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1 Introduction

Probabilities first entered physics in a systematic way in connection with the
kinetic theory of gases, according to which a gas consists of a large number
of molecules whose motions, due to collisions with each other, are effectively
random.1 This theory was developed, at the hands of Maxwell, Boltzmann,
and Gibbs, into the science that we (following Gibbs) now call statistical me-
chanics, a theory whose scope has been extended well beyond treatment of
gases. Statistical mechanics has the odd feature of containing a substantial
array of agreed-upon techniques of calculation, leading to impressive empir-
ical success, with little agreement on the ultimate rationale for its methods.
For this reason, there has a risen a substantial philosophical literature on
conceptual issues associated with statistical mechanics. Much of the philo-
sophical discussion focusses, in one way or another, on the role of probability.

This chapter will review selected aspects of the terrain of discussions
about probabilities in statistical mechanics (with no pretensions to exhaus-
tiveness, though the major issues will be touched upon), and will argue for a
number of claims. None of the claims to be defended is entirely original, but
all deserve emphasis. The first, and least controversial, is that probabilistic
notions are needed to make sense of statistical mechanics. The reason for this
is the same reason that convinced Maxwell, Gibbs, and Boltzmann that prob-
abilities would be needed, namely, that the second law of thermodynamics,
which in its original formulation says that certain processes are impossible,
must, on the kinetic theory, be replaced by a weaker formulation according

1See Brush (1976a,b) for a survey of the early history.
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to which what the original version deems impossible is merely improbable.
Second is that we ought not take the standard measures invoked in equilib-
rium statistical mechanics as giving, in any sense, the correct probabilities
about microstates of the system. We can settle for a much weaker claim:
that the probabilities for outcomes of experiments yielded by the standard
distributions are effectively the same as those yielded by any distribution
that we should take as a representing probabilities over microstates. Lastly,
(and most controversially): in asking about the status of probabilities in
statistical mechanics, the familiar dichotomy between epistemic probabilities
(credences, or degrees of belief) and ontic (physical) probabilities is insuffi-
cient; the concept of probability that is best suited to the needs of statistical
mechanics is one that combines epistemic and physical considerations.

Outline of the chapter. I will set the stage by briefly reviewing the back-
drop, in probability theory, against which the founders of statistical me-
chanics were working. We will then see how probabilities were introduced
into statistical mechanics, and review the considerations that led Maxwell,
Gibbs, and Boltzmann to conclude that probabilities play an indispensable
role. Since probabilities play somewhat different roles in the two approaches
to statistical mechanics that have their roots in the work of Boltzmann, and
Gibbs, respectively, I will briefly present these approaches. I will then discuss
some approaches to justifying the choice of measures. Lastly, I will discuss
some puzzling aspects of the use of the standard equilibrium measures, and
argue that these puzzles can be resolved either by invoking quantum proba-
bilities, or by construing the probabilities in statistical mechanics as almost
objective probabilities, introduced in §8.2.2.

2 Meanings of “probability”

As Hacking (1975) has amply demonstrated, from the early days of prob-
ability theory, there were two distinct concepts that went by the name of
“probability.” One is an epistemic concept, having to do with degrees of
belief. The other, which Hacking calls the aleatory conception, attributes
probabilities to events in the world, such as the toss of a coin, which they are
thought to possess independently of our knowledge or belief.2 These need

2For one clear statement that there are two distinct senses of “probability,” and a
characterization of the objective notion as single-case chance, see Poisson (1837, 31),
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not be regarded as rivals; they are two potentially useful senses in which
the word “probability” is used, which we must be careful not to conflate.
Due, perhaps, to concerns about compatibility of objective chance with the
presumed determinism of the laws of nature, we find, in the latter half of
the 19th century, a frequency conception replacing single-case chance as the
favored construal of objective probability. So thoroughly did the notion of
single-case chance drop out of discussions that subjectivists in the first half
of the 20th century, such as de Finetti and Savage, when arguing against
objective notions of probability, omitted it from their lists of notions to be
considered and rejected, and Popper (1957, 1959) took himself to be intro-
ducing an entirely new idea when he introduced the notion of single-case
objective probabilities, which he called propensities.

A central question in understanding the use of probabilities in statistical
mechanics is the status of these probabilities. Which notion is in play? Are
they epistemic, having to do with our state of knowledge or belief about the
system, or are they ontic, properties of the physical systems themselves? If
ontic, should they be thought of in frequentist terms, or in terms of single-
case chances?

Textbook introductions of probabilities in statistical mechanics typically
begin with the observation that, though the systems considered have very
many degrees of freedom, our knowledge of the state of a system is limited
to the measured values of a small number of thermodynamic variables. This
suggests an epistemic reading of the probabilities. And, indeed, there is a
long history of construing statistical mechanical probabilities as purely epis-
temic.3 This fits uncomfortably, however, with the idea that the theory to
be developed belongs strictly to physics, and that objective laws of thermo-
dynamics are to be recovered on its basis. These considerations suggest an
ontic reading. But, in the context of classical physics, with its deterministic
laws of motion, a reading of the probabilities as objective chances seems out
of the question. This seems to leave some sort of frequentism as the only
option for an ontic reading of probabilities in statistical mechanics.

Is frequentism a viable option? It is certainly true that there is a close
connection between frequency and chance. If I draw at random from an
urn, with each ball in the urn having an equal chance of being drawn, then
the chance that the drawn ball is black is equal to the relative frequency of

quoted in Myrvold (2012a, 74–75).
3See Uffink (2011).
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black balls in the urn. In an infinite sequence of independent trials (such
as, say, repeated rolls of a die), in each of which a certain outcome has a
chance p of occurring in each trial, it can be proven (this is the Strong Law
of Large Numbers) that the relative frequency of that outcome will, with
chance equal to one, converge to p. Moreover, if we have available to us the
means to produce a long sequence of independent trials of events with equal
chances, relative frequency data can be used as evidence about the values of
these chances.

These considerations do not however, enable us to define chance in terms
of frequencies, as each of them requires a notion of chance distinct from
that of relative frequencies to even state. Though the point remains some-
what controversial, there are good reasons to to think that frequentism is an
inadequate foundation for objective probability.4

In light of considerations such as these, absence of consensus about the
status of statistical mechanical probabilities is unsurprising. Neither an epis-
temic nor an ontic reading seems to be adequate for the job, at least as far
as classical statistical mechanics is concerned.

One position that has been adopted is that classical statistical mechan-
ics, rather than being an autonomous science, must borrow its probabilities
from quantum mechanics. Though the determinism of classical physics un-
dermined the notion of objective chance, quantum mechanics revived it, as
quantum mechanics is often regarded as a fundamentally chancy theory. Can
we think of the probabilities used in classical statistical mechanics as quan-
tum mechanical in origin?

This possibility will be treated in §8.2.3, below. But, I will argue, such a
move is not necessary. Though neither a purely epistemic nor a purely ontic
reading of probabilities of statistical mechanics is available in the context of
classical physics, the epistemic/ontic dichotomy is not exhaustive. As will
be argued in §8.2.2, and in §9, there is a notion of probability that combines
epistemic and physical considerations, that seems to be well suited for the
role required of it by statistical mechanics.

4For further discussion, see Jeffrey (1992), Hájek (1997, 2009).
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3 The Introduction of Probability into Sta-

tistical Mechanics

It is useful to distinguish between two sorts of use of the probability calculus.
One sort, which we may call quasi-deterministic, uses, implicitly or explicitly,
a version of the Law of Large Numbers to replace, when dealing with a large
collection of things, some quantity by its expectation value. For example, in
a long enough sequence of coin tosses of a fair coin, we may take the fraction
of tosses that are heads to be one-half, as this will, with high probability, be
a good approximation. The hallmark of this use is effective certainty from
uncertainty; a large number of individually unpredictable events combine
to yield a result that is almost certain. The second sort of use is found in
cases in which the deviations of a quantity from its expectation value are not
negligible.

