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Abstract

A major challenge of current high-throughput sequencing (HTS) experiments is not only the generation of
the sequencing data itself but also their processing, storage and transmission. The enormous size of these
data motivates the development of data compression algorithms usable for the implementation of the various
storage policies that are applied to the produced intermediate and final result files.

This thesis gives a brief introduction into the field of high-throughput nucleic acid sequencing and into
current approaches for the compression of the data resulting from such experiments. In the main part of
the thesis, NGC, a tool for the compression of mapped read data stored in the SAM format (one kind of
HTS data), is presented. NGC enables lossless and lossy compression and introduces two novel ideas: First,
it contains a way to reduce the number of required code words by exploiting common features of the se-
quenced reads mapped to the same genomic positions; second, it contains a highly configurable way for the
quantization of per-base quality values which takes their influence on downstream analyses into account.

NGC, evaluated with several real-world data sets, saves 33-66% of disc space using lossless and up to
98% disc space using lossy compression. By applying two popular variant and genotype prediction tools to
the decompressed data, we show that the lossy compression modes preserve over 99% of all called variants
while outperforming comparable methods in some configurations.

i





Zusammenfassung

Eine der größten aktuellen Herausforderungen im Zusammenhang mit Hochdurchsatz-Sequenzierungsexpe-
rimenten (High-Throughput Sequencing, HTS) liegt nicht im Erzeugen der Daten selbst, sondern in deren
Prozessierung, Speicherung und Übertragung. Die enorme Größe dieser Daten motiviert die Entwicklung
von Datenkompressionsalgorithmen für die Realisierung der verschiedenen Datenspeicherkonzepte die auf
die produzierten (Zwischen-)Ergebnisse von HTS Experimenten angewandt werden.

Die vorliegende Arbeit gibt einen Überblick über das Feld der Hochdurchsatz-Nukleinsäure-Sequenz-
ierung und in aktuelle Ansätze für die Kompression solcher Daten. Im Hauptteil der Arbeit wird NGC
vorgestellt, ein Werkzeug für die Kompression von gemappten reads die im weitverbreiteten SAM Format
gespeichert sind (eine Art von HTS Daten). NGC ermöglicht sowohl verlustfreie als auch verlustbehaftete
Kompression und beinhaltet zwei neuartige Ideen: Erstens enthält es eine Methode zur Reduktion der er-
forderlichen Code-Wörter, welche gemeinsame Merkmale der reads die an dieselbe genomische Position
gemappt wurden ausnützt. Zweitens beinhaltet NGC eine konfigurierbare Methode für die Quantisierung der
Qualitätswerte welche deren Einfluss auf nach-gelagerte Anwendungen berücksichtigt.

NGC, mit mehreren echten Datensätzen evaluiert, spart 33-66% des benötigten Speicherplatzes bei ver-
lustfreier und bis zu 98% des benötigten Speicherplatzes bei verlustbehafteter Kompression ein. Durch die
Anwendung zweier gängiger Varianten- und Genotyp-Vorhersagewerkzeuge auf die dekomprimierten Daten
wird gezeigt, dass die verlustbehaftete Kompression, besser als vergleichbare Werkzeuge in manchen Kon-
figurationen, über 99% der gefundenen Varianten präserviert.
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Chapter 1

Introduction

High-throughput sequencing (HTS) refers to a set of novel technologies that enable the accurate, fast and
affordable sequencing of long stretches of nucleic acids (DNA, RNA). The last decade brought an amazing
boom of these technologies which changed the biology research landscape considerably. Even small biology
laboratories can today (and increasingly in the near future) resort to such sequencing data which adds genome
scientific approaches, such as RNA-sequencing (RNA-seq) or whole genome sequencing (WGS) to the set of
standard laboratory methods. By this, much expensive (in terms of time and money) work in the wet-lab can
be saved or planned more accurately and it is expected that many future life science advances will be founded
in the availability of accurate sequencing data [Col10, HHR10, KK10, LMD+12].

