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Abstract

The object of this thesis is to study several equilibrium selection methods for certain
classes of games and compare to what extent these selection methods lead to similar or
different results. The thesis consists of five chapters.

Chapter 1 describes a theoretical framework for equilibrium selection by tracing the
graph of the quantal response equilibrium (QRE) correspondence.

Chapter 2 analyzes the quantal response methods for equilibrium selection in detail
for 2 x 2 bimatrix games.

Chapter 3 investigates the ultimatum game by a learning-mutation process related to
the quantal response equilibrium.

Chapter 4 studies two equilibrium selection methods based on the replicator dynamics.

Chapter 5 provides a economic experiment to show that social learning can lead to a
spontaneously emerging social contract, based on a sanctioning institution to overcome
the free rider problem.



Zusammenfassung

In dieser Dissertation werden mehrere Methoden zur Gleichgewichtsselektion fiir gewisse
Klassen von Spielen studiert. Es wird untersucht, inwiefern diese Methoden zu ahnlichen
oder verschiedenen Resultaten fiihren. Die Dissertation besteht aus fiinf Kapiteln.

In Kapitel 1 werden die theoretischen Grundlagen einer Homotopiemethode entlang
des Graphen der quantal response Gleichgewichte beschrieben.

In Kapitel 2 wird diese Methodik im Detail auf 2 x 2 Bimatrixspiele angewendet.

Kapitel 3 untersucht das Ultimatumspiel mittels eines Lern- und Mutationsprozesses.

Kapitel 4 widmet sich zwei weiteren Methoden der Gleichgewichtsauswahl, die auf der
Replikatorgleichung basieren.

Kapitel 5 stellt ein 6konomisches Experiment vor, das zeigt, wie eine strafende Insti-
tution dem Problem der Trittbrettfahrer Herr werden kann.
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Preface

"In general, a given game may have several equilibria. Yet uniqueness is crucial to the
foregoing argument. Nash equilibrium makes sense only if each player knows which strate-
gies the others are playing; if the equilibrium recommended by the theory is not unique,
the players will not have this knowledge. Thus it is essential that for each game, the the-
ory selects one unique equilibrium from the set of all Nash equilibria.” -Robert Aumann
(foreword to Harsanyi and Selten, 1988)

In a game, if each player has chosen a strategy and no player can benefit by changing
his or her strategy while the other players keep theirs unchanged, then the set of strategy
choices is called a Nash equilibrium. Every game has at least one Nash equilibrium (Nash,
1950) but in general there are many. Trying to select the "best” equilibrium for each game
is a difficult problem. Methods to do this have been suggested by Harsanyi and Selten
(1988), inventing the risk dominant equilibrium, and by many other researchers.

This thesis studies several equilibrium selection models. These models could be
roughly classified into two categories. Evolutionary game theory consider the behavior
of large populations, where individuals choose which actions to play genetically or using
simple myopic rules (e.g., best response, imitation). In contrast, learning models focus
on the behavior of small groups in repeated games. Individuals make decisions according
to explicit learning rules, which could be simple myopic rules (called heuristic learning
or adaptive learning) or more complicated Bayesian rules (called coordinated Bayesian
learning or rational learning). The heuristic learning is close to the spirit of evolutionary
approach. In the Bayesian learning, individuals play the best response to their beliefs
about other individuals’ strategies and update the beliefs over rounds.

One representative class of Bayesian learning methods consist of homotopy approaches,
such as the tracing procedure of Harsanyi and Selten (1988; Harsanyi, 1975) or the (one
parameter family of) quantal response equilibria of McKelvey and Palfrey (1995, 1998;
Turocy, 2005). In these models, individuals are usually considered boundedly rational
that may make mistakes in estimating the utilities of their strategies. As players gain
experience from repeated observations, they can be expected to make more precise esti-
mations and finally reach a Nash equilibrium. The tracing procedure always leads to the
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risk dominant equilibrium but quantal response equilibria do not.

On the other hand, from the point of evolution, a simple idea is to choose the equi-
librium with the largest basin of attraction (for the replicator dynamics or some other
deterministic evolutionary dynamics). This implies that a population with uncertain
initial state is more likely to evolve to the dominant equilibrium in the long run. For
symmetric 2 x 2 games, the risk dominant equilibrium has the largest basin of attraction,
but this is not true for more general situations.

The object of the thesis is to study these equilibrium selection methods for certain
classes of games and compare to what extent these selection methods lead to similar or
different results. The thesis consist of five chapters. Chapter 1 describes a theoretical
framework for equilibrium selection by tracing the graph of the quantal response equi-
librium (QRE) correspondence. Chapter 2 analyzes the quantal response methods for
equilibrium selection in detail for 2 x 2 bimatrix games. Chapter 3 investigates the ulti-
matum game by a learning-mutation process related to the quantal response equilibrium.
Chapter 4 studies two equilibrium selection methods based on the replicator dynamics.
Chapter 5 provides an economic experiment which is a follow-up on a theoretical paper
by Sigmund et al. (2010). Figure 1 summarizes the interactions among the chapters.

