
DISSERTATION

Titel der Dissertation

Evolutionary games and equilibrium selection

Verfasser

Boyu Zhang

angestrebter akademischer Grad

Doktor der Naturwissenschaften (Dr.rer.nat.)

Wien, im August 2012

Studienkennzahl lt. Studienblatt: A0948612

Dissertationsgebiet lt. Studienblatt: Mathematik

Betreuer: Univ. Prof. Josef Hofbauer



2



Acknowledgements

Foremost, I would like to thank my PhD supervisors Prof. Josef Hofbauer and Prof. Karl

Sigmund. I have been extremely lucky to learn from two of the most famous experts in the

field of evolutionary game theory. Prof. Josef Hofbauer provided me with the opportunity

to study at the University of Vienna. I am very grateful for his patience, motivation,

enthusiasm, and immense knowledge in evolutionary dynamics. He introduced me to the

subject of equilibrium selection and has always been available to advise me. Prof. Karl

Sigmund deeply impressed me from his passion, sense to research ideas and insightful

views towards many scientific branches. His support and guidance made the experiment

(in Chapter 5) possible.

Second, I would like to thank the Chinese Scholarship Council (CSC) for three years

scholarship. The support from the Austrian Science Funds and the European Science

Foundation (TECT I-104 G15) for running the experiment is acknowledged. WWTF

(project number MA09-017) supported the presentation of the thesis at the 4th World

Congress of the Game Theory Society. Many thanks to the Chinese Embassy (especially

Prof. Hangzhu Chen) and the Chinese Student Union for help during the study abroad.

I am also indebted to Ross Cressman, Daisuke Oyama, William Sandholm, Yi Tao,

Jorgen Weibull, Xiaoguang Yang, my colleagues and collaborators Peter Bednarik, Zhi-

gang Cao, Christian Hilbe, De Silva Hannelore, Jun Honda, Cong Li, Mathias Staudigl,

and two reviewers for valuable discussions and suggestions.

Moreover, I am grateful to all my friends in Vienna and Beijing for helping me get

through the difficult times, and for all the emotional support and entertainment.

Finally, I would like to give my deepest gratitude to my parents, who made me who I

am. I dedicate this thesis to them.

1



2



Abstract

The object of this thesis is to study several equilibrium selection methods for certain

classes of games and compare to what extent these selection methods lead to similar or

different results. The thesis consists of five chapters.

Chapter 1 describes a theoretical framework for equilibrium selection by tracing the

graph of the quantal response equilibrium (QRE) correspondence.

Chapter 2 analyzes the quantal response methods for equilibrium selection in detail

for 2× 2 bimatrix games.

Chapter 3 investigates the ultimatum game by a learning-mutation process related to

the quantal response equilibrium.

Chapter 4 studies two equilibrium selection methods based on the replicator dynamics.

Chapter 5 provides a economic experiment to show that social learning can lead to a

spontaneously emerging social contract, based on a sanctioning institution to overcome

the free rider problem.
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Zusammenfassung

In dieser Dissertation werden mehrere Methoden zur Gleichgewichtsselektion für gewisse

Klassen von Spielen studiert. Es wird untersucht, inwiefern diese Methoden zu ähnlichen

oder verschiedenen Resultaten führen. Die Dissertation besteht aus fünf Kapiteln.

In Kapitel 1 werden die theoretischen Grundlagen einer Homotopiemethode entlang

des Graphen der quantal response Gleichgewichte beschrieben.

In Kapitel 2 wird diese Methodik im Detail auf 2× 2 Bimatrixspiele angewendet.

Kapitel 3 untersucht das Ultimatumspiel mittels eines Lern- und Mutationsprozesses.

Kapitel 4 widmet sich zwei weiteren Methoden der Gleichgewichtsauswahl, die auf der

Replikatorgleichung basieren.

Kapitel 5 stellt ein ökonomisches Experiment vor, das zeigt, wie eine strafende Insti-

tution dem Problem der Trittbrettfahrer Herr werden kann.
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Preface

”In general, a given game may have several equilibria. Yet uniqueness is crucial to the

foregoing argument. Nash equilibrium makes sense only if each player knows which strate-

gies the others are playing; if the equilibrium recommended by the theory is not unique,

the players will not have this knowledge. Thus it is essential that for each game, the the-

ory selects one unique equilibrium from the set of all Nash equilibria.” -Robert Aumann

(foreword to Harsanyi and Selten, 1988)

In a game, if each player has chosen a strategy and no player can benefit by changing

his or her strategy while the other players keep theirs unchanged, then the set of strategy

choices is called a Nash equilibrium. Every game has at least one Nash equilibrium (Nash,

1950) but in general there are many. Trying to select the ”best” equilibrium for each game

is a difficult problem. Methods to do this have been suggested by Harsanyi and Selten

(1988), inventing the risk dominant equilibrium, and by many other researchers.

This thesis studies several equilibrium selection models. These models could be

roughly classified into two categories. Evolutionary game theory consider the behavior

of large populations, where individuals choose which actions to play genetically or using

simple myopic rules (e.g., best response, imitation). In contrast, learning models focus

on the behavior of small groups in repeated games. Individuals make decisions according

to explicit learning rules, which could be simple myopic rules (called heuristic learning

or adaptive learning) or more complicated Bayesian rules (called coordinated Bayesian

learning or rational learning). The heuristic learning is close to the spirit of evolutionary

approach. In the Bayesian learning, individuals play the best response to their beliefs

about other individuals’ strategies and update the beliefs over rounds.

One representative class of Bayesian learning methods consist of homotopy approaches,

such as the tracing procedure of Harsanyi and Selten (1988; Harsanyi, 1975) or the (one

parameter family of) quantal response equilibria of McKelvey and Palfrey (1995, 1998;

Turocy, 2005). In these models, individuals are usually considered boundedly rational

that may make mistakes in estimating the utilities of their strategies. As players gain

experience from repeated observations, they can be expected to make more precise esti-

mations and finally reach a Nash equilibrium. The tracing procedure always leads to the

7
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risk dominant equilibrium but quantal response equilibria do not.

On the other hand, from the point of evolution, a simple idea is to choose the equi-

librium with the largest basin of attraction (for the replicator dynamics or some other

deterministic evolutionary dynamics). This implies that a population with uncertain

initial state is more likely to evolve to the dominant equilibrium in the long run. For

symmetric 2× 2 games, the risk dominant equilibrium has the largest basin of attraction,

but this is not true for more general situations.

The object of the thesis is to study these equilibrium selection methods for certain

classes of games and compare to what extent these selection methods lead to similar or

different results. The thesis consist of five chapters. Chapter 1 describes a theoretical

framework for equilibrium selection by tracing the graph of the quantal response equi-

librium (QRE) correspondence. Chapter 2 analyzes the quantal response methods for

equilibrium selection in detail for 2× 2 bimatrix games. Chapter 3 investigates the ulti-

matum game by a learning-mutation process related to the quantal response equilibrium.

Chapter 4 studies two equilibrium selection methods based on the replicator dynamics.

Chapter 5 provides an economic experiment which is a follow-up on a theoretical paper

by Sigmund et al. (2010). Figure 1 summarizes the interactions among the chapters.

Chapters 1-4 are written under the guidance of Prof. Josef Hofbauer. Chapter 5 is a

joint work with Cong Li, Dr. Hannelore De Silva, Peter Bednarik and Prof. Karl Sigmund.
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Figure 1: The main interactions between the chapters. The colors of the boxes indicates

the category of equilibrium selection models appeared in the chapters: Red means learning

approach, blue means evolutionary approach and black means a combination of learning

and evolution. A solid arrow connecting two boxes indicates that one chapter depends on

the other. A dash line connecting two boxes indicates that two chapters studies the same

class of games.
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Chapter 1

Quantal response methods for

equilibrium selection: Normal form

games

Abstract

This chapter describes a theoretical framework for equilibrium selection by tracing the

graph of the quantal response equilibrium (QRE) correspondence as a function of the

estimation error. If a quantal response function satisfies C2 continuity, monotonicity and

cumulativity, the graph of QRE correspondence generically includes a unique branch that

starts at the centroid of the strategy simplex and converges to a unique Nash equilibrium

as noises vanish. This equilibrium is called the limiting QRE of the game. We show

that the limiting QRE of a symmetric game must be a symmetric Nash equilibrium, and

provide a sufficient condition for the limiting QRE in two-person symmetric games.

Key words

Quantal response equilibrium; equilibrium selection; symmetric game; role game
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1.1 Introduction

Quantal response equilibrium (QRE) was introduced by McKelvey and Palfrey (1995)

in the context of bounded rationality. In a QRE, players do not always choose best

responses. Instead, they make decisions based on a probabilistic choice model (called

the quantal response or the perturbed best response) and assume other players do so as

well. A general interpretation of this model is that players observe random perturbations

on the payoffs of strategies and choose optimally according to those noisy observations

(McKelvey and Palfrey, 1995, 1998; Goeree et al., 2005; Turocy, 2005; Sandholm, 2010).

For a given error structure, QRE is defined as a fixed point of this process. 1

The most common specification of QRE is the logit equilibrium, where the noises

follow the extreme value distribution (Luce, 1959; McFadden, 1976; Blume, 1993, 1995;

McKelvey and Palfrey, 1995, 1998; Anderson et al., 2004; Turocy, 2005; Hofbauer and

Sandholm, 2002, 2007; Sandholm, 2010). The logistic response function has one free

parameter λ, whose inverse 1
λ
has been interpreted as the temperature, or the intensity

of noise. At λ = 0, players have no information about the game and each strategy is

chosen with equal probability. As λ approaches infinity, players achieve full information

about the game and choose the best responses. McKelvey and Palfrey (1995) then defined

an equilibrium selection from the set of Nash equilibria by ”tracing” the branch of the

logit equilibrium correspondence starting at the centroid of the strategy simplex (the only

QRE when λ = 0) and continuing for larger and larger values of λ. For almost all normal

form games, this branch converges to a unique Nash equilibrium as λ goes to infinity.

This Nash equilibrium is called the limiting logit equilibrium (LLE) of the game. Later,

McKelvey and Palfrey (1998) extended the original notion of QRE to extensive-form

games (AQRE), and they found that the logit-AQRE also implies a unique selection from

the set of sequential equilibria in generic extensive form games.

QRE allows every strategy to be played with non-zero probability, therefore can be

applied to explain data from laboratory experiments which Nash equilibrium analysis

can not. In McKelvey and Palfrey’s original paper (1995), they analyzed data from

four past experiments on two-person normal form games, where participants displayed

non-equilibrium behaviors that are anomalous with respect to standard game theory. 2

1The model is equivalent to an incomplete information game where the actual payoff is the sum of

payoffs of some fixed game and independent random terms, and each players private signal is his own

payoffs. A QRE is a probability distribution of action profiles in a Bayesian Nash equilibrium (Ui,

2006). Ui (2002) also provided an evolutionary interpretation for QRE. In an n-population game, if a

stochastic best response process satisfies the detailed balance condition then the support of the stationary

distribution converges to the set of quantal response equilibria as the population size goes to infinity.
2These experiments include 3 by 3 zero sum game (Lieberman, 1960), 4 by 4 zero sum game (O’Neill,

1987), 5 by 5 zero sum game (Rapoport and Boebel, 1992) and other bimatrix games with unique mixed

equilibria (Ochs, 1993).
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For each experiment, they compared subjects’ choices period by period with the logit

equilibrium and calculated the maximum likelihood estimate of the noise parameter λ.

They found that the QRE model is surprisingly successful in fitting the data. Subsequent

studies include auctions (Anderson et al., 1998; McKelvey and Palfrey, 1998; Goeree

et al., 2002), bargaining (Goeree and Holt, 2000; Yi, 2005), social dilemmas (Capra

et al., 1999; Goeree and Holt, 2001), coordination games (Anderson et al., 2001) and

games with network structures (Choi et al., 2009). In these experiments, estimates of λ

usually increased as the game progresses. 3 This then provides an empirical evidence of

the equilibrium selection above. As players gain experience from repeated observations,

they can be expected to make more precise estimates of the expected payoffs of different

strategies.

Formally, a quantal response function maps the vector of expected payoffs into a vector

of choice probabilities. Haile et al. (2008) pointed out that without further restrictions

on the error structures, QRE can be constructed to match any choice probabilities in

any normal form game. Therefore, sensible empirical assumptions on the distributions

of payoff perturbations are necessary. Haile et al. (2008) then suggested two promising

restrictions: exchangeability and invariance. Responding to an earlier draft of this pa-

per (Haile et al., 2004), Goeree et al. (2005) proposed a ”reduced form” definition of

QRE. Rather than restricting payoff disturbances explicitly, they define a regular QRE

by restricting quantal response functions to satisfy four axioms: continuity, interiority,

responsiveness, and monotonicity. They showed that exchangeability is a sufficient con-

dition for monotonicity and invariance is a sufficient condition for responsiveness. Hence,

payoff perturbations that satisfy exchangeability and invariance generate regular QRE.

More generally, the reduced form approach does not require that quantal response func-

tions are derived from some underlying choice models of stochastic utility maximization,

therefore allows for a richer set of models for data estimation.

In this chapter, we describe a theoretical framework for equilibrium selection by quan-

tal response methods in normal form games. Following the logit equilibrium, define a

QRE at noise level λ as a fixed point of quantal response functions where payoffs are

multiplied by the factor λ. The set of QRE can be viewed as a correspondence from λ

to the set of mixed strategy profiles. Similarly as Goeree et al. (2005), we impose three

restrictions on quantal response functions: C2 continuity, monotonicity and cumulativity.

Continuity is a technical property, and both monotonicity and cumulativity have signif-

icant economic content. Monotonicity is a weak form of rational choice, meaning that

strategies with higher expected payoffs are used more frequently. Cumulativity ensures

that players choose best responses as λ goes to infinity. Intuitively, quantal response func-

tions that satisfy the three axioms are smooth generalizations of best response functions.

3Although there is a tendency for λ to increase with experience, estimates of λ from different experi-

ments can vary significantly. See the effect of payoff magnitude on λ in McKelvey et al., 2000.
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We show that for almost all normal form games, there is a unique equilibrium selection

by tracing the graph of the QRE correspondence. The selected Nash equilibrium is called

the limiting QRE of the game.

The rest of this chapter is organized as follows. Section 1.2 defines QRE at noise level

λ and introduces some properties. Section 1.3 studies the topological structure of the

graph of QRE correspondence. If a quantal response function satisfies (C0) continuity,

monotonicity and cumulativity, the graph contains a component that connects the centroid

of the strategy simplex and a Nash equilibrium. If the quantal response function is further

C2 continuous, for almost all normal form games, this component is diffeomorphic to a

C1 segment, which implies a unique equilibrium selection. Section 1.4 indicates that the

limiting QRE of a symmetric game must be a symmetric Nash equilibrium. Section 1.5

provides a sufficient condition for the limiting QRE in two-person symmetric games and

compares the limiting QRE to other equilibrium notions. Section 1.6 shows that there is a

one-to-one mapping between the logit equilibria of a bimatrix game and the corresponding

symmetric role game.

1.2 Quantal response equilibrium

Consider an n-person normal-form game Γ = (N,S, u), where N = {1, ..., n} is the set

of players. For each player i ∈ N , there is a strategy set Si = {si1, ..., siJi} consisting of

Ji pure strategies and a payoff function, ui : S → R, where S =
∏

i∈N Si is the set of

strategy profiles.

Let Δi be the set of probability distributions on Si. Elements of Δi are of the form

pi : Si → R, where
∑

sij∈Si
pi(sij) = 1 and pi(sij) ≥ 0 for all sij ∈ Si. For convenience, use

the notation pij = pi(sij). We write the set of mixed strategy profiles by Δ =
∏

i∈N Δi

and denote points in Δ by p = (p1, ..., pn). Therefore, given a mixed strategy profile p,

player i’s expected payoff is ui(p) =
∑

s∈S p(s)ui(s), where p(s) =
∏

i∈N pi(si), where

si ∈ Si denotes the ith element of s. For convenience, for each i ∈ N and j ∈ {1, ..., Ji},
denote by uij(p) the expected payoff to player i adopting pure strategy sij when the

other players adopt their components of p. The space of payoff vectors of player i’s pure

strategies is R
Ji , and write R

∑
Ji =

∏
i∈N R

Ji . Define the function ū : Δ → R
∑

Ji by

ū(p) = (ū1(p), ..., ūn(p)), where ūi(p) = (ui1(p), ..., uiJi(p)).

It is assumed that for each pure strategy sij, there is an additional payoff disturbance

εij, and we denote the noisy payoff by

ũij(p) = uij(p) + εij (1.2.1)

Player i’s noise vector, εi = (εi1, ..., εiJi), is distributed according to a joint distribution

with density function fi(εi). f = (f1, ..., fn) is called admissible (McKelvey and Palfrey,

1995; Goeree et al., 2005) if
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(a) the marginal distribution of fi exists for each εij,

(b) disturbances are independent across players (not necessarily across strategies),

(c) E(εi) = 0 for all i ∈ N .

Define Bij(ūi) to be the set of εi such that strategy sij has the highest disturbed payoff,

i.e.,

Bij(ūi) = {εi ∈ R
Ji |uij + εij ≥ uik + εik, ∀k = 1, ..., Ji} (1.2.2)

Therefore, for given ūi, player i selects sij with probability

σij(ūi) =

∫
Bij(ūi)

f(ε)dε (1.2.3)

σi : R
Ji → Δi defined by Eq.(1.2.3) is called the structural quantal response function of

player i (Goeree et al., 2005). For any admissible f(ε) with a full support condition 4, σi

satisfies

(i) Interiority: σij(ūi) > 0 for all j ∈ {1, ..., Ji} and ūi ∈ R
Ji .

(ii) Continuity: σij(ūi) is a continuous and differentiable function for all ūi ∈ R
Ji .

(iii) Responsiveness:
∂σij(ūi)

∂uij
> 0 for all j ∈ {1, ..., Ji} and ūi ∈ R

Ji .

If the payoff disturbances are interchangeable 5, i.e., fi(εi1, ..., εiJi) = fi(εiψ(1), ..., εiψ(Ji))

for any permutation ψ, σi also satisfies

(iv) Monotonicity: uij > uik ⇒ σij(ūi) > σik(ūi) for all j, k ∈ {1, ..., Ji}.
On the other hand, any function σi : R

Ji → Δi that satisfies (i)-(iv) is called a regular

quantal response function of player i (Goeree et al., 2005). One well known example is

the logistic response function

σij(ūi) =
eλuij∑Ji
k=1 e

λuik

(1.2.4)

where 1
λ
has been interpreted as the intensity of noises (McKelvey and Palfrey, 1995;

Hofbauer and Sandholm, 2002, 2007; Turocy, 2005). Eq.(1.2.4) arises from Eq.(1.2.3) if

all the noises follow the extreme value distribution with cumulative distribution function

exp(− exp(−λεij −γ))), where γ is Euler’s constant. There are also many regular quantal

response functions that cannot be derived by the structural approach. For instance, see

Eq.(6.1), Eq.(6.2) and Proposition 6 in Goeree et al., 2005.

Following the logistic response function, consider the quantal response function as a

function of the noise level λ

σ̄ : R
∑

Ji × [0,+∞) → Δ (1.2.5)

4Full support condition says that f(ε) > 0 for any ε ∈ R
∑

Ji . Without full support, e.g., uniformly

distributed disturbances, the inequalities in (i) and (iii) hold only weakly (Goeree et al., 2005).
5A special case of interchangeable random variables is i.i.d.
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with σ̄(ū, λ) = σ(λū), where λ = 0 means full noise and λ = +∞ means no noise (Goeree

et al., 2005). For convenience, we use the abusive notation σ to denote σ̄. For given

λ ≥ 0, a quantal response equilibrium (QRE) is any p ∈ Δ such that for each i ∈ N and

j ∈ {1, ..., Ji},

pij = σij(λūi(p)) (1.2.6)

Denote the set of QRE at noise level λ by πλ = {p ∈ Δ|pij = σij(λūi(p))}.
In the rest of this section, we focus on the quantal response function Eq.(1.2.5) and

investigate the properties of πλ. Theorem 1.1 indicates that πλ is nonempty for any

continuous σ. If σ is Lipschitz continuous in a neighborhood of 0, Theorem 1.2 asserts

that for sufficiently small λ, not only the existence but also the uniqueness of QRE can be

guaranteed. If σ is monotonic, Theorem 1.3 claims that π0 consists of only the centroid

of Δ when λ = 0. Finally, Theorem 1.4 says that QRE approach Nash equilibria of the

game when λ → +∞ if σ has cumulativity.

Theorem 1.1

If σ is continuous, there exists a QRE for any λ ≥ 0. 6

Proof

This result follows from Brouwer’s fixed point theorem, since σ ◦ ū is continuous. �

For given λ, Theorem 1.1 says that a QRE exists for any continuous random dis-

turbance, but the maximum number of QRE is unclear. Surprisingly, even for two-

person games, πλ may include infinite number of QRE. Consider a 2 × 2 bimatrix game(
a1, b1 0, 0

0, 0 a2, b2

)
with (Lipschitz) continuous quantal response function

σi1(ui1, ui2, λ) =

⎧⎨
⎩

0 λ(ui1 − ui2) ≤ −1
2

1
2
+ λ(ui1 − ui2) −1

2
≤ λ(ui1 − ui2) ≤ 1

2

1 1
2
≤ λ(ui1 − ui2)

(1.2.7)

For small λ such that |λ(ui1 − ui2)| ≤ 1
2
, QRE are the solutions of

p11 =
1

2
+ λ(b1p21 − b2(1− p21))

p21 =
1

2
+ λ(a1p11 − a2(1− p11)) (1.2.8)

6By applying Brouwer’s fixed point theorem, McKelvey and Palfrey (1995) pointed out that a sufficient

condition for the existence of a QRE is admissibility. Similar, Goeree et al. (2005) proved the existence

of a QRE for regular quantal response functions.
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Substituting p21 in the first equation of Eq.(1.2.8) by the second equation and p11 in the

second equation of Eq.(1.2.8) by the first equation,

p11(1− λ2(b1 + b2)(a1 + a2)) =
1

2
+ λ

b1 + b2
2

− λb2 − λ2(b1 + b2)a2

p21(1− λ2(b1 + b2)(a1 + a2)) =
1

2
+ λ

a1 + a2
2

− λa2 − λ2(a1 + a2)b2 (1.2.9)

Thus, for given λ > 0, if the payoff matrix satisfies

λ2(b1 + b2)(a1 + a2) = 1

1

2
+ λ

b1 + b2
2

= λb2 + λ2(b1 + b2)a2

1

2
+ λ

a1 + a2
2

= λa2 + λ2(a1 + a2)b2 (1.2.10)

any (p11, p21) ∈ Δ is a solution of Eq.(1.2.8). This implies that πλ = Δ. (See Example

1.1)

The quantal response function (1.2.7) is not regular, but one can easily regularize it

by adding small perturbations. In a similar way, it is possible to construct a quantal

response function such that πλ is countably infinite.

Example 1.3

Consider a 2×2 bimatrix coordination game

(
1
3
, 2
3

0, 0

0, 0 2
3
, 1
3

)
with quantal response func-

tion (1.2.7). If 0 ≤ λ < 1, the game has a unique QRE, p11 =
2λ+3
6(λ+1)

, p21 =
4λ+3
6(λ+1)

. If λ > 1,

the game has three QRE, p11 = p21 = 0, p11 = p21 = 1 and p11 = 2λ+3
6(λ+1)

, p21 = 4λ+3
6(λ+1)

. If

λ = 1, from Eq.(1.2.10), any (p11, p21) ∈ Δ is a QRE. (See Figure 1.2.1)

Although the sets of QRE can be very complicated, next three theorems indicate that

πλ has good properties for limit cases λ → 0 and λ → +∞.

Theorem 1.2

If σ is Lipschitz continuous in a neighborhood Bδ(0) of 0, πλ is a singleton for suffi-

ciently small λ. 7

Proof

For given λ, define

σ ◦ ū(p) = σ(λū(p)) (1.2.11)

7McKelvey and Palfrey (1995) proved this theorem for the logit equilibrium by the same technique. Ui

(2006) provided a sufficient condition for the uniqueness of QRE in 2×2 symmetric games with Gaussian

noises.
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Figure 1.2.1: The graph of the QRE correspondence for Example 1.1.

From the definition of QRE, p ∈ πλ if and only if p is a fixed point of σ ◦ ū. We will show

that for sufficiently small λ, σ ◦ ū has a unique fixed point. Notice that σ is Lipschitz

continuous in Bδ(0) and uij(p) is smooth, there are S > 0 and T > 0 such that

‖σ ◦ ū(p)− σ ◦ ū(q)‖ = max
ij

|σij(λ̄ūi(p))− σij(λ̄ūi(q))|
≤ λ̄Smax

ij
|uij(p)− uij(q)| ≤ λ̄ST max

ij
|pij − qij| = λ̄ST‖p− q‖ (1.2.12)

for any p, q ∈ Δ, where ‖ · ‖ represents the sup norm, and λ̄ is picked to satisfy λ̄ST ≤ 1

and λ̄‖ū(p)‖, λ̄‖ū(q)‖ < δ for any p, q ∈ Δ. This implies that σ ◦ ū is a contraction

mapping for λ ≤ λ̄. From the Banach fixed-point theorem, it has a unique fixed point. �

Theorem 1.2 extends the existence of a QRE to the case where σ may not be (globally)

continuous. (See Example 1.2)

Example 1.2

Consider a 2 × 2 zero-sum game

(−1, 1 0, 0

0, 0 −2, 2

)
with discretely distributed noises

Pr(ε = −1) = Pr(ε = 1) = 1
2
. The quantal response function is written as

σi1(ui1, ui2, λ) =

⎧⎨
⎩

0 λ(ui1 − ui2) ≤ −1
1
2

−1 ≤ λ(ui1 − ui2) ≤ 1

1 1 ≤ λ(ui1 − ui2)

(1.2.13)
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Figure 1.2.2: The graph of the QRE correspondence for Example 1.3.