The ongoing advent of HTS technologies will lead to a several-fold increase of the produced sequencing
data in the near future. The enormous size of the produced data, however, introduces new challenges. Today,
a major challenge of HTS experiments is not only the generation of the sequencing data itself but also their
processing, storage and transmission [Kah11, WRB+12, LBB12]. Many sequencing data sets have to be
stored for a long time (e.g., experimental data for reasons of scientific reproducibility, medical records for
legal reasons, etc.). Further, such data sets have to be transferred over networks (e.g., for reasons of data
exchange, in cloud computing environments, etc.) which introduces additional costs and project delays due to
networking bandwidth limits. This consequently motivates the development of data compression algorithms
usable for the implementation of the various storage policies that are applied to the produced intermediate
and final result files.

This thesis is concerned with the compression of one important type of such data files: mapped read data.
Current HTS technologies produce files containing millions of short (100-400bp) reads. An early step of
most HTS data analysis pipelines is to map these reads against a reference genome. Such mapped read files,
often several Gigabytes in size, are then usually subject to various filtering and analysis steps that produce
many intermediate and final result files that need to be analyzed, transferred and archived. The main part
(Chapter 4) of this thesis presents a novel approach for the lossless and lossy compression of such mapped
read data.

This thesis is organized as follows: In Chapter 2 we give a brief introduction in the field of nucleic acid
sequencing in general and into current high-throughput methods in particular. Chapter 3 describes prevalent
data formats for the representation of HTS data and highlights current trends in the compression of these.
Chapter 4 presents NGC, a tool for the lossless and lossy compression of mapped read data and Appendix A
contains associated supplementary data. Finally, Chapter 5 concludes with an outlook on the development of
HTS technologies and possible future work.
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Chapter 2

Nucleic Acid Sequencing

Nucleic acid sequences (e.g., RNA, DNA) are unbranched polymers of nucleotides joined together by phos-
phodiester linkages. They are considered as the primary carriers of genetic information and play central roles
in all living organisms. The primary structure of nucleic acid sequences can be represented by a string of
base characters (A,C,T/U,G) derived by reading the sequence in 5’ to 3’ direction [AJL+02].

The determination of the digital representation of nucleic acid sequences is valuable for numerous theo-
retical and applied fields of biology. A generalized pathway for their determination with today’s HTS tech-
nologies is depicted in Figure 2.1. After some general preparations, so-called sequencing libraries are created.
These are then sequenced in a massively parallel, iterative fashion as described in Section 2.3. Sequencing re-
sults in large numbers of short sequence fragments (“reads”) that are assembled by special software. Finally,
researchers can analyze, annotate, exchange and archive the resulting sequence data sets. In the following,
we exemplary describe the main steps of DNA extraction from cells that were subject to some biological
experiment (cf. [DD87, MDP88, LZL+91, SR01]).

2.1 Nucleic Acid Preparations

Before DNA can be sequenced, it has to be extracted and purified. DNA extraction from tissues, cells or cell
compartments are standard laboratory routines and researchers may resort to a large number of protocols for
this purpose. Here, we exemplary describe the main steps of DNA extraction from cells that were subject to
some biological experiment.

Cell breakage and extraction. First, cells and tissues have to be disrupted in a controlled fashion to expose
the contained DNA. Methods for cell breakage include mechanical (e.g., sonication, bead milling, mechanical
homogenization, etc.) and/or enzymatic methods (e.g., lysozyme or zymolyase digestion).