Chapters 1-4 are written under the guidance of Prof. Josef Hofbauer. Chapter 5 is a
joint work with Cong Li, Dr. Hannelore De Silva, Peter Bednarik and Prof. Karl Sigmund.
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Chapter 1 Chapter 2
QRE: Normal form games QRE: Bimatrix games
Chapter 3 Chapter 4
Ultimatum game Replicator dynamics
Chapter 5

Economic experiment

Figure 1: The main interactions between the chapters. The colors of the boxes indicates
the category of equilibrium selection models appeared in the chapters: Red means learning
approach, blue means evolutionary approach and black means a combination of learning
and evolution. A solid arrow connecting two boxes indicates that one chapter depends on
the other. A dash line connecting two boxes indicates that two chapters studies the same
class of games.
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Chapter 1

Quantal response methods for
equilibrium selection: Normal form
games

Abstract

This chapter describes a theoretical framework for equilibrium selection by tracing the
graph of the quantal response equilibrium (QRE) correspondence as a function of the
estimation error. If a quantal response function satisfies C? continuity, monotonicity and
cumulativity, the graph of QRE correspondence generically includes a unique branch that
starts at the centroid of the strategy simplex and converges to a unique Nash equilibrium
as noises vanish. This equilibrium is called the limiting QRE of the game. We show
that the limiting QRE of a symmetric game must be a symmetric Nash equilibrium, and
provide a sufficient condition for the limiting QRE in two-person symmetric games.

Key words

Quantal response equilibrium; equilibrium selection; symmetric game; role game

11
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1.1 Introduction

Quantal response equilibrium (QRE) was introduced by McKelvey and Palfrey (1995)
in the context of bounded rationality. In a QRE, players do not always choose best
responses. Instead, they make decisions based on a probabilistic choice model (called
the quantal response or the perturbed best response) and assume other players do so as
well. A general interpretation of this model is that players observe random perturbations
on the payoffs of strategies and choose optimally according to those noisy observations
(McKelvey and Palfrey, 1995, 1998; Goeree et al., 2005; Turocy, 2005; Sandholm, 2010).
For a given error structure, QRE is defined as a fixed point of this process. !

The most common specification of QRE is the logit equilibrium, where the noises
follow the extreme value distribution (Luce, 1959; McFadden, 1976; Blume, 1993, 1995;
McKelvey and Palfrey, 1995, 1998; Anderson et al., 2004; Turocy, 2005; Hofbauer and
Sandholm, 2002, 2007; Sandholm, 2010). The logistic response function has one free
parameter A\, whose inverse % has been interpreted as the temperature, or the intensity
of noise. At A = 0, players have no information about the game and each strategy is
chosen with equal probability. As A approaches infinity, players achieve full information
about the game and choose the best responses. McKelvey and Palfrey (1995) then defined
an equilibrium selection from the set of Nash equilibria by "tracing” the branch of the
logit equilibrium correspondence starting at the centroid of the strategy simplex (the only
QRE when A = 0) and continuing for larger and larger values of A. For almost all normal
form games, this branch converges to a unique Nash equilibrium as A goes to infinity.
This Nash equilibrium is called the limiting logit equilibrium (LLE) of the game. Later,
McKelvey and Palfrey (1998) extended the original notion of QRE to extensive-form
games (AQRE), and they found that the logit-AQRE also implies a unique selection from
the set of sequential equilibria in generic extensive form games.

QRE allows every strategy to be played with non-zero probability, therefore can be
applied to explain data from laboratory experiments which Nash equilibrium analysis
can not. In McKelvey and Palfrey’s original paper (1995), they analyzed data from
four past experiments on two-person normal form games, where participants displayed

non-equilibrium behaviors that are anomalous with respect to standard game theory. 2

'The model is equivalent to an incomplete information game where the actual payoff is the sum of
payoffs of some fixed game and independent random terms, and each players private signal is his own
payoffs. A QRE is a probability distribution of action profiles in a Bayesian Nash equilibrium (Ui,
2006). Ui (2002) also provided an evolutionary interpretation for QRE. In an n-population game, if a
stochastic best response process satisfies the detailed balance condition then the support of the stationary
distribution converges to the set of quantal response equilibria as the population size goes to infinity.

