 0 to 1, where Fn = 1 corresponds to

perfect agreement between the DFT and classical adsorption

energy landscapes.

The next step is the selection process, which accepts sets

with a certain probability Pn that is based on the fitness. The

probability depends on the fitness function as shown

Pn ¼
ðFnÞpPN

n¼1
ðFnÞp

ð5Þ

The exponent p is one of the GA convergence parameters and

we have chosen p of the order of 500. The selected sets are

paired randomly. In the crossover stage the parameters

are written in binary and the corresponding numbers from

the parents crossed over at a random point along the binary.

This crossover point divides the parameters into two parts and

the second parts of the parameters are interchanged. The

mutation randomly switches 1 to 0 and vice versa with a

mutation rate of r. This has a significant influence on the

performance. A rate that is too high is not likely to converge

and a rate that is too low will not introduce enough variation

in the parameter sets and the algorithm will stagnate. These

last four steps generate another N sets of new parameters and

the procedure is repeated until the criteria is reached, i.e. the

root mean square deviation (RMSD), Dn, is below a certain

value or a maximum number of iterations has been reached.

The GA convergence parameters, N and r, were tested to

find the optimal values for an efficient minimisation. We found

that a rate of r = 1% and N = 16 sets was optimal for our

system. The initial guesses for eij and sij were chosen randomly

but within the range of physically realistic values. If the

parameters are treated fully independently in the fitting

procedure, the algorithm could converge to a set of parameters

where sHwj
4 sOwj

i.e. the ‘size’ of the water hydrogen is larger

than the water oxygen, which is physically unrealistic. To

address this issue, we added a constraint to keep the values

of sij for the hydrogen atoms smaller than those for the

oxygen atoms.

3. Results and discussion

The DFT energy landscape for the water–ZnO system was

created by placing water molecules on the ZnO surface in 198

different configurations, which differ in position and orientation

with respect to the surface. This ensures that the adsorption

energy landscape of the water–ZnO surface interaction is well

sampled. In this section we will discuss the importance of the

choice of the sample that is used in the fitting procedure.

Furthermore we address the question of the non-uniqueness of

the resulting parameters and compare the result to the performance

of a standard force field, namely the OPLS force field.39

The choice of the sample is an important factor in the fitting

procedure. One would assume that the full set of the 198

data points should be used to fit the classical potentials. While

this might lead to an improved set of classical force field

parameters it is potentially computationally costly, so it is

interesting to see if it is possible to reproduce the full DFT

data set using only a subset of all the structures. A subset of

100 configurations has been chosen, which is representative

of the full energy range of the whole set of 198 configurations.

In Fig. 4 the fitted and predicted energies obtained by the

resulting force field of the GA fitting procedure are shown. It

can be clearly seen, that the qualitative agreement between the

DFT data and the GA force field is excellent. Quantitatively,

the fit (taking into account the fitted and predicted energies)

gives an overall RMSD of 3.21 kJ mol�1, which is within the

error of the DFT calculations. The corresponding force field

parameters are reported in Table 2. In addition, a fit using

the full data set of 198 conformations was performed and the

RMSD is 3.37 kJ mol�1, which is similar to the result of the

100 structure subset. This leads to the conclusion that a fit

with 100 configurations is sufficient to reproduce the full set of

energies.

Fig. 4 Comparison of the DFT results for the adsorption energies

with the ones from classical simulations. The black line is the perfect

match, where the classical adsorption energies are in full agreement

with the DFT results. The red up-triangles represent the results

obtained with the GA fitting method (100 different low and high

energy conformations). The blue down-triangles are the predicted

adsorption energies for the remaining 98 configurations, obtained

with the fitted classical force field.

Table 2 50 GA fits using the subset of 100 low and high energy structures. In the first row the parameters corresponding to the lowest RMSD of
the fitted set (2.264 kJ mol�1) are reported. In the second row the average parameters over all 50 different GA fits are shown and in the third row
the standard deviation is reported

sij*10
�1 (nm) eij*10

�1 (kJ mol�1)

OwOs HwOs OwHs HwHs OwZns HwZns OwOs HwOs OwHs HwHs OwZns HwZns

Lowest RMSD 2.410 2.215 1.982 1.767 2.698 2.536 8.893 5.516 8.495 9.249 8.339 3.129
Average 2.567 1.251 2.060 1.402 2.290 1.237 6.814 4.777 5.770 7.082 6.449 5.178
Stand. deviation 0.537 0.735 0.224 0.702 0.752 0.926 3.109 2.763 3.291 3.118 3.216 2.456
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We compared the GA adsorption energies with the adsorption

energies one would get from a classical simulation with a

standard OPLS force field.39 We took the Lennard Jones

parameters for the Zn, O and H atoms of the surface, the

SPC water parameters and used the geometric combination

rule to obtain the pairwise interaction potentials i.e. sij ¼ffiffiffiffiffiffiffiffisisj
p

and eij ¼
ffiffiffiffiffiffiffi
eiej
p

. The partial charges for the surface are,

as previously mentioned, obtained from the DFT calculations.

In the SPC water model the LJ parameters of the Hw atoms

are zero. Therefore, the LJ part of the force field is

described by only four parameters, namely sOwOs
= 0.3143 nm,

eOwOs
= 0.6801 kJ mol�1, sOwZns

= 0.2486 nm and eOwZns
=

0.7975 kJ mol�1. In comparison to the GA fit the OPLS force

field performs worse with an RMSD of 7.49 kJ mol�1.