Von Plato (1994, 72) credits Krönig (1856) with the first use of probability
in the context of the kinetic theory of gases. Krönig’s use of probability is
of the quasi-deterministic sort, to conclude that out the irregular motion of
molecules would arise regularity (Krönig, 1856, 316). We also find a quasi-
deterministic use, in passing, in Clausius (1857, 371-72; 1966, 126).

Unlike his predecessors, Maxwell did not replace a gas of molecules mov-
ing with different speeds with one in which all have the same speed, but,
rather, investigated the distribution of velocities one should expect to find
among the molecules of a gas. Much of his work in kinetic theory is concerned
with showing that the distribution of velocities in a gas will be what is now
called the Maxwell-Boltzmann distribution. In 1867 he attempted to show
that molecular collisions would lead to the Maxwell-Boltzmann distribution
of velocities. The argument relies on the assumption (invoked without com-
ment) that the Ehrenfests would later call the Stoßzahlansatz. This is the
assumption that, for pairs of molecules about to collide, one can assume prob-
abilistic independence of the incoming velocities, and moreover, treat the two
molecules as if their velocities are randomly sampled from the distribution of
velocities in the gas as a whole. Maxwell shows that the Maxwell-Boltzmann
distribution is stationary under collisions, and concludes that this distribu-
tion is what collisions will lead to.

Maxwell’s use of probabilistic reasoning is of the quasi-deterministic sort.
But it was the Maxwell-Boltzmann distribution, which makes it clear that
there will be variations of speeds among the molecules of the gas, that led

5



him eventually to conclude that the second law of thermodynamics would
hold, at best, with high probability for macroscopic systems.

Boltzmann, in 1868 and, more significantly, in 1872, sought to provide a
derivation more satisfactory than Maxwell’s. In 1872 he argued that molec-
ular collisions would lead to a decrease in a quantity that he called H, a
result known as Boltzmann’s H-theorem. Though the proof requires the
Stoßzahlansatz, it is not highlighted by Boltzmann as a special assumption.

So far, these are all quasi-deterministic, or order-from-disorder appli-
cations of probability. However, if thermodynamic relations are relations
between expectation values of quantities defined as averages of molecular
properties, then we should expect to find deviations from these relations,
though the probability of significant deviations will diminish as the number
of molecules increases. Of particular significance is the recognition that the
second law of thermodynamics, as originally conceived, cannot, on the ki-
netic theory, be strictly correct; at best we can expect it to hold, with high
probability, to a high degree of approximation, for systems of many degrees
of freedom.

Recognition of limitations on the validity of the second law of thermo-
dynamics appears in Maxwell’s correspondence starting about 1867. The
key consideration is the issue of reversibility. On the assumption that inter-
molecular forces depend on only their relative positions, the dynamical laws
governing their motions will be reversible and thermodynamic irreversibility
cannot be a consequence of dynamical considerations alone. Maxwell’s view
is that processes that, from the point of view of thermodynamics, are re-
garded as irreversible, are ones whose temporal inverses are not impossible,
but merely improbable. In a letter to the editor of the Saturday Review,
dated April 13, 1868, Maxwell draws an analogy between mixing of gases
and balls shaken in a box.

As a simple instance of an irreversible operation which (I think)
depends on the same principle, suppose so many black balls put
at the bottom of a box and so many white above them. Then
let them be jumbled together. If there is no physical difference
between the white and black balls, it is exceedingly improbable
that any amount of shaking will bring all the black balls to the
bottom and all the white to the top again, so that the operation
of mixing is irreversible unless either the black balls are heavier
than the white or a person who knows white from black picks
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them and sorts them.

Thus if you put a drop of water into a vessel of water no chemist
can take out that identical drop again, though he could take out
a drop of any other liquid (in Garber et al. 1995, 192–193).

We find similar considerations in Gibbs several years later.

[W]hen such gases have been mixed, there is no more impossibil-
ity of the separation of the two kinds of molecules in virtue of
their ordinary motions in the gaseous mass without any external
influence, than there is of the separation of a homogeneous gas
into the same two parts into which it has once been divided, after
these have once been mixed. In other words, the impossibility of
an uncompensated decrease of entropy seems to be reduced to
improbability (Gibbs 1875, 229; 1961, 167).

It is one thing to acknowledge that violations of the second law will some-
times occur, albeit with low probability. Maxwell went further, asserting
that, on the small scale, minute violations of the second law will continually
occur; it is only large-scale, observable violations that are improbable.

[T]he second law of thermodynamics is continually being violated,
and that to a considerable extent, in any sufficiently small group
of molecules belonging to a real body. As the number of molecules
in the group is increased, the deviations from the mean of the
whole become smaller and less frequent; and when the number is
increased till the group includes a sensible portion of the body, the
probability of a measurable variation from the mean occurring in
a finite number of years becomes so small that it may be regarded
as practically an impossibility.

This calculation belongs of course to molecular theory and not
to pure thermodynamics, but it shows that we have reason for
believing the truth of the second law to be of the nature of a
strong probability, which, though it falls short of certainty by
less than any assignable quantity, is not an absolute certainty
(Maxwell 1878b, p. 280; Niven 1890, pp. 670–71).

William Thomson (1874) provided calculations of the probability of a
variety of fluctuations away from the equilibrium state of mixed gases.
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The quasi-deterministic use of probability in Boltzmann’s H-theorem,
together with the tacit nature of his employment of the key probabilistic
assumption, the Stoßzahlansatz, fostered the impression that the H-theorem
followed from molecular dynamics alone. As we have already noted, Maxwell
and the British physicists working on kinetic theory were by this time keenly
aware that there could be no derivation of an irreversible relaxation to equi-
librium on the basis of reversible dynamics; in their view, probabilistic as-
sumptions would be needed, and the conclusion to be derived is that evolu-
tion away from macroscopic equilibrium, rather than towards it, is at best
improbable, not impossible. There are no hints of reservations of this sort in
Boltzmann’s work of 1872. It was Loschmidt who, in 1876, drew Boltzmann’s
attention to reversibility considerations. In his response to Loschmidt, Boltz-
mann (1877a) acknowledged that there could be no purely dynamical proof
of the increase of entropy.5

Thus, in the decade from 1867-1877, the major figures involved in the de-
velopment of statistical mechanics concluded, on the basis of the reversibility
argument, that the second law of thermodynamics, as originally conceived,
could not be strictly true, and that it must be replaced by a probabilistic
version, in which what is deemed impossible in the original version becomes
improbable.

4 Revising Thermodynamics

On the kinetic theory, heat is not a substance, and it makes no sense to talk
of the heat content of a body. Instead, we distinguish between two modes in
which energy may be transferred from one body to another; as heat, or as
work done on (or by) the body.

The first law of thermodynamics says that, if the internal energy U of
a body changes by an amount dU , then this change is equal to the sum of
energy transferred as heat, and energy transferred as work.

dU = d̄ Q+ d̄W. (1)

The Clausius formulation of the second law of thermodynamics says that
there can be no process whose sole net effect is to transfer heat from a warmer

5For further discussion of the probabilistic turn in Boltzmann’s thinking, see Uffink
(2007), Brown et al. (2009).
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to a cooler body. It follows from the second law that any two reversible
heat engines operating between heat reservoirs at given temperatures T1 and
T2 have the same efficiency, and that no engine is more efficient than a
reversible one. Considerations of the Carnot cycle lead to the conclusion
that, if a system that goes through a reversible cycle that leaves it in the
same thermodynamic state as it started,∮ d̄ Q

T
= 0. (2)

And from this, it follows that there is a function S of the thermodynamic
state, such that, in any reversible process, the change in S is given by

∆S =
∫ d̄ Q

T
. (3)

This function (defined only up to an additive constant), is called the entropy.
As already mentioned, on the kinetic theory, we should expect that not

all molecules in a gas will have the same velocity, and, as the molecules
bounce around, there will be differences in local averages of kinetic energy
of molecules from place to place. Therefore, since, on the kinetic theory,
the temperature of a gas is proportional to the mean kinetic energy of its
molecules, temperature differences will arise via spontaneous fluctuations,
without expenditure of work, in contradiction to the second law. We can
also expect, however, that these fluctuations will for the most part be negli-
gible on the macroscopic scale, and large fluctuations will be both rare and
unpredictable. Thus, though the second law of thermodynamics, as orig-
inally conceived, is untenable, we can set ourselves the goal of recovering
from statistical mechanics a weakened version, which nonetheless would ex-
plain the evidence that led to acceptance of the stronger version. What the
Clausius version of the second law deems impossible, namely, the transfer
of heat from a cooler to a warmer body unaccompanied by a compensating
increase of entropy, the revised version declares to be highly improbable.