2These experiments include 3 by 3 zero sum game (Lieberman, 1960), 4 by 4 zero sum game (O’Neill,
1987), 5 by 5 zero sum game (Rapoport and Boebel, 1992) and other bimatrix games with unique mixed
equilibria (Ochs, 1993).
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For each experiment, they compared subjects’ choices period by period with the logit
equilibrium and calculated the maximum likelihood estimate of the noise parameter .
They found that the QRE model is surprisingly successful in fitting the data. Subsequent
studies include auctions (Anderson et al., 1998; McKelvey and Palfrey, 1998; Goeree
et al., 2002), bargaining (Goeree and Holt, 2000; Yi, 2005), social dilemmas (Capra
et al., 1999; Goeree and Holt, 2001), coordination games (Anderson et al., 2001) and
games with network structures (Choi et al., 2009). In these experiments, estimates of A
usually increased as the game progresses. > This then provides an empirical evidence of
the equilibrium selection above. As players gain experience from repeated observations,
they can be expected to make more precise estimates of the expected payoffs of different
strategies.

Formally, a quantal response function maps the vector of expected payoffs into a vector
of choice probabilities. Haile et al. (2008) pointed out that without further restrictions
on the error structures, QRE can be constructed to match any choice probabilities in
any normal form game. Therefore, sensible empirical assumptions on the distributions
of payoff perturbations are necessary. Haile et al. (2008) then suggested two promising
restrictions: exchangeability and invariance. Responding to an earlier draft of this pa-
per (Haile et al., 2004), Goeree et al. (2005) proposed a "reduced form” definition of
QRE. Rather than restricting payoff disturbances explicitly, they define a regular QRE
by restricting quantal response functions to satisfy four axioms: continuity, interiority,
responsiveness, and monotonicity. They showed that exchangeability is a sufficient con-
dition for monotonicity and invariance is a sufficient condition for responsiveness. Hence,
payoff perturbations that satisfy exchangeability and invariance generate regular QRE.
More generally, the reduced form approach does not require that quantal response func-
tions are derived from some underlying choice models of stochastic utility maximization,
therefore allows for a richer set of models for data estimation.

In this chapter, we describe a theoretical framework for equilibrium selection by quan-
tal response methods in normal form games. Following the logit equilibrium, define a
QRE at noise level X as a fixed point of quantal response functions where payoffs are
multiplied by the factor A. The set of QRE can be viewed as a correspondence from A\
to the set of mixed strategy profiles. Similarly as Goeree et al. (2005), we impose three
restrictions on quantal response functions: C? continuity, monotonicity and cumulativity.
Continuity is a technical property, and both monotonicity and cumulativity have signif-
icant economic content. Monotonicity is a weak form of rational choice, meaning that
strategies with higher expected payoffs are used more frequently. Cumulativity ensures
that players choose best responses as A goes to infinity. Intuitively, quantal response func-
tions that satisfy the three axioms are smooth generalizations of best response functions.

3 Although there is a tendency for ) to increase with experience, estimates of \ from different experi-
ments can vary significantly. See the effect of payoff magnitude on A in McKelvey et al., 2000.
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We show that for almost all normal form games, there is a unique equilibrium selection
by tracing the graph of the QRE correspondence. The selected Nash equilibrium is called
the limiting QRE of the game.

The rest of this chapter is organized as follows. Section 1.2 defines QRE at noise level
A and introduces some properties. Section 1.3 studies the topological structure of the
graph of QRE correspondence. If a quantal response function satisfies (C°) continuity,
monotonicity and cumulativity, the graph contains a component that connects the centroid
of the strategy simplex and a Nash equilibrium. If the quantal response function is further
C? continuous, for almost all normal form games, this component is diffeomorphic to a
C' segment, which implies a unique equilibrium selection. Section 1.4 indicates that the
limiting QRE of a symmetric game must be a symmetric Nash equilibrium. Section 1.5
provides a sufficient condition for the limiting QRE in two-person symmetric games and
compares the limiting QRE to other equilibrium notions. Section 1.6 shows that there is a
one-to-one mapping between the logit equilibria of a bimatrix game and the corresponding
symmetric role game.

1.2 Quantal response equilibrium

Consider an n-person normal-form game I' = (N, S, u), where N = {1,...,n} is the set
of players. For each player i € N, there is a strateqy set S; = {si1, ..., S;s,} consisting of
J; pure strategies and a payoff function, u; : S — R, where S = [,y S; is the set of
strategy profiles.

Let A; be the set of probability distributions on S;. Elements of A; are of the form
p; + S; — R, where Zsijesi pi(sij) = 1 and p;(s;;) > 0 for all s;; € S;. For convenience, use
the notation p;; = p;(s;;). We write the set of mixed strategy profiles by A = []..y A
and denote points in A by p = (p1,...,p,). Therefore, given a mixed strategy profile p,
player i’s expected payoff is u;(p) = >, gp(s)ui(s), where p(s) = [[,cn pi(si), where
s; € S; denotes the ith element of s. For convenience, for each i € N and j € {1, ..., J;},
denote by wu;;(p) the expected payoff to player i adopting pure strategy s;; when the
other players adopt their components of p. The space of payoff vectors of player i’s pure
strategies is R’ and write R=7 = [Lcn R’ Define the function @ : A — RX by
a(p) = (@1(p)s s 1 (p)), where (p) = (w31 (p), - i, (p)).