Next, the DNA has to be separated as good as possible from bound proteins, salts and cell debris as these
would interfere with the sequencing reactions. Bound proteins may be degraded using protease or pepti-
dase enzymes, subsequent protein precipitation can be done for example by salting out with ammonium or
sodium acetate. DNA is then usually separated from this mixture by phenol-chloroform extraction: the cell
debris/DNA solution is mixed with a water-saturated 1:1 mixture of phenol and chloroform. After centrifuga-
tion, the DNA can be found in the interphase between the lower organic (chloroform) phase and the aqueous
phase. The DNA is then precipitated from the solution using ice-cold ethanol or isopropanol as it is insoluble
in these alcohols. The alcohol further removes the salts added in the protein precipitation stage.
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Figure 2.1: Generalized pathway of nucleic acid sequencing experiments. Blue activities take place in the
wet-lab, green ones on special-purpose hardware (e.g., sequencing machinery, GPUs, Hardware RAIDs).
Data interpretation and management needs, in many cases, to take place on regular lab PCs. The boxed center
region of the figure shows the massively parallel sequencing steps of todays high-throughput sequencing
technologies.

Purification. DNA samples for HTS sequencing have to be very pure to avoid background noise in the
sequencing reactions. Therefore, samples are usually purified (sometimes also in intermediate steps of the
above-mentioned extraction procedure) using column or gel purification or membrane filtration before se-
quencing libraries are created. PCR products are usually prepared for DNA sequencing by ultrafiltration or
by cutting the product out of an electrophoresis gel in order to get rid of the PCR by-products (primers, nu-
cleotides, etc.). The required amounts of purified DNA depend on the sequencing method and the length of
the fragment of interest. Usual ranges are between several ng up to a few µg.

2.1.1 Sequencing Library Creation

Purified DNA is a precondition for the creation of so-called sequencing libraries. In general, these preparation
steps include DNA fragmentation and end-modifications (e.g., creation of blunt or overhanging fragment
ends). Usually, the DNA fragments are ligated to some platform-specific adapter sequences that are in turn
required for DNA immobilization. The exact protocols for library creation are available from the respective
vendor Web-sites and are not reproduced here. All current technologies are, however, based on the principle
of “shotgun sequencing” which requires respective library preparation steps.



2.1. Nucleic Acid Preparations 5

Shotgun sequencing. In general terms, the idea of shotgun sequencing is to (i) break the sample DNA into
random fragments, (ii) amplify and sequence these fragments and (iii) concatenate and merge them based on
overlapping sequence regions. By this, the original DNA sequence can be assembled from a large number
of short sequence fragments. These fragments are called reads and overlapping reads are assembled into so-
called sequence contigs (contiguous regions). Adjacent contigs are then concatenated into so-called scaffolds
(aka supercontigs), see Figure 2.2 [GWL+05].

A

Reads

Contigs B C

A C BScaffold

G
AP

G
AP

Figure 2.2: Overlapping reads are merged to contigs. Gaps between contigs can be bridged by paired-end
reads from different contigs to determine the contig sequence on a scaffold. The figure is a modified reprint
from [GWL+05], p. 396.

Modern sequencing technologies use the same principle for the reconstruction of DNA sequences: First,
the DNA is split up randomly into smaller subsequences that act as templates for the sequencing process.
Historically, this was done by treating the DNA either with restriction enzymes or by using physical methods
(e.g., sonication or shearing). Today, enzymatic methods, such as in vitro transposition, are emerging. Here, a
transposase enzyme catalyzes the fragmentation (and at the same time also the insertion of adaptor sequences)
of the DNA template in a single step while older methods require many steps (such as end-modifications, A-
tailing and adaptor ligation) to achieve the same results [CGS09, AMA+10].

In the original shotgun approach, these DNA fragments are then cloned into an expression vector (e.g., a
high-copy-number plasmid) and these vectors are transferred into some host cells (viruses, bacteria). There,
they are copied (cloned) by making use of the cell’s replication machinery which results in a large number
of short DNA fragments that are subsequently sequenced. Modern sequencing technologies are, however,
usually based on PCR amplification and clones are thus created by selecting appropriate primer sequences.
The templates are then “read” (sequenced) by the used sequencing technology which results in a (usually
very large) number of short reads.

Sequence assembly. Finally, the actual DNA sequence is reconstructed from these reads using special
sequence assembly software. There are two different ways to do this: mapping and de-novo assembly.