Maxwell would add a further limitation. Note that, in the quotation in
the previous section, the improbability of reversal of the mixing of the balls is
limited to circumstances in which there is no sorting of white from black. For
Maxwell, the validity of even the weakened version is restricted to situations
in which we are dealing with molecules in bulk and there is no manipulation
of individual molecules (Maxwell, 1871, 328-329).6

6This is what the creature now known as Maxwell’s demon is meant to illustrate. The
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On Maxwell’s view, the distinction between heat and work is not inherent
in a physical process but has to do, rather, with the means available to us to
keep track of and manipulate the motion of molecules.

Available energy is energy which we can direct into any desired
channel. Dissipated energy is energy we cannot lay hold of and
direct at pleasure, such as the energy of the confused agitation
of molecules which we call heat(Maxwell 1878a, 221; Niven 1890,
646).

To a being such as Maxwell’s demon, able to track individual molecules, “the
distinction between work and heat would vanish, for the communication of
heat would be seen to be a communication of energy of the same kind as
that which we call work” (Maxwell 1878b, 279; Niven 1890, 669). With the
distinction between heat and work vanishes any possibility of formulating
thermodynamics. In particular, since the very definition of thermodynamic
entropy requires a distinction between heat and work, for Maxwell, the en-
tropy change associated with a process will not be an intrinsic property of
the process—though, one might add, because of the vast gulf in scales be-
tween the macroscopic and the level of individual molecules, for macroscopic
phenomena the concepts of heat and work will be sufficiently unambiguous
to admit of unproblematic application.7

If it is a revised version of the second law of thermodynamics that we aim
to recover from statistical mechanics, one according to which the processes
declared impossible by the original version of the second law are judged
improbable, then, it seems, there will be no avoiding the use of probabilistic
concepts in statistical mechanics. This renders questions about the status
of probabilities in statistical mechanics central to the interpretation of the
theory.

Probabilities play somewhat different roles in Boltzmannian and Gibbsian
approaches to statistical mechanics. Both make use of the apparatus of phase
space and Hamiltonian dynamics. In the next section, this apparatus will be
briefly reviewed.

demon is first described in a letter dated December 11, 1867, from Maxwell to P.G. Tait
(Knott, 1911, 213–214), and makes its first public appearance in Maxwell’s Theory of Heat
(1871), in a section entitled, “Limitation of the Second Law of Thermodynamics.”

7For further discussion of the Maxwellian view of thermodynamics and statistical me-
chanics, see Myrvold (2011).
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5 Basic concepts of Hamiltonian dynamics

The Hamiltonian formulation of classical mechanics has turned out to be
a useful setting for classical statistical mechanics. Consider a system of N
degrees of freedom, represented by coordinates {q1, ..., qN}. These might, for
example, be the 3n position coordinates of n point particles; they might also
include angle variables or other parameters. With each generalized coordi-
nate qi is associated a conjugate momentum pi.

Since the Newtonian equations of motion are second-order in the time
derivative, to specify a solution it does not suffice to specify the values of
coordinates at a given time. We can, however, specify a solution by specify-
ing values of the coordinates and their rates of change, or, equivalently, by
specifying the coordinates and momenta. The 2N -dimensional space whose
points are given by specifying the coordinates and momenta of a system with
N degrees of freedom is called the phase space of the system.

The dynamics of the system are encoded in a function on phase space
called the Hamiltonian, which, for the systems with which we will be con-
cerned, is simply the total energy of the system, expressed in terms of gener-
alized coordinates {q1, ..., qN} and their conjugate momenta {p1, ..., pN}. The
dynamically possible trajectories through phase space are those that satisfy
Hamilton’s equations of motion,

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
. (4)

These equations define a flow on phase space; there is a function Tt that
maps the phase space into itself, such that, if x is the phase point at some
time t0, Ttx is the phase point at time t0 + t.

The phase space volume of a subset A of phase space is given by

m(A) =
∫
A
dq1...dqN dp1...dpN . (5)

Note that this is defined in terms of canonical coordinates and momenta.
It is invariant under canonical transformations, that is, coordinate transfor-
mations that preserve the equations of motion (4), but not under arbitrary
coordinate transformations. In particular, it makes a difference whether we
use momenta or velocities to parameterize the space. For example, if we
consider a system confined to a finite volume that contain two molecules of
different masses, then the set of all states in which the more massive molecule
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has its velocity within certain limits will have larger phase space volume than
the set of states in which the less massive molecule has its velocity within the
same limits, although, on the measure corresponding to (5) with velocities
in place of momenta, these sets would have equal measure.

For any subset A of a phase space Γ, let Tt(A) be the set of points that
evolve, in time t, from points in A.

Tt(A) = {Tt x | x ∈ A}. (6)

It is easy to show that phase space volume is preserved under the dynamical
evolution (4),

m(Tt(A)) = m(A). (7)

A probability distribution P0 over the state of the system at time t0,
together with the phase-space flow Tt, determines a probability distribution
Pt for any other time t0 + t:

Pt(x ∈ A) = P0(x ∈ T−1t (A)). (8)

If the probability distribution for the state at time t is represented by a
density function ρ(q,p, t), this will obey Liouville’s equation:

∂ρ

∂t
+

N∑
i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
= 0. (9)

It follows from Liouville’s equation that any probability distribution given by
a density function that is a function of the Hamiltonian will be a stationary
distribution.

6 Boltzmannian Statistical Mechanics

6.1 Entropy and probability

As already mentioned, in 1872 Boltzmann proved (with implicit assumption
of the Stoßzahlansatz ) that molecular collisions in a gas would lead to the
Maxwell-Boltzmann distribution of velocities. The proof proceeded by defin-
ing a quantity that Boltzmann calledH and showing that it tends to decrease.
For an ideal gas, at least, the negative of H is related to the thermodynamic
entropy. Later (1877b), he showed that there is a relation between H and
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phase-space volume, suggesting that the entropy of a macrostate is related to
its phase-space volume. On a probability measure that assigns probabilities
to regions of phase space that are proportional to their phase-space volume,
entropy is then connected with probability.

In this section we follow the procedure of Boltzmann (1877b, 1995), which
is summarized in Ehrenfest and Ehrenfest (1912). For simplicity, we consider
a system that consists of a large number N of identical molecules, each with r
degrees of freedom (the generalization to systems consisting of several types
of molecules is straightforward). Let µ be the 2r-dimensional phase space of
an individual molecule, and let Γ = µN be the 2rN -dimensional phase space
of the entire system of N molecules.

We will assume that we need only consider a finite region of the system’s
phase space. It might, for example, be a gas confined to a box, with energy
known to lie within a small interval [E,E + δE]. For each molecule, there
will be an accessible region of its phase space, consisting of states consistent
with the constraints on the system as a whole (every molecule will have its
position in the box, and no molecule can have an energy greater than the
energy of the whole system). Partition the accessible region of µ into small
regions {ωi, i = 1, ...,m} of equal phase-space volume [ω], corresponding to
small intervals of values of each of the coordinates and momenta. Suppose
that the macrostate of the system depends only on the number of molecules
whose phase-point lies in each region ωi.