It is easy to verify that the game has a unique QRE, p11 = p21 =
1
2
if λ < 2, but no QRE

if λ ≥ 2.

Notice that the differentiability in (ii) implies that σi is absolutely continuous for

each uij, it is natural to ask whether the Lipschitz continuity condition in Theorem 1.2

can be relaxed. However, Example 1.3 shows that it cannot be replaced by the absolute

continuity.

Example 1.3

Consider a 2× 2 symmetric game

(
1, 1 0, 0

0, 0 1, 1

)
with the absolutely continuous quantal

response function

σi1(ui1, ui2, λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 λ(ui1 − ui2) ≤ −1

1
2
−

√
−λ(ui1−ui2)

2
−1 ≤ λ(ui1 − ui2) ≤ 0

1
2
+

√
λ(ui1−ui2)

2
0 ≤ λ(ui1 − ui2) ≤ 1

1 1 ≤ λ(ui1 − ui2)

(1.2.14)

For any 0 ≤ λ ≤ 1, πλ includes three QRE, p11 = p21 = 1−λ
2
, p11 = p21 = 1

2
and

p11 = p21 =
1+λ
2
. (See Figure 1.2.2)

Theorem 1.3
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If σ is monotonic, π0 consists of only the centroid of Δ, i.e., pij = 1
Ji

for all i ∈ N

and j ∈ {1, ..., Ji}.

Proof

Monotonicity and continuity implies that σij(0) = σik(0) for all i ∈ N and j, k ∈
{1, ..., Ji}. �

In particular, if σ is structural, monotonicity can be relaxed to interchangeability

(Goeree et al., 2005, Proposition 5).

Theorem 1.4a

Let pλ ∈ πλ. If σ is structural and lim
λ→+∞

pλ = p∗, p∗ must be a Nash equilibrium. 8

Proof

If p∗ is not a Nash equilibrium, there are i ∈ N and j, k ∈ {1, ..., Ji} such that

p∗ij > 0 and uik(p
∗) > uij(p

∗). Since ūi is continuous, it follows that for sufficiently

small ε, there is a Λ such that for λ > Λ, uik(p
λ) > uij(p

λ) + ε. As λ → +∞, we have

pλij = σij(λūi(p
λ)) ≤ ∫

λuij(pλ)+εij>λuik(pλ)+εik
f(ε)dε → 0. This contradicts p∗ij > 0. �

Theorem 1.4a says that the limit set of QRE as λ → +∞ includes a Nash equilibrium

for any structural quantal response function. 9 However, a surprising fact is that the

limit set may not contain any Nash equilibrium even if σ is regular. For instance, suppose

that σ is the logistic response function and define θi = σi

2
+ 1

2Ji
for all i ∈ N . It is

obvious that θi is regular but θij >
1
2Ji

for all j ∈ {1, ..., Ji}. Therefore, if the unique Nash
equilibrium of the game has a component pij < 1

2Ji
, it can not be included in the limit

set. In order to provide a sufficient condition of Theorem 1.4a for non-structural quantal

response functions, we introduce a new property cumulativity (the name is borrowed from

the cumulative distribution function).

(v) Cumulativity: uij > uik ⇒ lim
λ→∞

σik(λūi)
σij(λūi)

= 0 for all i ∈ N and j, k ∈ {1, ..., Ji}.
The intuition is that strategies with lower payoffs will not be used as noises go to zero.

Theorem 1.4b

Let pλ ∈ πλ. If σ is cumulative and lim
λ→+∞

pλ = p∗, p∗ must be a Nash equilibrium.

Proof

If p∗ is not a Nash equilibrium, there are i ∈ N and j, k ∈ {1, ..., Ji} such that

8McKelvey and Palfrey (1995) proved this theorem for the logit equilibrium.
9The limit set may not include all Nash equilibria of the game. For an example, see subsection 2.5.2

in Chapter 2.
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p∗ij > 0 and uik(p
∗) > uij(p

∗). But from cumulativity and continuity, lim
λ→∞

σij(λūi(p
λ))

σik(λūi(pλ))
=

lim
λ→∞

σij(λūi(p
∗))

σik(λūi(p∗))
= 0. This contradicts p∗ij > 0. �

Notice that all structural quantal response functions are cumulative, Theorem 1.4a is

a special case of Theorem 1.4b.

1.3 Equilibrium selection in normal form games

In this section, we study a particular class of quantal response functions that satisfy

Theorems 1.1, 1.3 and 1.4b, i.e., σ : R
∑

Ji × [0,+∞) → Δ is continuous, monotonic and

cumulative. Our purpose is to define an equilibrium selection by ”tracing” the graph of

the QRE correspondence.

Denote the graph of the QRE correspondence by π = {(λ, p)|λ ≥ 0, p ∈ πλ}. Theorem
1.5 shows that for all normal form games, the QRE at λ = 0 is connected by a component

of π to at least one Nash equilibrium. If the quantal response function is C2 continuous,

Theorem 1.6 indicates that for almost all games, this component is diffeomorphic to a

C1 segment. This implies that the graph of the QRE correspondence contains a unique

branch which starts for λ = 0 at the centroid and converges to a unique Nash equilibrium

as λ goes to infinity.

Theorem 1.5

π includes a component Tπ that connects the centroid and a Nash equilibrium. 10

Proof

Let us make the transformation λ = γ
1−γ

and define the mapping

σ ◦ ū : Δ× [0, 1) → Δ (1.3.1)

with σ ◦ ū(p, γ) = σ( γ
1−γ

ū(p)). For given γ, denote the set of QRE by π̃γ = {p|pij =

σij(
γ

1−γ
ūi(p))} and the graph of QRE by π̃. Clearly, (γ, p) ∈ π̃ if and only if σ( γ

1−γ
ū(p)) =

p. From Browder’s Theorem (e.g., Mas-Colell, 1974, Theorem 1), for any given 0 < γ < 1,

there is a component T of π̃ such that T ∩Δ×{0} 
= ∅ and T ∩Δ×{γ} 
= ∅. For n ∈ N,

denote the component for γ = 1− 1
n
by Tn. By Mas-Colell (1990, Theorem A.5.1.(ii) page

10, see also Jean-Jacques Herings, 2002, Theorem 4.3), the closed limit of the sequence

Tn, denoted by Tπ, is compact and connected. From Theorem 1.4b, Tπ must include a

Nash equilibrium. �

Theorem 1.6

10Jean-Jacques Herings (2002) proved this theorem for the logit equilibrium by the same technique.
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If σ is C2, for almost all games, π includes a unique branch that starts at the centroid

as λ = 0 and converges to a Nash equilibrium as λ → +∞. 11

Proof

Define

F (p, λ, u) = σ(λū(p))− p (1.3.2)

where u ∈ R
n
∏

Ji denotes the payoff matrix. For given u, write Fu(p, λ) = F (p, λ, u).

Clearly, (λ, p) ∈ π if and only if Fu(p, λ) = 0.

The Transversality Theorem (Mas-Colell, 1990, Proposition 8.3.1 page 320) says that

if F is C2 (the factor 2 comes from 1 + dim(λ)) and DF (p, λ, u) has rank
∑n

i=1 Ji − n

whenever F (p, λ, u) = 0, then for almost all u, DFu(p, λ) has rank
∑n

i=1 Ji − n whenever

Fu(p, λ) = 0. This implies that 0 is a regular value of Fu(p, λ) for almost all u.

We next calculate the rank of DF (p, λ, u).

DF (p, λ, u) = (
∂F

∂p
,
∂F

∂λ
,
∂F

∂u
)

= (
∂σ(λū(p))

∂p
− I,

∂σ(λū(p))

∂λ
,
∂σ(λū(p))

∂u
)

= (−I,
∂σ(λū(p))

∂λ
, 0)

+λ
∑
i∈N

Ji∑
j=1

(
∂σ(λū)

∂uij

∂uij

∂p
, 0,

∂σ(λū)

∂uij

∂uij

∂u
) (1.3.3)

where I is the (
∑n

i=1 Ji − n)× (
∑n

i=1 Ji − n) unit matrix.

We use the notation (sij, s−i) to represent the pure strategy profile that player i

adopts the strategy sij and all other players adopt their component of s−i, where s−i =

(s1, ..., si−1, si+1, ..., sn) ∈
∏

j �=i Sj = S−i. uij is then written as

uij =
∑

s−i∈S−i

ui(sij, s−i)
∏
t�=i

pt(st) (1.3.4)

Since pkJk = 1−∑Jk−1
l=1 pkl,

∂uij

∂pkl
=

∑
sk=skl

ui(sij, s−i)
∏
t�=i,k

pt(st)−
∑

sk=skJk

ui(sij, s−i)
∏
t �=i,k

pt(st)

=
∑

sk=skl

ui(sij, s−i)

Jk∑
l′=1

∂uij

∂ui(skl′ , s−k)
−

∑
sk=skJk

ui(sij, s−i)

Jk∑
l′=1

∂uij

∂ui(skl′ , s−k)
(1.3.5)

11McKelvey and Palfrey (1995) proved this theorem for the logit equilibrium by applying Sard’s The-

orem.
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This implies that ∂σ(λū(p))
∂pij

is a linear combination of columns of ∂σ(λū(p))
∂u

. Hence, rank

DF (p, λ, u) = rank (−I, ∂σ(λū(p))
∂λ

, ∂σ(λū(p))
∂u

) =
∑n

i=1 Ji − n.

Applying the Transversality Theorem, for almost all u, 0 is a regular value of Fu(p, λ).

F−1
u (0) is then a C1 one-dimensional manifold, which is diffeomorphic to a segment or a

circle (Milnor, 1965, Lemma 4; Mas-Colell, 1974, Theorem 2). From Theorem 1.2 and

Theorem 1.5, it is a segment that starts from the centroid as λ = 0 and converges to a

Nash equilibrium as λ → +∞. �

Theorem 1.6 implies that for almost all normal form games, we can define a unique

selection from the set of Nash equilibria by ”tracing” the graph of the QRE correspondence

beginning at the centroid of the strategy simplex (from Theorem 1.3, it is the unique

solution when λ = 0) and continuing for larger and larger values of λ. 12 For given σ, we

call the selected Nash equilibrium the limiting QRE of the game.

1.4 Equilibrium selection in symmetric games

This section studies the limiting QRE in n-person symmetric games. Theorem 1.7 points

out that the limiting QRE of a symmetric game must be a symmetric Nash equilibrium.

A normal form game is called symmetric if the players have identical strategy sets and

payoff functions. That is, Si = Sj for all i, j ∈ N and ui(s1, ..., sn) = uψ(i)(sψ(1), ..., sψ(n))

for any permutation ψ and s ∈ S (Dasgupta and Maskin, 1986). Denote an n-person

symmetric game by (N, Ŝ, û). For each player i ∈ N , Ŝ = {ŝ1, ..., ŝJ} is the strategy set

and û : Ŝ×�J → R is the payoff function. Elements of �J are of the form q̂ : Ŝn−1 → N
J
0 ,

where
∑J

k=1 q̂k(s
n−1) = n− 1. Intuitively, q̂k calculates the number of pure strategy ŝk in

the strategy profiles sn−1. Therefore, payoff to a player using pure strategy ŝi when the

others adopt sn−1 is û(ŝi, q̂(s
n−1)).

Following the notations in section 1.2, uij(p) =
∑

si=ŝj

∏
k �=i pk(sk)û(ŝj, q̂(s−i)), where

s−i ∈ Ŝn−1. QRE at noise level λ are the solutions of

pij = σij(λūi(p)) (1.4.1)

Suppose that players have the identical quantal response function, i.e., σij(λiūi) = σkj(λkūk)

if λiūi = λkūk for all i, k ∈ N and j ∈ {1, ..., J}. Denote it by σ̂ : RJ × [0,+∞) → ΔJ ,

where ΔJ is the set of probability distributions on Ŝ. Eq.(1.4.1) is then written as

pij = σ̂j(λūi(p)) (1.4.2)

12As pointed out by Turocy (2005), the branch may have turning points, leading to intervals on which

λ is decreasing while following the branch in the direction from the centroid at λ = 0 to the limiting

Nash equilibrium. For the logit equilibrium, there are at most a finite number of turning points (Turocy,

2005). However, following the idea in section 1.2, it is possible to construct a quantal response function

such that the branch has infinite turning points.
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A QRE is called symmetric if pi = pj for all i, j ∈ N . We next show that all QRE on

Tπ (which is the component of π that connects the centroid and a Nash equilibrium) are

symmetric if Tπ is diffeomorphic to a segment. Consider the equation

p̂i = σ̂i(λû(p̂)) (1.4.3)

where p̂ ∈ ΔJ , p̂i = p̂(ŝi) and ûj(p̂) =
∑

sn−1∈Ŝn−1

∏n−1
k=1 p̂(s

n−1
k )û(ŝj, q̂(s

n−1)). For any

given λ, it is easy to see that p̂ is a solution of Eq.(1.4.3) if and only if pi = p̂ for all

i ∈ N is a solution of Eq.(1.4.2). Denote the set of symmetric QRE at noise level λ by

π̂λ. Existence of a symmetric QRE follows from Brouwer’s fixed point theorem. Define

the graph of symmetric QRE correspondence by π̂ = {(λ, p)|λ ≥ 0, p ∈ π̂λ}. Similarly as

Theorem 1.5, it is easy to prove that π̂ includes a component Tπ̂ that connects the centroid

and a symmetric Nash equilibrium by applying Browder’s Theorem. Since π̂ ⊆ π, we have

Tπ̂ ⊆ Tπ. Therefore, in the case that Tπ is a segment, Tπ̂ must also be a segment and

Tπ̂ = Tπ. All QRE on Tπ are then symmetric. As a consequence, we have Theorem 1.7.

Theorem 1.7

The limiting QRE of a symmetric game must be a symmetric Nash equilibrium.

Theorem 1.7 implies that if a symmetric game has a unique symmetric Nash equilib-

rium, the limiting QRE must be that equilibrium. However, the uniqueness of a symmetric

Nash equilibrium does not imply the existence of the limiting QRE (see Example 1.4).

Since the set of payoff functions for n-person symmetric games has Lebesgue measure zero

in R
∑

J , the existence of the limiting QRE for almost all symmetric games is problematic.

In particular, Theorem 2.1 in Chapter 2 indicates that the limiting QRE does not exist

for any 2× 2 symmetric game with a unique interior symmetric Nash equilibrium. Thus,

the equilibrium selection is not well defined for one fourth of all 2× 2 symmetric games.

Example 1.4

Consider a 2 × 2 symmetric game

(
0, 0 1, 1

1, 1 0, 0

)
with the logistic response function.

QRE are the solutions of

p11 =
1

1 + eλ(2p21−1)

p21 =
1

1 + eλ(2p11−1)
(1.4.4)

The game has a unique symmetric Nash equilibrium p11 = p21 = 1
2
and two asymmetric

Nash equilibria p11 = 1, p21 = 0 and p11 = 0, p21 = 1. For any given λ, this is a unique

symmetric QRE, p11 = p21 =
1
2
. However, the graph of QRE correspondence has a bifur-

cation point and tracing the branch beginning at the centroid could reach all three Nash
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Figure 1.4.1: The graph of the QRE correspondence for Example 1.4.

equilibria. (See Figure 1.4.1) Hence, the equilibrium selection is not well defined.

Since asymmetric Nash equilibria cannot be the limiting QRE in symmetric games, we

restrict the ”tracing process” to the graph of symmetric QRE correspondence π̂. Redefine

the limiting QRE in symmetric games as the unique limiting point of Tπ̂ instead of Tπ.

Similarly as Theorem 1.6, we have the following theorem.

Theorem 1.8

If σ̂ is C2, for almost all symmetric games, π̂ contains a unique branch that starts at

the centroid as λ = 0 and converges to a symmetric Nash equilibrium as λ → +∞.

Under the new definition, the limiting QRE exists for almost all symmetric games.

Moreover, if a symmetric game has a unique symmetric Nash equilibrium, it is the limiting

QRE no matter how many asymmetric Nash equilibria the game has. As a consequence,

following two corollaries can be obtained directly.

Corollary 1.1

If a two-person symmetric game has an interior ESS, it is the limiting QRE. 13

13This follows from the fact that if a symmetric game has an interior ESS, then it is the unique

symmetric Nash equilibrium (Hofbauer and Sigmund, 1998).
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Corollary 1.2

The limiting QRE of an anti-coordination game is the interior Nash equilibrium. 14

1.5 Two-person symmetric games

Consider a J × J two-person symmetric game. Let aij denotes the payoff to a player

using strategy ŝi when he meets strategy ŝj. Theorem 1.8 guarantees the existence of the

limiting QRE for almost all two-person symmetric games. In order to decide the limiting

QRE, we introduce a new concept.

Definition 1.1

A pure strategy ŝi pairwise payoff dominates (PPD) another pure strategy ŝj if∑
k∈Jij aik >

∑
k∈Jij ajk for any {i, j} ⊆ Jij ⊆ {1, ..., J}. If ŝi PPD ŝj for any ŝj ∈ Ŝ

and Jij, ŝi is globally pairwise payoff dominant (GPPD).

Theorem 1.9

Suppose that σ is continuous, monotonic and cumulative. In two-person symmetric

games, the limiting QRE is the GPPD Nash equilibrium if it exists.

Proof

Suppose that ŝi is the GPPD Nash equilibrium. From Definition 1.1, ûi(p̂) > ûj(p̂)

in region {p̂ ∈ ΔJ |p̂i = p̂j ≥ p̂k, ∀k 
= i, j} for any j 
= i. Since û and σ are continuous,

it follows for sufficiently small λ, ûi(p̂) > ûj(p̂) for any j 
= i and p̂ ∈ π̂λ. If σ has

monotonicity and cumulativity, QRE correspondence starting at the centroid will enter

region ΔJ
imax = {p̂ ∈ ΔJ |p̂i = max{p̂1, ..., p̂J}} and can not escape from it. Therefore, the

QRE correspondence must converge to a Nash equilibrium in ΔJ
imax.

To complete the proof, it is enough to show that p̂i = 1 is the only Nash equilibrium in

this region. For any p̂ ∈ ΔJ
imax, where p̂i < 1, suppose that max{p̂1, ..., p̂i−1, p̂i+1, ..., p̂J} =

p̂j > 0. From Definition 1.1, ûi(p̂) > ûj(p̂), which implies that it can not be a Nash equi-

librium. As a consequence, p̂i = 1 is the limiting QRE. �

We next compare the limiting QRE to the solution concept of 1
2
dominant equilib-

rium (Morris et al., 1995). A pure strategy profile (ŝi, ŝi) is called 1
2
dominant if for

any p̂ ∈ ΔJ with p̂i ≥ 1
2
, br(p̂) = {ŝi}. 1

2
dominant equilibrium is the sufficient condi-

tion for many equilibrium selection methods (see a literature review by Honda, 2012),

14A two-person symmetric game is said to have the anti-coordination property if any worst response to

a mixed strategy is in the support of that mixed strategy. One famous example is the Hawk-Dove game.

Kojima and Takahashi (2007) showed that every anti-coordination game has a unique symmetric Nash

equilibrium. The equilibrium is in the interior of Δ.
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BR=2
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Figure 1.5.1: Best response regions for Example 1.5

e.g., the evolutionary methods (e.g., Kandori et al., 1993; Young, 1993), the potential

game method (Monderer and Shapley, 1996), the global game method (Carlsson and van

Damme, 1993), the incomplete information method (Kajii and Morris, 1997), the perfect

foresight dynamics method (Matsui and Matsuyama, 1995), spatially dominance method

(Hofbauer et al., 1997; Hofbauer, 1999).

From the definitions, a game has at most one GPPD Nash equilibrium and has at

most one 1
2
dominant equilibrium. If both exist, then two equilibrium must be the same.

To show this, suppose that ŝi is GPPD and ŝj is
1
2
dominant, where i 
= j. GPPD implies

aii + aij > aji + ajj but
1
2
dominance implies

aii+aij
2

<
aji+ajj

2
. Here is a contradiction.

At a first glance, GPPD is more or less stronger than 1
2
dominant since the GPPD

Nash equilibrium strategy is the unique best response to the centroid of the strategy

simplex. However, this intuition is wrong (see Example 1.5). Theorem 1.10 claims that

the GPPD strategy is 1
2
dominant if the symmetric game is a coordination game.

Example 1.5

Consider the following 3× 3 symmetric game

⎛
⎝2 4 0

0 0 5

0 0 0

⎞
⎠ . Best response regions are

shown in Figure 1.5.1. The first strategy is GPPD dominant but is not 1
2
dominant. For

instance, the second strategy is the best response to the strategy profile (1
2
, 0, 1

2
).



CHAPTER 1. QRE: NORMAL FORM GAMES 28

Theorem 1.10

Suppose that the two-person symmetric game is a coordination game, i.e., aii > aji for

j 
= i. ŝi is the GPPD Nash equilibrium if and only if for any p̂ ∈ ΔJ
imax, br(p̂) = {ŝi}.

Proof

Without loss of generality, suppose that s1 is the GPPD Nash equilibrium and p̂1 ≥
p̂2 ≥ ... ≥ p̂J . For any i ∈ {2, ..., J},

û1(p̂)− ûi(p̂) =
J−1∑
j=1

(p̂j − p̂j+1)

j∑
k=1

(a1k − aik) + p̂J

J∑
k=1

(a1k − aik) (1.5.1)

From Definition 1.1,
∑j

k=1 a1k >
∑j

k=1 aik for i ≤ j and
∑j

k=1 a1k + a1i >
∑j

k=1 aik + aii
for i > j. Notice that aii > a1i, we have

∑j
k=1 a1k >

∑j
k=1 aik for any i, j ∈ {2, ..., J}.

This implies û1(p̂)− ûi(p̂) > 0, i.e., br(p̂) = {ŝi}.
On the other hand, suppose that for any p̂ ∈ ΔJ

imax, br(p̂) = {ŝi}. In this case, for

any given j 
= i and {i, j} ⊆ Jij ⊆ {1, ..., J}, we take p̂ with p̂k = p̂i for all k ∈ Jij and

p̂k = 0 for others. Since p̂ ∈ ΔJ
imax,

∑
k∈Jij aik = ûi(p̂)

p̂i
>

ûj(p̂)

p̂i
=

∑
k∈Jij ajk. This implies

that ŝi is GPPD. �

From Theorem 1.10, GPPD Nash equilibrium strategy is the unique best response if it

is the most frequent strategy in opponent’s strategy profile, therefore must be 1
2
dominant.

In particular, the two conditions are equivalent in 2 × 2 coordination games. In 3 × 3

coordination games, GPPD dominant is stronger. A strategy is GPPD if and only if it

is 1
2
dominant and it is the unique best response to the centroid of the strategy simplex.

Example 1.6 gives a 3 × 3 symmetric game, where the 1
2
dominant equilibrium and the

limiting QRE are different.

Example 1.6

Consider the following 3 × 3 symmetric coordination game

⎛
⎝6 0 2

0 5 3

2 3 4

⎞
⎠ . The first

strategy is 1
2
dominant and the third strategy is the best response to the centroid. Best

response regions are shown in Figure 1.5.2. However, Gambit (McKelvey et al., 2010)

suggests that the limiting logit equilibrium is the second strategy. (See Figure 1.5.2)

From Definition 1.1, a GPPD Nash equilibrium is also GPPD in the reduced form of the

original game obtained by eliminating strictly dominated strategies. A natural question

is to ask whether the limiting QRE depends only on the reduced form game. However,

the answer is no. Goeree and Holt (2001) provided an example that the limiting logit

equilibrium is subject to framing effects, i.e., duplicating a non Nash equilibrium strategy
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BR=3BR=2

BR=1

1

2 3

Figure 1.5.2: Best response regions and the QRE correspondence (red curve) for Example

1.6. Strategy 1 is 1
2
dominant and strategy 3 is the best response to the centroid. However,

strategy 2 is the limiting QRE.

which is never selected may affect the equilibrium selection (see also Goeree and Holt,

2004). More generally, Hilbe (2011) indicated that any differentiable quantal response

function exhibits the framing effects. Here, we prove a much stronger result.

Theorem 1.11

Suppose that σ is continuous, monotonic and cumulative. In two-person symmetric

games, any strict (symmetric) Nash equilibrium can be selected as the limiting QRE by

appropriately adding a single strictly dominated strategy.