Mapping means that the reads are mapped against some known reference sequence. This mapping pro-
cess aims at finding the position in the reference sequence where a read fits “best”, which does not mean
that there has to be a 100% accordance. The original sequence can then be determined by considering the
(overlapping) mapped reads. Such a reconstructed sequence may then, for example, be compared with the
reference sequence which reveals genetic differences between them, e.g., single nucleotide polymorphisms
(SNPs) or larger structural variations (SVs).

When no reference sequence is available, however, reads have to be assembled in the way described
above for shotgun sequencing: de-novo assembly software first exploits overlaps of the read sequences to
merge them into longer sequences called contigs. Contigs can then be merged into so-called scaffolds by
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exploiting knowledge about the distance of paired ends (mate pairs). Multiple such assemblies may then, for
example, be used to build a reference sequence for a certain species.

Paired ends. Paired ends refer to the two ends of one DNA fragment. They are separated by usually short
(100-500bp) sequences of unknown DNA. Using sequence information from both ends of a DNA fragment of
which the length is known greatly helps to reason upon structural rearrangements like insertions or deletions
between these reads or to map them across repetitive regions. For example, when two paired ends are known
to be separated by 500bp of DNA, but are mapped to positions that are 1000bp apart, it is likely that an
insertion took place between them. Paired end information is usually an output of sequencer technology, i.e.,
this information is available in the resulting raw data sets. Mate pairs are paired ends that are separated by
longer DNA sequences (due to different creation methods). As they “cover” longer distances when compared
with paired reads, they may help in detecting more structural rearrangements (cf. [SPR+05]).

Coverage. One important parameter of sequence assembly is coverage. The coverage of a particular nu-
cleotide of the reconstructed sequence is the average number of reads that were actually mapped to overlap
with this nucleotide’s position. The coverage of an assembly can thus be calculated with the simple formula
cov = n × l

g where n is the number of reads, l is the average length of these reads and g is the length of
the reference sequence. Obviously, high coverage is desirable as it may be used to compensate for errors in
individual read sequences. Modern sequencing approaches allow high coverages which, however, comes at
the cost of larger data sets resulting in high computational and storage demands.

After discussing how sequencing libraries are prepared and how sequenced reads are used for sequence
assembly, we now continue by describing how these reads are actually created by the various sequencing
technologies.

2.2 Sanger Sequencing

The first modern approach to DNA sequencing was published by Frederick Sanger et al. in 1977 [SNC77] and
“Sanger sequencing” is still the biochemical foundation of the majority of today’s HTS approaches [SJ08]. It
is based on the inhibitory activity of dideoxynucleotide triphosphates (ddNTPs) on DNA polymerase I.

ddNTPs lack a 3’-OH group on their deoxyribose sugar which is where the polymerase would attach a
subsequent nucleotide in a replication process (Figure 2.3). Usually a phosphodiester bond would be created
in a condensation reaction of the 5’ phosphate of an dNTP and the 3’-OH of the previous nucleotide. However,
the lack of this 3’-OH group in ddNTPs inhibits this chain elongation event which is the basis of this so-called
dideoxy chain-termination DNA sequencing method. In the following, we describe the main steps of this
method in more detail.

Double-strand separation and primer annealing. In a first step, the strands of purified double-stranded
DNA (dsDNA) are separated by heating them. This heating process leads to the breakage of hydrogen
bonds and Van-der-Waal (VdW) interactions between the two complementary strands which results in their
separation.

Primer attachment. In the following, short oligonucleotide primers (about 20nt long) are added to this
heated mixture of single-stranded DNA (ssDNA). The mixture is cooled and complimentary DNA strands
reattach. As the short primer sequences are more agile when compared with the two complimentary DNA
strands, it is much more frequent that primers rather than complimentary DNA strands anneal with a DNA
template strand. Thus, this step results in a large number of DNA strands with an attached, short DNA primer.
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Figure 2.3: 2’,3’-dideoxyadenosine triphosphate (ddATP). The red box shows the position of the missing
-OH group. The figure is a modified reprint of http://upload.wikimedia.org/wikipedia/commons/
b/b2/Desoxyadenosintriphosphat_protoniert.svg, in Wikipedia. Retrieved June 24, 2012.