8 Let {ni, i = 1, ...,m} be these
occupation numbers, that is, a specification, for each ωi, of the number of
molecules whose state lies in that region; such a specification is called a state
distribution. For each state-distribution Z there is a corresponding subset
ΓZ of Γ, consisting of phase points that yield that state distribution (such
a region is called, by the Ehrenfests, a “Z-star”). Define a function H of
state-distributions,

H(Z) =
m∑
i=1

ni log ni. (10)

This H is the quantity that Boltzmann had argued, in 1872, would be de-

8This is a nontrivial assumption, valid for an ideal gas, but not for systems for which
intermolecular potentials make a nonnegligible contribution to the total energy. For such
systems, the total energy is not a function only of occupation-numbers of a partition of
the single-molecule phase space, but also on the distribution of pairs of molecules in the
two-molecule phase space. See Jaynes (1965, 1971) for discussion. Jaynes’ essential point
is correct, though it is marred by his taking (13), rather than its generalization (14), as
the definition of the Boltzmann entropy.
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creased by collisions between molecules in a gas, until it reached its minimum
possible value. For large N , we have a relation between H(Z) and the phase-
space volume of the Z-star ΓZ .

log (m(ΓZ)) ≈ −H(Z) + C, (11)

where C is a constant that depends on N and on the size of the cells in our
chosen partition of the molecular phase-space µ.

The relation (11) reveals the significance of H as an indication (up to
an arbitrary constant) of the volume of phase space occupied by a state-
description. Moreover, if we take Zmax to be the state description that min-
imizes H (that is, maximizes −H), subject to the imposed constraints, then
we find that, for an ideal gas, the quantity

SB = −kH(Zmax) (12)

is equal, up to an additive constant, to the thermodynamic entropy.
This suggests a construal of entropy in terms of phase space volume. For

any phase point x, let Z(x) be the Z-star containing x, and define

SB(x) = k log[m(Z(x))]. (13)

One can generalize this to situations in which the macrostate is not a
function only of occupation numbers of regions of the single-particle space
µ.9 Suppose the macrostate of the system is defined by the values of a small
number of functions {X1, ..., Xk}. Partition the accessible phase space Γ into
regions corresponding to small intervals of values of these macrovariables;
each such region consists of points that, for practical purposes, share the
same values of the macrovariables. Then the entropy assigned to a point x
is given by

SB(x) = k log[m(M(x))], (14)

where M(x) is the macrostate containing x.
This gives an appearance of assigning an entropy that is a property of the

physical state of the system alone. But note that the value of the Boltzmann
entropy depends, not only on the phase point x, but also on the macrovari-
ables chosen to define macrostates (presumably, these are the ones that we are

9It is this generalization that is referred to in current presentations of the Boltzmannian
approach to statistical mechanics. See, e.g., Lebowitz (1993, 1999); Goldstein (2001).
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able to measure), and a partition of the macrovariables into sets fine enough
that differences within a set are regarded as negligible; this, presumably, has
to do with the precision with which we can measure the macrovariables.

Given a partition of the accessible phase space into macrostates, we iden-
tify the equilibrium macrostate with the one that has largest phase space
volume. The ratio of this volume to the volume of all other macrostates will
be of order 10N , where N is the number of molecules. If we identify macro-
scopic systems as those containing a number of molecules roughly on the
order of Avogadro’s number—that is, on the order of 1023— the equilibrium
macrostate will have vastly larger phase-space volume than the rest of the
accessible region of phase space.

6.2 Explaining entropy increase

These considerations give intuitive content to the H-theorem. The move from
a non-equilibrium macrostate to the equilibrium macrostate is a move from a
region that occupies a vanishingly small volume of the accessible phase space
to a region that occupies most (as measured by phase-space volume) of the
accessible region of phase space.

Can such considerations lead to a conclusion that, for a macroscopic sys-
tem in a non-equilibrium macrostate, the system will, with overwhelming
probability, relax to equilibrium?

Note that, even if we take the uniform measure on phase space to yield a
probability measure, the observation that the equilibrium macrostate domi-
nates the phase space does not suffice for the conclusion. What is required
is that, for any non-equilibrium macrostate M , most of the states in M are
ones that evolve into the equilibrium macrostate. This will be the case if the
dynamics are ergodic (see §8.2.1), though ergodicity is not required for the
conclusion to go through.

Sheldon Goldstein argues that we should expect most phase points in
any nonequilibrium macrostate to move into the equilibrium state, on the
grounds that

[f]or a nonequilibrium phase point X of energy E, the Hamilto-
nian dynamics governing the motion Xt arising from X would
have to be ridiculously special to avoid reasonably quickly car-
rying Xt into Γeq and keeping it there an extremely long time
— unless, of course, X itself were ridiculously special (Goldstein,
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2001, 43)

Note, also, that the argument, though it makes reference to the uniform
measure on phase space, does not depend sensitively on this measure being
regarded as the one we use to judge some initial conditions improbable or
“ridiculously special.” What is required is that, whatever measure we use
to judge probabilities, it assign small probabilities to sets of small Lebesgue
measure.

The argument, as it stands, is symmetric under time-reversal. It supports
equally well the conclusion that, with the exception of ridiculously special
states, the states in a non-equilibrium macrostate are those that evolved from
an equilibrium macrostate a short time before. Yet, if we run across, say,
a thermos bottle that happens to contain warm water and some ice cubes,
we don’t conclude that this condition probably arose from a state of uniform
temperature a short while ago.

This leads us to ask what grounds we have for regarding the exceptional
states, that give rise to antithermodynamic behaviour, as ridiculously special,
with an attendant inference to ridiculously improbable. Indiscriminate appli-
cation of this sort of reasoning would lead one to regard all out-of-equilibrium
states as ridiculously special. Yet systems that are far from thermodynamic
equilibrium are not (apparently) rare; they are seemingly ubiquitous. Our
experience hardly lends support to the claim that out-of-equilibrium systems
are atypical!

Of course, it is possible that our experience is misleading. One can imag-
ine scenarios on which what we see is not even close to a fair sample of all
that there is, and everything we see is atypical indeed. One such scenario is
the Boltzmann-Schuetz cosmology, on which the Universe consists of a vast
sea of matter whose overall state is thermal equilibrium, with occasional fluc-
tuations here and there away from equilibrium (Boltzmann 1895, Boltzmann
1995, §90). Though they would be mind-bogglingly rare, there would also be
low-entropy regions as large as the observable universe. On such a scenario,
the states we see around us would not be typical states, as the very existence
of living, experiencing beings requires low-entropy matter. One can, without
contradiction, maintain that features that are ubiquitous in our experience
are rare in the universe.

There is a consequence, however, that Boltzmann seems not to have no-
ticed. On such a scenario, the vast majority of occurrences of a given non-
maximal level of entropy would be near a local entropy minimum, and so
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one should regard it as overwhelmingly probable that, even given our cur-
rent experience, entropy increases towards the past as well as the future, and
everything that seems to be a record of a lower entropy past is itself the
product of a random fluctuation. Moreover, you should take yourself to be
whatever the minimal physical system is that is capable of supporting experi-
ences like yours; apparent experiences of being surrounded by an abundance
of low-entropy matter are illusory. That is, you should take yourself to be
what has been called a “Boltzmann brain.”10

This is a logically possible scenario. But not only does it involve rejecting
judgments of what is typical that are based on experience (which tells us
that out-of-equilibrium systems are ubiquitous), it even goes so far as to
lead us to reject everything we experience as illusory. Empirical evidence
does not support this cosmology; at best, belief in such a scenario could be
supported by purely a priori reasoning. Yet it is physics that brought us
to these considerations, physics based on empirical evidence that the world
is to be described, at least approximately, as a large number of molecules
evolving according to Hamiltonian dynamics. A theory that tells us that the
experiments on which it is founded are illusory undermines its own empirical
base.

The conclusion to be drawn is that, whatever judgments may be war-
ranted about probabilities of states of things, they are not to be based on
considerations of phase-space volume alone.

7 Gibbsian statistical mechanics

The Gibbsian approach involves consideration of probability measures on the
phase space of a system. Gibbs thought of probability in frequentist terms,
and accordingly enjoined his readers to imagine a great number of indepen-
dent systems of the same type, all with the same macroscopic properties, but
different microstates. Thus, he referred to ensembles of systems, and thought
of the probability assigned to a region A of phase space as closely approx-
imating, for a sufficiently large ensemble of similarly-prepared systems, the
fraction of systems in the ensemble whose microstate is in A.