Proof

Without loss of generality, suppose that aij > 0 for all i, j ∈ {1, ..., J} and the pure

strategy profile (ŝJ , ŝJ) is a strict Nash equilibrium. We add a new strategy ŝJ+1, where

aiJ+1 = aJ+1i = 0 for i ∈ {1, ..., J − 1}, aJ+1J = max{a1J , ..., aJ−1J} and aJJ+1 >

aJ+1J+1 >
∑J−1

i=1

∑J−1
j=1 aij. Clearly, sJ+1 is strictly dominated by sJ . (See Example 1.7)

For any p̂ ∈ {p̂ ∈ ΔJ+1|p̂J+1 ≥ max{p̂1, ..., p̂J−1}} and any k ∈ {1, ..., J − 1}

ûJ(p̂) > ûJ+1(p̂) > p̂JaJ+1J + p̂J+1

J−1∑
i=1

J−1∑
j=1

aij ≥ p̂JakJ +
J−1∑
i=1

p̂iaki = ûk(p̂) (1.5.2)

If σ is continuous, monotonic and cumulative, the QRE correspondence starting at the
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BR=2

BR=1

1

2 3

Figure 1.5.3: Best response regions and the QRE correspondence (red curve) for Example

1.7. The dash line denotes p̂1 = p̂3. The QRE correspondence starting at the centroid

can not escape from {p̂ ∈ Δ3|p̂3 ≥ p̂1}.

centroid will enter and can not escape from {p̂ ∈ ΔJ+1|p̂J+1 ≥ max{p̂1, ..., p̂J−1}}. There-
fore, the QRE correspondence must converge to the only Nash equilibrium, p̂J = 1, in the

region. �

Theorem 1.11 says that the limiting QRE of a game with strictly dominated strategies

may be very different from that of the reduced form game. In fact, eliminating a strategy

which is strictly dominated by the limiting QRE strategy may change the outcome of

the equilibrium selection (see Example 1.7). The limiting QRE is highly sensitive to the

addition and elimination of strictly dominated strategies.

Example 1.7

Consider the following 2×2 symmetric coordination game

(
5 2

1 4

)
. The first strategy

is the limiting QRE since it is 1
2
dominant. We now add a strictly dominated strategy

such that the second strategy is selected. From the proof of Theorem 1.11, an appropriate

payoff matrix is

⎛
⎝5 2 0

1 4 7

0 2 6

⎞
⎠ , where the third strategy is strictly dominated by the second

strategy. Best response regions are shown in Figure 1.5.3. In the new game, Gambit
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suggests that the limiting logit equilibrium is the second strategy. (See Figure 1.5.3)

1.6 Role games

A role game is a two-person symmetric game based on a bimatrix game (Selten, 1980;

Gaunersdorfer et al., 1991; Weibull, 1995; Hofbauer and Sigmund, 1998; Berger, 2002).

With the first move, nature randomly decides which player is player 1 (role 1) and which

player is player 2 (role 2) in the later bimatrix game. After that, the two players play the

bimatrix game, called the base game, according to the roles they have been assigned.

In this section, we consider a variant of the standard version, where players play both

roles. 15 In detail, each player has to participate in two bimatrix games, where in one

game acts as role 1 and in the other game acts as role 2. This modification does not

change Nash equilibria of the role game. In fact, we could multiply the payoff matrix of

the standard role game by the factor 2 to get the variant payoff values. We will see that

each logit equilibrium of the base game corresponds to a logit equilibrium of the (variant)

role game.

Let the base game be a J1 × J2 bimatrix game. Denote the payoff to player i using

strategy sik when he meets player j using strategy sjl by aikl. Therefore, given a mixed

strategy profile p ∈ Δ, uik(pj) =
∑Jj

l=1 pjlaikl.

The base game leads to a J1J2 × J1J2 symmetric role game. Denote a pure strategy

in the role game by ŝij, which means using strategy s1i in role 1 and using strategy s2j in

role 2. The payoff to a player using strategy ŝij when he meets strategy ŝkl is then given

by a1il + a2jk. From the construction of the role game, each mixed strategy profile of the

role game, p̂ ∈ ΔJ1J2 , naturally corresponds to a mixed strategy profile of the bimatrix

game, p ∈ Δ, where p1i =
∑J2

l=1 p̂il and p2j =
∑J1

k=1 p̂kj. For given p̂ ∈ ΔJ1J2 , the average

payoff of ŝij is then written as

ûij(p̂) =

J1∑
k=1

J2∑
l=1

p̂kl(a1il + a2jk) = u1i(p2) + u2j(p1) (1.6.1)

Logit equilibria of the J1 × J2 bimatrix game are the solutions of

p1i =
eλu1i(p2)∑J1
k=1 e

λu1k(p2)

p2j =
eλu2j(p1)∑J2
l=1 e

λu2l(p1)
(1.6.2)

15Sigmund et al. adopted this variant in their paper ”Reward and punishment” (2001), where the base

game is the mini ultimatum game and the role game is the mini public goods game with punishment.
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and in the corresponding J1J2 × J1J2 role game, logit equilibria are the solutions of

p̂ij =
eλûij(p̂)∑J1

k=1

∑J2
l=1 e

λûkl(p̂)
(1.6.3)

Notice that eλûij(p̂) = eλu1i(p2)eλu2j(p1), there is a one-to-one mapping between the logit

equilibria of the bimatrix game and the corresponding role game, where p̂ij = p1ip2j,∑J2
l=1 p̂il = p1i and

∑J1
k=1 p̂kj = p2j. Therefore, a Nash equilibrium p is the LLE in a

bimatrix game if and only if the Nash equilibrium (p̂, p̂), where p̂ij = p1ip2j, is the LLE

in the corresponding role game.

Furthermore, this result could be extended to any normal form game and its corre-

sponding role game. If the base game is an n-person normal form game (N,S, u), the

role game is an n-person
∏

i∈N Ji -strategy symmetric game, where each player plays n!

different normal form games. 16 p ∈ πλ in the base game if and only if (p̂, ..., p̂) ∈ π̂λ

in the role game, where p̂i1...in =
∏n

j=1 pjij , ij ∈ {1, ..., J}. Therefore, the limiting logit

equilibrium in any normal form game can be predicted by the corresponding symmetric

role game.

However, this relation does not hold for more general quantal response functions. For

instance, consider the following simple regular quantal response function

σij =
1 + λuij

Ji + λ
∑Ji

k=1 uik

(1.6.4)

when payoffs are positive. It is easy to check that

J2∑
j=1

σ̂ij =

J2∑
j=1

1 + λ(u1i + u2j)

J1J2 + λ
∑J1

k=1

∑J2
l=1(u1k + u2l)

=
1 + λ(u1i + c)

J1 + λ
∑J1

k=1(u1k + c)

= 1 + λu1i

J1 + λ
∑J1

k=1 u1k

= σ1i (1.6.5)

if we take u2j = c > 0 for all j ∈ {1, ..., J2}.

1.7 Conclusion

McKelvey and Palfrey (1995) pointed out that the graph of logit equilibrium correspon-

dence generically includes a unique branch connecting the centroid at λ = 0 to a unique

Nash equilibrium as λ goes to infinity. They then suggested an equilibrium selection by

tracing this branch. In this chapter, we extend this idea to quantal response functions

16Since the base game has n roles, there are n! (the number of n-combinations) different normal form

games.
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that satisfy three axioms: continuity, monotonicity and cumulativity. From Brouwer’s

fixed point theorem, C0 continuity is enough to guarantee the existence of a QRE for

any given λ = 0. Monotonicity requires that players are ”better responders” that play

strategies with higher expected payoffs more often. As a result of monotonicity and con-

tinuity, the only QRE at λ = 0 is the centroid. Cumulativity ensures that players choose

best responses as λ goes to infinity. Together with continuity, the QRE correspondence

converges to Nash equilibria as λ goes to infinity. If a quantal response function satisfies

the three axioms, the graph of QRE correspondence includes a path that connects the

centroid at λ = 0 to at least one Nash equilibrium. However, C0 continuity is too weak

that the path is not necessarily nicely behaved. In exceptional cases, it may not be differ-

entiable and bifurcation may arise. Such exceptional cases can be generically excluded by

making differentiability assumption. If the quantal response function is C2 continuous,

except for a nowhere dense set of games, the path is diffeomorphic to a C1 segment. This

implies that for almost all normal form games, there is a unique selection from the set

of Nash equilibria by ”tracing” the graph of the QRE correspondence beginning at the

centroid.

In the quantal response model, each player’s payoffs are computed based on beliefs

about other players’ strategies, and in a QRE, the beliefs match the choice probabilities.

In symmetric games with identical quantal response functions, the graph of QRE corre-

spondence always contains a symmetric path (players have identical beliefs on this path)

that connects the centroid to a symmetric Nash equilibrium. Therefore, the limiting QRE

of a symmetric game must be a symmetric Nash equilibrium. If we further restrict the

tracing process to the graph of symmetric QRE correspondence, the limiting QRE exists

for almost all symmetric games. One implication directly from this result is that if a

symmetric game has a unique symmetric Nash equilibrium, then it must be the limiting

QRE.

In two-person symmetric games, a sufficient condition for the limiting QRE is GPPD.

In coordination games, GPPD strategy is the unique best response when it is the most

frequent strategy in opponent’s strategy profile. This definition is closely related to the p-

dominant equilibrium introduced by Morris et al. (1995), which says that each strategy of

the strategy pair is a best response if the other player taking his strategy with probability

at least p. In J × J coordination games, GPPD is stronger than 1
2
dominant but weaker

than 1
J
dominant.

It is well known that the QRE is subject to framing effects: duplicating a strategy

affects the equilibrium selection (Goeree and Holt, 2001, 2004). Such framing effects are

inevitable if quantal response functions are differentiable (Hilbe, 2011). We offer a much

stronger proposition: By appropriately adding a single strictly dominated strategy, any

strict (symmetric) Nash equilibrium can be selected. Therefore, the limiting QRE is highly
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sensitive to the addition and elimination of strictly dominated strategies. 17 However, this

does not imply that quantal response methods are without empirical content. Conversely,

it is actually consistent with many experimental results. For instance, Cooper et al. (1990)

provided evidence that strictly dominated strategies may influence equilibrium selection

even though they are never selected as an outcome.

In this chapter, payoff functions are assumed to be linearly dependent on the noise

factor λ. Previous results could be extended to more general cases if σij(ūi, λ) =
1
Ji

for

all i ∈ N and j ∈ {1, ..., Ji} when λ = 0. 18 For instance, consider the following regular

quantal response function introduced by Luce (1959, see also Eq.(6.1) in Goeree et al.,

2005) when payoffs are positive

σij(ūi, λ) =
(uij)

λ∑Ji
k=1(uik)λ

(1.7.1)

It is easy to verify that continuity, monotonicity and cumulativity are satisfied, and the

only QRE at λ = 0 is the centroid. Therefore, Eq.(1.7.1) yields a unique equilibrium

selection for almost all games.

Finally, we show that there is a one-to-one mapping between the logit equilibria of a

normal form game and the corresponding (variant) role game. Intuitively, QRE in the

base game are the projection of QRE in the role game. Therefore, the limiting logit

equilibrium in any normal form game can be predicted by the symmetric role game. In

particular, if the base game is a 2×2 zero-sum game with a unique mixed Nash equilibrium

p, the set of Nash equilibria in the role game is a continuum, where p̂11 + p̂12 = p11 and

p̂11 + p̂21 = p21. Since the two games have the identical limiting QRE, logit equilibrium

correspondence in the role game converges to the Wright equilibrium. 19 As pointed out

by Berger (2002), this equilibrium is global attractive under the best response dynamics.

Thus, the best response dynamics and the quantal response method select the same Nash

equilibrium.

17Kim and Wong (2010) showed that for any symmetric normal form game, any strict (symmetric) Nash

equilibrium can be selected as the unique long-run equilibrium (Kandori et al., 1993) by appropriately

adding a single strategy which is strictly dominated by all original strategies.
18In this case, cumulativity is redefined as: uij > uik ⇒ lim

λ→∞
σik(ūi,λ)
σij(ūi,λ)

= 0.
19In the well known two-locus, two-alleles equation from populations genetics, the surface p̂11p̂22 =

p̂12p̂21 is called the Wright manifold. Berger (2002) then called the Nash equilibrium in this manifold the

Wright equilibrium.



Chapter 2

Quantal response methods for

equilibrium selection: 2× 2 bimatrix

games

Abstract

In this chapter, quantal response methods for equilibrium selection are analyzed in detail

for 2 × 2 bimatrix coordination games. We show that in general not the risk-dominant

equilibrium is selected. In the logarithmic game, the limiting QRE is the Nash equilibrium

with the larger sum of square root payoff. Finally, we apply the quantal response methods

to the public goods game with punishment. A cooperative equilibrium can be selected if

punishment is strong enough.

Key words

Quantal response equilibrium; logit equilibrium; logrithmic game; equilibrium selection;

punishment
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2.1 Introduction

Quantal response equilibrium (QRE) introduced by McKelvey and Palfrey (1995) has

been widely used to explain experimental data. In some applications, a limiting logit

equilibrium, the limit of logit equilibrium as the noise approaches zero, is compared with

limiting behavior in experiments (Anderson et al., 2001; Yi, 2002, 2005; Breitmoser et al.,

2010). In contrast, few papers investigated the limiting QRE analytically. In particular,

from our knowledge, the only theoretical work on equilibrium selection in normal form

games is done by Turocy (2005). However, his claim that the QRE methods always select

the risk dominant equilibrium, is wrong. 1

In this chapter, we analyze the limiting QRE in 2×2 bimatrix games in detail. Section

2.2 defines logit equilibrium and reviews some basic results. Section 2.3 derives a formula

for the quantal response equilibrium selection in 2×2 coordination games. Section 2.4 tests

this formula with six different types of quantal response functions. For the logarithmic

game (Harsanyi, 1973), we get a simple square root rule for the equilibrium selection.

Finally, section 2.5 applies these results to the public goods game (PGG) with punishment.

We compare the theoretical prediction with the past empirical studies qualitatively and

hope to explain how punishment works in the real world.

2.2 Logit equilibrium

Let us start from a 2×2 bimatrix game, where A1 and A2 are two pure strategies of player

A, and B1 and B2 are two pure strategies of player B. Suppose that aij denotes the payoff

to player A using strategy Ai when it meets strategy Bj and bij the payoff to player B

using strategy Bi when it meets strategy Aj. The bimatrix game is called a coordination

game if pure strategy pairs (A1, B1) and (A2, B2) are both strict Nash equilibria. In this

case, the payoff matrix can be normalized 2 as

B1 B2

A1

A2

(
1− q, c(1− p) 0, 0

0, 0 q, cp

)
(2.2.1)

where p = b22−b12
b11+b22−b21−b12

, q = a22−a12
a11+a22−a21−a12

, c = b11+b22−b21−b12
a11+a22−a21−a12

, and these parameters

satisfy 0 < p, q < 1, and c > 0. Besides of two strict pure Nash equilibria, the coordination

game also has a mixed equilibrium (p, q).

1In 2× 2 symmetric coordination games, the limiting QRE is the risk dominant equilibrium since the

risk dominant equilibrium is 1
2 dominant (See Theorems 1.10 and 1.11 in Chapter 1). But this statement

is not true for 2× 2 bimatrix coordination games.
2As pointed out by Goeree et al.(2005), structural quantal response functions involve only payoff

differences.
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In the framework of best response, players choose the strategy with the highest payoff.

Denote the probability of player A using strategy A1 by x and the probability of player

B using strategy B1 by y. One can easily show that A1 is the best response strategy of

player A if and only if y > q and B1 is the best response strategy of player B if and only

if x > p.

Following McKelvey and Palfrey (1995), in a QRE, players are assumed boundedly

rational and obverse noisy evaluations of the strategies values. In the 2×2 bimatrix game,

player i will choose the first strategy if and only if

ui1 + εi1 > ui2 + εi2 (2.2.2)

where uij denotes the payoff of player i using strategy j and εij is the payoff disturbance.

Best response function becomes probabilistic rather than deterministic. Suppose that

player i’s noise vector, εi = (εi1, εi2), is distributed according to a joint distribution with

density function pi(εi), player i then adopts the first strategy with probability

σi1(ui1, ui2) =

∫ ∞

−∞

∫ ui1−ui2+εi1

−∞
pi(εi)dεi2dεi1 (2.2.3)

where σij(ui1, ui2) is called the quantal response function.

The most common specification of QRE is the logit equilibrium. For any given λ ≥ 0,

the logistic quantal response function is given by

σi1(ui1, ui2) =
eλui1

eλui1 + eλui2
=

1

1 + eλ(ui2−ui1)
. (2.2.4)

This arises from (2.2.3) if all the noises follow the extreme value distribution with cumu-

lative distribution function exp(− exp(−λε− γ)), where γ is Euler’s constant. Therefore,

if each player uses a logistic quantal response function, the corresponding logit equilibria

are the solutions of

x =
1

1 + eλ(q−y)

y =
1

1 + eλc(p−x)
(2.2.5)

Consider the logit equilibria as a function of λ. λ = 0 means full noise and λ = +∞
means no noise. For the set of logit equilibria, it is obvious that when λ = 0, Eq.(2.2.5)

has a unique solution (1
2
, 1
2
). On the other hand, when λ → +∞, the set of logit equilibria

approaches the set of all three Nash equilibria of the game.

As shown by McKelvey and Palfrey (1995), for almost all normal form games, the

graph of the logit equilibria correspondence contains a unique branch which starts for

λ = 0 at the centroid of the strategy simplex and converges to a unique Nash equilibrium

as λ goes to infinity. This defines a unique selection from the set of Nash equilibria by

”tracing” the graph of the logit equilibria correspondence. The selected Nash equilibrium

is called the limiting logit equilibrium of the game.
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2.3 Equilibrium selection

In this section, we study the equilibrium selection by the structural QRE (Goeree et

al., 2005), where the quantal response function is defined in Eq.(2.2.3). Notice that

σij(ui1, ui2) depends only on the payoff difference ui = ui1 − ui2, we write σi(ui) the

probability of player i choosing the first strategy with payoff difference ui. The density

function pi is called admissible if it is continuous, unbiased and independent across play-

ers (McKelvey and Palfrey, 1995). From Proposition 2 in Goeree et al., 2005, if pi is

admissible, σi(ui) satisfies:

(a) continuous,

(b) monotonically increasing in ui,

(c) σi(ui) = 1− σi(−ui).

That is, σi(ui) is a cumulative density function of a symmetric distribution. For conve-

nience, suppose that the disturbance on each player is identically distributed and follows

a unimodal distribution. In this case, players have the same quantal response function,

σ = σ1 = σ2, and σ(u) is the cumulative distribution function of a unimodal symmetric

distribution, where σ′(0) > 0, σ′′(u) ≥ 0 for u < 0 and σ′′(u) ≤ 0 for u > 0. The explicit

formula of σ of course depends on the density function and we will investigate different

types of noises in the next section.

Following the logit equilibrium, let us introduce the level of noise λ (λ ≥ 0) into the

structural QRE and write the quantal response function at level λ by σ(λu). λ = 0 means

full noise and λ = +∞ means no noise. For the 2×2 bimatrix game (2.2.1), QRE at level

λ are the solutions of

x = σ(λ(y − q))

y = σ(λc(x− p)) (2.3.1)

As pointed out by Goeree et al. (2005), there exists a structure QRE of the game (2.2.1) for

any admissible pi. Let us now regard the solution of Eq.(2.3.1) as a 3-dimensional vector

(x, y, λ), where (x, y) is the QRE at noise level λ. When λ = 0, Eq.(2.3.1) has a unique

solution (1
2
, 1
2
, 0). When λ = +∞, Eq.(2.3.1) has three solutions, (0, 0,+∞), (1, 1,+∞)

and (p, q,+∞), which correspond to the three Nash equilibria of the coordination game.

Similarly as the logit equilibrium, Eq.(2.3.1) induces a continuous path (x, y, λ) starting

from the center point and to one of the Nash equilibria for almost all games (Theorem

1.6 in Chapter 1). This then defines a unique equilibrium selection. For given σ, we call

the selected Nash equilibrium the limiting QRE of the game (2.2.1).

Theorem 2.1

(a) For c = 1, the limiting QRE is (1, 1) if p + q < 1, and is (0, 0) if p + q > 1. (b)

For c 
= 0, the limiting QRE is (1, 1) if p + q < 1 and cp + q < 1
2
+ c

2
, and is (0, 0) if



CHAPTER 2. QRE: BIMATRIX GAMES 39

p+ q > 1 and cp+ q > 1
2
+ c

2
. 3

Proof:

The intersecting points of the QRE correspondence and the plane x+ y = 1 satisfy

σ(λ(y − q)) + σ(λc(x− p)) = 1 (2.3.2)

Since σ is the cumulative distribution function of a symmetric distribution, λ(y − q +

c(x− p)) = 0.

(a) For c = 1, (1
2
, 1
2
, 0) is the only intersection if p + q 
= 1. This implies that the

limiting QRE is (1, 1) if x+ y > 1 for any λ > 0 and is (0, 0) if x+ y < 1 for any λ > 0 .

Let λ → 0+, Eq.(2.3.1) could be approximated as

x ≈ 1

2
+ λ(y − q)σ′(0)

y ≈ 1

2
+ λ(x− p)σ′(0) (2.3.3)

and

x+ y ≈ 1 + λ(1− p− q)σ′(0) (2.3.4)

Hence, the limiting point is (1, 1) if p+ q < 1 and is (0, 0) if p+ q > 1.

(b) For c 
= 1, suppose that c < 1. Clearly, (1
2
, 1
2
, 0) is an intersection, and another

intersection is (1−cp−q
1−c

, cp+q−c
1−c

, λ(p, q)), where λ(p, q) is the solution of

1− cp− q

1− c
= σ(λ(p, q)c

p+ q − 1

1− c
) (2.3.5)

If (1−cp−q
1−c

, cp+q−c
1−c

) is not in region [0, 1] × [0, 1] × [0,∞), i.e., cp + q < c or 1 < cp + q or

(p + q − 1)(cp + q − 1
2
− c

2
) < 0, (1

2
, 1
2
, 0) is the only intersecting point. In this case, the

limiting QRE is (1, 1) if x+ y > 1 for any λ > 0 and is (0, 0) if x+ y < 1 for any λ > 0.

Similarly as (a), for λ → 0+, Eq.(2.3.1) could be approximated as

x ≈ 1

2
+ λ(y − q)σ′(0)

y ≈ 1

2
+ λc(x− p)σ′(0) (2.3.6)

and

x+ y ≈ 1 + λ(
1

2
+

c

2
− q − cp)σ′(0). (2.3.7)

3The bimatrix game Eq.(2.2.1) is symmetric if and only if c = 1 and p + q = 1. Thus, Theorem 2.1

implies that the limiting QRE does not exist for all 2 × 2 symmetric games with a unique symmetric

mixed Nash equilibrium.
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This implies that x + y < 1 if and only if cp + q > 1
2
+ c

2
. Hence, (0, 0) is selected if

p+ q > 1 and cp+ q > 1
2
+ c

2
, and (1, 1) is selected if p+ q < 1 and cp+ q < 1

2
+ c

2
. �

For 2×2 bimatrix games, (1, 1) is risk dominant if and only if the Nash products satisfy

the inequality c(1− q)(1− p) > cpq, i.e., p+ q < 1 (Harsanyi and Selten, 1988). Theorem

2.1 suggests that the quantal response equilibrium selection conforms to the Nash product

rule if and only if c = 1, although the QRE method is very close to the ”tracing procedure”

of Harsanyi and Selten (1988; Harsanyi, 1975). On the other hand, (1, 1) is the limiting

QRE if p < 1
2
and q < 1

2
. This implies that if a strategy is ”risk dominant for both

players”, it will be selected by the QRE methods independent of c. Turocy (2005) made

a mistake in his proof of Theorem 7 that applied this stronger condition instead of the

Nash product rule.

As an extension of Theorem 2.1(b), we look at two limit cases c = 0 and c = ∞.

If c = 0, Eq.(2.3.5) has a solution if and only if q = 1
2
. Hence, (1

2
, 1
2
, 0) is the unique

intersection if q 
= 1
2
. From Eq.(2.3.7), (1, 1) ((0, 0)) is the limiting QRE if and only if

q < 1
2
(q > 1

2
), which is independent of p. This implies that the influence of player B on

the equilibrium selection is negligible if its payoff is much less than player A. Similarly, if

c → ∞, (1, 1) ((0, 0)) is the limiting QRE if and only if p < 1
2
(p > 1

2
), which is independent

of q. This shows clearly that our equilibrium selection method depends crucially on c, in

contrast to Nash products.

One may notice that limit set of QRE as λ → +∞ has three Nash equilibria, but

Theorem 2.1 only mentioned the two pure Nash equilibria. In fact, Theorem 2.2 will

show that there is no path connecting the mixed equilibrium (p, q) and the centroid (1
2
, 1
2
)

for almost all coordination games.

In order to derive a precise result of equilibrium selection, we introduce a new concept.

For given c, define the separatrix as the curve in the p−q plane separating the two regions

where the limiting QRE are (0, 0) and (1, 1), respectively. Theorem 2.1 says that the

separatrix lies between lines p+ q = 1 and cp+ q = 1
2
+ c

2
. Furthermore, (1, 1) is selected

for (p, q) below the separatrix and (0, 0) is selected for (p, q) above the separatrix. (See

Figure 2.3.1) In the rest of this section, we will derive an expression of the separatrix.