It is assumed that for each pure strategy s;;, there is an additional payoff disturbance
€ij, and we denote the noisy payoff by

Uij(p) = wij(p) + €ij (1.2.1)

Player i’s noise vector, ¢; = (€1, ..., &:,), is distributed according to a joint distribution
with density function f;(¢;). f = (f1,..., fn) is called admissible (McKelvey and Palfrey,
1995; Goeree et al., 2005) if
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(a) the marginal distribution of f; exists for each ¢;;,

(b) disturbances are independent across players (not necessarily across strategies),

(c) E(e;) =0 foralli € N.

Define B;;(1;) to be the set of €; such that strategy s;; has the highest disturbed payoff,
ie.,

Bzg(ﬁz) = {Ei € ]Rji i €ij 2 Uik + Eik,Vk’ = 1, ceey Jl} (122)

Therefore, for given w;, player i selects s;; with probability
i (1)

o; : R7 — A; defined by Eq.(1.2.3) is called the structural quantal response function of
player i (Goeree et al., 2005). For any admissible f(g) with a full support condition 4, o
satisfies

(i) Interiority: oy;(u;) > 0 for all j € {1, ..., J;} and u; € R”:.

(ii) Continuity: o;;(1;) is a continuous and differentiable function for all u; € R”:.

(iii) Responsiveness: &Ta”u W) 50 for all j € {1,...,J;} and u; € R’

If the payoff disturbances are interchangeable °, i.e., f;(€i1, ..., €i5,) = fi(€ip), s i)
for any permutation v, o; also satisfies

(iv) Monotonicity: w;; > wix = 045(w;) > ou(w;) for all j, k€ {1,..., J;}.

On the other hand, any function o; : R — A; that satisfies (i)-(iv) is called a regular
quantal response function of player i (Goeree et al., 2005). One well known example is
the logistic response function

6)\uij
Zgzl eMvik
where % has been interpreted as the intensity of noises (McKelvey and Palfrey, 1995;
Hofbauer and Sandholm, 2002, 2007; Turocy, 2005). Eq.(1.2.4) arises from Eq.(1.2.3) if

all the noises follow the extreme value distribution with cumulative distribution function

exp(— exp(—Ae;; —7))), where v is Euler’s constant. There are also many regular quantal
response functions that cannot be derived by the structural approach. For instance, see
Eq.(6.1), Eq.(6.2) and Proposition 6 in Goeree et al., 2005.

Following the logistic response function, consider the quantal response function as a
function of the noise level A

7 :R=7 x [0, 4+00) = A (1.2.5)

4Full support condition says that f(¢) > 0 for any ¢ € R- 7. Without full support, e.g., uniformly
distributed disturbances, the inequalities in (i) and (iii) hold only weakly (Goeree et al., 2005).
5 A special case of interchangeable random variables is i.i.d.
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with a(u, \) = o(Au), where A = 0 means full noise and A\ = 400 means no noise (Goeree
et al., 2005). For convenience, we use the abusive notation ¢ to denote 5. For given
A >0, a quantal response equilibrium (QRE) is any p € A such that for each ¢ € N and

Jjed{l, ..., J},
pij = 04;(Ai(p)) (1.2.6)

Denote the set of QRE at noise level A by my = {p € Alp;; = 04;(Au;(p))}-

In the rest of this section, we focus on the quantal response function Eq.(1.2.5) and
investigate the properties of m,. Theorem 1.1 indicates that 7, is nonempty for any
continuous o. If ¢ is Lipschitz continuous in a neighborhood of 0, Theorem 1.2 asserts
that for sufficiently small A\, not only the existence but also the uniqueness of QRE can be
guaranteed. If o is monotonic, Theorem 1.3 claims that my consists of only the centroid
of A when XA = 0. Finally, Theorem 1.4 says that QRE approach Nash equilibria of the
game when A\ — +o0 if o has cumulativity.

Theorem 1.1
If o is continuous, there exists a QRE for any A > 0. 6

Proof
This result follows from Brouwer’s fixed point theorem, since o o # is continuous. []

For given A, Theorem 1.1 says that a QRE exists for any continuous random dis-
turbance, but the maximum number of QRE is unclear. Surprisingly, even for two-
person games, 7w, may include infinite number of QRE. Consider a 2 x 2 bimatrix game

a1 b 0,0 with (Lipschitz) continuous quantal response function
Oa 0 a2, b?
0 AMui — u) < —3
o (Wit, Uiz, ) = %+ A(uin — o) —% < Mug — uip) < % (1.2.7)
1 2 < AMui — ug)
For small X such that [A(u;1 — ui2)| < &, QRE are the solutions of
1
pu =73 + A(b1pa1 — ba(1 — pa1))
1
pn =3+ AMaipui — az(1 —pu1)) (1.2.8)

6By applying Brouwer’s fixed point theorem, McKelvey and Palfrey (1995) pointed out that a sufficient
condition for the existence of a QRE is admissibility. Similar, Goeree et al. (2005) proved the existence
of a QRE for regular quantal response functions.