The goal of statistical mechanics is to identify properties of mechanical
systems that are analogues of thermodynamic quantities, in the sense that

10The term is due to Andreas Albrecht. It first appears in print in Albrecht and Sorbo
(2004).
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one can demonstrate, on the basis of the laws of mechanics and appropri-
ate probabilistic assumptions, that, with high probability, to a high degree
of approximation these properties stand in relations analogous to those of
thermodynamics. According to Gibbs,

A very little study of the statistical properties of conservative
systems of a finite number of degrees of freedom is sufficient to
make it appear, more or less distinctly, that the general laws of
thermodynamics are the limit toward which the exact laws of such
systems approximate, when their number of degrees of freedom
is indefinitely increased (Gibbs, 1902, 166).

Gibbs gave names to ensembles of particular interest: the microcanonical,
the canonical, and the grand canonical. The microcanonical ensemble is
meant to be appropriate for an isolated system in equilibrium whose energy
is known. The canonical ensemble is appropriate for a system in thermal
contact with a heat bath of fixed temperature, which can exchange energy
but not material with its environment, so that it contains a fixed number of
molecules. In a grand ensemble, the number of molecules is not held fixed,
as there might, for example, be chemical reactions taking place. A grand
canonical ensemble is a grand ensemble in thermal contact with a heat bath.

Though Gibbs spoke of ensembles, in keeping with his frequentism about
probability, in what follows we will speak of probability distributions, without
commitment as to whether these are to be thought of in frequentist terms.
For our purposes, we need only consider in detail the microcanonical and
canonical distributions, as the key conceptual issues associated with Gibbsian
equilibrium probability measures arise already with them. The reader should
be aware, however, that the scope of statistical mechanics is not limited to
considerations of systems with a fixed number of degrees of freedom, and is
capable of dealing with dynamical equilibrium of chemical reactions.

7.1 Microcanonical distributions

Consider a system whose total energy is known to lie within a small interval
[E,E+δE]. Suppose also that the system is confined to a finite phase volume
within this energy shell (the system might, for example, be a gas confined to
a box of finite volume). We define a phase space measure that is uniform,
in phase space variables, within the accessible region of the energy shell, and
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zero outside of it. Since the density function is a function of energy alone,
this is a stationary distribution.

If Γ is a 2N -dimensional phase space of a system with N degrees of free-
dom, the subset ΓE of all points having an energy E is a 2N −1-dimensional
surface within Γ. We can define, as a limiting case, a distribution on this
surface, which will be the projection onto the energy surface of the uniform
distribution in the energy shell.

7.2 Canonical distributions

A canonical distribution is one given by a density function that takes the
form

ρ(x) = Z−1e−βH(x) (15)

for x in the accessible region of the system’s phase space. Z is a normalization
constant satisfying

Z =
∫
e−βH(x)dx, (16)

where the integral is taken over the accessible region of phase space. Z is
a function of the parameter β, and any external parameters on which the
accessible region of phase space or the Hamiltonian depend. It is known as
the partition function.

Suppose we have two systems S1, S2 that are weakly coupled, so that the
total Hamiltonian is approximately the sum of the Hamiltonians of the two
systems. Suppose that the two systems initially are characterized by canon-
ical distributions with parameters β1 and β2, respectively. Then the joint
distribution will be an approximately stationary one if and only if β1 = β2.
This, Gibbs argued, suggests that the canonical distribution is appropriate
for representing a system in thermal equilibrium with a heat bath, with a
temperature that is a function of β.11 Considerations of the canonical en-
semble applied to an ideal gas lead to the identification

β =
1

kT
, (17)

where T is the absolute temperature and k is Boltzmann’s constant.

11As Gibbs is careful to point out, this does not amount to a proof, as there are other
distributions that share this property (Gibbs, 1902, 35–42).
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7.3 The Gibbs Entropy

Gibbs argued that, for systems for which the canonical distribution is appro-
priate, the quantity,

SG = −k〈log ρ〉 = −k
∫
ρ(x) log ρ(x) dx (18)

behaves like the thermodynamic entropy (see Gibbs 1902, 43–45 and Ch.
XIV). Though Gibbs’ argument is restricted to situations for which the
canonical distribution is appropriate, we can consider the quantity

SG[ρ] = −k
∫
ρ(x) log ρ(x)dx, (19)

for other distributions. SG[ρ] is, in some sense, a measure of how “spread
out” the probability distribution is.12 This quantity has come to be known
as the Gibbs entropy of the probability distribution given by the density
function ρ. For any ρ, SG[ρ] is conserved under Hamiltonian flow.

7.3.1 Gibbs entropy and Boltzmann entropy compared

It can be shown that the standard deviation of energy

∆E =
√
〈E2〉 − 〈E〉2 (20)

yielded by a canonical distribution will, for systems of very many degrees of
freedom, be small compared to the expectation value of energy,

∆E

〈E〉
∼ 1√

N
. (21)

Recall that, for macroscopic systems, N is on the order of Avogadro’s num-
ber, that is, on the order of 1023, so the deviation in energy is very small

12For a finite probability space, to the atoms of which are assigned probabilities
{p1, p2, ..., pn}, the Gibbs entropy becomes

SG = −k
n∑

i=1

pi log pi,

which is the quantity that Shannon (1948) named the entropy of the probability assignment
{p1, p2, ..., pn}, and for which he used the symbol H, in analogy with Boltzmann’s H.

20



indeed. The energy is almost certain to depart only negligibly from its ex-
pectation value, and so the canonical distribution can be replaced, for the
purpose of calculating expectation values of thermodynamic quantities, with
a microcanonical distribution on the energy surface corresponding to the
expectation value of energy.

Moreover, most of this energy surface will be occupied by the equilibrium
macrostate, and there is little difference between calculating the phase-space
volume of the energy surface and the volume of its largest macrostate. Thus,
for systems in equilibrium and macroscopically many degrees of freedom, the
Boltzmann entropy and the Gibbs entropy will be approximately equal, up
to a constant, and, crucially, will exhibit the same dependence on on external
parameters.

Suppose we extend the identification of (19) as entropy for systems other
than those in thermal contact with a heat bath. We might even extend
this identification to non-equilibrium situations, for which thermodynamic
entropy is undefined. Then, because of the measure-preserving property of
Hamiltonian flow on phase space, for an isolated system, SG will not increase
with time. This makes it a poor candidate for tracking entropy changes
in a process of relaxation to equilibrium. However, we can also define a
coarse-grained entropy by partitioning the phase space Γ into small regions
of equal volume, and replacing the probability distribution over microstates
by one that is uniform over elements of the partition. The idea is that, if
the elements of the partition are smaller than our ability to discriminate
between microstates, this smeared probability distribution will yield virtu-
ally the same probabilities for outcomes of feasible measurements as the
fine-grained distribution. The Gibbs entropy associated with this smeared
probability distribution can increase with time.

Recall that the definition of the Boltzmann entropy also requires a coarse-
graining of the phase space of the system. The conceptual differences between
Boltzmann entropy and coarse-grained Gibbs entropy are not great.

8 Justifying choice of equilibrium measures

The microcanonical distribution is uniform, in phase space variables, within
a small energy shell. One might be tempted to think that this is mandated by
a straightforward application of the Principle of Indifference (and one some-
times sees statements to this effect). We should recall, however, the familiar
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fact that any application of a Principle of Indifference requires some judg-
ment about which possibilities are equiprobable. In the case of a continuum
of possibilities, as we have in classical statistical mechanics, an injunction to
adopt a uniform probability measure requires specification of which variables
the distribution is to be uniform in. A distribution uniform in canonical
phase space variables will not be uniform with respect to some other param-
eterization of the state space of the system. Even if we accept the authority
of the Principle of Indifference, we ought to ask, why these variables, rather
than some other parameters?

Part of the answer to this question lies in the fact that we are concerned
with equilibrium measures. On the Gibbsian approach, thermal equilibrium
is not to be thought of as a static state; it is one on which the microstate
is constantly changing and the macrostate, though approximately constant
most of the time, is subject to frequent tiny fluctuations and much rarer large
ones. An ensemble of systems, however, should not exhibit any tendency to
change overall, and this means that the equilibrium distributions should be
stationary distributions.