Define f = σ−1 . Clearly, f is an increasing function in [0, 1], where f(0) = −∞,

f(1
2
) = 0, f(1) = +∞, f ′′(x) ≥ 0 if x < 1

2
and f ′′(x) ≤ 0 if x > 1

2
. The projection of

Eq.(2.3.1) on x− y plane is then written as

(y − q)f(y) = c(x− p)f(x) (2.3.8)

since

f(x) = λ(y − q)

f(y) = λc(x− p) (2.3.9)



CHAPTER 2. QRE: BIMATRIX GAMES 41

Figure 2.3.1: Separatrix on the p−q plane, and its tangent line at p = q = 1
2
, for c = 0.25.

Figures (a)-(f) are respectively the logit equilibrium, the probit equilibrium, the Cauchy

noise, the exponential noise, the uniform noise and the logarithmic game. Circles denote

numerically computed points on the separatrices. The slope of the tangent line is −1
2

(independently of σ). The Nash equilibrium (1, 1) is selected for (p, q) in the region below

the separatrix and (0, 0) is selected for (p, q) in the region above the separatrix. The linear

approximation is works well for these six types of quantal response functions.
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From Eq.(2.3.9), each solution of Eq.(2.3.8) corresponds to a unique QRE. Therefore, we

turn to investigate the graph of Eq.(2.3.8) instead of Eq.(2.3.1).

Theorem 2.2

For almost all parameters, the graph of Eq.(2.3.8) consists of two (disjoint) branches,

where one passes through the mixed equilibrium (p, q) and the other passes through the

centroid (1
2
, 1
2
). For the critical case, two branches intersect at a singular point.

Proof:

One can easily calculate that Eq.(2.3.8) has four interior solutions, (1
2
, 1
2
), (p, 1

2
), (1

2
, q)

and (p, q), and four boundary solutions (0, 0), (1, 0), (0, 1) and (1, 1). For convenience, we

divide the x − y plane to nine regions by four lines x = 1
2
, x = p, y = 1

2
and y = q, and

study the graph of Eq.(2.3.8) in each region. Clearly, no solution in regions (2), (4), (6)

and (8). Furthermore, λ > 0 in region (1) and (9), and λ < 0 in region (3) and (7). (See

Figure 2.3.2 (a))

Without loss of generality, assume p > 1
2
and q < 1

2
. Define

S(x, y) = (y − q)f(y)− c(x− p)f(x) (2.3.10)

and the derivatives of S(x, y) satisfy

Sx = −c(x− p)f ′(x)− cf(x)

Sxx = −c(2f ′(x) + (x− p)f ′′(x))

Sy = (y − q)f ′′(y) + f(y)

Syy = 2f ′(y) + (y − q)f ′′(y) (2.3.11)

From the properties of f , we have Sx < 0 if x > p, Sx > 0 if x < 1
2
, Sy > 0 if y > 1

2
,

Sy < 0 if y < q, Sxx ≤ 0 if 1
2
< x < p and Syy ≥ 0 if q < y < 1

2
.

Hence, in region (1), S(x, y) = 0 is a increasing curve from (0, 0) to (1
2
, q) since Sx > 0

and Sy < 0; in region (3), it is a decreasing curve from (p, q) to (1, 0) since Sx < 0 and

Sy < 0; in region (5), it is a decreasing curve from (0, 1) to (1
2
, 1
2
) since Sx > 0 and Sy > 0;

and in region (9), it is a increasing curve from (p, 1
2
) to (1, 1) since Sx < 0 and Sy > 0.

(See Figure 2.3.2 (a))

On the other hand, in region (5), we have Sxx ≤ 0 and Syy ≥ 0, i.e., S is a convex

function of y and a concave function of x. This implies that for given ŷ, S(x, y) = 0 has (a)

two solutions (x̂1, ŷ) and (x̂2, ŷ) if S(x
∗, ŷ) > 0, (b) one solution (x∗, ŷ) if and S(x∗, ŷ) = 0

(c) no solution if S(x∗, ŷ) < 0 , where Sx(x
∗) = 0 and x̂1 < x∗ < x̂2. Similarly, for given

x̂, S = 0 has (d) two solutions (x̂, ŷ1) and (x̂, ŷ2) if S(x̂, y
∗) < 0, (e) one solution (x̂, y∗) if

S(x̂, y∗) = 0 and (f) no solution if S(x̂, y∗) > 0, where Sy(y
∗) = 0 and ŷ1 < y∗ < ŷ2. Thus,

the graph of S(x, y) = 0 in region (5) consists of two disjoint curves that separated by line
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Figure 2.3.2: Logit equilibrium correspondence for the coordination game. λ ≥ 0 on

solid curves but λ < 0 on dashed curves. Black points are NE and red points are (1
2
, 1
2
).

Parameters are taken as p = 0.3, c = 0.25, q = 0.7 in (a), q = 0.6005 in (b), and q = 0.5

in (c). For almost all games, the graph of Eq.(2.3.8) consists of two branches, where one

passes through the mixed equilibrium (p, q) and the other passes through the centroid

(1
2
, 1
2
). In the critical case (b), two branches intersect at a singular point.

x = x∗ if S(x∗, y∗) > 0 (from (a) and (f)) and separated by line y = y∗ if S(x∗, y∗) < 0

(from (c) and (d)).

In sum, the graph of S(x, y) = 0 consists of two branches, where the Nash equilibrium

(p, q) and the centroid (1
2
, 1
2
) are always on different branches. Furthermore, (1

2
, 1
2
) is on

the curve passing through (0, 0) if and only if S(x∗, y∗) > 0 and x∗ > 1
2
or S(x∗, y∗) < 0

and y∗ > 1
2
. For the critical case S(x∗, y∗) = 0, two branches intersect at a singular point

(x∗, y∗). (See Figure 2.3.2 (b)) �

Theorem 2.2 implies that the limiting QRE is (0, 0) (or (1, 1)) if and only if (0, 0) (or

(1, 1)) and (1
2
, 1
2
) are on the same branch. On the other hand, (p, q) can not be selected

for almost all games since there is no path from (1
2
, 1
2
) to it. However, in the critical case,

two branches intersect at a singular point (x∗, y∗) (we simply note it by (x, y) in later

discussions) and tracing the branch of QRE correspondence beginning at the centroid

could reach all three Nash equilibria. Thus, (p, q) is on the separatrix if and only if

Eq.(2.3.8) has a singular point.

From the proof of Theorem 2.2, the singular point satisfies

S(x, y) = (y − p)f(y)− c(x− p)f(x) = 0

Sx(x, y) = f(x) + (x− p)f ′(x) = 0

Sy(x, y) = f(y) + (y − q)f ′(y) = 0 (2.3.12)
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and this yields

p = x+
f(x)

f ′(x)
,

q = y +
f(y)

f ′(y)
. (2.3.13)

Define F (x) = x+ f(x)
f ′(x) . It is easy to see that F (1

2
) = 1

2
since f(1

2
) = 0. Notice that

F ′(x) = 2− f(x)f ′′(x)
f ′(x)2

> 0 (2.3.14)

, F (x) is an increasing function. Hence, Eq.(2.3.8) could be written as

(F−1(q)− q)f(F−1(q)) = c(F−1(p)− p)f(F−1(p)). (2.3.15)

For convenience, define H(p) = (F−1(p)− p)1/2f(F−1(p))1/2. The expression of the sepa-

ratrix is then simplified as

H(q) = −c1/2H(p) (2.3.16)

where the minus is decided by Theorem 2.1.

Since H(1
2
) = 0, the separatrix can be reduced to

q =
1

2
− c1/2(p− 1

2
) (2.3.17)

after ignoring the high order terms of H(p). Eq.(2.3.17) shows that the first order term

is independent of the quantal response function.

2.4 Different types of quantal response functions

Eq.(2.3.17) provides a linear approximation of the separatrix but one may doubt that

whether this oversimplification is appropriate. In this section, we are going to derive the

high order terms of the separatrix for six different types of quantal response functions.

In general, the separatrix does not have an explicit formula (except in section 2.4.6). We

provide both the power series and numerical simulations and show that the limiting QRE

is affected little by the noise structure but mainly decided by the payoff matrix. This

implies that Eq.(2.3.17) is a good approximation for the equilibrium selection by QRE

methods. Based on the logarithmic game (Harsanyi, 1973), we find a simple rule to decide

the limiting QRE: the strategy with larger sum of square root payoff is selected.
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2.4.1 Logit equilibrium

The first example is the logit equilibrium discussed in section 2.2. If the noises follow the

extreme value distribution with cumulative distribution function exp(− exp(−λε − γ)),

the quantal response function is

σ(u) =
1

1 + e−u
. (2.4.1)

By using the Taylor expansion, high order terms of H(p) are

H(p) = Δp+
1

6
Δp3 +

17

120
Δp5 + o(Δp7) (2.4.2)

and the separatrix could be written as

Δq = −c1/2Δp+ (−1

6
c1/2 +

1

6
c3/2)Δp3

+(
1

12
c3/2 − 17

120
c1/2 +

7

120
c5/2)Δp5 + o(Δp7) (2.4.3)

where Δp = p− 1
2
and Δq = q − 1

2
. (See Figure 2.3.1 (a))

2.4.2 Probit equilibrium

If the random perturbations follow the normal distribution (Palfrey and Prisbrey, 1997;

Staudigl, 2011), σ(u) is the cumulative distribution function of the normal distribution,

i.e.,

σ(u) = Φ(u) =
1√
2π

∫ u

−∞
e−t2/2dt. (2.4.4)

By using the Taylor expansion, high order terms of H(p) are

H(p) = Δp+
π

24
Δp3 +

19π2

1920
Δp5 + o(Δp7) (2.4.5)

and the separatrix could be written as

Δq = −c1/2Δp+ (− 1

24
c1/2 +

1

24
c3/2)πΔp3

+(
1

640
c3/2 − 19

1920
c1/2 +

1

640
c5/2)π2Δp5 + o(Δp7) (2.4.6)

(See Figure 2.3.1 (b))
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2.4.3 Cauchy noise

Another famous noise structure is the Cauchy noise, which is the quotient distribution

of two normal variables. An interpretation is that the noise comes from evaluating the

frequencies of strategies. In this case, σ(u) is the cumulative distribution function of the

Cauchy distribution, i.e.,

σ(u) =
1

π
arctan(u) +

1

2
. (2.4.7)

By using the Taylor expansion, high order terms of H(p) are

H(p) = Δp+
π2

24
Δp3 +

13π4

1920
Δp5 + o(Δp7) (2.4.8)

and the separatrix could be written as

Δq = −c1/2Δp+ (− 1

24
c1/2 +

1

24
c3/2)π2Δp3

+(
1

192
c3/2 − 13

1920
c1/2 +

1

640
c5/2)π4Δp5 + o(Δp7) (2.4.9)

(See Figure 2.3.1 (c))

2.4.4 Exponential noise

If the random perturbations follow the exponential distribution, σ(u) is the cumulative

distribution function of the Laplace distribution, i.e.,

σ(u) =

{
eu

2
u < 0

1− e−u

2
0 ≤ u

(2.4.10)

In this case, σ is not smooth at 0. Nevertheless, method in section 2.3 is well defined

since σ′′(u) > 0 for u < 0 and σ′′(u) < 0 for u > 0.

For p < 1/2, high order terms of H(p) are

H(p) = Δp+
1

4
Δp2 +

1

6
Δp3 +

29

192
Δp4 + o(Δp5) (2.4.11)

and the separatrix could be written as

Δq = −c1/2Δp+ (
1

4
c1/2 − 1

4
c)Δp2 + (

1

8
c− 1

6
c1/2 − 1

6
c3/2)Δp3

+(− 19

192
c+

29

192
c1/2 +

1

8
c3/2 − 29

192
c2)Δp4 + o(Δp5) (2.4.12)

From the symmetry of σ(u), for p > 1/2, high order terms of H(p) are

H(p) = Δp− 1

4
Δp2 +

1

6
Δp3 − 29

192
Δp4 + o(Δp5) (2.4.13)
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and the separatrix could be written as

Δq = −c1/2Δp− (
1

4
c1/2 − 1

4
c)Δp2 + (

1

8
c− 1

6
c1/2 − 1

6
c3/2)Δp3

−(− 19

192
c+

29

192
c1/2 +

1

8
c3/2 − 29

192
c2)Δp4 + o(Δp5) (2.4.14)

(See Figure 2.3.1 (d))

2.4.5 Uniform noise

If the perturbations follow the uniform distribution (Gale et al., 1995), σ(u) is the cumu-

lative distribution function of the triangular distribution

σ(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 u < −1
(1+u)2

2
−1 ≤ u < 0

1− (1−u)2

2
0 ≤ u < 1

1 1 ≤ u

(2.4.15)

Similarly as the exponential distribution, σ is not smooth at 0 but σ′′(u) = 1 > 0 for

u < 0 and σ′′(u) = −1 < 0 for u > 0.

For p < 1/2, high order terms of H(p) are

H(p) = Δp+
1

8
Δp2 +

1

16
Δp3 +

23

512
Δp4 + o(Δp5) (2.4.16)

and the separatrix could be written as

Δq = −c1/2Δp− (
1

8
c1/2 − 1

8
c)Δp2 + (− 1

32
c− 1

16
c1/2 +

1

32
c3/2)Δp3

+(− 9

512
c− 23

512
c1/2 +

3

256
c3/2 − 1

64
c2)Δp4 + o(Δp5) (2.4.17)

From the symmetry of σ(u), for p > 1/2, high order terms of H(p) are

H(p) = Δp− 1

8
Δp2 +

1

16
Δp3 − 23

512
Δp4 + o(Δp5) (2.4.18)

and the separatrix could be written as

Δq = −c1/2Δp+ (
1

8
c1/2 − 1

8
c)Δp2 + (− 1

32
c− 1

16
c1/2 +

1

32
c3/2)Δp3

+(
9

512
c+

23

512
c1/2 − 3

256
c3/2 +

1

64
c2)Δp4 + o(Δp5) (2.4.19)

(See Figure 2.3.1 (e))
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2.4.6 Logarithmic game

The last example is the logarithmic game introduced by Harsanyi (1973). In this game, a

player’s utility has the form λ
λ+1

U + 1
λ+1

L with λ ≥ 0, where U depends on payoff matrix

and L depends on the player’s own strategy. For 2× 2 bimatrix games, payoff functions

are defined as

û1(x) =
λ

λ+ 1
(xy(1− q) + (1− x)(1− y)q) +

1

λ+ 1
log(x(1− x))

û2(y) =
λ

λ+ 1
(yxc(1− p) + (1− y)(1− x)cp) +

1

λ+ 1
log(y(1− y)) (2.4.20)

where ûi(x) is the payoff for player i using strategy x.

Suppose that individuals choose strategies maximizing their payoffs. The correspond-

ing QRE is then the solution of

∂ûi(x)

∂x
=

λ

λ+ 1
(y − q) +

1

λ+ 1

1− 2x

x(1− x)
= 0

∂û2(y)

∂y
=

λ

λ+ 1
(x− p) +

1

λ+ 1

1− 2y

y(1− y)
= 0 (2.4.21)

where the quantal response function is

σ(u) =
1

2
+

u

4(1 +
√
u2/4 + 1)

(2.4.22)

From Eq.(2.3.12) to Eq.(2.3.16), we obtain

H(p) =

√
1

2
−

√
1

4
− (p− 1

2
)2 (2.4.23)

and the separatrix has an explicit formula

q =
1

2
− c1/2

√
1

2
−

√
1

4
− (p− 1

2
)2

√
1− c(

1

2
−
√

1

4
− (p− 1

2
)2) (2.4.24)

Interestingly, Eq.(2.4.24) is equivalent to the following simpler expression√
1− q +

√
c(1− p) =

√
q +

√
cp (2.4.25)

which means that the strategy with larger sum of square root payoff will be selected.

Since the equilibrium selection is affected little by the quantal response function,

Eq.(2.4.25) then provides a simple way to estimate the limiting QRE directly from the

non-normalized payoff matrix. Nash equilibrium (A1, B1) is selected by the QRE methods

if it has larger sum of square root payoff, i.e.,
√
a11 − a21 +

√
b11 − b21 >

√
a22 − a12 +

√
b22 − b12 (2.4.26)

(See Figure 2.3.1 (f))
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2.5 Application

In this section, we study the public goods game (PGG) with punishment (Sigmund et al.,

2000, 2001). The only strict Nash equilibrium in this game is that do not contribute to

the public pool and do not punish free riders. However, empirical researches indicated

that punishment can curb free-riding. By applying the results in section 2.3, we find that

a cooperative equilibrium is selected by the QRE method if the punishment is strong

enough. For intermediate punishment, cooperation could also dominate the population

when λ is not so large even if the limiting logit equilibrium is defection. By comparing

the QRE model to past experiments, we hope to explain how punishment works in the

real world.

2.5.1 Public goods game with punishment

Following Sigmund et al. (2001), we consider a two players PGG, where both can send

a benefit b to their coplayer at a cost of a. In the second stage, they are offered the

opportunity to punish their coplayer by imposing a fine. The fine amounts to a loss β

to the punished player, and it entails a cost α to the punisher. Let us label with C

(cooperator) those players who cooperate by sending a benefit and with D (defector)

those who do not. Let P denotes those who punish defectors and N those who do not.

The payoff matrix is then written as

P N

C

D

( −a, b −a, b

−β,−α 0, 0

)
(2.5.1)

This mini PGG with punishment is obviously equivalent to the mini ultimatum game

or the Prisoner’s Dilemma game with punishment (Gale et al., 1995; Nowak et al., 2000;

Dreber et al., 2008). The game has infinite number of Nash equilibria, one pure Nash

equilibrium (0, 0) and non-isolated Nash equilibria (1, ŷ), where a
β
≤ ŷ ≤ 1. However, all

the cooperative equilibria are weakly dominated by the second-order free-riding, (1, 0).

Therefore, defecting and refusing to punish is the only strict Nash equilibrium. (See

Figure 2.5.1 (a))

2.5.2 Quantal response method

We first normalize the payoff matrix as Eq.(2.2.1), where p = 1, q = a
β
, c = α

β
. This is

the limit case of the coordination game. From Eq.(2.3.1), the limit QRE set consist of

three equilibria only, one asocial equilibrium (0, 0) and two cooperative equilibria (1, 1
2
)

and (1, q). Similarly as Theorem 2.2, we can easily prove that the graph of Eq.(2.3.8)

consists of two branches for almost all parameters, where the Nash equilibrium (1, q) and
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Figure 2.5.1: Logit equilibrium correspondence for the public goods game with punish-

ment. a = α = 1, b = 2, β = 5 in Figures (a) and (b), and β = 4 in Figure (c). λ ≥ 0 on

solid curves but λ < 0 on dashed curves. Black points are NE and red point is (1
2
, 1
2
). Red

curves and blue curves denote the frequencies of cooperation and punishment, respec-

tively. (a) The graph of Eq.(2.3.8) consists of two branches, where one passes through the

Nash equilibrium (1, q) and the other passes through the centroid (1
2
, 1
2
). (b) The limiting

logit equilibrium is the cooperative equilibrium (1, 1
2
). (c) The limiting logit equilibrium

is the asocial equilibrium (0, 0) but cooperation can dominate the population for small

value of λ.
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the centroid (1
2
, 1
2
) are always on different branches. (See Figure 2.5.1 (a)) By using the

linear approximation Eq.(2.3.17), the limiting logit is (1, 1
2
), cooperate in the first stage

and punish defectors with probability one half in the second stage, if

2β > 4a+ α +
√
8aα + α2 (2.5.2)

Hence, quantal response methods choose the cooperative equilibrium if the punishment

is strong enough. For instance, if the cost of cooperation is equal to the cost of punishment,

i.e., a = α, Eq.(2.5.2) can be simplified as β > 4α. The limiting logit equilibrium is

the cooperative equilibrium if the punishment/cost ratio (also called the effectiveness of

punishment) is greater than four. (See Figure 2.5.1) On the other hand, if the cost of

punishment is greatly larger than the cost of cooperation, i.e., α >> a, Eq.(2.5.2) reduces

to β > α. In this case, punishment can be selected for lower effectiveness.

Intuitively, we say that cooperation is ”dominant” in the population if more than half

of all players contribute in the first stage. Denote the frequencies of C and P by x and y,

respectively. From Eq.(2.3.10) and Eq.(2.3.11), the maximum value of x on the branch of

QRE correspondence starting at the centroid is larger than one half if and only if q < 1
2
.

This implies that if β > 2a, cooperation could dominate the population for some values

of λ even if the QRE correspondence eventually converges to the asocial equilibrium. For

instance, if a = α = 1 and c = 4, the limiting logit equilibrium is (0, 0) but the proportion

of cooperators can reach 70 percent when 6 < λ < 8. (Figure 2.5.1 (c))

2.5.3 How punishment works

Punishment of defectors is a key point for the explanation of cooperation. A large amount

of empirical studies indicate that the effectiveness of punishment plays an important role

in rasing contributions in the PGG. For instance, Sefton et al. (2007) used a punishment

effectiveness of one and there is no differences between control groups and treatment.

However, Fehr and Gachter (2002) considered a punishment effectiveness of three and the

opportunity to punish increases cooperation significantly.

Recently, Nikiforakis and Normann (2008) compared PGGs with punishment/cost

ratios from 0 to 4. They find that contributions to the public pool increase monotonically

in effectiveness. With a punishment effectiveness of two or less, contributions remain

constant at best or decline over time. Only a punishment effectiveness of three or four

leads to high contribution rates and 4:1 punishment technology works better than other

ratios in promoting cooperation. Our model confirms those empirical results, although

they cannot be compared directly since the reduction to two players may affect an essential

aspect of the PGG game.

Since punishment is often costly, this gives rise to an issue of second-order free-riding.

Why people punish defectors? Explanations include reputation (Sigmund et al., 2001;
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Ohtsuki et al., 2009; Hilbe and Sigmund, 2010), social norm (Henrich et al., 2006; Her-

rmann et al., 2008), individual preference (Fehr and Schmidt, 1999) or neurology (De

Quervain et al., 2004). Different from above mechanisms, QRE method assumes that

players are boundedly rational and adopt the probabilistic best response function. If the

fine to defectors is sufficiently large, the frequency of cooperation increases rapidly. A

minority of irrational punishers can force a majority of individuals learn to cooperate and

population will converge to homogenous cooperation before all punishers turn to second-

order free-riders. However, if the punishment is not strong enough, punishers go extinct

at first and defectors will finally dominate the population.

2.6 Conclusion

McKelvey and Palfrey (1995) defined the equilibrium selection by tracing the logit equilib-

rium correspondence. In section 2.3, we extend their idea to the more general structural

QRE with admissible noises (Goeree et al., 2005). Admissibility assumes that the errors

on the payoff functions are continuous, unbiased and independent across players, which

involves a large family of probability distributions, such as logistic distribution and normal

distribution. For almost all 2×2 coordination games, the QRE correspondence consists of

two (disjoint) branches, where one connects the mixed Nash equilibrium to a pure Nash

equilibrium, and the second connects the centroid to another pure Nash equilibrium. The

pure Nash equilibrium on the second branch is the limiting QRE. In the critical case

where parameters are on the separatrix, two branches intersect at a singular point and

tracing the QRE correspondence could reach all Nash equilibria.

For the expression of the separatrix, the first order term depends on the payoff matrix

only, where the slope is −√
c. In section 2.4, we derive the high order terms for six

different quantal response functions. Both the power series and the numerical simulations

show that the equilibrium selection is affected little by the noise distribution but mainly

decided by the payoff matrix. This result is different from the noisy best response approach

suggested by Staudigl (2011). He calculated the evolutionary path by the optimal control

method, but linear terms of the separatrices for the probit noise and the logit noise are not

the same. In the logarithmic game, we find a simple square root rule to decide the limiting

QRE: A Nash equilibrium is selected if and only if it has larger sum of square root payoff.

In particular, this formula is also a good approximation for the other equilibrium selections

discussed in section 2.4 since they have similar separatrices. (See Figure 2.3.1) The square

root rule is distinct from the Nash product rule of the risk dominant equilibrium, which

is independent of c. Two rules are equivalent if and only if c = 1, which means that

two types of players have the same learning rate. Unfortunately, Turocy (2005) made a

mistake in his paper (Theorem 7).

In this chapter, we consider the structural QRE where noises are independently and
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identically distributed. However, our results are also true for non-identical noises since

the proofs of Theorem 2.1 and 2.2 only need continuity and independence. In calculating

the separatrix, we assume that noises follow a unimodal distribution. However, this

assumption does not affect the linear approximation Eq.(2.3.17) since the first order term

is independent of the noise structure. In addition, our technique also works for quantal

response functions without explicit noise structures, such as the logarithmic game of

Harsanyi (1973).