CHAPTER 1. QRE: NORMAL FORM GAMES 17

Substituting po; in the first equation of Eq.(1.2.8) by the second equation and py; in the
second equation of Eq.(1.2.8) by the first equation,

1 b1+ b
pll(l — )\2<b1 —i—b2)(a1 +a2)) — 5 )\ 1;_ 2

1 +
pmu—A%m+@xm+ﬂgy:§+A“2“2

Thus, for given A > 0, if the payoff matrix satisfies

- )\bg — >\2(bl + bg)ag

- )\QQ - )\2(CL1 + ag)bg (129)

)\Q(bl + bz)(al + CLQ) =1

1 by +b

§+A122=A@+V@ng@

1

5 + /\a1 ;—CLQ = )\GQ + )\Q(Cll + ag)bz (1210)

any (pi11,pe1) € A is a solution of Eq.(1.2.8). This implies that 7, = A. (See Example
1.1)

The quantal response function (1.2.7) is not regular, but one can easily regularize it
by adding small perturbations. In a similar way, it is possible to construct a quantal
response function such that 7, is countably infinite.

Example 1.3
12 0,0
Consider a 2 x 2 bimatrix coordination game < (3) 8 2 1> with quantal response func-
373
tion (1.2.7). If 0 < A < 1, the game has a unique QRE, p11 = 6()\+1) p21 = 4j\\ﬁ’ IfA>1,
the game has three QRE, p1y = po1 = 0, p11 = p21 = 1 and py;, = . Po = 23 If

peayt
A =1, from Eq.(1.2.10), any (p11,p21) € A is a QRE. (See Figure 1.2.1)

BT

Although the sets of QRE can be very complicated, next three theorems indicate that
my has good properties for limit cases A — 0 and A — +oo0.

Theorem 1.2
If o is Lipschitz continuous in a neighborhood Bs(0) of O, 7y is a singleton for suffi-
ciently small \. 7

Proof
For given A, define

oou(p) = o(Au(p)) (1.2.11)

"McKelvey and Palfrey (1995) proved this theorem for the logit equilibrium by the same technique. Ui
(2006) provided a sufficient condition for the uniqueness of QRE in 2 x 2 symmetric games with Gaussian
noises.
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PPy

0.4
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Figure 1.2.1: The graph of the QRE correspondence for Example 1.1.

From the definition of QRE, p € 7, if and only if p is a fixed point of o o u. We will show
that for sufficiently small \, ¢ o @ has a unique fixed point. Notice that o is Lipschitz
continuous in Bs(0) and u;;(p) is smooth, there are S > 0 and 7" > 0 such that

lo o a(p) — o 0 u(g)|| = max |03 (Ats(p)) — 035 (Ai(q))]
< ASmax fuiy(p) = uij(¢)] < AST max|py; — g5 = ASTllp —all - (1.2.12)

for any p,q € A, where || - || represents the sup norm, and \ is picked to satisfy AST < 1
and A||@(p)||, Mi(q)|| < 6 for any p,q € A. This implies that o o @ is a contraction
mapping for A < X. From the Banach fixed-point theorem, it has a unique fixed point. O

Theorem 1.2 extends the existence of a QRE to the case where o may not be (globally)
continuous. (See Example 1.2)

Example 1.2

-1,1 0,0
0,0 —2,2
Pr(e = —1) = Pr(e = 1) = 1. The quantal response function is written as

Consider a 2 X 2 zero-sum game ( ) with discretely distributed noises

AMupg —up) < —1
1 < Aug — o)

Uﬂ(uil, Us2, >\) =

— = O
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0.24

Figure 1.2.2: The graph of the QRE correspondence for Example 1.3.

It is easy to verify that the game has a unique QRE, p1; = po1 = % if A <2, but no QRE
if A > 2.

Notice that the differentiability in (ii) implies that o; is absolutely continuous for
each u;;, it is natural to ask whether the Lipschitz continuity condition in Theorem 1.2
can be relaxed. However, Example 1.3 shows that it cannot be replaced by the absolute
continuity.

Example 1.3
1,1 0,0

0.0 1 1) with the absolutely continuous quantal

Consider a 2 x 2 symmetric game (

response function

0 )\(ull — /U/Z'Q) S —1
1_ybazwe) o AMuin — up) <0
o (Ui, Ui, A) = 2 2 (1.2.14)
A/ A(ui1—uig)
1 1 S )\(Uzl — UZ'Q)

For any 0 < A < 1, m, includes three QRE, p;1 = pai = 52, piy = par = 3 and
pui = pa1 = 2. (See Figure 1.2.2)

Theorem 1.3
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If o is monotonic, my consists of only the centroid of A, i.e., pi; = J% foralli € N
and j € {1, ..., J;}.