Strand elongation by DNA polymerase. After this, DNA polymerase I as well as dNTPs (dATP, dGTP,
dCTP, dTTP) are added to this mixture. The polymerase sequentially elongates the primed DNA fragments
by incorporating the dNTPs that are complimentary to the respective nucleotide on the template strand as
done during cell replication.

Termination by dideoxynucleotide triphosphates. Now, however, dye-labeled ddNTPs (ddATP, ddGTP,
ddCTP, ddTTP, see Figure 2.3) that lack the above-mentioned 3’-OH groups are added in small concentra-
tions to this mixture. These ddNTP are randomly incorporated into the elongated DNA sequences by the
polymerase enzyme. As explained above, this ultimately stops the elongation of the respective growing
DNA strand. As the concentration of the ddNTPs is low, this incorporation event is rather rare. However,
all possible lengths of the replicated DNA fragments will occur in this reaction mixture for statistical rea-
sons, although in possibly differing concentrations. To increase the yield of this reaction one may repeat the
above-listed phases multiple times in a thermal cycler as known from regular PCR experiments. Note that
an increased reaction yield means also to be able to successfully apply this method with less original DNA
template.

Size separation. Actual sequence determination is then done by sorting the replicated fragments by size
(length) and then “reading” them sequentially. For this, the complimentary strands are again separated by
heating. Size sorting of the replicated strands is done by capillary electrophoresis. In this process, a thin
capillary is filled with gel and the reaction mixture from the previous step is loaded at one end. An electric
field is applied and as DNA molecules are negatively charged due to their phosphate backbone, the DNA
fragments are pulled through the gel. The speed at which the fragments travel through the gel is, however,
determined by their length: the shorter a sequence, the faster it travels as there is less steric hindrance with
the molecules in the gel.

Measurement. When the size-sorted DNA fragments finally leave the capillary, a laser excites the dye of
the terminating ddNTP on each sequence. The excited dye then emits photons of a specific wavelength due
to fluorescence that are recorded by a special sensor (a photocell). Each ddNTP is labeled with a different
dye that results in different wavelength of the actually emitted radiation1.

1λG = 540nm, λA = 570nm, λT = 595nm, λC = 620nm

http://upload.wikimedia.org/wikipedia/commons/b/b2/Desoxyadenosintriphosphat_protoniert.svg
http://upload.wikimedia.org/wikipedia/commons/b/b2/Desoxyadenosintriphosphat_protoniert.svg
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Digital electropherogram. The sensor data is then transmitted to a computer that stores this data in the
form of an electropherogram (Figure 2.4). This electropherogram is the basis of the subsequent base-calling
process that assigns an actual sequence of base characters (A,C,T,G) to the peaks of the measured radiation.

Figure 2.4: Electropherogram. The figure is a modified reprint of http://commons.wikimedia.org/
wiki/File:DNA_sequence.svg, in Wikipedia. Retrieved August 17, 2012.

2.3 High-throughput Sequencing
Current Sanger sequencing techniques were reported to sequence about 6 Mb of DNA per day at costs of
about $500 per Mb [KK10]. However, in the recent past several alternative techniques have been developed
that reach much higher throughput at lower costs. These so-called next generation sequencing techniques
produce much shorter reads (currently approximately 100-500 nt) when compared with the original Sanger
technique which makes the assembly process more difficult. However, they produce a much larger number of
these reads (hundreds of millions) in much shorter time (in less than a day). The higher coverage of these data
sets is then exploited to reconstruct the DNA with appropriate accuracy. Such high-throughput techniques
are generally cheaper and faster than the traditional shotgun sequencing approach. Several methods based on
different biochemical reactions have been developed in the recent past and will be discussed in the following.
All of these methods, however, are based on a spatial separation (compartmentalization) of DNA templates
which enables massive parallelization of the sequencing reactions.