Finally, we apply the quantal response method to the public goods game with punish-

ment. Equilibrium analysis indicates that the only strict Nash equilibrium is that players

do not contribute to the public pool and do not punish free riders. This contradicts

empirical evidence. However, punishment can promote cooperation if players are bound-

edly rational that make mistakes in evaluating the payoff functions. When punishment

is strong enough, a cooperative equilibrium can be selected as the limiting QRE. In this

case, a minority of irrational punishers force the population to evolve to homogenous

cooperation before all punishers turn to second-order free riders.
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Chapter 3

Social learning in the ultimatum

game

Abstract

In the ultimatum game, two players divide a sum of money. The proposer suggests how

to split and the responder can accept or reject. If the suggestion is rejected, both players

get nothing. The rational solution is that the responder accepts even the smallest offer

but human prefer the fair share. In this chapter, we study the ultimatum game by a

learning-mutation process based on the quantal response equilibrium. Social learning is

never stabilized at the fair outcome or the rational outcome, but leads to oscillations from

offering 40 percent to 50 percent. More precisely, there is a clear tendency to increase the

mean offer if it is lower than 40 percent, but will decrease when it reaches the fair offer.

Key words

Ultimatum game; quantal response equilibrium; learning-mutation process
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3.1 Introduction

Ultimatum game introduced by Guth et al. (1982) is one of the most influential games

in experimental economics that people in the real world do not behave rational. The

setting of the game is quiet simple. Two players divide a sum of money. The proposer

makes an offer how to split and the responder decides whether to accept. If the offer is

rejected, both players get nothing. A rational responder ought to accept any non-zero

offer. Therefore, a selfish proposer who thinks that the responder is rational should offer

the minimal. Game theory predicts the rational outcome, however, empirical studies in

human society, including both laboratory games and field games, prefer fair outcome. In

hundreds of ultimatum games conducted in different countries in last 30 years, proposers

on average offer 40 to 50 percent of the total sum to the responder. Responders usually

accept offers higher than 40 percent and about half of all responders reject offers below 30

percent (Roth et al., 1995; Kagel and Roth, 1995; Camerer, 2003; Osterbeek and Kuilen,

2004; Cooper and Dutcher, 2010; Henrich et al., 2001, 2006, 2010).

How to understand people rejecting positive offers? One well known explanation is

that irrational individuals have preference on fairness (Fehr and Schmidt, 1999; Bolton

and Ockenfels, 2000). In these models, utility functions of players depend not only on

their own payoff but also the payoff of the others. Responders reject low offers because

the disutility of receiving a payoff less than the proposer is greater than the utility of

getting small monetary benefits. On the other hand, the rejection of a unfair offer can be

seen as a kind of punishment that inhibits selfish behaviors in later rounds. In iterated

ultimatum game experiments, average offers are much more close to the fair share (Roth et

al., 1995; Bolton and Ockenfels, 2000; Brenner and Vriend, 2006; Fischbacher et al., 2009).

However, this contradicts the equilibrium analysis since the only subgame perfection is

not to reject.

In this chapter, we study the iterated ultimatum game by social learning. To analyze

the game, define individual strategy as S(x, y, p), meaning giving x of the total sum to the

responder when acting as proposer and rejecting any offer less than y with probability p

(and accepting offers equal or higher than y with probability 1) when acting as responder,

where 0 ≤ x ≤ 1 and 0 < p ≤ 1. Following this definition, the rational strategy is

written as S(e, e, 1), where e is the minimum offer greater than 0, and the fair strategy

is S(1
2
, 1
2
, 1). In our model, individuals strategies will be updated by a learning-mutation

process.
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3.2 The model

3.2.1 Mini ultimatum game

Before studying the ultimatum game with continuous strategies, we first consider the

iterated mini ultimatum game with only two possible offers h and l, with 0 ≤ l < h ≤ 1

(Gale et al., 1995; Nowak et al., 2000; Sigmund et al., 2001; Abbink, 2001; Falk et al.,

2003). In each round, the proposer has to choose between the high offer h (labeled by H)

or the low offer l (labeled by L), and the responder has to decide to reject the low offer l

(labeled by H) or accept (labeled by L). The payoff matrix is then written as

H L

H

L

(
1− h, h 1− h, h

0, 0 1− l, l

)
(3.2.1)

where the proposer plays rows and the responder plays columns. 1 The mini game has

a strict Nash equilibrium, (L,L), and non-isolated Nash equilibria, (H, sH + (1 − s)L),

where h−l
1−l

≤ s ≤ 1. Since each equilibrium (H, sH + (1 − s)L) is weakly dominated

by (H,L), (L,L) is the only subgame perfection. Therefore, rational players will choose

(L,L) according to backward induction.

3.2.2 Quantal response equilibrium

There are many ways to model social learning (e.g., Selten and Stoecker, 1986; Gale et al.,

1995; Roth and Erev, 1995; Abbink, 2001; Kirman and Virend, 2001). In this chapter, we

study the quantal response equilibrium (QRE, also called the perturbed best response)

introduced by McKelvey and Palfrey (1995, 1998; Goeree et al., 2005; Yi, 2005; Sandholm,

2010). In a quantal response equilibrium, players are assumed to be boundedly rational.

They observe random perturbations on the payoffs of strategies and choose optimally

according to those noisy observations. The most common specification of QRE is the

logit equilibrium, where noises follow the extreme value distribution (Blume, 1993, 1995;

Turocy, 2005). Let uij denotes the expected payoff of player i using strategy j, where

j = 1, , Ji. For any given λ ≥ 0, the logistic response function is defined as

σij(ūi) =
eλuij∑Ji
k=1 e

λuik

(3.2.2)

, where σij is the probability that player i adopts strategy j and ūi = (ui1, ..., uiJi). If

each player uses a logistic response function, QRE or logit equilibria are the solutions of

1Payoff matrix Eq.(3.2.1) can also be explained as the Prisoner’s Dilemma game with punishment (see

Eq.(2.5.1) in chapter 2), where H and L correspond to Cooperation and Defection, and P means paying

l to punish defector 1− l. Similarly as the mini ultimatum game, (L,N) is the only subgame perfection.
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πij = σij, where πij is the frequency of strategy j in player i. λ has been interpreted

as the intensity of experience (McKelvey and Palfrey, 1995). At λ = 0, players have no

information about the game and each strategy is chosen with equal probability. As λ

approaches infinity, players achieve full information about the game and play the best

response.

The quantal response method has been widely used to explain experimental data. In

iterated games, estimates of λ usually increase as the game progresses (McKelvey and

Palfrey, 1995, 1998). As players gain experience from repeated observations, they can

be expected to make more precise estimates and finally reach a Nash equilibrium. To

describe this process, consider QRE as a function of λ. When λ = 0, the QRE is at

the centroid of the simplex and when λ = +∞, the QRE set consists of Nash equilibria

only. As pointed out by McKelvey and Palfrey (1995), for almost all norm form games,

the graph of the logit equilibria correspondence contains a unique branch which starts for

λ = 0 at the centroid and converges to a unique Nash equilibrium as λ goes to infinity.

This then defines a unique selection from the set of Nash equilibrium by ”tracing” the

graph of the logit equilibrium correspondence starting at the centroid. The selected Nash

equilibrium is called the limiting logit equilibrium (LLE) of the game.

Following subsection 2.5.2 in chapter 2, for almost all mini ultimatum games, the LLE

is one of two Nash equilibria only, either (L,L), giving the low offer and accepting the

low offer, or (H, H
2
+ L

2
), giving the high offer and rejecting the low offer with probability

one half. Approximately, (H, H
2
+ L

2
) is the LLE if and only if

2h < l + 1−
√

l(1− l) (3.2.3)

In the calculation of Eq.(3.2.3), high order terms of the Taylor expansion are ignored,

which relate to the quantal response function. Subsection 2.4.1 in chapter 2 shows that

coefficients of high order terms are very small therefore affect little to the equilibrium

selection.

If the high offer is the fair offer, i.e., h = 1
2
, Eq.(3.2.3) tells us that social learning

chooses the low offer. In fact, any high offer equal of greater than 1
2
is unfavored. On the

other hand, if the low offer is the rational decision, i.e., l = e, any high offer smaller than
1−√

e
2

is selected. Therefore, social learning does not always choose the rational outcome.

For convenience, we say that offer x1 dominates offer x2 if x1 is the LLE of the mini

ultimatum game with offers x1 and x2. Dominant regions of x1 and x2 are shown in

Figure 3.2.1. Offers lower than 1
2
are dominated by slightly higher offers. For l < 1

2
, the

right side of Eq.(3.2.3) is a convex function, where at the minimum l∗ = 2−√
2

4
≈ 0.15 and

h∗ = 3−√
2

4
≈ 0.4. This implies that if h∗ ≤ x < 1

2
, x is also dominated by some low offers.

In particular, h∗ dominates almost all lower offers (the only exception is l∗).
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Figure 3.2.1: Pairwise invasibility plot. x1 and x2 are dominant in white and gray re-

gions, respectively. Every offer x1 lower than 0.5 is dominated by some higher offers and

strategies equal or greater than 0.4 are also dominated by lower offers.
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3.2.3 Learning-mutation process

Let us now introduce the learning-mutation process on the continuum of all strategies.

Consider a population of n players. In each generation, players are randomly anonymously

paired and play the iterated mini ultimatum game. In each group, roles of two members

are decided randomly before the game starts and do not change in an interaction. Two

players update their strategies by the quantal response learning and the interaction will

stop if they reach a Nash equilibrium since in this situation both are unwilling to change.

Mutations happen after all the groups reach Nash equilibria. With probability μ, players

adopt a new strategy, plus or minus a small random value on their former strategies. (See

Figure 3.2.2 for an example)

We first look at the learning process in one generation. Denote the mini ultimatum

game where the proposer using strategy S(x1, y1, p1) and the responder using strategy

S(x2, y2, p2) by UG(S(x1, y1, p1), S(x2, y2, p2)). In this game, the proposer offers x1 and

the responder rejects offers lower than y2 with probability p2. Without loss of generality,

suppose that y2 is the high offer h and x1 is the low offer l. At the beginning, both

players have the motivation to adjust their original strategies. That is, the proposer

tends to increase his offer from x1 to y2 in order to avoid being refused, and meanwhile,

the responder tends to decrease his acceptance level from y2 to x1.
2 Eq.(3.2.3) provides

an approximated rule to decide the LLE. At the LLE, the responder either accepts the

low offer or rejects the low offer with probability one half. Therefore, we always take

p = 1
2
and write S(x, y) = S(x, y, 1

2
) in later discussions. At the end of iterated game

UG(S(x1, y1), S(x2, y2)), if x1 dominates y2, the proposer keeps his strategy unchanged

but the responder adopts a new strategy S(x2, x1). In contrast, if y2 dominates x1, the

responder’s strategy does not change but the proposer adopts a new strategy S(y2, y1).

We observe that learning always decreases the diversity of possible offers since in each

mini game, one dominated offer is eliminated.

Next, consider a population that consists only of S(x, y) players evolves under the

learning (no mutation) process. At the end of iterated game UG(S(x, y), S(x, y)), strate-

gies of two players are S(x, y) and S(x, x) if x dominates y, and are S(y, y) and S(x, y)

if y dominates x. In the first case, the population will converge to a pure S(x, x) pop-

ulation, while in the second case, it will converge to a pure S(y, y) population. More

generally, starting with any mixed population, the learning process will always lead to a

homogenous population where the offer equals to the acceptance level since the diversity

of possible offers is monotonically decreased.

We now analyze the case of weak mutation rate. As in the adaptive dynamics model,

mutations occur rarely, so that a mutant will either vanish or has taken over the popu-

2This statement is also true if x1 > y2. In this case, the proposer wants to decrease his offer from x1

to x2 and the responder wants to increase his acceptance level from x2 to x1.
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Figure 3.2.2: An example for the learning-mutation process in a population of four players

from generation T to generation T + 1. In generation T , three players adopt S(0.1, 0.1)

and one adopts a mutant strategy S(0.1, 0.4). At the beginning, they are divided into two

mini ultimatum games, UG(S(0.1, 0.1), S(0.1, 0.1)) and UG(S(0.1, 0.1), S(0.1, 0.4)), and

update their strategies by the quantal response learning (P means proposers and R means

responders). In the first group, players will not change their original strategies, while in

the second group, the proposer will change the strategy to S(0.4, 0.1) since 0.4 dominates

0.1. Mutations happen after all the pairs reach Nash equilibria. The responder in the

first pair mutates to S(0.5, 0.1) (the red number). As a result of learning and mutation,

strategies in generation T + 1 are S(0.1, 0.1), S(0.5, 0.1), S(0.4, 0.1) and S(0.1, 0.4).
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lation before the next mutation arises (Hofbauer and Sigmund 1998; Geritz et al., 1998).

For simplicity, we represent the strategy of the residents by R(x) = S(x, x). Eq.(3.2.3)

indicates that (a) if R(x) < h∗, the population could only be replaced by mutants using

offer higher than R(x), (b) if h∗ ≤ R(x) < 1
2
, both higher and lower offers may invade,

(c) if 1
2
≤ R(x), any lower offer could take over the population (See Figure 3.2.1). Gen-

erally speaking, the learning-mutation process leads to oscillations in the interval [h∗, 1
2
),

where proposers offer 40 to 50 percent of the total sum to responders and responders

reject offers below their expectation with probability one half. Once the resident strategy

leaves the interval, learning and mutation will push it back. If we further assume that the

mutational jumps are very small such that the resident strategy changes continuously, it

is easy to verify that dR(x)
dt

> 0 if R(x) < 1
2
but dR(x)

dt
< 0 if R(x) ≥ 1

2
. R(x) = 1

2
is a

degenerate point of the adaptive dynamics, i.e., the resident strategy will decrease when

near the fair offer.

Numerical simulations suggest that theoretical predictions of the weak mutation rate

case could also be applied to describe the high mutation rate case, where the population

has a high diversity of strategies. That is, the population mean offer and the mean

acceptance level are nearly the same, and the mean offer increases if it is smaller than 0.4

but oscillates if it is between 0.4 to 0.5. Moreover, if the mutational jumps are very small,

the mean offer converges to a interval very close to the fair offer. (See Figure 3.2.3)

3.3 Discussion

In the model, players have no information about the mini ultimatum game (i.e., λ = 0)

at the beginning of each new interaction, no matter how many interactions they have

played. The motivation is twofold. On the one hand, each player faces a new game in

a new interaction since his opponent is anonymous and the payoff matrix of the mini

ultimatum game depends on the strategies of both players. On the other hand, empirical

evidences from repeated PD games (with punishment) 3 support this consideration. The

frequency of cooperation in the initial round of each interaction is nearly the same and

decreases over the rounds (Selten and Stoecker, 1986; Kagel and Roth, 1995; Dreber et

al., 2008; Wu et al., 2009). We can then expect that players have zero information before

each interaction and evolve entirely by social learning.

We consider that players are boundedly rational and choose the best response accord-

ing to noisy observations. In each group, two players update their strategies simultane-

ously. At the beginning, the proposer is inclined to make the high offer due to the high

3The payoff matrix of the PD game is equivalent to that of the mini dictator game, which is a variation

of the mini ultimatum game where responders are not allowed to reject. Selten and Stoecker (1986) and

Kagel and Roth (1995) summarized the results on repeated PD games. Dreber et al. (2008) and Wu et

al. (2009) are two recent studies on repeated PD games with punishment.
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Figure 3.2.3: Time evolution of the population mean offer. The population size is 100 and

evolves under the learning-mutation process. At the end of each generation, players adopt

a new offer with probability 0.1. The mutational jumps follow the normal distribution,

where variances in Figures (a) and (b) are 0.05 and 0.01, respectively. (a) The population

mean offer increases if it is smaller than 0.4 but oscillates if it is between 0.4 to 0.5. (b)

If the mutational jumps are very small, the mean offer converges to a interval very close

to the fair offer.
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rejection rate and the responder tends to accept the lower offer since rejecting is costly.

The observation errors decrease as the game progresses and two players will finally reach

a Nash equilibrium. Intuitively, their strategies converge to the high offer if the proposer

learns faster than the responder, i.e., the proposer stops making the low offer before the

responder stops rejecting. This happens when the low offer is small, which means the

rejection of the low offer causes a greater loss to the proposer than to the responder.

Thus, mistakes in evaluating the payoff functions lead to fairer solutions.

The emergence of equity is as complicated as the evolution of human society. Our

model excluded many important issues, such as preference on fairness (Fehr and Schmidt,

1999; Bolton and Ockenfels, 2000) or on punishment (Charness and Rabin, 2002; Falk

and Fischbacher, 2006), communication or information before an interaction (Levine,

1998; Nowak et al, 2000; Sigmund et al., 2001) and social networks (Page et al., 2000;

Jong et al., 2008). Based on learning and mutation, we show that individuals entirely

motivated by self interests can evolve toward fairness in the population.



Chapter 4

Equilibrium selections via replicator

dynamics

Abstract

This chapter studies two equilibrium selection methods based on the replicator dynamics.

A Nash equilibrium is called centroid dominant if the trajectory of the replicator dynamics

starting at the centroid of the strategy simplex converges to it. On the other hand,

an equilibrium is called basin dominant if it has the largest basin of attraction. Two

concepts are compared with the risk dominant equilibrium in the context of 2×2 bimatrix

coordination games. Main results include (a) if a Nash equilibrium is both risk dominant

and centroid dominant, it must have the largest basin of attraction, (b) the basin dominant

equilibrium must be either risk dominant or centroid dominant.

Key words

Equilibrium selection; replicator dynamics; risk dominance; basins of attraction
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4.1 Introduction

One well known dynamic approach in evolutionary game theory is the replicator dynamics

(Taylor and Jonker, 1978; Maynard Smith, 1982; Hofbauer and Sigmund, 1998). Replica-

tor dynamics was first motivated biologically in the context of evolution (Maynard Smith,

1982; Nowak and Sigmund, 2004). Later, economists related this to learning and defined

several equilibrium notions (Fudenberg and Harris, 1992; Samuelson and Zhang, 1992;

Gale et al., 1995; Weibull, 1995; Binmore and Samuelson, 1997; Samuelson, 1997; Borgers

and Sarin, 1997; Schlag, 1998; Cabrales, 2000; Imhof, 2005; Hilbe, 2010). These re-

searches usually consider modified replicator dynamics that incorporate stochastic effects

such as errors, mutations or finite populations. In this chapter, we study two equilibrium

selections based on the canonical replicator dynamics.

The first is a homotopy approach by tracing the trajectory of the replicator dynamics

starting at the centroid. For 2×2 coordination games (both symmetric games and bimatrix

games), the trajectory approaches a unique Nash equilibrium as t → ∞ (Hofbauer and

Sigmund, 1998). This then defines a unique equilibrium selection from the set of Nash

equilibria. We call this equilibrium the centroid dominant equilibrium of the game. A

biological intuition is that natural selection leads to the centroid dominant equilibrium if

each phenotype in the population has equal frequency. From the perspective of learning,

if players choose their initial strategies randomly and imitate actions that perform better

with a probability proportional to the expected payoff, the population will converge to

the centroid dominant equilibrium.

The second method is to select a Nash equilibrium from the set of asymptotically

stable equilibria of the replicator dynamics by comparing their basins of attraction. A

Nash equilibrium is called basin dominant if it has the largest basin of attraction. This

implies that a population with uncertain initial state is more likely to converge to the

dominant equilibrium under the replicator dynamics.

For 2 × 2 symmetric coordination games, one can easily verify that the center point

is attracted by the risk dominant equilibrium. Hence, the risk dominant equilibrium is

both centroid dominant and basin dominant. In fact, in 2× 2 symmetric games, most of

the equilibrium notions we mentioned above choose the risk dominant equilibrium (as an

exception, Binmore and Samuelson, 1997), but they usually select different equilibria in

more general situations (Kim, 1996; Samuelson, 2002).

In this chapter, we focus on 2 × 2 bimatrix coordination games. Section 4.2 reviews

the risk dominant equilibrium and the replicator dynamics. Section 4.3 studies the cen-

troid dominance and derives an explicit formula for the centroid dominant equilibrium.

Section 4.4 investigates the basin dominant equilibrium and shows some properties. Sec-

tion 4.5 compares the three equilibrium notions and looks for their relations. Section 4.6

summarizes the main results and suggests some further developments.
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4.2 Bimatrix games

Consider a 2× 2 bimatrix game, where the two pure strategies of players in population A

(call them player A) are A1 and A2, and two pure strategies of players in population B

(call them player B) are B1 and B2. Let aij denotes the payoff to player A using strategy

Ai when it meets player B using strategy Bj, and denote the payoff to player B in this

interaction by bji. The payoff matrix is then written as

B1 B2

A1

A2

(
a11, b11 a12, b21
a21, b12 a22, b22

)
(4.2.1)

The bimatrix game is called a coordination game if pure strategy pairs (A1, B1) and (A2,

B2) are both strict Nash equilibria. That is, a11 − a21 > 0 and a22 − a12 > 0 for player A,

and b11− b21 > 0 and b22− b12 > 0 for player B. Besides of two strict Nash equilibria, the

game also has a mixed equilibrium (p, q), where p = b22−b12
b11+b22−b21−b12

and q = a22−a12
a11+a22−a21−a12

.

As introduced by Harsanyi and Selten (1988), for the 2×2 coordination game, (A1, B1)

is said to risk dominate (A2, B2) if the Nash products satisfy

(a11 − a21)(b11 − b21) > (a22 − a12)(b22 − b12) (4.2.2)

Define LRD : p + q = 1. Hence, (A1, B1) is risk dominant (RD) if and only if (p, q) is

below the line LRD on p− q plane.

Denote the frequency of strategy A1 in A players’ population and strategy B1 in B

players’ population by x and y, respectively. The replicator dynamics for the bimatrix

game Eq.(4.2.1) is

dx

dt
= x(1− x)((a12 − a22)(1− y) + (a11 − a21)y)

dy

dt
= y(1− y)((b12 − b22)(1− x) + (b11 − b21)x) (4.2.3)

Eq.(4.2.3) could be normalized as

dx

dt
= x(1− x)(y − q)

dy

dt
= cy(1− y)(x− p) (4.2.4)

, where (p, q) is the mixed equilibrium and c = b11+b22−b21−b12
a11+a22−a21−a12

> 0.

It is easy to see that Eq.(4.2.4) has four boundary equilibria, (0, 0), (1, 0), (0, 1) and

(1, 1), and one interior equilibrium, (p, q). For their stabilities, (0, 0) and (1, 1) are lo-

cally asymptotically stable that correspond to the two strict Nash equilibria (A2, B2) and

(A1, B1), (1, 0) and (0, 1) are unstable, and the mixed equilibrium (p, q) is a saddle point

(Hofbauer and Sigmund, 1998).
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4.3 Centroid dominance

For 2 × 2 bimatrix coordination games, solutions of Eq.(4.2.4) includes a unique path

starting for t = 0 at the centroid (1
2
, 1
2
) and converging to an Nash equilibrium as t → ∞

(Hofbauer and Sigmund, 1998). This implies that we can define a unique selection from the

set of Nash equilibria by tracing the trajectory of the replicator dynamics. An equilibrium

is called centroid dominant (CD) if and only if the solution of Eq.(4.2.4) with initial value

at the centroid converges to it.

For convenience, denote the basins of attraction of two stable equilibria (0, 0) and

(1, 1) by S0 and S1, respectively. This means that trajectories of Eq.(4.2.4) with initial

points in region S0 converge to (0, 0) and with initial points in region S1 converge to (1, 1).

However, if a initial point is on the curve separating S0 and S1 (we call this curve the

separatrix ), the trajectory goes to neither (0, 0) nor (1, 1) but to the mixed equilibrium

(p, q). Hence, (0, 0) is CD if and only if (1
2
, 1
2
) ∈ S0 and (1, 1) is CD if and only (1

2
, 1
2
) ∈ S1.

In another word, which equilibrium is selected is decided by the position of the separatrix,

i.e., if it is above the centroid, (0, 0) is CD, and if it is below the centroid, (1, 1) is CD.

(See Figure 4.3.1)

Therefore, we turn our attention to the separatrix in the rest of this section. For given

(p, q, c), denote the separatrix by

L(p,q,c) : y = l(p,q,c)(x). (4.3.1)

Intuitively, L(p,q,c) consists of two trajectories of Eq.(4.2.4), where one from (1, 0) to (p, q)

and another from (0, 1) to (p, q), i.e., points on L(p,q,c) satisfy

dx

dy
=

x(1− x)(y − q)

cy(1− y)(x− p)
(4.3.2)

This implies that l(p,q,c)(x) is monotonically decreasing in x and (x− p)(y − q) ≤ 0.

Let us now derive an expression of the separatrix. From Eq.(4.3.2),

(1− x)c(1−p)xcp = K(1− y)1−qyq (4.3.3)

where K is a constant depending on the initial point. Notice that the separatrix passes

through (p, q),

(
1− x

1− p
)c(1−p)(

x

p
)cp = (

1− y

1− q
)1−q(

y

q
)q (4.3.4)

For convenience, define

F(p,q,c)(x, y) = (
1− x

1− p
)c(1−p)(

x

p
)cp − (

1− y

1− q
)1−q(

y

q
)q (4.3.5)
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Figure 4.3.1: Phase portraits of the replicator dynamics. Parameters are taken as p =

0.3, q = 0.6, c = 0.5 in Figure (a) and c = 0.1 in Figure (b). Black points are the

mixed equilibrium (0.3, 0.6), blue curves are the separatrices, and yellow curves are the

trajectories of the replicator dynamics with initial value (1
2
, 1
2
). (1, 1) is RD but CD

equilibrium and BD equilibrium depend crucially on c. In Figure (a), (1, 1) is CD and

BD, and in Figure (b), (0, 0) is CD and BD.
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It is clearly that F(p,q,c) = 0 for each point on L(p,q,c), but we need to be careful that not

all solutions of F(p,q,c) = 0 are on L(p,q,c), e.g., pure strategy equilibria (0, 0) and (1, 1).