Proof
Monotonicity and continuity implies that 0;;(0) = 04(0) for all i € N and j,k €
{1,....,J;}. O

In particular, if o is structural, monotonicity can be relaxed to interchangeability
(Goeree et al., 2005, Proposition 5).

Theorem 1.4a

Let p* € my. If o is structural and lim p* = p*, p* must be a Nash equilibrium. ®

A—4o00
Proof
If p* is not a Nash equilibrium, there are ¢ € N and j,k € {1,...,J;} such that
pi; > 0 and ui(p*) > wy(p*). Since @; is continuous, it follows that for sufficiently
small €, there is a A such that for A > A, uix(p*) > ui;(p*) + €. As A = 400, we have
Py = 0i5( A (p*)) < Sy 0 tery> a0 e (€)dE = 0. This contradicts p; > 0. O

Theorem 1.4a says that the limit set of QRE as A — 400 includes a Nash equilibrium
for any structural quantal response function. ° However, a surprising fact is that the
limit set may not contain any Nash equilibrium even if ¢ is regular. For instance, suppose
that o is the logistic response function and define 6; = G + 2—51 for all : € N. It is
obvious that 6; is regular but 6;; > 2% for all j € {1, ..., J;}. Therefore, if the unique Nash
equilibrium of the game has a component p;; < QLJZ-’ it can not be included in the limit
set. In order to provide a sufficient condition of Theorem 1.4a for non-structural quantal
response functions, we introduce a new property cumulativity (the name is borrowed from
the cumulative distribution function).

(v) Cumulativity: w;; > wy, = )\ll_g)lo% =0foralli e N and j, k€ {1,..., J;}.
The intuition is that strategies with lower payoffs will not be used as noises go to zero.

Theorem 1.4b
Let p* € 7y, If o is cumulative and /\hm p = p*, p* must be a Nash equilibrium.
—-+o00

Proof
If p* is not a Nash equilibrium, there are ¢ € N and j,k € {1,...,J;} such that

8McKelvey and Palfrey (1995) proved this theorem for the logit equilibrium.
9The limit set may not include all Nash equilibria of the game. For an example, see subsection 2.5.2
in Chapter 2.
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o (M (p)
T (o))

. . L : )
pi; > 0 and ik (p*) > wuy(p*). But from cumulativity and continuity, )\11_)120 e Om )

s oy (M (pT) : : *
/\lgrolo T Omr) = 0. This contradicts p;; > 0. [

Notice that all structural quantal response functions are cumulative, Theorem 1.4a is
a special case of Theorem 1.4b.

1.3 Equilibrium selection in normal form games

In this section, we study a particular class of quantal response functions that satisfy
Theorems 1.1, 1.3 and 1.4b, ie., o : RE% x [0,400) — A is continuous, monotonic and
cumulative. Our purpose is to define an equilibrium selection by ”tracing” the graph of
the QRE correspondence.

Denote the graph of the QRE correspondence by 7 = {(\,p)|A > 0,p € m\}. Theorem
1.5 shows that for all normal form games, the QRE at A = 0 is connected by a component
of 7 to at least one Nash equilibrium. If the quantal response function is C? continuous,
Theorem 1.6 indicates that for almost all games, this component is diffeomorphic to a
C! segment. This implies that the graph of the QRE correspondence contains a unique
branch which starts for A = 0 at the centroid and converges to a unique Nash equilibrium
as A\ goes to infinity.

Theorem 1.5

7 includes a component T, that connects the centroid and a Nash equilibrium. '°

Proof
Let us make the transformation \ = 1—_7—7 and define the mapping
oot Ax[0,1)— A (1.3.1)

with o o u(p,7) = o(;55u(p)). For given v, denote the set of QRE by 7, = {p[p;; =
0i;(15ui(p))} and the graph of QRE by 7. Clearly, (v,p) € 7 if and only if o(;Z-u(p)) =
p. From Browder’s Theorem (e.g., Mas-Colell, 1974, Theorem 1), for any given 0 < v < 1,
there is a component T of 7 such that TN A x {0} # ) and TNA x {r} # 0. For n € N,
denote the component for v = 1— % by T,,. By Mas-Colell (1990, Theorem A.5.1.(ii) page
10, see also Jean-Jacques Herings, 2002, Theorem 4.3), the closed limit of the sequence
T,, denoted by Ty, is compact and connected. From Theorem 1.4b, T, must include a

Nash equilibrium. [

Theorem 1.6

10 Jean-Jacques Herings (2002) proved this theorem for the logit equilibrium by the same technique.
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If o is C?, for almost all games, 7 includes a unique branch that starts at the centroid
as A = 0 and converges to a Nash equilibrium as \ — +oo. !