2.3.1 Compartmentalized DNA Amplification
One factor for the high throughput rates of modern sequencing approaches is massive parallelization. This is
basically achieved by compartmentalization of DNA templates into micro compartments (wells, droplets in
a water/oil emulsion, etc.). The sequencing reactions as well as the read-out take place in all these separated
compartments in parallel. The basis for most parallelization approaches is the possibility to create small
polymerase colonies (polonies).

Polonies. Polony-based sequencing technologies perform massive, parallel DNA amplification while
keeping identical fragments spatially separated [SPR+05]. Various polony techniques including bridge PCR
and emulsion PCR were developed.

http://commons.wikimedia.org/wiki/File:DNA_sequence.svg
http://commons.wikimedia.org/wiki/File:DNA_sequence.svg
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In bridge PCR, small DNA fragments are amplified using primers that are covalently linked to a solid
substrate (e.g., beads). The name is derived from the fact that the DNA elongation products actually form
bridges between the bound primers. The primers are covalently bound to a solid substrate and thus immobi-
lized. Consequently, the location of the corresponding amplified DNA templates is determined by the spatial
arrangement of the bound primers [FRW+06, SJ08].

In emulsion PCR (ePCR), the amplified DNA templates are compartmentalized in aqueous droplets in a
water-in-oil emulsion. This compartmentalization has the nice side-effect that it reduces unwanted recom-
bination events that lead to chimeric DNA [WPM+06]2. The copied templates can be bound to magnetic
beads in processes similar to the BEAMing method described by Dressman et al. [DYT+03]. In BEAMing,
magnetic beads that are covalently coated with streptavidin are bound to biotinylated PCR primers. Beads
and PCR reagents are mixed in a water-in-oil emulsion in such a proportion that an aqueous compartment
contains at most one bead and DNA template on average. This microemulsion is then temperature-cycled
like in any normal PCR resulting in a huge number of DNA copies that are bound to the respective beads.
The beads can then be separated easily from the emulsion by using a magnet. Other polony techniques not
discussed in detail here include in situ polonies and picotiter PCR.

2.3.2 Reversible Terminator Technologies

Reversible terminator technologies work very similar to the original Sanger method as they also rely on
interrupted polymerase activity due to terminator nucleotide analogs. However, in this method, the nucleotide
derivates are equipped with a cleavable chemical group. This group terminates the chain elongation process
and contains the fluorescent label used for detecting the respective base incorporation. This group is removed
chemically in a subsequent step and chain elongation by DNA polymerase continues [BKJ06, TRFT08] which
is not possible in the Sanger method.

Illumina/Solexa Sequencing

The popular Illumina sequencing technologies3 makes use of this reversible terminator technology. The
sequence amplification is done by bridge PCR and the resulting amplified DNA is arranged immobilized in
an array. During the sequencing step, fluorescently labeled reversible terminators for all four possible bases
are used in parallel. These terminators compete for binding to the template. After the proper terminators
are bound, their fluorescent labels are read out and the terminator groups are removed chemically. Then, the
process begins again with a now elongated template [FRW+06, MBG+10]. This is the iterative step depicted
in Figure 2.1.

2.3.3 Pyrosequencing

Another alternative to the classical Sanger method is pyrosequencing. Pyrosequencing differs from the Sanger
method as it does not rely on a chain termination step but rather on the detection of pyrophosphate release
events that occur when nucleotides are incorporated in the growing DNA fragment by polymerase. In this
technique, the template DNA is effectively immobilized and the dNTPs (dATPαS, dGTP, dCTP, dTTP) are
added and removed (washed out) sequentially. The incorporation of a nucleotide into the growing DNA
chain (effectively a condensation reaction) releases pyrophosphate (PPi). This pyrophosphate reacts with a
bioluminescent enzyme (e.g., luciferase) which emits a detectable electromagnetic radiation (light) [Ron01,
KK10].