As we have seen, it follows from the Liouville equation that, for a conser-
vative system, any distribution given by a density function that is a function
of the the energy is a stationary distribution. It is thus easy to see that the
microcanonical distribution is a stationary one. The question arises whether
there might be other stationary distributions that are plausible candidates
for an equilibrium probability distribution.

8.1 The hypothesis of uniform a priori probabilities

In an influential text book published in 1938, Tolman introduced what he
called “the fundamental hypothesis of equal a priori probabilities.”

Although we shall endeavour to show the reasonableness of this
hypothesis, it must nevertheless be regarded as a postulate which
can ultimately be justified only by the correspondence between
the conclusions which it permits and the regularities in the be-
haviour of actual systems which are empirically found (Tolman,
1938, 59).

Tolman argues for the reasonableness of this postulate on the basis of Liou-
ville’s theorem, which shows that a distribution uniform in phase space is a
stationary distribution; this shows that “the principles of mechanics do not
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themselves include any tendency for phase points to concentrate in particular
regions of the phase space” (61).

Under the circumstances we then have no justification for pro-
ceeding in any manner other than that of assigning equal proba-
bilities for a system to be in different equal regions of the phase
space that correspond, to the same degree, with what knowledge
we do have as to the actual state of the system. And, as already
intimated, we shall, of course, find that the results which can
then be calculated as to the properties and behaviour of systems
do agree with empirical findings (Tolman, 1938, p. 61).

This is reminiscent of an invocation of a Principle of Indifference, albeit not
an incautious one that ignores the necessity of a choice of variables over
which to impose uniformity. Subsequent authors have taken the Principle of
Indifference as a foundational principle for statistical mechanics.13

8.2 Probabilities from dynamics

8.2.1 Approaches based on ergodic theory

Boltzmann conjectured that

The great irregularity of the thermal motion and the multitude
of forces that act on a body make it probable that its atoms,
due to the motion that we call heat, traverse all positions and
velocities which are compatible with the principle of [conservation
of] energy (quoted in Uffink (2007, 40)).

This has come to be known as the ergodic hypothesis. As stated, it cannot
be correct, as the trajectory is a one-dimensional continuous curve and so
cannot fill a space of more than one dimension. But it can be true that
almost all trajectories eventually enter every open neighbourhood of every
point on the energy surface. Boltzmann argued, on the basis of the ergodic
hypothesis, that the long-run fraction of time that a system spends in a given
subset of the energy surface is given by the measure that Gibbs was to call
microcanonical.

13See e.g., Jackson (1968). E. T. Jayne’s Principle of Maximum Entropy (Jaynes,
1957a,b) is a version of the Principle of Indifference.
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Given a Hamiltonian dynamical system, and an initial point x0, we can
define, for any measurable set A such that the requisite limit exists, the
quantity

〈A, x0〉time = lim
T→∞

1

T

∫ T

0
χA(Tt(x0)) dt, (22)

where χA is the indicator function for A,

χA(x) =

{
1, x ∈ A
0, x /∈ A. (23)

〈A, x0〉time, provided it exists, is the fraction of time, in the long run, that a
trajectory starting at the point x0 spends in the set A.

A dynamical system is said to be ergodic iff, for any set A of positive mea-
sure, the set of initial points that never enter A has zero measure. It is easily
shown that this condition is equivalent to metric transitivity : a dynamical
system is metrically transitive iff, for any partition of Γ into disjoint subsets
A1, A2 such that, for all t, Tt(A1) ⊆ A1 and Tt(A2) ⊆ A2, either m(A1) = 0
or m(A2) = 0.

Von Neumann and Birkhoff proved that, for any measure-preserving dy-
namical system, and any measurable set A,

1. The limit

〈A, x0〉time = lim
T→∞

1

T

∫ T

0
χA(Tt(x0)) dt (24)

exists for almost all points x0. (That is, if X is the set of points for
which this limit doesn’t exist, m(X) = 0.)

2. If the dynamical system is ergodic, then

〈A, x0〉time = m(A). (25)

for almost all x0.

Consider an ergodic system that has been permitted to evolve in isolation
for a long time. If we select a random time to look at it, then the probability
that the system is in a subset A of ΓE will be given by 〈A, x0〉time, which, by
the von Neumman-Birkhoff theorem, is equal to the measure ascribed to A
by the microcanonical measure.

Is this a justification for taking the microcanonical measure to be the
measure that yields the correct probabilities for an isolated system? Two
reservations arise.
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The first has to do with whether actual systems of interest have ergodic
dynamics. Proving this turns out to be very difficult even for some very
simple systems. Moreover, there are systems, namely, those to which the
KAM theorem applies, that are provably not ergodic (see Berkovitz et al.
(2006) for discussion of the applicability of ergodic theory).

The second is the use of the long-term time average. The picture invoked
above, of a system isolated for a very long time and observed at a random
time, does not fit neatly with laboratory procedures. One argument that
has been given for considering the long-term time average is as follows.14

Measurements of thermodynamic variables such as, say, temperature, are
not instantaneous, but have a duration which, though short on human time
scales, are long on the time scales of molecular evolution. What we measure,
then, is in effect a time-average over a time period that counts as a very long
time period on the relevant scale.

This rationale is problematic. The time scales of measurement, though
long, are not long enough that the average over them necessarily approxi-
mates the limit in (22); as Sklar (1993, 176) points out, if they were, then the
only measured values we would have for thermodynamic quantities would be
equilibrium values. This, as Sklar puts it, is “patently false”; we are, in fact,
able to track the approach to equilibrium by measuring changes in thermo-
dynamic variables.

As mentioned above, if we are to ask for a probability distribution appro-
priate to thermodynamic equilibrium, the distribution should be a stationary
distribution. The microcanonical distribution is a stationary distribution on
ΓE. If the system is ergodic, then it is the only stationary distribution among
those that assign probability zero to the same sets that it does. For a jus-
tification of the use of the microcanonical distribution along these lines, see
Malament and Zabell (1980).

8.2.2 Almost-objective probabilities

There is, in the mathematical literature on probability, a family of tech-
niques that is known (somewhat misleadingly) as “the method of arbitrary
functions.” The idea is that, for certain systems, a wide range of probability
distributions will be taken, via the dynamics of the system, into distribu-
tions that yield approximately the same probabilities for some statements

14Adapted from Khinchin (1949, 44-45).
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about the system, because small uncertainties about initial conditions be-
come larger uncertainties about macroscopic variables at a a later time.15

It is plausible, at least, that the dynamics of the sorts of systems to which
we successfully apply statistical mechanics exhibit the requisite sort of for-
getting of initial conditions. Consider, for example, an isolated system that
is initially out of equilibrium (it might, for example, be a cup of hot water
with an ice cube in it). It is left alone to relax to equilibrium. Once it has
done so, then, it seems, all trace of its former state has been lost, or rather,
buried so deeply in the details of the system’s microstate that no feasible
measurement can be informative about it. For systems of this sort, a wide
class of probability distributions over initial conditions evolve, via Liouville’s
equation, into distributions that, as far as feasible measurements are con-
cerned, yield probabilities that are indistinguishable from those yielded by
the equilibrium distribution.

We need not restrict ourselves to states of thermodynamic equilibrium.
If we open a thermos bottle and find in it half-melted ice cubes in lukewarm
water, it is plausible that no feasible measurement on the system will deter-
mine whether the system was prepared a few minutes ago with only a little
less ice, or an hour ago with boiling water and a lot of ice. If this is right,
then again, a wide variety of probability distributions over initial conditions
will evolve into ones that yield virtually the same probabilities for results of
feasible measurements.

Ideas of this sort have recently drawn the attention of philosophers; see
Strevens (2003, 2011), Rosenthal (2010, 2012), Abrams (2012), and Myrvold
(2012a,b) for an array of recent approaches in which the method of arbitrary
functions plays a role.