Proof
Define

F(p, A u) =o(Au(p)) —p (1.3.2)

where u € R"117 denotes the payoff matrix. For given u, write F,(p,\) = F(p, A, u).
Clearly, (A, p) € 7 if and only if F,(p, A) = 0.

The Transversality Theorem (Mas-Colell, 1990, Proposition 8.3.1 page 320) says that
if Fis C* (the factor 2 comes from 1+ dim(\)) and DF(p, \,u) has rank >_7" , J; — n
whenever F(p, \,u) = 0, then for almost all u, DF,(p, A) has rank " , J; —n whenever
F.(p,\) = 0. This implies that 0 is a regular value of F,(p, A) for almost all .

We next calculate the rank of DF(p, A, u).

OF OF OF
F(p,)\,U) = (Fp?a?%)
_ (500\@(17)) _ g 9o(Xu(p)) 50()\?3(17)))
Op ’ ox ou
do(Au(p
= (1, —(m( Do
do(\u) 8uw Jdo(Au) Ou;j
1.3.
+>\7,€ZN; aUZ] ’0’ 8u,;j au ) ( 3 3>

where [ is the (30, J; —n) x (3.1, Ji — n) unit matrix.

We use the notation (s;j,s_;) to represent the pure strategy profile that player ¢
adopts the strategy s;; and all other players adopt their component of s_;, where s_; =
(S1y ey Si—1, Sit1y ey Sp) € H#i S; = S_;. u;j is then written as

Uij = Z wi(sij, s Hpt St) (1.3.4)

S_i€5_; t#i

) J—1
Since prs, =1 —> 51 pus

Ou - Z ui(Sij, S—i) H pe(st) — Z wi(8ij, 5-4) H Pe(st)

Opri

Sk=5kl t#i,k SK=SkJ,, t#i,k
= g ui(s; g _ Ouy E (84 4%%]
= i i - 1 1. -
ir5 8u1 Skl’ S_ k o auz Skl’ Sk
SEL=Skl '=1 Sk=SkJ}, ll 1

HMcKelvey and Palfrey (1995) proved this theorem for the logit equilibrium by applying Sard’s The-
orem.
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9o (N(p))
f 2rae)

This implies that ( _(p D is a linear combination of columns o Hence, rank

DF(p,A,u) = rank (— f Dol SolRB)) — 57 | i -
Applying the Transversahty Theorem, for almost all u, () is a regular value of F,(p, \).

F71(0) is then a C! one-dimensional manifold, which is diffeomorphic to a segment or a
circle (Milnor, 1965, Lemma 4; Mas-Colell, 1974, Theorem 2). From Theorem 1.2 and
Theorem 1.5, it is a segment that starts from the centroid as A = 0 and converges to a

Nash equilibrium as A\ — +oo. [

Theorem 1.6 implies that for almost all normal form games, we can define a unique
selection from the set of Nash equilibria by "tracing” the graph of the QRE correspondence
beginning at the centroid of the strategy simplex (from Theorem 1.3, it is the unique
solution when A = 0) and continuing for larger and larger values of A. '* For given o, we
call the selected Nash equilibrium the limiting QRFE of the game.

1.4 Equilibrium selection in symmetric games

This section studies the limiting QRE in n-person symmetric games. Theorem 1.7 points
out that the limiting QRE of a symmetric game must be a symmetric Nash equilibrium.
A normal form game is called symmetric if the players have identical strategy sets and
payoff functions. That is, S; = S; for all 4,5 € N and u;(s1, ..., 5n) = Uy(i)(Sp1), - Sp(n))
for any permutation ¢ and s € S (Dasgupta and Maskin, 1986). Denote an n-person
symmetric game by (IV, S, @). For each player i € N, S = {51, ..., 57} is the strategy set
and @ : S x 07 — R is the payoff function. Elements of (17 are of the form § : Sn=l NY,
where Zizl Ge(s"1) = n — 1. Intuitively, g, calculates the number of pure strategy §; in
the strategy profiles s"~'. Therefore, payoff to a player using pure strategy 3; when the
others adopt s" 1 is 4(8;, G(s"1)).

Following the notations in section 1.2, u;;(p) = ZSZ_SJ [ Txzi Pr(s1)(85, 4(s-i)), where

s_; € St QRE at noise level A\ are the solutions of

pij = 0ij(Ati(p)) (1.4.1)
Suppose that players have the identical quantal response function, i.e., 0;;(\it;) = op;(Aptiy)
if \jii; = Mty for all i,k € N and j € {1,...,J}. Denote it by 6 : R’ x [0, +00) — A7,
where A7 is the set of probability distributions on S. Eq.(1.4.1) is then written as

pij = 0;(Atii(p)) (1.4.2)

12As pointed out by Turocy (2005), the branch may have turning points, leading to intervals on which
A is decreasing while following the branch in the direction from the centroid at A = 0 to the limiting