A point (x, y) is on the separatrix if and only if both conditions F(p,q,c)(x, y) = 0 and

(x− p)(y − q) ≤ 0 hold.

For separatrices with different (p, q, c), we have the following lemma.

Lemma 4.1

(a) l(p,q,c)(x) > l(p̂,q,c)(x) if and only if p̂ < p. (b) l(p,q,c)(x) > l(p,q̂,c)(x) if and only if

q̂ < q.

Proof:

(a) Notice that (p, q) and (p̂, q) are on L(p,q,c) and L(p̂,q,c), respectively, we only need

to show that L(p,q,c) and L(p̂,q,c) have no intersection in (0, 1)× (0, 1).

For any (x, y),

F(p,q,c)(x, y)− F(p̂,q,c)(x, y) = F(p,q,c)(x, 0)− F(p̂,q,c)(x, 0) (4.3.6)

, where F(p,q,c)(0, 0) = F(p,q,c)(1, 0) = F(p̂,q,c)(0, 0) = F(p̂,q,c)(1, 0) = 0. Notice that

d(lnF(p,q,c)(x, 0)− lnF(p̂,q,c)(x, 0))

dx
= c

(p− p̂)(1− 2x)

x(1− x)
(4.3.7)

, F(p̂,q,c)(x, 0)−F(p,q,c)(x, 0) 
= 0 for 0 < x < 1. This implies that F(p,q,c)(x, y) 
= F(p̂,q,c)(x, y)

for 0 < x < 1, i.e., L(p,q,c) and L(p̂,q,c) have no intersection.

The proof of (b) is similar. �

From Lemma 4.1, we obtain Theorem 4.1.

Theorem 4.1

For any given c, the mixed equilibrium (p, q) is CD if and only if (p, q) satisfies

F(p,q,c)(
1
2
, 1
2
) = 0, where (1

2
− p)(1

2
− q) ≤ 0. This defines a curve on p − q plane, de-

note it by LCD. (0, 0) is CD if and only if (p, q) is above LCD and (1, 1) is CD if and only

if (p, q) is below LCD.

Proof:

The mixed equilibrium (p, q) is CD if and only if (1
2
, 1
2
) is on the separatrix, i.e.,

F(p,q,c)(
1
2
, 1
2
) = 0 and (1

2
− p)(1

2
− q) ≤ 0.

Lemma 4.1 indicates that for given (p, q, c), if (1
2
, 1
2
) is attracted by (0, 0), (1

2
, 1
2
) is also

attracted by (0, 0) for (p, q̂, c), where q̂ > q. This implies the second part of the theorem. �
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In addition to Theorem 4.1, an explicit formula for deciding the pure strategy CD

equilibrium can be summarized as follows.

Corollary 4.1

Nash equilibrium (0, 0) is CD if (a) p > 1
2
and q > 1

2
, or (b) p < 1

2
, q > 1

2
and

F(p,q,c)(
1
2
, 1
2
) > 0, or (c) p > 1

2
, q < 1

2
and F(p,q,c)(

1
2
, 1
2
) < 0. Nash equilibrium (1, 1) is CD

if (d) p < 1
2
and q < 1

2
, or (e) p < 1

2
, q > 1

2
and F(p,q,c)(

1
2
, 1
2
) < 0, or (f) p > 1

2
, q < 1

2
and

F(p,q,c)(
1
2
, 1
2
) > 0.

Theorem 4.1 claims that p− q plane is divided into two regions by

LCD : (1− p)c(1−p)pcp = 21−c(1− q)1−qqq (4.3.8)

, where (p− 1
2
)(q− 1

2
) ≤ 0. By applying the implicit function theorem, several properties

of LCD can be verified easily.

Corollary 4.2

For any given c > 0, (a) LCD is monotonically decreasing in p− q plane; (b) (p, q) =

(1
2
, 1
2
) is on LCD and the slope at this point is −√

c. (c) If c = 0, LCD is q = 1
2
; if c = 1,

LCD matches LRD : p+ q = 1; if c → ∞, LCD is p = 1
2
. (d) For c 
= 1, (1

2
, 1
2
) is the only

intersection of LCD and LRD.

Corollary 4.2 points out that if c = 1, the trajectory of the replicator dynamics start-

ing at the centroid always converges to the RD equilibrium. Intuitively, c = 1 can be

understood as that payoffs for two types of players are equally weighted. However, LRD

and LCD are no longer identical for any c 
= 1. Figure 4.3.1 shows clearly that the CD

equilibrium depends crucially on c in contrast to the RD equilibrium.

4.4 Basin dominance

In this section, an equilibrium is considered dominant if and only if it has the largest

basin of attraction. To formulate this definition, let s0(p, q, c) and s1(p, q, c) denote the

sizes of the basins of attraction of (0, 0) and (1, 1), respectively. Using the notations in

previous sections, s0(p, q, c) can be calculated by the integral

s0(p, q, c) =

∫ 1

0

l(p,q,c)(x)dx. (4.4.1)

Hence, (0, 0) is basin dominant (BD) if and only if s0(p, q, c) >
1
2
and (1, 1) is BD if and

only if s0(p, q, c) <
1
2
.
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The main goal of this section is to find a function f ∗, where q = f ∗(p, c), such that

s0(p, f
∗(p, c), c) = 1

2
. Theorem 4.2 guarantees the existence and uniqueness of f ∗.

Theorem 4.2

There exists a unique continuous function q = f ∗(p, c) such that s0(p, q, c) =
1
2
, where

it has following properties: (a) f ∗ is a decreasing function of p, (b) s0(p, q, c) >
1
2
if and

only if q > f ∗(p, c), (c) f ∗ is central symmetric, i.e., 1− q = f ∗(1− p, c).

Proof:

To show the existence and uniqueness of f ∗, it is enough to prove that s0(p, q, c) is

continuously increasing in q. From Eq.(4.4.1), s0(p, q, c) is continuously increasing in q if

the separatrix y = l(p,q,c)(x) is continuously increasing in q for any given p, c and x. From

Eq.(4.3.4), the continuity is obvious. To see the monotonicity, we calculate the derivative

of l(p,q,c)(x)

dy

dq
= −∂F(p,q,c)/∂q

∂F(p,q,c)/∂y

= −(1− y)1−qyq

(1− q)1−qqq
ln(1 +

y − q

(1− y)q
)/
(q − y)(1− y)−qyq−1

(1− q)1−qqq

= y(1− y)
ln(1 + y−q

(1−y)q
)

y − q
> 0. (4.4.2)

This implies the existence and uniqueness of f ∗.
Since s0(p, q, c) is continuously increasing in q, property (b) is obvious. Similarly as

Eq.(4.4.2), it is easy to prove that l(p,q,c)(x) is continuously decreasing in p. This yields

property (a). Finally, property (c) is directly from the symmetry of L(p,q,c). �

Interestingly, Theorem 4.2 shows that CD equilibrium selection and BD equilibrium

selection have the similar structures. For convenience, denote the curve q = f ∗(p, c) by

LBD. For given c, properties (a) and (c) say that LBD is monotonically decreasing and

divides the p − q plane into two regions, where (0, 0) is selected for (p, q) in the upper

region and (1, 1) is selected for (p, q) in the lower region.

In general, deriving an explicit expression of f ∗ is very difficult since Eq.(4.4.1) is

implicit. Alternatively, we calculate LBD for some special parameters. These results will

provide an intuition for LBD.

Firstly, we introduce a new notation. Denote the time derivatives for points on curve

L by D(L). For instance, on the separatrix L(p,q,c)

D(L(p,q,c)) =
d(F(p,q,c)(x, y))

dt
|L(p,q,c)

(4.4.3)
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D(L) 
= 0 means that the solutions of the replicator dynamics with initial values on L go

away from it. Since the separatrix consists of two solutions, D(L(p,q,c)) = 0. On the other

hand, if a curve L satisfies D(L) = 0 and passes through three points (0, 1), (1, 0) and

(p, q), it must be the separatrix.

Theorem 4.3

(a) If c → 0, s0(p, q, c) >
1
2
if and only if q > 1

2
; (b) if c = 1, s0(p, q, c) >

1
2
if and

only if p+ q > 1; (c) if c → ∞, s0(p, q, c) >
1
2
if and only if p > 1

2
.

Proof:

(a)If c → 0, Eq.(4.2.4) becomes

dx

dt
= x(1− x)(y − q)

dy

dt
→ 0 (4.4.4)

Clearly, the separatrix of S0 and S1 is L(p,q,c) : y = q . Thus, s0(p, q, c) >
1
2
if and only if

q > 1
2
.

(b)If c = 1, Eq.(4.2.4) could be written as

dx

dt
= x(1− x)(y − q)

dy

dt
= y(1− y)(x− p) (4.4.5)

Consider the time derivatives of L : x+ y = 1,

D(L) = x(1− x)(1− p− q) (4.4.6)

If p + q > 1, points on L are attracted by (0, 0) since D(L) < 0. This implies

s0(p, q, c) >
1
2
. Conversely, if p+ q < 1, L is attracted by (0, 0), which implies s0(p, q, c) <

1
2
. For the critical case p+ q = 1, we have D(L) = 0. Notice that L passes through (0, 1),

(1, 0) and (p, q), it is the separatrix of S0 and S1. Thus, we have s0(p, q, c) = s1(p, q, c) =
1
2
.

(c) The proof is similar to (a). �

Theorem 4.3 studies LBD for extreme values of c. From another angle, we next derive

LBD for p = q = 1
2
. In this case, Eq.(4.3.4) becomes

22c((1− x)x)c = 22(1− y)y (4.4.7)

Notice that the separatrix goes through (0, 1) and (1, 0), L(1/2,1/2,c) can be written down

explicitly

y =

{1+(1−22c(x(1−x))c)1/2

2
0 ≤ x ≤ 1

2
1−(1−22c(x(1−x))c)1/2

2
1
2
≤ x ≤ 1

(4.4.8)
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Thus, the size of the basin of attraction of (0, 0) is

s0(
1

2
,
1

2
, c) =

∫ 1/2

0

1 + (1− 22c(x(1− x))c)1/2

2
dx

+

∫ 1

1/2

1− (1− 22c(x(1− x))c)1/2

2
dx =

1

2
(4.4.9)

since ∫ 1/2

0

(1− 22c(x(1− x))c)1/2dx =

∫ 1

1/2

(1− 22c(x(1− x))c)1/2dx. (4.4.10)

This implies f ∗(1
2
, c) = 1

2
for any c.

As a conclusion, properties of LBD are summarized in Corollary 4.3.

Corollary 4.3

For any given c > 0, (a) LBD is monotonically decreasing in p − q plane; (b)

(p, q) = (1
2
, 1
2
) is on LBD and the slope at this point is −√

c. (c) If c = 0, LBD is

q = 1
2
; if c = 1, LBD matches LRD : p + q = 1; if c → ∞, LBD is p = 1

2
. (d) For c 
= 1,

(1
2
, 1
2
) is the only intersection of LBD and LRD.

Properties (a) and (c) are obtained directly from Theorem 4.2 and Theorem 4.3, and

we leave the proofs of properties (b) and (d) in Appendix A.1.

Corollary 4.3 implies that RD equilibrium does not always have the largest basin of

attraction in 2× 2 bimatrix games. If compares Corollary 4.2 and Corollary 4.3, one can

find that LCD and LBD have very similar properties. However, since the BD equilibrium

does not have an explicit formula, relation between LCD and LBD is still unclear.

4.5 Relations among different notions

Previous sections discuss the relation between LRD and LCD and the relation between

LRD and LBD. In this section, we are going to link the three equilibrium notions.

Theorem 4.4

For any given c, LBD is between LRD and LCD. (See the proof in Appendix A.2)

Corollary 4.4

(a) A strategy that is both RD and CD must be BD. (b) The BD strategy must be either

RD or CD.
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Figure 4.5.1: Relations between RD, CD and BD. Parameters are taken as c = 0.5 in

Figure (a) and c = 0.1 in Figure (b). Black line, blue curve and red points are LRD, LCD

and LBD, respectively. LBD is between LRD and LCD and is very close to LCD.

As a complement of Corollary 4.3, Corollary 4.4 provides an alternative way for finding

the BD strategy. When facing a 2 × 2 bimatrix game, we can first calculate the RD

equilibrium and CD equilibrium. If two methods point to the same equilibrium, it must

be also BD. However, the thought does not work if two methods choose different equilibria.

Numerical simulations suggest that LBD is very close to LCD. (See Figure 4.5.1) Therefore,

if RD strategy and CD strategy are different, the CD strategy is more likely to have the

largest basin of attraction.

4.6 Discussion

In this chapter, we studies two equilibrium notions, centroid dominance and basin domi-

nance, based on the canonical replicator dynamics. A Nash equilibrium is called centroid

dominant if the centroid of the strategy simplex is in its basin of attraction. This predicts

that in a population where individuals choose their initial strategies randomly, replicator

dynamics converge to the centroid dominant equilibrium. On the other hand, a Nash

equilibrium is called basin dominant if it has the largest basin of attraction. Following

this concept, a population with uncertain initial state has larger probability to evolve to

the basin dominant equilibrium.
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We then compare them with the risk dominant equilibrium. For 2× 2 bimatrix coor-

dination games, three methods have similar structures. For given c, each of them yields

a curve separating p− q plane and the equilibrium equilibrium is decided by the relative

position of (p, q) and the curve, i.e., (0, 0) is dominant if (p, q) is above the curve and

(1, 1) is dominant if (p, q) is below the curve.

For these curves, LRD is a line with slope −1 but the shapes of LCD and LBD depend

crucially on c. If c = 1, three curves are identical, which implies that the three meth-

ods choose the same Nash equilibrium. More precisely, the trajectory of the replicator

dynamics starting at the centroid converges to the risk dominant equilibrium, and this

equilibrium also has the largest basin of attraction. If c 
= 1, three methods are no longer

equivalent. In this case, the risk dominant equilibrium is not always preferred.

Centroid dominant equilibrium can be calculated by Corollary 4.1, but there is no

explicit formula for the basin dominant equilibrium. We only know that the curves of two

methods have very similar properties. For instance, LBD and LCD are all monotonically

decreasing in p− q plane and the slopes at (1
2
, 1
2
) are both −√

c.

Instead of deriving the explicit expression, Theorem 4.4 provides an alternative way

for finding the basin dominant strategy by comparing the curves of different methods.

It claims that LBD is always between LRD and LCD. Hence, if a strategy is both risk

dominant and centroid dominant, it must has the largest basin of attraction. However, if

the risk dominant equilibrium and centroid dominant equilibrium are different, numerical

simulation suggests that the centroid dominant strategy is more likely to have the largest

basin of attraction.

As an extension, centroid dominance and basin dominance are also well defined for

3 × 3 symmetric coordination games. In these games, Zeeman (1980; see also Hofbauer

and Sigmund, 1998) showed that trajectories of the replicator dynamics converge to Nash

equilibria, and all mixed Nash equilibria are unstable. However, we can not expect a

simple formula to decide which equilibrium is selected even for the centroid dominance

because the solutions of 3-strategy replicator dynamics do not always have explicit ex-

pressions. For further studies, a starting point is coordination games with diagonal payoff

matrix. Intuitively, the payoff dominant strategy must be both centroid dominant and

basin dominant. Another development is to compare the center and basin dominance

equilibria under different evolutionary/learning dynamics. It is well known that a strict

Nash equilibrium usually has different basins of attraction under the replicator dynamics

and the best response dynamics. In particular, Golman and Page (2010) constructed a

class of 3 × 3 symmetric games for which the overlap in the two basins of attraction is

arbitrarily small. This implies that best response dynamics lead to a different equilibrium

than replicator dynamics almost always.

As an extension, centroid dominance and basin dominance are also well defined for

3 × 3 symmetric coordination games. In these games, Zeeman (1980; see also Hofbauer
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and Sigmund, 1998) showed that trajectories of the replicator dynamics converge to Nash

equilibria, and all mixed Nash equilibria are unstable. However, we can not expect a

simple formula to decide which equilibrium is selected even for the centroid dominance

since the solutions of 3-strategy replicator dynamics do not always have explicit expres-

sions. For further studies, a starting point is coordination games with diagonal payoff

matrix. Intuitively, the payoff dominant strategy must be both centroid dominant and

basin dominant. Another development is to study the relations between basin dominance

and other equilibrium notions. In 3× 3 symmetric games, a strict Nash equilibrium usu-

ally has different basins of attraction under the replicator dynamics and the best response

dynamics. In particular, Golman and Page (2010) constructed a class of 3× 3 symmetric

games for which the overlap in the two basins of attraction is arbitrarily small.



Appendix

A.1 Proof of Corollary 4.3

Proof of Corollary 4.3 (b)

For any given c > 0, (p, q) = (1
2
, 1
2
) is on LBD and the slope at this point is −√

c.

Proof

Eq.(4.4.9) shows that (p, q) = (1
2
, 1
2
) is on LBD for any c > 0. Let us now calculate the

slope at this point.

For (p, q) close to (1
2
, 1
2
) and (x, y) on L(1/2,1/2,c), we have

s0(p, q, c)− 1

2

=

∫ 1

0

(l(p,q,c)(x)− l(1/2,1/2,c)(x))dx

=

∫ 1

0

((p− 1

2
)
∂l(p,q,c)(x)

∂p
|(p,q)=( 1

2
, 1
2
) + (q − 1

2
)
∂l(p,q,c)(x)

∂q
|(p,q)=( 1

2
, 1
2
))dx

= −
∫ 1

0

((p− 1

2
)
∂F(p,q,c)/∂p

∂F(p,q,c)/∂y
|(p,q)=( 1

2
, 1
2
) + (q − 1

2
)
∂F(p,q,c)/∂q

∂F(p,q,c)/∂y
|(p,q)=( 1

2
, 1
2
))dx

= −
∫ 1

0

22c−2(x(1− x))c

y − 1/2
(c(p− 1

2
) ln(

x

1− x
)− (q − 1

2
) ln(

y

1− y
))dx (A.1.1)

If (p, q) is on the tangent of LBD, i.e.,

q − 1

2
=

∂f ∗(p, c)
∂p

|(p,q)=( 1
2
, 1
2
)(p−

1

2
) (A.1.2)

, Eq.(A.1.1) should not include first-order term of p.

For convenience, define ln( x
1−x

) = e(x). The Taylor expansion of y = l(1/2,1/2,c)(x) at

e = 0 is

y =
1

2
+

√
c

4
e+ o(e)3 (A.1.3)
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Hence,

ln(
y

1− y
) = 4(y − 1

2
) + o(y − 1

2
)3 =

√
ce+ o(e)3 (A.1.4)

Eq.(A.1.1) is then simplified as

−
∫ 1

0

22c(x(1− x))c(
√
c(p− 1

2
) + q − 1

2
+ o(e2))dx (A.1.5)

In order to eliminate the first-order term of (p− 1
2
), we need

√
c(p− 1

2
) + q− 1

2
= 0. This

implies that the slope of LBD at (1
2
, 1
2
) is −√

c. �

Proof of Corollary 4.3 (d)

For given c 
= 1, (1
2
, 1
2
) is the only intersection of LBD and LRD.

Proof

Without loss of generality, suppose that 0 < c < 1 and p < 1
2
. For p+ q = 1, consider

the derivatives of L(1/2,1/2,c)

D(L(1/2,1/2,c)) = c(x(1− x))c(p− q)(1− x− y) (A.1.6)

Notice that points on L(1/2,1/2,c) satisfy

4(y − x)(1− x− y) = (1− 2x)2 − (2y − 1)2

= (22(x(1− x)))c − 22(x(1− x)) > 0 (A.1.7)

, this implies that 1 − x − y > 0 if x < y and 1 − x − y < 0 if y < x. Thus, trajec-

tories of Eq.(4.2.4) with initial points on L(1/2,1/2,c) are always attracted by (0, 0) since

D(L(1/2,1/2,c)) < 0 in region (0, 1
2
)× (1

2
, 1) and D(L(1/2,1/2,c)) > 0 in region (1

2
, 0)× (0, 1

2
).

Thus, s0(p, q, c) >
1
2
. From Theorem 4.2, LBD is below LRD for 0 < c < 1 and p < 1

2
.

Similarly, LBD is above LRD for 0 < c < 1 and 1
2
< p. Therefore, (1

2
, 1
2
) is the only

intersection of LBD and LRD. �

A.2 Proof of Theorem 4.4

Proof of Theorem 4.4

For any given c, LBD is between LRD and LCD.
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Proof

Without loss of generality, suppose 0 < c < 1 and p < 1
2
. In this case, Corollary 4.2

indicates that LCD is below LRD. Hence, we have to prove: (i) LBD is below LRD and (ii)

LBD is above LCD.

(i) can be obtained directly from property (d) of Corollary 4.3 (see also Appendix

A.1) but the proof of (ii) is more complicated. Our basic idea is to calculate s0(p, q, c)

for (p, q, c) on LCD (denote by s0(LCD) for simplicity). From Theorem 4.2, LBD is above

LCD if s0(LCD) <
1
2
.

The proof consists of three parts: (a) LCD is below L(1/2,1/2,c)(p, q) if 0 < c < 1 and

p < 1
2
, where L(1/2,1/2,c)(p, q) denotes the separatrix L(1/2,1/2,c) on p− q plane (i.e., replace

x and y by p and q, respectively), (b) LLCD
is below L(1/2,1/2,c) if 0 < x < 1

2
, where LLCD

denotes the separatrix L(p,q,c) with (p, q, c) on LCD, and (c) s0(LCD) <
1
2
.

(a) From Corollary 4.2, p < 1 − q < 1
2
for points on both curves. For convenience,

denote the expressions of L(1/2,1/2,c)(p, q) and LCD by q1 = l(1/2,1/2,c)(p) and q2 = lCD(p),

respectively. Clearly, p = q = 1
2
is an intersection.

We now investigate the existence of intersection in region p < 1−q < 1
2
. In this region,

slopes of two curves are

dq1
dp

= c
q1(1− q1)(1− 2p)

p(1− p)(1− 2q1)
< 0

dq2
dp

= c
ln p− ln(1− p)

ln q2 − ln(1− q2)
< 0 (A.2.1)

, where at p = q = 1
2
, both of them equal to 1

2
.

For p < 1− q < 1
2
,

q(1− q)(1− 2p)

p(1− p)(1− 2q)
<

ln p− ln(1− p)

ln q − ln(1− q)
(A.2.2)

since

d(p(1−p)
1−2p

(ln p− ln(1− p)))

dp

=
(ln p− ln(1− p))(p2 + (1− p)2) + 1− 2p

(1− 2p)2
(A.2.3)

and

d((ln p− ln(1− p))(p2 + (1− p)2) + 1− 2p)

dp

=
(1− 2p)2

p(1− p)
− 2(1− 2p)(ln p− ln(1− p)) > 0 (A.2.4)
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From Eq.(A.2.2), we have q1 > q2 > 1
2
for p → 1

2

−
. To see this, consider the linear

approximations of q1 and q2 near (1
2
, 1
2
),

q1 =
1

2
+ (p− 1

2
)
dq1
dp

q2 =
1

2
+ (p− 1

2
)
dq2
dp

(A.2.5)

If q2 > q1 >
1
2
,

dq1
dp

=
q1(1− q1)(1− 2p)

p(1− p)(1− 2q1)
<

ln p− ln(1− p)

ln q1 − ln(1− q1)
<

ln p− ln(1− p)

ln q2 − ln(1− q2)
=

dq2
dp

(A.2.6)

which contradicts Eq.(A.2.5).

On the other hand, Eq.(A.2.2) also implies that dq1
dp

< dq2
dp

at all possible intersections.

Therefore, L(1/2,1/2,c)(p, q) and LCD can not meet each other in region p < 1− q < 1
2
.

Notice that lCD(0) < 1 = l(1/2,1/2,c)(0), LCD is below L(1/2,1/2,c)(p, q) if 0 < c < 1 and

p < 1
2
.

(b) From part (a), we only need to show that LLCD
and L(1/2,1/2,c) have no intersection

in region 0 < x < 1
2
.

Suppose that (x, y) is an intersection, the slopes of two curves at (x, y) are then given

by kLLCD
(x, y) = x(1−x)(y−q)

cy(1−y)(x−p)
and kL(1/2,1/2,c)

(x, y) = x(1−x)(y−1/2)
cy(1−y)(x−1/2)

, respectively.

Since the separatrix is decreasing, (x, y) is either in region 0 < x < p or 1
2
< y < q. If

0 < x < p, we have kLLCD
(x, y) < kL(1/2,1/2,c)

(x, y) < 0 since (p, q, c) is below L(1/2,1/2,c).

Notice that boundary point (0, 1) is on both curves, two curves have no intersection in

region 0 < x < p. Similarly, if 1
2
< y < q, we have 0 > kLCD

(x, y) > kL(1/2,1/2,c)
(x, y).

Notice that (1
2
, 1
2
) is on both curves, they also have no intersection in region 1

2
< y < q.