The method does not generate probabilities out of nothing; rather, the key
idea is that a probability distribution over initial conditions is transformed,
via the dynamical evolution of the system, into a probability distribution over
conditions at a later time. Hence any use of the method must address the
question: what is the status of the input distributions? Poincaré describes
them as “conventions,” which, it must be admitted, is less than helpful.
Strevens (2003) is noncommittal on the interpretation of the input probabil-
ities, whereas Strevens (2011) and Abrams (2012) opt for distributions based

15The method of arbitrary functions was pioneered by von Kries (1886) and Poincaré
(1912), and elaborated by a number of mathematicians, notably Hopf (1934, 1936). For
a systematic overview of mathematical results, see Engel (1992); for the history, see von
Plato (1983). See Myrvold (2012a,b) and Frigg (2013) for examples and discussion.
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on actual frequencies.
Savage (1973) suggested that the input probabilities be given a subjec-

tivist interpretation. For the right sorts of dynamics, large differences in sub-
jective probabilities will lead to probability distributions that agree closely on
outcomes of feasible measurements; hence the output probabilities might be
called “almost objective” probabilities. This suggestion is developed in Myr-
vold (2012a,b). The conception combines epistemic and physical considera-
tions. The ingredients that go into the characterization of such probabilities
are:

• a class C of credence-functions about states of affairs at time t0 that
is the class of credences that a reasonable agent could have, in light of
information that is accessible to the agent,

• a dynamical map Tt that maps states at time t0 to states at time
t1 = t0 + t, inducing a map of probability distributions over states at
time t0 to distributions over states at t1,

• a set A of propositions about states of affairs at time t1, to which
probabilities are to be assigned,

• a tolerance threshold ε for differences in probabilities below which we
regard two probabilities as essentially the same.

Given these ingredients, we will say that a proposition A ∈ A has an almost-
objective probability, or epistemic chance, if all probability functions in C
yield, when evolved to t1, essentially the same probability for A. That is, A
has epistemic chance λ if, for all P0 ∈ C, |Pt(A)− λ| < ε.

This concept includes an epistemic aspect, as an essential ingredient is
the class C of credence-functions that represent reasonable degrees of belief
for agents with our limitations.16 This restriction would be eliminable if, for
the events of interest, the dynamical map Tt yielded the same probabilities
for absolutely all input measures, but this cannot be. Physics also plays a
key role; the value of an epistemic chance, if it exists, is largely a matter of
the dynamics.

Those who hold that epistemic considerations ought not to be brought
into physics at all will not be happy with construing statistical mechani-
cal probabilities in this way. However, on the Maxwellian view of thermo-
dynamics and statistical mechanics, on which the fundamental concepts of

16Objective Bayesians would hold that this class is a singleton.
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thermodynamics have to do with our ability to keep track of and manipulate
molecular motions, this sort of blending of epistemic and physical considera-
tion is just what one would expect to find in statistical mechanics. Epistemic
limitations have to do with the abilities of agents; however, what agents with
given limitations are able to do with physical systems has to do with the
physics of those systems.

8.2.3 Probabilities from quantum mechanics?

So far, we have been considering classical statistical mechanics. However,
our world is not classical; it is quantum. Most writers on the foundations of
statistical mechanics have assumed, implicitly or explicitly, that the concep-
tual problems of classical statistical mechanics are to be solved in classical
terms; classical statistical mechanics should be able to stand on its own two
feet, as an autonomous science, albeit one that gets certain facts about the
world, such as the specific heats of non-monatomic gases, wrong.

One argument for this might be that we successfully apply statistical
mechanics to systems for which quantum effects are negligible. This is ques-
tionable. The classical trajectories through phase space that exhibit anti-
thermodynamic behaviour are unstable under random perturbations. Al-
brecht and Phillips (2012) estimate the relevance of quantum uncertainty to
stock examples such as coin flips and billiard-ball gases, and conclude that
“all successful applications of probability to describe nature can be traced to
quantum origins.”

As emphasized by Albert (2000, Ch. 7), if we consider isolated quan-
tum systems, and assume the usual Schrödinger evolution to be valid at all
times, then this leaves us in pretty much the same conceptual situation as
in classical mechanics. The dynamics governing the wave-function are re-
versible; for any state that exhibits the expected thermodynamic behaviour
there is a state that exhibits anti-thermodynamic behaviour. Moreover, the
von Neumann entropy—the quantum analog of the Gibbs entropy—is con-
served under dynamical evolution. Considering nonisolated systems only
pushes the problems further out; the state of the system of interest plus a
sufficiently large environment can be treated as an isolated system; there will
be states of this larger system that lead to antithermodynamic behaviour of
the subsystem of interest.

If, however, collapse of the wave-function is a genuinely chancy, dynam-
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ical process, then things are different.17 For any initial state, there will be
objective probabilities for any subsequent evolution of the system. Albert
(1994, 2000) has argued that these probabilities suffice to do the job required
of them in statistical mechanics.

This is indeed plausible, though we lack a rigorous proof. If this proposal
is correct, we should expect that, on time scales expected of relaxation to
equilibrium, the probability distribution yielded by the collapse dynamics
approaches a distribution that is appropriately like the standard equilibrium
distribution, where “‘appropriately like” means that it yields approximately
the same expectation values for measurable quantities. It is not to be ex-
pected that the equilibrium distribution be an exact limiting distribution
for long time intervals. In fact, distributions that are stationary under the
usual dynamics (quantum or classical) will not be strictly stationary under
the stochastic evolution of dynamical collapse theories such as the Ghirardi-
Rimini-Weber (GRW) or Continuous Spontaneous Localization (CSL) the-
ory, as energy is not conserved in these theories. However, energy increase
will be so small as to be under ordinary circumstances unobservable; Bassi
and Ghirardi (2003, 310) estimate, for a macroscopic monatomic ideal gas,
a temperature increase on the order of 10−15 Celsius degrees per year. Thus,
it is possible for collapse dynamics to yield relaxation to something closely
approximating a standard equilibrium distribution, followed by exceedingly
slow warming.

9 Puzzles about equilibrium measures, and a

resolution

Do the standard equilibrium measures represent objective features of the
physical world, or should they be thought of as degrees of belief that we
ought to have about the microstate of the system, given knowledge of the
parameters that define the system’s thermodynamic state?

On either account, we have a puzzle. They are said to be introduced on
the basis of our incomplete knowledge of the state of a system. This sug-
gests an epistemic reading. Nevertheless, we generate from them predictions
about expectation values and fluctuations around these expectation values,

17See Ghirardi (2011); Bassi and Ghirardi (2003) for overviews of dynamical collapse
theories.
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predictions that can be tested by experiment. This suggests an ontic reading;
we are not, when we are performing experimental tests of these predictions,
probing the system to learn about our beliefs. We seem to require both an
epistemic and an ontic reading, in an inconsistent way.

Taken literally, the standard equilibrium measure, applied to an iso-
lated system that has recently relaxed to equilibrium from a non-equilibrium
macrostate, is problematic on either an epistemic or ontic reading, as it
ascribes high probability to the system’s having been in an equilibrium
macrostate for an exceedingly long time. Since this was not the case, the
measure does not reflect an objective chance distribution, and, since we know
it was not the case, it does not represent our epistemic state.

This puzzle is easily resolved if we observe that use of the standard mea-
sures does not require a commitment to their representing a correct prob-
ability measure over the state of the system, where “correct” might either
mean either objective chance or a credence function that represents our state
of knowledge about the system. Consider a system that is, at t0, in an equi-
librium state with a known energy, subject to some constraint (say, a gas
confined by a partition to one half of a box). The constraint is removed,
and the system evolves, isolated, to a new equilibrium, at time t1. Suppose,
now, we apply at t1 the microcanonical distribution appropriate to the new
equilibrium state. This will not be the evolute of our initial probability distri-
bution. However: unless there is some feasible measurement on the system
that could be performed at t1 that will discriminate between the system’s
having been at t0 in the same equilibrium state it is in at t1, and the state
it actually was in, the microcanonical distribution will yield virtually the
same probabilities as the evolute of our initial probability distribution, and
we can use the microcanonical distribution for purposes of calculation, as a
surrogate for the evolute of our initial probability distribution.