Nash equilibrium. For the logit equilibrium, there are at most a finite number of turning points (Turocy,
2005). However, following the idea in section 1.2, it is possible to construct a quantal response function
such that the branch has infinite turning points.
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A QRE is called symmetric if p; = p; for all 7, j € N. We next show that all QRE on
T (which is the component of 7 that connects the centroid and a Nash equilibrium) are
symmetric if T is diffeomorphic to a segment. Consider the equation

pi = 6i(Au(p)) (1.4.3)

where p € A7, p; = p(8;) and @4;(p) = 3 1egnt L1y sy 1)a(55,4(s"1)). For any
given \, it is easy to see that p is a solution of Eq.(1.4.3) if and only if p; = p for all
i € N is a solution of Eq.(1.4.2). Denote the set of symmetric QRE at noise level A by
. Existence of a symmetric QRE follows from Brouwer’s fixed point theorem. Define
the graph of symmetric QRE correspondence by # = {(\,p)|A > 0,p € 7, }. Similarly as
Theorem 1.5, it is easy to prove that 7 includes a component 7% that connects the centroid
and a symmetric Nash equilibrium by applying Browder’s Theorem. Since 7 C 7, we have
T: C T,. Therefore, in the case that T, is a segment, 7> must also be a segment and
T:; =T,. All QRE on T, are then symmetric. As a consequence, we have Theorem 1.7.

Theorem 1.7
The limiting QRE of a symmetric game must be a symmetric Nash equilibrium.

Theorem 1.7 implies that if a symmetric game has a unique symmetric Nash equilib-
rium, the limiting QRE must be that equilibrium. However, the uniqueness of a symmetric
Nash equilibrium does not imply the existence of the limiting QRE (see Example 1.4).
Since the set of payoff functions for n-person symmetric games has Lebesgue measure zero
in R/ the existence of the limiting QRE for almost all symmetric games is problematic.
In particular, Theorem 2.1 in Chapter 2 indicates that the limiting QRE does not exist
for any 2 x 2 symmetric game with a unique interior symmetric Nash equilibrium. Thus,
the equilibrium selection is not well defined for one fourth of all 2 x 2 symmetric games.

Example 1.4
0,0 1,1

1,1 0, o) with the logistic response function.

Consider a 2 x 2 symmetric game (

QRE are the solutions of

1
P = I X @pn D)
1
P21 = (1.4.4)

1+ eX2pu=1)

The game has a unique symmetric Nash equilibrium py; = po; = % and two asymmetric
Nash equilibria p1; = 1,p2; = 0 and py; = 0,p2; = 1. For any given A, this is a unique
symmetric QRE, p11 = po1 = % However, the graph of QRE correspondence has a bifur-

cation point and tracing the branch beginning at the centroid could reach all three Nash
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Figure 1.4.1: The graph of the QRE correspondence for Example 1.4.

equilibria. (See Figure 1.4.1) Hence, the equilibrium selection is not well defined.

Since asymmetric Nash equilibria cannot be the limiting QRE in symmetric games, we
restrict the "tracing process” to the graph of symmetric QRE correspondence 7. Redefine
the limiting QRE in symmetric games as the unique limiting point of T} instead of T;.
Similarly as Theorem 1.6, we have the following theorem.

Theorem 1.8
If 6 is C?, for almost all symmetric games, & contains a unique branch that starts at
the centroid as A\ = 0 and converges to a symmetric Nash equilibrium as X — +00.

Under the new definition, the limiting QRE exists for almost all symmetric games.
Moreover, if a symmetric game has a unique symmetric Nash equilibrium, it is the limiting
QRE no matter how many asymmetric Nash equilibria the game has. As a consequence,
following two corollaries can be obtained directly.

Corollary 1.1
If a two-person symmetric game has an interior ESS, it is the limiting QRE. 13

13This follows from the fact that if a symmetric game has an interior ESS, then it is the unique
symmetric Nash equilibrium (Hofbauer and Sigmund, 1998).



CHAPTER 1. QRE: NORMAL FORM GAMES 26

Corollary 1.2

The limiting QRE of an anti-coordination game is the interior Nash equilibrium.

1.5 Two-person symmetric games

Consider a J x J two-person symmetric game. Let a;; denotes the payoff to a player
using strategy s; when he meets strategy 5;. Theorem 1.8 guarantees the existence of the
limiting QRE for almost all two-person symmetric games. In order to decide the limiting
QRE, we introduce a new concept.

Definition 1.1

A pure strategy §; pairwise payoff dominates (PPD) another pure strategy §; if
Zkelij Qi > ZkeJ,-j a;, for any {i,j} C J;; C {1,...,J}. If 5, PPD §; for any s, € S
and .J;;, §; is globally pairwise payoff dominant (GPPD).

Theorem 1.9
Suppose that o is continuous, monotonic and cumulative. In two-person symmetric
games, the limiting QRE is the GPPD Nash equilibrium if it exists.

Proof

Suppose that §; is the GPPD Nash equi