Therefore, LLCD
is below L(1/2,1/2,c) if 0 < x < 1

2
.

(c) From part (b), we have F(1/2,1/2,c)(x, y) = 22c((1− x)x)c − 22(1− y)y < 0 for (x, y)

on LLCD
. Notice that (x, y) satisfies FLCD

(x, y) = 2c(1− x)c(1−p)xcp − 2(1− y)1−qyq = 0,

this yields FLCD
(1− x, 1− y) = 2cxc(1−p)(1− x)cp − 2y1−q(1− y)q < 0, which implies that

lLCD
(x) + lLCD

(1− x) < 1 if x < 1
2
.

Thus,

s0(LCD) =

∫ 1/2

0

lLCD
(x)dx+

∫ 1

1/2

lLCD
(x)dx

=

∫ 1/2

0

lLCD
(x)dx+

∫ 1/2

0

lLCD
(1− x)dx <

1

2
(A.2.7)

Finally, from Theorem 4.2, LBD is above LCD. �
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Chapter 5

The evolution of sanctioning

institutions: An experimental

approach to the social contract

Abstract

A vast amount of empirical and theoretical research on public good games indicates that

the threat of punishment can curb free-riding in human groups engaged in joint enter-

prises. Since punishment is often costly, however, this raises an issue of second-order

free-riding: indeed, the sanctioning system itself is a public good which can be exploited.

Most investigations, so far, considered peer punishment: players could impose fines on

those who exploited them, at a cost to themselves. Only a minority considered so-called

pool punishment. In this scenario, players contribute to a punishment pool before engag-

ing in the public good game, and without knowing who the free-riders will be. Theoretical

investigations have shown that peer punishment is more efficient, but pool punishment

more stable. Social learning should lead to pool punishment if sanctions are also imposed

on second-order free-riders, but to peer punishment if they are not. Here we describe

an economic experiment which tests this prediction. We find that pool punishment only

emerges if second-order free riders are punished, but that peer punishment is more stable

than expected. Basically, our experiment shows that social learning can lead to a sponta-

neously emerging social contract, based on a sanctioning institution to overcome the free

rider problem.

Key words

Public goods game; experiments; collective action; punishment; institution; social learning
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5.1 Introduction

Coercion plays an essential role in overcoming social dilemmas. The corresponding line

of reasoning goes back at least as far as Hobbes’ ’Leviathan’ from 1651, and the practical

implementation can be traced throughout history. The selfish motivations endangering

collective actions have to be suppressed by positive and negative incentives (Olson 1965;

Boyd and Richerson, 1992; Andreoni et al., 2003; Rockenbach and Milinski, 2006). In

particular, the threat of punishment curbs the temptation to free-ride, i.e., to exploit the

contributions of others without offering an adequate return.

Institutions can be viewed as tools for providing incentives (Ostrom, 2005). It has been

shown that even in small-scale societies far removed from ’Leviathan’-like states, grass-

root institutions can deal, often efficiently, with the tasks of monitoring joint efforts and

sanctioning defectors (Ostrom, 1990; Henrich, 2006; Baldassarri and Grossman, 2011).

The role of punishment in boosting cooperation is one of the best studied topics in

experimental economy. However, most investigations deal with so-called peer-punishment

(see, e.g., Fehr and G?chter, 2000, 2002; Fehr and Rockenbach, 2003; Casari, 2005; Fowler,

2005; G?chter et al., 2008; Hermann et al., 2008; Henrich et al., 2006; Sigmund, 2007;

Dreber at al., 2008; Egas and Riedl, 2008; Chaudhuri, 2011). Typically, the players in a

public good game are allowed to impose fines on exploiters, at a cost to themselves. The

threat of punishment can lead to considerable increases in the level of cooperation in the

collective action. Many players are willing (and frequently even eager) to shoulder the

costs of imposing fines on cheaters.

In most aspects of everyday life, the task of punishing exploiters has eventually been

taken over by institutions (Ostrom, 2005; Guillen et al., 2006). This is remarkable,

given the wide-spread tendency for moralistic aggression. In developed societies, peer-

punishment is not only obsolete, but even explicitly forbidden. Under conditions of anar-

chy, individuals have to take punishment into their own hands, but in all better-regulated

communities, punishment is delegated to institutions. How can we envisage this important

step in social development?

Evidently, this question can be approached from many different angles. Here, we

use an economic experiment to test how individuals who want to coerce their group to

cooperate decide between inflicting punishment directly or using the intermediary of an

institution. The foremost problem, in such an experiment, is how to implement the

sanctioning institution (Tyler and Degoey, 1995; Casari and Luini, 2009; Kosfeld et al.,

2009; Andreoni and Gee, 2011). Which is the essential feature distinguishing institutional

from peer-punishment? Some argue that it is the delegation of punishment. However,

individuals who want to exert personal revenge can recur to ’hiring a gun’, and this would

still count as peer-punishment (Van Vugt et al., 2009). A more pronounced difference is

that sanctioning institutions are established in advance, and thus entail running costs
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even in the case that no one commits a punishable offense. A county would have to pay

its sheriff even if nobody commits a crime. We tried to model this as ’pool-punishment’

(Yamagishi, 1986; Sigmund et al, 2010, 2011; Kamei et al., 2011; Markussen et al., 2011;

Traulsen et al., 2012). Players who want to use such a sanctioning tool have to pay a fee,

even before the public good interaction takes place, or at least before they are informed

of its outcome, and thus before they know whether there will be any exploiters to punish.

Pool punishers can be viewed as paying a tax towards a police. We note that instead of

pool- or peer-punishment, some authors use the terms ’formal’ and ’informal’ sanctions

(Kamei et al., 2011; Markussen et al., 2011).

In our experiment, we investigated small groups, or ’toy-communities’, of 12 to 14

players. Each such group played 50 rounds of a public good game. Within each group,

players could decide, before each round, whether to join a public good game (A) without

punishment, (B) with peer-punishment, (C) with pool-punishment or (D) not to partic-

ipate. These games were played separately, i.e., the outcome of one game did not affect

the outcomes of the other games in the group. Players were anonymous, and prevented

from communicating. Usually, both features do not hold under realistic conditions, but

we imposed them in order to focus on the alternative choices in punishment mechanisms.

All that players learned, after each round, was how many opted, in their group, for each

game, and which payoff they obtained. They then could choose whether to opt for (A),

(B), (C) or (D) in the next round. We thus observed, in each toy community, whether

social learning led to institutional punishment or not.

It is clear that if punishment works, i.e., if it leads to all-out cooperation, then peer-

punishment is more efficient than pool-punishment, since it entails no running costs.

However, theoretical considerations (Sigmund et al. 2010, see relevant theory in Appendix

B.1) imply that pool-punishment is more stable, provided that it is also directed at those

participants in the game who do not contribute to the punishment pool. Indeed, if

cooperation is achieved, i.e., if no one needs to be punished, then a peer-punisher cannot

be distinguished from a non-punisher. This means that second-order free-riders (defined

as those who contribute to the public good, but not to the sanctions) cannot be spotted,

and thus cannot be punished. By contrast, those who do not contribute to the punishment

pool are just as visible as those who do not contribute to the public good, and can be

punished just as well. A system implementing this is highly immune against exploitation,

but requires payment of a tax.

In our experiment, a clear majority chose peer punishment in the first round. Most

players switched to pool punishment in later rounds, but (as predicted) only if punishment

was also imposed on second-order free-riders. The experiment involved 238 first-year stu-

dents from universities in Vienna. Interactions were anonymous. Players were randomly

allocated to 18 groups of 12 to 14 players each, for the duration of 50 rounds. We imple-

mented 2 treatments with 9 groups each: in the ’second-order treatment’, players were
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offered a pool punishment which sanctioned second-order free riders, and in the ’first-

order treatment’ a pool punishment game which did not. The former treatment led to

the emergence of pool punishment in six out of the nine groups, the latter in none. Peer

punishment slowly declined over rounds in both treatments. Roughly speaking, it was

not displaced by pool punishment, but eroded gradually. Contributions to the public

good were vastly more frequent in the treatment with second-order pool punishment. In

a nutshell, players were allowed to ’vote with their feet’ (the expression seems to be due

to Tiebout, 1956), and they decided in favor of a sanctioning institution, but only if this

institution coerced participants to contribute not merely to the public good, but also to

its own upkeep. Under this additional commitment, the institution was adopted by the

group, in a kind of ’social contract’ which was achieved without explicit communication

or deliberation, and uniquely based on social learning from the own experience and that

of others.

In section 5.2, we describe the experiment, in section 5.3, we display the results,

and in section 5.4, we offer a discussion and conclusions. The theoretical background,

the instructions for the players and the detailed results of every group are contained in

Appendix B.

5.2 The experiment

The 18 groups of 12 to 14 players (our ’toy-communities’) were the independent sample

points of our experiment. Players in different groups did neither interact nor communicate

with each other for the duration of the experiment. The players were not told that the

number of rounds was fixed beforehand at 50, so as to prevent end-round effects. In each

round, players were given 3 monetary units (MU) and asked to choose one of three variants

of public good (PG) games: (A) PG without punishment; (B) PG with peer punishment;

(C) PG with pool punishment. The players could also decide (D) not to participate in

any of these games. Such non-participants received an additional 0.5 MU. The idea, here,

was that when not participating in a joint enterprise, an individual can engage in some

useful activity which does not depend on the decisions of others. Once they had chosen

one of these games, they interacted (through contributions and punishment) with those

group-members who had chosen the same game. Players who opted for one of the games

(A), (B) or (C), but found no co-players to join them, were treated as non-participants

(D), and received an additional 0.5 MU, independently of what the others did. Once the

round was over, the players learned how many (in their group) had played (A), (B), (C)

or (D), which strategy they had chosen in their particular game, and which payoff they

had obtained. (See payoff functions of different games in Appendix B.1). They could

use this information to decide for which game to opt in the next round. Players did not

learn about who did what, so there was no possibility to establish a reputation. Players
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knew that they would be paid immediately after the game, at a rate of 10 cents (euro)

per MU, without having to give away their identity (as players) to their co-players or to

the experimenters. The guaranteed minimal payoff was 10 euro.

Players participating in a PG game of type (A) (no punishment) could decide whether

or not to contribute 1 MU to the common pool, knowing that their contribution would be

multiplied by 3 and divided equally among all other players in their game, irrespective of

whether these co-players had contributed or not. Thus contributors did not benefit from

their own contribution. This slightly deviates from the ordinary type of PG games, where

the contributors receive a return from their own contribution, usually a fraction inversely

proportional to the number of participants in their PG game. Our version has the same

structure as the Mutual Aid Game (Sugden 1986) and was also considered in Wilson

(1975), Yamagishi (1986) and Fletcher and Zwick (2004). We adopted this version (which

makes the social dilemma harder to solve) because the number of participants in the PG

game can fluctuate in our experiment 1, which introduces a complicating factor which we

wished to avoid (Sigmund, 2010). It may be noted that if all players contribute, everybody

gains the same in both cases (namely 2 MU), irrespective of whether one obtains a return

from the own contribution or not.

Players choosing to participate in a PG game of type (B) (peer punishment) would

first play a PG game as described above, and then, in a second stage of the same round,

be shown the number of non-contributors (i.e., defectors) in their game. Contributors

could then decide whether or not to punish these free-riders. The fine-to-fee ratio is fixed

to 2:1 in (B) 2. Each punisher would have to pay a fee of 0.5 MU per defector, and that

each defector would have to pay a fine of 1 MU per punisher. Again, if all cooperate,

everyone gains 2 MU.

Players participating in a PG game of type (C) (pool punishment) had to choose

between three options: (i) not to contribute anything, (ii) to contribute to the common

pool (i.e., to pay 1 MU so that 3 MU would be shared among all other members who

had chosen (C)), or (iii) to contribute to both the common pool and the punishment

pool. This last alternative requires the players to pay 1 MU to the common pool and

an additional 0.5 MU into the punishment pool. Thus if all cooperate, everyone gains

1.5 MU. This PG game was played in two variants, denoted as ’first-order variant’ resp.

’second-order variant’. In the first-order variant, players knew that everyone who had not

contributed to the common pool would be fined 1MU per punisher. In the second-order

variant, players knew that everyone who had not contributed to both pools would be fined

1MU per punisher. Hence, in the second-order variant of game (C), second-order free-

1In our experiment, a PG game has at least 2 and at most 12 to 14 players. Isaac and Walker (1988)

showed that the effect of group size on individual decisions is very weak if the self return remains constant.
2The effectiveness of fee-to-fine ratio 1:2 has been studied by many researchers (e.g., Carpenter, 2007;

Nikiforakis and Normann, 2008). This ratio is enough to maintain cooperation.
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riders were punished, while in the first-order variant, they were not. The fine to fee ratio

can greatly vary, depending on the number of defectors and pool punishers. In groups 1-9

(with altogether 120 subjects), the game of type (C) was offered in the first-order variant,

and in groups 10-18 (with 118 subjects) in the second-order variant.

We note that this is a complex game, without obvious money-maximizing strategies

for the individuals choosing (B) and (C), since payoff depends on how many decide for

the different options. In order to provide the players with an appreciation of the issues

involved, they were given, at the start of the session, 25 practice rounds (see Appendix

B.2). They knew that these rounds would not count towards their score and that groups

would be reshuffled before the experiment started. More precisely, players were first given,

via computer screen, a brief introduction into game (A) (no punishment), then played five

rounds of game (A). The same then happened with games (B) (peer punishment) and (C)

(pool punishment). Finally, they all played 10 rounds with the option, in each round, to

choose between the three games (A), (B) and (C), or (D) to abstain from participation

(exactly as later in the actual experiment). Thus players could familiarize themselves with

their options, in the practice rounds, but were precluded from sharing their experiences.

Immediately after the practice rounds, the ’toy communities’ were assembled randomly,

and engaged in their 50 rounds of social learning.

After each round, players were shown the payoffs for all strategies used in their group,

and had 15 seconds to decide which game (A), (B). (C) or (D) to join next. The tightness

of the schedule and the complexity of the task provided a strong motivation to be guided

by the size of the payoffs, i.e., to engage in social learning. We also did not shrink from

using loaded language in the instructions, for instance by calling punishment ’punishment’.

Since our main aim was to compare different sanctioning technologies, we felt justified in

acknowledging the underlying, common intention to uphold norms of collaboration. In

particular, asocial punishment or revenge were not offered as options to our players. In a

similar minimalistic spirit, we avoided the issue of increasing group returns.

5.3 Results

In the actual experiment, we observed strong changes in behavior in most of the 18

groups, especially during the initial phase. 12 of the groups eventually settled down, in

the sense that the majority opted for the same game for each of the last 10 rounds. Six

of these groups settled down for pool punishment. All six belonged to the second-order

treatment. In three groups playing the second-order treatment, and three groups playing

the first-order treatment, players settled for peer punishment. The null hypothesis that

pool punishment is equally likely in both treatments can be rejected with a significance

of p < 0.05 (n1 = 9, n2 = 9, two-sided binomial sample test). Based on the theoretical

model, we had indeed expected pool punishment to emerge in the second-order treatment
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only.

The average frequency of pool punishment increased during the first rounds, in the

second-order treatment, and overtook the frequency of peer punishment. In fact, the

initial frequencies of (A), (B), (C) and (D), in the first-order treatment, corresponded

closely with the initial frequencies in the second-order treatment, but then the frequencies

evolved very differently (see Figure 5.3.1). Frequencies of peer punishers decreased in both

treatments, but only slowly. Frequencies of pool punishment decreased in the first-order

treatment, but increased in the second-order treatment. (See Table 5.3.1 (a))

More precisely, in the first round of the second-order treatment, 55 per cent of play-

ers choose peer punishment and 36 per cent pool punishment. The initial frequencies in

the first-order version were 56 per cent and 31 per cent, respectively. However, in the

first-order treatment, both frequencies declined, to reach 48 per cent and 19 per cent, re-

spectively, by round 50. By contrast, the evolution in the second-order treatment reversed

frequencies, so that after 50 rounds, 63 per cent of players opted for the pool punishment

game but only 33 per cent for the peer punishment game (Figure 5.3.1 (b)). This reversal

took place in the first 20 rounds. The regression line is y = 0.326 + 0.0146x (where y

represents the frequency of pool-punishment and x the round), with correlation coefficient

R = 0.9167 and P-value< 0.0001. Obviously, players approached both first- and second-

order treatments with similar expectations, but then underwent a very different learning

experience. (See Table 5.3.1 (c))

Table 5.3.1: Regression lines

Table 5.3.1 (a): Popularity of different games

Regression line (50 rounds) R P-value

First-order peer game y = 0.6347− 0.0031x 0.4761 P-value< 0.001

First-order pool game y = 0.2749− 0.0029x 0.4362 P-value< 0.001

Second-order peer game y = 0.5220− 0.0044x 0.6671 P-value< 0.001

second-order pool game y = 0.4325 + 0.0042x 0.5939 P-value< 0.001

Table 5.3.1 (b): Frequencies of C and D

Regression line (50 rounds) R P-value

First-order C y = 0.6689− 0.0065x 0.8812 P-value< 0.001

First-order D y = 0.3292− 0.0015x 0.1761 P-value= 0.024

Second-order C y = 0.8783 + 0.001x 0.1779 P-value= 0.023

Second-order D y = 0.1164− 0.001x 0.1707 P-value= 0.029

Table 5.3.1 (c): Voting for different games in the second-order treatment

Regression line (First 20 rounds) R P-value

Second-order peer game y = 0.6191− 0.0136x 0.8983 P-value< 0.001

Second-order pool game y = 0.3262 + 0.0146x 0.9167 P-value< 0.001
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Figure 5.3.1: Time-evolution of the frequencies of players voting for the games (A), (B),

(C) or (D). Here, (A) denotes the game without punishment (NoPun), (B) the game

with peer-punishment (Peer), (C) with pool punishment (Pool) and (D) denotes non-

participation (No).
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Notes: y represents the frequency and x the round. R is the correlation coefficient.

If we average over all 50 rounds, we find a significant preference for peer punish-

ment in the first-order treatment, and a less significant preference for pool punishment

in the second- order treatment (Figure 5.3.3 (a)). The latter treatment leads to a very

pronounced cooperative behaviour. Indeed, the frequency of contributions was signifi-

cantly higher in the second-order treatment than in the first-order treatment (88.2 per

cent vs.48.9 per cent, Mann-Whitney U-test, n1 = 9, n2 = 9, p = 0.0373), and it hardly

changed over the 50 rounds (Figure 5.3.2 (b)). We can see (Figure 5.3.3 (c) and Appendix

B.2) that average payoff values differ by little, but that peer punishment clearly yields

the highest payoff in the first-order treatment, whereas it shares front rank with pool

punishment, in the second order treatment.

In the first-order treatment, peer punishment was preferred by a wide margin: game

(B) was chosen in 55.6 per cent of all decisions, game (C) in 20.2 per cent and game (A)

in 11.7 per cent (Figure 5.3.3 (a)). A majority (62 per cent) of players opting for the peer

punishment game contributed to the public good, but did not punish. Their payoff was

higher than that of the punishers (4.636 vs. 4.1, Mann-Whitney U-test, n1 = 9, n2 = 9,

p = 0.077). (It is obvious that within any round, this has to hold, if some players defect;

we see here that it also holds on average). The non-contributors in the peer punishment

game earned marginally more than the non-participants, namely 3.61 MU (the difference

is not significant). All in all, 48.9 per cent of all decisions were in favour of contributing

to the public good, rather than defecting (35.6 per cent) or abstaining from the game

(15.5 per cent). But the time evolution over 50 rounds tells a more pessimistic story

(Figure 5.3.2 (a)). Three-fourth of players cooperated in the first round but half of them

gave up in later rounds. The regression line is y = 0.669 − 0.0065x (where y represents

the frequency of cooperation and x the round), with correlation coefficient R = 0.8812

and P-value < 0.0001. (Table 5.3.1 (b)) Moreover, in the first-order pool punishment

games, cooperation did not take off. Only a tiny fraction of the decisions (54 out of 1149)

favoured investing into the punishment pool.

In the second-order treatment, the preferences change drastically. Pool punishment,

i.e., game (C), was chosen in 54.1 per cent of all decisions, and almost always (in 3155

of 3174 cases) was combined with a decision to actually contribute to the pool. Peer

punishment (B) was chosen in 41 per cent of the decisions. Interestingly, players who chose

the peer punishment game rarely decided to actually punish (only 9 per cent did), and the

average payoff for those who engaged in peer punishment, 3.78 MU, was significantly less

than that of second-order free-riders (4.77 MU, Mann-Whitney U-test, n1 = 9, n2 = 9,

p = 0.0106). But this minority of punishers sufficed to keep free-riding down to 16 per

cent. Few decisions (4.5 per cent) were in favour of the alternative (A), i.e., joining a

PG game without punishment. The average payoff for the peer punishment game was
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Figure 5.3.2: Time-evolution of the frequencies of cooperation (C, blue), defection (D,

red) and non-participation (No, yellow) over 50 rounds in the first- and the second-

order treatments. (a) In the first-order treatment, defection was chosen by about one-

third of the players in each round. The number of contributions declined in favor of

non-participation. (b) In the second-order treatment, almost all the players chose to

contribute. This cooperative regime was stably sustained.
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Figure 5.3.3: (a) Frequencies of the decisions in favor of the different games, over 50

rounds, for the first- and the second-order treatments. In the first-order treatment, peer

punishment is favored. In the second-order treatment, pool punishment is more frequent,

but error bars overlap. (b) Frequencies of the decisions to contribute to the public good, to

defect (i.e., not to contribute) and to opt for non-participation, averaged over 50 rounds.

Contribution is strongly promoted in the second-order treatment. (c) Payoffs obtained

for the different games, averaged over fifty rounds, do not greatly differ. Nevertheless,

in the first-order treatment, peer punishment games, and in the second-order treatment,

both peer and pool punishment games provided the highest average payoff.
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insignificantly larger than for the pool-punishment game (4.49 vs. 4.46), but those who

actually peer-punished had a significantly lower payoff than the pool-punishers (3.78 vs.

4.49, Mann-Whitney U-test, n1 = 9, n2 = 9, p = 0.004).

The average payoff for those choosing a given game is almost the same for both treat-

ments, with one exception: the payoff for choosing pool punishment has substantially

increased in the second order treatment, because almost all players contributed to the

common pool in the second-order treatment, but less than a third did so in the first-order

version (Figure 5.3.3 (c)).

5.4 Discussion

In principle, a public good is non-excludable. In this sense, our PG game is misnamed,

since players can decide not to participate. It may be better to call it a ’voluntary con-

tribution game’ or a ’collective-action game’, for instance, or a ’mutual aid game’, but we

wanted to use the term most common in experimental games. There certainly exist enter-

prises or resources from which one cannot abstain: the global climate is the best example.

Such compulsory interactions do not belong to the class considered here. Nevertheless,

it could well be that the main ’efficiency vs. stability’ result still holds for compulsory

games. We decided to consider only the voluntary interactions in our experiment for two

reasons: first, because the theoretical results guiding our predictions were derived for this

class of games only, and second because, in the course of the experiment, we sometimes

(but rarely) encounter players who do not make up their mind quickly enough, or who

are the only individual choosing a given PG game of type (A), (B) or (C). In this case,

it is practical to assign them option (D), namely ’non-participation’. This, incidentally,

hardly affects the statistics.

The important role of second-order free-riding is well-known (Oliver, 1980), and our

experiment confirms it. In the second-order treatment, pool punishment effectively pro-

hibits this possibility, whereas in the first-order treatment, it does not. Apparently, pool-

punishers notice that they are exploited, in the first-order treatment, and react against

this breach in equity (Bolton and Ockenfels, 2000). Voting for the second-order treat-

ment implies a higher commitment. In our experimental design, we did not allow for

second-order peer punishment. The reason is twofold. On the one hand, theoretical mod-

els predict that it has no effect on the outcome (Sigmund et al., 2010). On the other

hand, economic experiments have confirmed this in similar situations (Cinyabuguma et

al., 2006; Kiyonari and Barclay, 2008; Traulsen et al., 2011).

We have reduced all individual decisions to choices between two, three or four alter-

natives. It would be interesting to investigate scenarios where players have a larger range

of strategies, for instance by allowing them to choose between ten levels of contribution

to the public good, or different degrees of punishment. Similarly, we have proposed only
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one, extremely rudimentary form of institution. It is easy to think of better designs,

for instance by allowing part, at least, of the unused funds to return to the players who

have contributed to the punishment pool. We refrained from doing this, because we did

not want to make it too easy for institutional punishment to emerge. The fact that as

many groups ended up with peer- as with pool-punishment suggests that we succeeded in

this ’calibration’. Moreover, our experiment is already complex enough as it stands, and

we feared to make it cognitively too demanding by adding more choices. As it was, the

practice rounds needed to familiarize the players with their options took almost one hour

(as long as the subsequent experiment).