It seems to be an empirical fact that, for many systems of interest, the
current macrostate of the system is all that is relevant to predictions about
future measurements.18 Since a range of initial conditions can evolve to the
same macrostate, this means that, for such systems, a wide range of proba-
bility distributions over initial conditions will evolve into distributions that
yield substantially the same probabilities for outcomes of future measure-
ments, and conditions are ripe for the existence of epistemic chances, as
outlined above.

18Note that this is not true for retrodictions!
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As we have characterized them, physical considerations as well as epis-
temic considerations come into the definition of epistemic chances, and, as
has already been remarked, their values, if they exist, are largely a matter of
dynamics. Though they have an epistemic aspect to them, we cannot ascer-
tain their values by consulting our own cognitive states. An agent might have
good reason to believe that a proposition has an epistemic chance, without
knowing what its value is, either because she doesn’t know the exact dynam-
ics of the system (she might be uncertain, for example, whether a roulette
wheel is biased), or because (and this is the condition we are in, for typical
systems in statistical mechanics), the computational task of forward-evolving
a reasonable credence function via the actual dynamics of the system would
simply be beyond the computational resources available to her.

This means that the values of epistemic chances are things that we can be
uncertain about and can have credences about. Moreover, propositions about
the values of epistemic chances can be put to experimental test. Consider
some proposition A about a system, having to do with the result of some
measurement subsequent to a time t1. Suppose that we have good reason to
believe that there is a probability p∗ that represents the probability assigned
to A by any probability distribution that results from forward evolving, via
the actual dynamics of the system, some reasonable credence-function about
the state of the system at time t0. We can entertain hypotheses of the form
p∗ = p, for various values of p. Suppose that our conditional credences satisfy

cr(A | p∗ = p) = p. (26)

This is an analogue of the Principal Principle. Just as the Principal Prin-
ciple turns frequency data into evidence about chances, this analogue turns
frequency data from repeated experiments into evidence on which we can
update our credences about the value of p∗.19

Now consider the hypothesis,

The value of p∗ is that given by the microcanonical distribution
corresponding to the macrostate of the system at t1.

Note that this hypothesis may be true, even if the the microcanonical distri-
bution is ruled out as a candidate for reasonable credence about the state of
the system at t1. If it is true, this means that our knowledge of the state of

19See Myrvold (2012a,b) for further discussion.
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the system at t0 has become irrelevant to the outcome of the measurement
performed at t1. The hypothesis is testable, and its experimental verifica-
tion will give us a justification for use of the microcanonical distribution to
calculate probabilities that we assign to outcomes of the experiment.

Tolman’s fundamental hypothesis of equal a priori probabilities should
be replaced with one that says,

The correct probabilities for results of feasible future experiments
are those that are yielded by a probability distribution that is uni-
form over the region of phase space corresponding to a system’s
macrostate.

Construing the standard equilibrium distributions this way, as surrogates
for more complicated distributions that result from time-evolved credence
functions over earlier states of affairs, resolves the puzzles associated with
them.

With regards to the first puzzle, though these probabilities enter into our
considerations because of incomplete knowledge of the state of a system, the
value of an epistemic chance, if there is one, depends on the dynamics of the
system, and is, moreover, the sort of thing that we can formulate testable
hypotheses about. The Tolman-inspired approach, on which a posit about
probabilities introduced on epistemic grounds is vindicated by experiment,
begins to seem less mysterious. What is vindicated, however, is not Tolman’s
postulate, but the modified version above.

Typically, there will be a temporal asymmetry in this sort of use of equi-
librium distributions. Use of an equilibrium distribution to calculate proba-
bilities for measurements at t1 will only be justified if our past knowledge of
the state of the system has been washed out by the evolution of the system,
and has become irrelevant for the purpose of anticipating the results of future
measurements. Nothing can make our knowledge of the macrostate of the
system at time t0 irrelevant for retrodictions about the state of the system
at time t0 or before.

The source of the asymmetry lies in asymmetry of epistemic access. We
can have memories and records of past events, whereas for future events of
the sort considered we can typically do no better than to use our knowledge
of the current state of the system and evolve it forward. There is no reason
for the class C invoked in the characterization of epistemic chances to be
invariant under time-reversal, and, typically, it will not be.
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A common objection to the introduction of epistemic considerations into
statistical mechanics is that our ignorance of the exact state of the world
surely cannot explain why systems behave as they do.20 This is correct! The
coffee in my cup does not cool because I am ignorant of its exact microstate.

A system behaves as it does because of its dynamics, together with initial
conditions. Explanations of relaxation to equilibrium will have to involve
an argument that the dynamics, together with initial conditions of the right
type, yields that behaviour, plus an explanation of why the sorts of physical
processes that give rise to the sorts of systems considered don’t produce
initial conditions of the wrong type (or rather, don’t reliably produce initial
conditions of the wrong type). There is a connection, however, between the
epistemic considerations we have invoked, and what would be required of an
explanation of relaxation to equilibrium. The processes that are responsible
for relaxation to equilibrium are also the processes that are responsible for
knowledge about the system’s past condition of non-equilibrium becoming
useless to the agent. Thus, an explanation of relaxation to equilibrium is
likely to provide also an explanation of washing out of the relevance to the
future of knowledge about the past. Moreover, an explanation of why no
process reliably produces initial conditions that lead to anti-thermodynamic
behaviour would also explain the reasonableness of credences that attach
vanishingly small credence to such conditions. Our judgments about what
sorts of processes occur in nature and our judgments about what sorts of
credences are reasonable for well-informed agents are closely linked; if there
were processes that could reliably prepare systems in states that lead to anti-
thermodynamic behaviour, then it would not be unreasonable for an agent to
attach non-negligible credence to the system having been prepared in such
a state, and we would adjust our judgments about what are and are not
reasonable credences accordingly.

10 Conclusion

Quantum probabilities, viewed as objective chances, sidestep the above-
mentioned puzzles associated with statistical mechanical probabilities, which
have to do with how to mesh our use of probability with deterministic, re-

20For a particularly vivid expression of this point, see Albert (2000, pp. 54–65); see also
Loewer (2001, p. 611).
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versible, dynamics, as the dynamics of collapse theories are neither deter-
ministic nor reversible.

Construal of the probabilities in statistical mechanics as epistemic chances
also resolves the puzzles associated with them. Moreover, the blending of
epistemic and physical consideration employed in their definition is appropri-
ate for statistical mechanics, if the goal is to recover thermodynamics viewed
in a Maxwellian light. This is achieved without sacrificing the autonomy of
classical statistical mechanics.
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Annalen der Physik 100, 353–80.

Clausius, R. ([1857] 1966). The nature of the motion which we call heat. In
(Brush, 1966a, 111-134). Translation of Clausius (1857).

Ehrenfest, P. and T. Ehrenfest (1912). The Conceptual Foundations of the
Statistical Approach in Mechanics. New York: Dover Publications.

Engel, E. M. (1992). A Road to Randomess in Physical Systems. Berlin:
Springer-Verlag.

Frigg, R. (2013). Determinism and chance. This volume.

36



Garber, E., S. G. Brush, and C. W. F. Everitt (Eds.) (1995). Maxwell on
Heat and Statistical Mechanics: On “Avoiding All Personal Enquiries” of
Molecules. Bethlehem, Pa: Lehigh University Press.

Ghirardi, G. C. (2011). Collapse theories. In E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy (Winter 2011 ed.).

Gibbs, J. W. (1875). On the equilibrium of heterogeneous substances. Trans-
actions of the Connecticut Academy of Arts and Sciences 3, 108–248, 343–
524. Reprinted in Gibbs (1961, pp. 55-353).

Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics: De-
veloped with Especial Reference to the Rational Foundation of Thermody-
namics. New York: Charles Scribner’s Sons.

Gibbs, J. W. ([1906] 1961). The Scientific Papers of J. Willard Gibbs. New
York: Dover Publications, Inc.

Goldstein, S. (2001). Boltzmann’s approach to statistical mechanics. In
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Poincaré, H. (1912). Calcul des probabilités. Paris: Gauthier-Villars.

Poisson, S.-D. (1837). Recherches sur la Probabilité des Jugements en Matière
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