Nevertheless, it seems that the OPLS force field is not

completely wrong. This is mainly due to the strong electro-

static contribution. If one considers only the electrostatic

interaction, the RMSD is 6.10 kJ mol�1. The predicted

energies from the electrostatics, OPLS and GA force field

are shown in Fig. 5. The Coulombic interaction alone is

already a good estimate for the adsorption energies. By

modifying the LJ parameters for the surface potentials, one

can further improve the force field so that the GA converges to

a lower RMSD than the pure electrostatic contribution. This

improvement can be also qualitatively seen in Fig. 5. On the

contrary, the LJ parameters of the OPLS force field deteriorate

the overall results and systematically predict too high energies

for the deep minima of the potential energy surface.

Generally, the genetic algorithm converges to a non-unique

set of parameters, but the results are comparable. To get a

better idea of the spread of the parameters, we run 50

independent GA fits using the same configurations. The

average value and standard deviation of each of parameters

sij and eij are reported in Table 2. For each pair interaction

the spread of eij is larger than that of sij. We have calculated

the energies for the 198 structures using a force field with the

average parameters and the RMSD is 5.01 kJ mol�1. Taking

the average parameters, therefore, does not lead to any

improvement in the RMSD.

We have investigated the importance of choosing a data set

that is representative with respect to the to the adsorption

energy landscape. In the case of liquid water in contact with a

solid this means that not only the deep but also the shallow

minima of the potential energy surface must be sampled. To

study the dependence of the choice of the parameter set

thoroughly, we compare two more data subsets. The first

subset contains mostly low energy structures (70 different

configurations) and the second contains mostly high energy

structures (70 different configurations). In Fig. 6 the result of

the fit using the subset of lower-energy structures are shown.

One can clearly see, that the fitted energies are in good

agreement with the DFT energies. The resulting RMSD

deviation for the 70 fitted structures is 2.11 kJ mol�1. Also

shown are the predicted energies, which deviate significantly

from the DFT energies. The total RMSD with respect to all

198 configurations is 39.14 kJ mol�1. Fig. 7 shows the fitted

and predicted energies for the second subset. The RMSD for

the fitted points is 2.63 kJ mol�1 and the RMSD for the full

data set is 5.31 kJ mol�1. The quantitative agreement with the

DFT energies is reasonably good, although especially in

the very low energy cases one can see a clear deviation from

the DFT results. However, this good result is by chance and by

performing 15 GA fits, using the same subset of structures, we

get very different results. In each case the GA converged to

approximately the same RMSD for the fitted subset, however,

the RMSD of the entire set of 198 DFT energy points varies

widely. For example, in one fit to the subset 70 low energy

points, the RMSD of the fitted set is 2.33 kJ mol�1, but the fit

to the the full set of 198 configurations results in an RMSD of

2171.40 kJ mol�1. This clearly demonstrates the importance of

choosing a sample that is representative of a wide range of

structures and energies. Therefore the quality of the resulting

parameter sets must be rechecked after the fitting procedure,

especially when the fit is performed on a subset of energies, but

Fig. 5 Comparison of the DFT adsorption energies (black line) for

the 198 configurations with the results from the GA fitting method

(black triangles) and the OPLS force field (red squares). Furthermore

we show the contribution of the electrostatic interaction (orange

circles) for the different configurations.

Fig. 6 Comparison of the DFT results for the adsorption energies

with the ones from classical simulations. The black line is the perfect

match, where the classical adsorption energies are in full agreement

with the DFT results. The red up-triangles represent the results

obtained with the GA fitting method (70 different low energy

configurations). The blue down-triangles are the predicted adsorption

energies for the remaining 128, mostly high energy configurations,

obtained with the fitted classical force field. 15 data points, for which

the classical energy is higher than 30 kJ mol�1, are not shown.
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by using the GA fitting method this can be done in a fast and

efficient way.

4. Summary and outlook

A genetic algorithm was used to optimise classical force

field parameters to model molecule–solid interfaces. We took

water–ZnO(0001) as a benchmark system to test the perfor-

mance of the method. The adsorption energies from the

classical force field were matched to the DFT calculations

for various conformations of the water molecule on the

surface. In order to describe the fluid–solid interface realistically,

the force field must be capable of reproducing a wide range

of structures and energies and we have shown that the GA

method can efficiently handle a large data set. A subset of

100 low and high energy configurations of water molecules on

the ZnO(0001) surface resulted in a classical force field that

reproduced well the DFT potential energy landscape of the

water–ZnO interfacial interactions and predicted good

adsorption energies for a further 98 conformations that were

not used in the fit. We also demonstrate the importance of the

right choice for the fitted data sample. If the subset contains

mostly low energy configurations the fitting procedure does

not necessarily lead to good results for the high energy

configurations and vice versa. This means that fitting to a

non-representative sample of the adsorption energy landscape

could lead to wrong predictions of physical properties in a

molecular dynamics study.

Although this work has been applied to the specific system of

water on a ZnO surface, the method can be used to model any

system. It is especially suitable for more complicated systems

where there are a large number of interaction parameters, such

as the adsorption of complex molecules on surfaces with a

variety of adsorption sites. Although large systems are beyond

the reach of density functional calculations the algorithm can be

used in combination with the ‘building block approach’,14,16,17

where the macromolecules are broken down into smaller

chemical subunits. The GA fitting procedure can be applied to

these smaller sub-molecules and, assuming transferability of the

parameters, the classical force field of the whole macromolecule

can be developed.

We presented a method that generates surface potentials for

interfacial systems in a very fast and efficient way. A standard

LJ and Coulombic potential is able to capture the complexity

of the interfacial interaction over a broad energy distribution.

However, the method is implemented in a flexible way so that

other potential forms could be used. Additionally, the GA is in

principle capable of fitting the partial charges, assuming

neutral conditions at the surface, without having any pre-

information from DFT calculations. In this work the fit is

based on energy differences for a variety of conformations,

however, other data, such as structural information, could be

used by modifying the information that enters the fitness

function.
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