Our main objective was to compare two different versions of pool punishment (rather

than pool with peer). We note that there exist at least three experiments (independently

conceived and as yet unpublished) comparing pool with peer punishment, or ’informal’

with ’formal’ sanctions (Kamei, Puttermann and Tyran, 2011; Markussen, Puttermann

and Tyran, 2011; Traulsen, Rohl and Milinski, 2011). In Markussen et al. 2011, fixed

groups of five players play for 24 rounds, and can vote, at specific instants, between two

different regimes (corresponding, in our setup, to decisions between (A) and (B), (B) and

(C), or (A) and (C)). In Kamei et al, their choice is between (B) and (C) with various

parameters for the sanctions. Informal sanctioning does remarkably well. (The papers

by Ertan, Page and Puttermann, 2009 and Boyd, Gintis and Bowles, 2010 confirm that

peer punishment works well when players have an opportunity for coordinating.) Formal

sanctions (which did not include second order punishment) fared poorly. The experiment

by Traulsen, Rohl and Milinski 2012 presents players with the opportunity to use both

mechanisms jointly, and finds that pool punishment prevails if it includes second-order

punishment. In contrast to these papers, we describe how players ’vote with their feet’

between competing games.

Our experiment is close in spirit and design to an experiment by Gurerk, Irlenbusch and

Rockenbach, 2006. In this experiment, players were given the choice between a PG game

with and one without peer punishment. The majority started with a clear preference

for the treatment without punishment, but switched after a few rounds to the peer-

punishment treatment, apparently guided by payoff considerations. Essentially, we kept

the three-staged structure (choice of treatment, decision to contribute, decision to punish),

but added pool punishment and non-participation as additional choices. (In contrast to

the paper by Gurerk et al., 2006, we did not allow for rewarding; a related endogenous

choice between peer punishing and rewarding has been investigated by Sutter, Haigner

and Kocher, 2010.) The option of pool punishment adds an important element, as it

essentially provides the opportunity for a tacit social contract establishing a sanctioning

institution. To our knowledge, this is the first experiment demonstrating that such a

social contract can emerge through social learning based on comparing the (frequency

dependent) payoff values of diverse options.



CHAPTER 5. ECONOMIC EXPERIMENT 96

The great attention that peer punishment has attracted in economic experiments is

at least in part due to the fact that it does not presuppose the selection of an institution

over another. Such a selection is necessarily culture-specific. Instead, peer-punishment

scenarios mimic conditions of anarchy (i.e., the philosophers’ ’state of nature’). It may be

noted that nevertheless, institutions loom large in the background of such experiments:

players are submitted to strict rules, and monitored by lab assistants who effectively act as

authorities. Conditions of true anarchy, as would exist among the inmates of a prison or

a kindergarten after the permanent removal of guards, can obviously not be implemented

in economic experiments.

Since we wanted to favor conditions for social learning, we provided the players with

information on the frequencies and average payoffs obtained by the various strategies in

their group. However, we refrained from giving them opportunities to build up individual

profiles, for instance reputations or significant differences in resources. Needless to say, this

does not imply that reputations or differences in resource holding power are irrelevant for

the evolution of institutions. Similarly, we did not consider other regarding preferences

(Fehr and Schmidt, 1999) or contests between groups, although such struggles played

doubtlessly an important role in human evolution (Choi and Bowles, 2007).

Our players were given the choice between one type of peer and one type of pool

punishment. They could order them, as from a menu. Needless to say, such an approach

cannot tell how such opportunities for sanctioning emerge, i.e., how the dishes were pre-

pared. What are the roots of sanctioning institutions? Cooperation has frequently arisen

through biological evolution (Maynard Smith and Szathmary, 1995), often via subtle

mechanisms suppressing competition (Frank, 1995), and there exist many examples of

animals punishing each other (Clutton-Brock and Parker, 1995). In particular, parents

repress competition between their offspring, in many species, and it may be that this

eventually led, in human populations, to institutionalized sanctioning. Offspring would

simply have to remain with their parents (a costly option providing some safety) rather

than leave and defend their interests single-handedly. It seems that institutions, once they

have arisen, apply themselves to curb the vengeful and aggressive instincts fuelling peer-

punishment. It would be interesting to explore this, both by modeling and by experiment.

In our experimental setup, we have not allowed pool-punishers to sanction peer-punishers,

or punished players to retaliate (Cinyabuguma et al., 2006; Nikiforakis, 2008). We also

excluded communication and deliberation, although theoretical models, field observations

and experiments have stressed the importance of communication in sanctioning exploiters

(Walker et al., 2000; Bochet et al., 2006; Ertan et al., 2009). If individuals can look for

allies, or deliberate with their peers, , stable systems of incentives can arise (Casari and

Luini, 2009; Ertan et al., 2009; Boyd et al., 2010). We aimed for a minimalistic scenario

based on social learning, and showed that it can lead to the emergence of a rudimentary

type of institutionalized coercion helping to overcome individuals’ selfish preferences.



Appendix B

B.1 Payoff values

In this section, we briefly sketch some of the relevant theory from Sigmund et al. (2010).

First of all, let us consider the PG game of type (A) (no punishment). There are m

players in the group. They can decide whether or not to contribute an amount c > 0,

knowing that this will be multiplied by r > 1 and divided among all other players in the

group. If mC is the number of those players who contribute, and mD the number of those

who don’t (with mC +mD = m), then the payoff for a contributor is

PC = rc
mC − 1

m− 1
− c (B.1.1)

and that for a defector

PD = rc
mC

m− 1
. (B.1.2)

Clearly, we always have PD > PC (the difference is independent of mC). If all players

contribute, their payoff is (r − 1)c, which is independent of group size m. The dominant

strategy is to refuse to contribute. In our experiment, c = 1 MU, r = 3 MU and m ≥ 2

is variable. Now let us consider the PG game of type (B) (peer punishment). Let us

suppose that mPe the number of players who contribute and punish those who do not

contribute, mC the number of players who contribute, but do not punish, and mD the

number of those who neither contribute nor punish (with mPe +mC +mD = m). Let β

be the size of the fine that each non-contributor receives from each punisher, and γ the

fee each punisher has to pay for each non-contributor he or she punishes. Then we obtain

as payoff values

PC = rc
mC +mPe − 1

m− 1
− c

P Pe = rc
mC +mPe − 1

m− 1
− c− γmD

PD = rc
mC +mPe

m− 1
− βmPe (B.1.3)

97
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There is no dominant strategy. The group optimum is obtained whenever mD = 0.

Clearly, we have PC ≥ P Pe (with equality if and only if mD = 0). The state when no one

contributes is a strict Nash equilibrium. Other (non-strict) equilibria exist for mD = 0

and mPe ≥ c+β
β
. In our experiment, β = 1 MU and γ = 0.5MU so that states with two or

more peer punishers, but no defector are also Nash equilibria.

Finally, let us consider games of type (C) (pool punishment). There are mC players

who contribute to the common pool, but not to the punishment pool, mPo players who

contribute to both pools, and mD players who contribute to neither pool (with mPo +

mC +mD = m). Pool punishers have to contribute an amount c to the common pool and

an amount F to the punishment pool. In the first-order variant, everyone who does not

contribute to the common pool is fined by an amount BmPo, whereas in the second-order

variant, everyone who does not contribute to both pools is fined by that amount. The

payoff values are

P Po = rc
mC +mPo − 1

m− 1
− c− F (B.1.4)

and in the first-order variant (C1)

PC = rc
mC +mPo − 1

m− 1
− c

PD = rc
mC +mPo

m− 1
−BmPo (B.1.5)

resp. in the second-order variant (C2)

PC = rc
mC +mPo − 1

m− 1
− c− BmPo

PD = rc
mC +mPo

m− 1
− BmPo (B.1.6)

In our experiment, we used B = 1MU and F = 0.5MU. In the first-order variant, we have

again PC > P Po so that mD = m is the only equilibrium. In the second-order variant,

mPo = m is another equilibrium (as long as c+ F ≤ B(m− 1), which for our parameter

values means that there are at least three punishers). We note that this equilibrium is

not efficient, since mC = m provides a higher per capita payoff.

In Sigmund et al. (2010), it is shown that in the second-order version, pool punishment

is more stable than peer punishment, although it is less efficient.

B.2 Experiments

The experiment took place in a computer lab of the Vienna University of Economics and

Business (WU) on six days. On three days, the first-order treatment was played, and on
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the other three days the second-order treatment. The lab has 50 computers and for each

of the six sessions, some 40 students (3 groups) played together. The interactions were

anonymous, and via PCs. Cardboard dividers ensured that the students could not see

each other. Players were not allowed to communicate, or to ask questions.

Table B.2.1: Group size in the first-order treatment and the second-order treatment

Group sizes in the first-order treatment

group 1 group 2 group 3 group 4 group 5 group 6 group 7 group 8 group 9 Total

13 13 13 13 13 13 14 14 14 120

Group sizes in the second-order treatment

group 1 group 2 group 3 group 4 group 5 group 6 group 7 group 8 group 9 Total

13 13 13 13 13 13 14 14 14 120

The practice rounds lasted about 45 min, almost for as long as the subsequent ex-

periment (students knew that the sessions would at most for two hours, but were not

told the number of rounds, so as to avoid end round effects). All players were given the

same instructions (in German, see screen shots in Appendix B.4). The groups were then

re-shuffled before the actual experiment started, and remained unchanged for its entire

duration. The translation of the instructions for the practice rounds and the experiment

can be found at the end of Appendix B.3. The average income was 19.6 euro (minimum

15.3, maximum 24.9). All steps were time-limited. Players knew that if they did not de-

cide within 15 seconds, they would be allocated a random decision. Since the players had

familiarized themselves with each game, this happened only 9 times in 11900 decisions,

and is omitted from the statistics

In the groups 1-9, which offered the first-order treatment of pool punishment, peer

punishment was preferred, as can be seen in Figure B.2.1 (a) and Table B.2.2 (a).

Table B.2.2 (a): Decisions in the first-order treatment

Groups 1-9: Popularity of the different games (including non-participation)

Decisions Number of times Percentage Average payoff

(D) non-participation 754 0.126 3.500

(A) no-punishment game 701 0.117 3.342

(B) peer punishment game 3330 0.556 4.299

(C) pool punishment game 1208 0.202 3.492

Totals 5993 1 3.924
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After including among non-participants those players who found no partners
Decisions Number of times Percentage Average payoff

(D) non-participation 926 0.155 3.500

(A) no-punishment game 618 0.103 3.32

(B) peer punishment game 3300 0.551 4.31

(C) pool punishment game 1149 0.192 3.49

Decisions within each game
Decisions Number of times Percentage Average payoff

Contribution in (A) 99 0.017 2.601

Non-contribution in (A) 519 0.087 3.458

Contribution, but no punishing, in (B) 2049 0.342 4.636

Non-contribution in (B) 859 0.143 3.614

Peer-punishment and contribution in (B) 392 0.065 4.100

Contribution, but no punishing, in (C1) 338 0.056 3.486

Non-contribution in (C1) 757 0.126 3.566

Pool-punishment and contribution in (C1) 54 0.009 2.477

In the first-order pool punishment games, cooperation did not take off. Only a tiny

fraction of the decisions in this group (54 out of 1149) favored investing into the punish-

ment pool. The large majority seems to have sensed that the punishment threat would

not be carried out, and defected. Defection was the most profitable decision in the pool

punishment game, but the average payoff (3.566 MU) was only slightly higher than what

non-participants obtained. (This difference was not significant). Peer punishment was

clearly preferred. The average payoff obtained by opting for the peer-punishment game

was 4.3 MU, higher than for opting for a pool-punishment game (3.49 MU, Mann-Whitney

U-test, n1 = 9, n2 = 9, p = 0.11) or the game without punishment (3.34 MU, Mann-

Whitney U-test, n1 = 9, n2 = 9, p = 0.03). Indeed, the average payoff values in the pool

punishment or no-punishment games were lower than the non-participation payoff of 3.5

MU. A majority (62 percent) of players opting for the peer punishment game contributed

to the public good, but did not punish. All in all, 48.9 percent of all decisions were in

favor of contributing to the public good, rather than defecting (35.6 percent) or abstain-

ing from the game (15.5 percent). But as mentioned in the main text, the time evolution

over the fifty rounds shows a clear decline in contributions over time. We also note that

free-riding was the most frequent and most successful behavior in the pool punishment

game, but that the average payoff (3.566 MU) was only insignificantly higher than what

non-participants obtained. Remarkably, the payoff for defecting in the games without

punishment was almost the same (3.458 MU).

In the groups 10 to 18, pool-punishment was offered in the second-order treatment,

i.e., it included punishing those who contributed to the common pool but not to the
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Figure B.2.1: The time-evolution, over fifty rounds, of the frequencies of players voting for

the games (A), (B), (C) or (D). Game (A) is the game without punishment (NoP, blue),

(B) the game with peer-punishment (Peer, green), (C) with pool punishment (Pool, pink)

and (D) means non-participation (No, yellow). (a) The first-order treatment, groups 3,

4 and 6 settled on the peer punishment game, (in the sense that during each of the last

10 rounds, more than half of the players opted for it). The six other groups remained

undecided. (b) The second-order treatment, groups 10, 11, 12, 14, 16, 17 settled on the

pool punishment game, and groups 13, 15, 18 settled on the peer punishment game.



CHAPTER 5. ECONOMIC EXPERIMENT 102

punishment pool. This time, pool punishment was preferred, as can be seen in Figure

B.2.1 (b) and Table B.2.2 (b). (We note that in 49 out of 215 cases, declaring oneself

to be peer punisher was cost-free, since there were no defectors to be punished.) Only

4.5 percent of all decisions were in favor of alternative (A). The free-riders, in that case,

did about as poorly as in the peer punishment game (3.696 vs 3.689), since they found

only few to exploit. Almost no decision was in favor of non-participation. In many more

cases, non-participation was the unintended consequence of choosing a game that was

not chosen by anyone else in the group. Second-order free-riding (i.e., opt for the peer

punishment game, and contribute, but do not punish) achieved the highest payoff, 4.77

MU (see Figure 5.3.3 (c)).

The time-evolution in the different groups is interesting (see Figures B.2.1 and B.2.2).

In seven of the nine groups where pool punishment was offered in the first-order treat-

ment, the initial majority voted for peer punishment and in the other two groups, the

initial majority voted for pool punishment. Three groups (3, 4 and 6) quickly reached

consensus on peer punishment but all other groups went to chaos. During fifty rounds,

players persisted in switching from one game to another. We note that in the three peer

punishment groups, two-thirds of the players, in each round, decided not to opt for pun-

ishment. The threat of the remaining third sufficed to ensure co-operation, although that

threat had rarely to be carried out.

Table B.2.2 (b): Decisions in the second-order treatment

Groups 10-18: Popularity of the different games (including non-participation)

Decisions Number of times Percentage Average payoff

(D) non-participation 23 0.004 3.500

(A) no-punishment game 265 0.045 3.483

(B) peer punishment game 2421 0.410 4.490

(C) pool punishment game 3189 0.541 4.459

Totals 5898 1 4.424

After including among non-participants those players who found no partners
Decisions Number of times Percentage Average payoff

(D) non-participation 154 0.026 3.500

(A) no-punishment game 181 0.031 3.475

(B) peer punishment game 2389 0.405 4.503

(C) pool punishment game 3174 0.538 4.464

Decisions within each game
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Figure B.2.2: The time-evolution, over fifty rounds, of the frequencies of the strategies.

Here AC, AD, BC, BD, CC and CD denote contribution resp. defection in (A), (B) and

(C), BP denotes peer-punishment, CP pool-punishment and No non-participation.
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Decisions Number of times Percentage Average payoff

Contribution in (A) 43 0.007 2.767

Non-contribution in (A) 138 0.023 3.696

Contribution, but no punishing, in (B) 1781 0.302 4.770

Non-contribution in (B) 393 0.067 3.689

Peer-punishment and contribution in (B) 215 0.036 3.776

Contribution, but no punishing, in (C2) 11 0.002 -0.955

Non-contribution in (C2) 8 0.001 0.313

Pool-punishment and contribution in (C2) 3155 0.535 4.493

There was not much switching in the groups where the second-order treatment of

pool punishment was played. Despite the fact that in the first round, more players

voted for peer than for pool punishment (65 vs 43), pool-punishment emerged in six

of the nine groups as consensus solution. In three groups (13, 17 and 18), the initial

majority for peer punishers was large enough to ensure the fixation of peer punishment

within a few rounds. However, group 17 collapsed eventually, since the threat of peer

punishment was not actually carried out. The players then turned to the pool treatment.

A switch in the opposite direction occurred in group 15. After some initial oscillations,

the pool-punishment game emerged as the majority choice, but it was never unanimous,

and eventually became replaced by the peer-punishment treatment.

There are two related problems in establishing the statistics. One is that players

opting for a game may end up with no partners, and thus become non-participants. Their

decision was registered, and included in the statistics, but their payoff (3.5 MU) was not

included in the average payoff for the game of their choice, since that game was cancelled.

If we had added instead their 3.5 MU to the average, not much would have changed. The

second problem is how to count the decisions in favor of peer punishment in those peer

punishment games where no defection took place. If a player sees that there is no one

to punish, and then chooses ’peer-punishment’, this can indicate an earnest commitment

to uphold the sanctioning system to guarantee cooperation (Masclet et al., 2003), but

it could just as well be a mere cost-free gesture. If conversely a player chooses ’non-

punishment’, this can either indicate a decision for second-order free riding, or merely

mean that the player was aware that there was no need for sanctions anyway. There were

108 such rounds (out of 900). In computing average payoffs and frequencies, we decided to

take the players statements at face value. But we also computed a ’skeptical’ version (not

shown here), where players who actually did not punish were counted as non-punishers,

no matter whether they declared themselves to be peer-punishers or not. Frequencies and

the average payoffs are different, but the main conclusions remain unaffected.

The experiment was motivated by a theoretical analysis (Sigmund et al, 2010). This

analysis predicts that the emergence of pool punishment is possible only if second-order
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free-riders are also punished. This is confirmed in our experiment. On the other hand, we

expected that peer punishment would be replaced, in that case, by pool punishment. As

it turned out, we did not observe this anticipated ’trading efficiency for stability’. Rather,

we found examples for switches in both directions (groups 15 and 17, see Appendix B.2).

A look at the time evolution in each group (see Appendix B.2, Figures B.2.1 and B.2.2)

suggests that in both treatments, peer punishment offered a modicum of stability, but

that when it failed, it gave way to asocial behavior (i.e., non-participation or defection)

in the first-order treatment, and to pool punishment in the second-order treatment. As a

consequence, contributions were stably sustained in the second-order treatment, at a very

high level, whereas they declined, and were ultimately overtaken by defections, in the first-

order treatment (see Figure 5.3.2). This good performance of peer punishment may be

due to the fact that retaliatory punishment was not possible in our design (Cinyabuguma

et al., 2006; Nikiforakis, 2008). Moreover, in contrast to the theoretical model (Sigmund

et al., 2010), pool-punishers could not punish peer-punishers in our experiment. They

belonged to different games. It is possible that ’cross-punishment’ can change this outcome

(Traulsen et al., 2011).

The initial phase of our experiment displayed a high rate of change in behavior in most

groups. On average, more than one-fourth of the players switched to another decision

between one round and the next, during the first twenty rounds. In the last ten rounds,

the average switching rate was only 5.6 percent in the twelve groups that had settled on

peer or pool punishment, but 50 percent in the others.

Another question that was not addressed here is whether the option to abstain from

the game (’non-participation’), which is crucial for the theoretical analysis (Sigmund et

al., 2010), is also necessary for the experiment. For the analysis, it was assumed that

innovative behavior (’mutation’) is much rarer than copying behavior. In that case, non-

participation is necessary as an escape from the homogeneous state of defection. Since

actual human populations display high degrees of polymorphism (Traulsen et al., 2010),

non-participation may not be needed. On the other hand, voluntary participation is likely

to increase the perceived legitimacy of the sanctioning institution, and hence its efficiency

(Tyler and Degoey, 1995; Ertan et al., 2009).

B.3 Instructions

B.3.1 Instructions for the practice rounds (translated into En-

glish).

Welcome and thank you for showing up. Your minimal payoff will be 10 euros (guaran-

teed). We first start with some practice games. These do not count towards your score.

You can experiment.
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COMMUNITY GAME

In each round, you receive 3 MU and must decide whether or not to contribute 1 MU

to your co-players’ payoff.

I CONTRIBUTE means: you pay 1 MU and 3 MU will be distributed equally among

all your co-players.

I DON’T CONTRIBUTE means: you keep 1 MU. This will not change your co-player’s

score.

You have 30 seconds for each round to decide and CONFIRM. If you do not decide in

time, the computer will make a random decision. After each round, you will see the scores.

EXAMPLE

If all contribute, all end up with 5 MU. If no one contributes, all end up with 3 MU.

In mixed groups, contributors always end up with less than the non-contributors.

DO YOU WANT TO CONTRIBUTE TO YOUR GROUP?

YES

NO

The round is played.

The scores are displayed.

This is repeated 5 times, with a reflection time of 30 seconds per round.

COMMUNITY GAME WITH OPTION TO PUNISH

This game consists of 2 stages. At the start of each round you receive 3 units. The first

stage is the community game, as above. You can decide whether or not to contribute 1

unit. You will then see the scores in your group, and how many contributed. In the second

stage, contributors can decide whether or not to punish all those who did not contribute.

If you punish, you have to pay 0.5 MU per non-contributor. Each non-contributor is then

fined 1 MU. You will then see the final score of the round.

EXAMPLE

If 4 players punish a non-contributor, this costs each punisher 0.5 MU, and the pun-

ished player 4 MU.

If 3 players punish 2 non-contributors, this costs each punisher 1 MU and each punished

player 3 MU.
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If 2 players punish 3 non-contributors, this costs each punisher 1.5 MU and each pun-

ished player 2 MU.

DO YOU WANT TO CONTRIBUTE TO YOUR GROUP?

YES

NO

x players out of y contributed.

DO YOU WANT TO PUNISH ALL NON-CONTRIBUTORS?

YES

NO

The round is played.

The scores are displayed.

This is repeated 5 times, with a reflection time of 30 seconds for each decision.

COMMUNITY GAME WITH PUNISHMENT DEVICE

At the start of each round you receive 3 MU. Again, you can decide to contribute 1

MU to the group or not. Contributors can additionally decide to pay for a punishment

device. This costs the contributor 0.5 MU.

In the first-order treatment: Each punishment device will punish all non-contributors

by 1 MU.

In the second-order treatment: Each punishment device will punish all non-punishers

by 1 MU (irrespective of whether they contributed or not).

EXAMPLE FOR THE SECOND ORDER TREATMENT

If 3 players chose a punishment mechanism, each pays 0.5 MU and 3 MU will be

removed from the account of each player who did not chose the punishment mechanism.

Even if every player choses the punishment mechanism and no-one will be punished, the

costs for the punishment mechanism will have to be paid.

DO YOU WANT TO CONTRIBUTE TO THE GROUP? DO YOU WANT A

PUNISHMENT DEVICE?

JUST CONTRIBUTE TO THE GROUP

NEITHER, NOR

BOTH
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The round is played.

The scores are displayed.

This is repeated 5 times, with 30 seconds per decision.

B.3.2 Instructions for the full game with option to choose a

game (still in the practice rounds)

You will now have to decide, for each round, which game to play. You will receive 3 units

for each round. You can choose to join

A: COMMUNITY GAME WITH NO PUNISHMENT

B: COMMUNITY GAME WITH OPTION TO PUNISH

C: COMMUNITY GAME WITH PUNISHMENT DEVICE

You can also decide not to play the game. In this case, you receive an additional 0.5

MU, but you cannot improve.

13 players participate in each round. But the sizes of the groups playing A, B or C are

variable. If no co-player joins your group, you receive 0.5 MU and your game is cancelled.

At the end of each round, you will see the scores.

OPT FOR YOUR GAME:

A: COMMUNITY GAME WITH NO PUNISHMENT

B: COMMUNITY GAME WITH OPTION TO PUNISH

C: COMMUNITY GAME WITH PUNISHMENT DEVICE

D: NO GAME

The round is played.

The scores are displayed.

This is repeated 10 times, with 30 seconds per decision.

B.3.3 Instructions for the experiment (after the practice rounds)

Now you will be paid according to your score (1 MU is 10 cents, so that 10 MU = 1 euro).

The average payoff will be around 20 euros.
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OPT FOR YOUR GAME:

A: COMMUNITY GAME WITH NO PUNISHMENT

B: COMMUNITY GAME WITH OPTION TO PUNISH

C: COMMUNITY GAME WITH PUNISHMENT DEVICE

D: NO GAME

The round is played.

The scores are displayed.

Repeat this for 50 rounds, with 15 seconds per decision

B.4 Screen shots
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Figure B.4.1: Login page

Figure B.4.2: Practice rounds, instruction, game (A)
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Figure B.4.3: Practice rounds, game (A)

Figure B.4.4: Practice rounds, instruction, game (B)
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Figure B.4.5: Practice rounds, game (B)

Figure B.4.6: Practice rounds, instruction, game (C), first-order variant



CHAPTER 5. ECONOMIC EXPERIMENT 113

Figure B.4.7: Practice rounds, instruction, game (C), second-order variant

Figure B.4.8: Practice rounds, game (C)
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Figure B.4.9: Practice rounds, instruction, full game with option to choose a game

Figure B.4.10: Practice rounds, full game with option to choose a game
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Figure B.4.11: Experiment, instruction

Figure B.4.12: Experiment, resulting page
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