2Recombinant DNA created from multiple species is called “chimeric DNA”.
3http://www.illumina.com/
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Luciferase reaction. The light emitted at nucleotide incorporation time is produced by a simple biochem-
ical pathway involving the released pyrophosphate (PPi), adenosine 5’ phosphosulfate (APS), Oxygen and
Luciferin as well as the enzymes ATP sulfurylase and luciferase (see pathway 2.3.1).

Pathway 2.3.1 (Pyrosequencing principle, slightly adapted reprint from [Ron01])

(DNA)n + dNT P
DNApolymerase
−−−−−−−−−−−→ (DNA)n+1 + PPi (2.1)

PPi + APS
AT Psul f urylase
−−−−−−−−−−−→ AT P + S O2−

4 (2.2)

AT P + Luci f erin + O2
Luci f erase
−−−−−−−−→

Mg2+
AMP + PPi + Oxyluci f erin + CO2 + Light (2.3)

The oxidation of luciferin effectively leads to the emission of detectable amounts of light. After each step
the respective dNTPs have to be removed (washed) from the reaction compartments (e.g., microtiter wells).
As incomplete removal of the nucleotides leads to false sequencing signals (in particular to phasing problems
as described below), strategies for improving this step were developed. An enzymatic method is the addition
of apyrase, a nucleotide-degrading enzyme from potato. Apyrase quickly degrades unincorporated dNTPs to
the respective dNDPs. However, there is still enough time for the above described luciferase reaction to take
place. Thus, shortly after a nucleotide incorporation event all unincorporated dNTPs are degraded and the
next type of dNTP can be added.

Deoxy-adenosine-5’-(α-thio)-triphosphate (dATPαS) is used instead of the usual dATP as the latter is
a substrate of luciferase and therefore leads to false signals. A further improvement of the method was
introduced by the addition of single strand binding proteins (SSB) to the reaction system that effectively
cover and stabilize the template DNA [Ron01].

454 Sequencing

The pyrosequencing technique was used by 454 Life Sciences4 for parallelized sequence determination [KK10].
In 454 sequencing5, a large plate containing millions of wells (reaction compartments) is used for sequencing.
Each well contains exactly one single bead (due to size constraints) and each bead is associated with single
stranded template DNA. This is done by fusing the template with a short sequence that is complementary
to a short oligonucleotide that is bound to the bead. The DNA is covered by single strand binding proteins
and the beads are then incubated with a mixture of DNA polymerase, ATP sulfurylase and luciferase. dNTPs
are added in each sequencing iteration and are washed out/degraded by apyrase shortly after. Before this,
however, matching dNTPs are incorporated in the growing nucleotide chain resulting in light production by
luciferin. The light produced by each well is then recorded by a charge-coupled device (CCD) detector.

2.3.4 Sequencing by Ligation

The sequencing approaches discussed so far are all based on the extension of a DNA template and the accurate
detection of nucleotide incorporation events, i.e., on the function of the DNA polymerase enzyme. Such
sequencing approaches are therefore referred to as sequencing by synthesis [TRFT08]. In contrast to this,
sequencing by ligation refers to sequencing approaches that are based on DNA ligase events. DNA ligase is
an enzyme capable of building a covalent phosphodiester bridge between a free 5’ phosphoryl group and a
free 3’ hydroxyl group of two nucleotides in an ATP dependent manner.

4454 Life Sciences was later bought by Roche Diagnostics.
5http://my454.com/

http://my454.com/


2.3. High-throughput Sequencing 11

SOLiD

The SOLiD sequencing platform6 is a sequencing by ligation approach that makes use of ePCR for DNA
compartmentalization and parallelization. First, a sequencing library is constructed and immobilized using
rolling circle amplification7. Then, a sequencing primer is ligated to the DNA molecules from this library
and a mixture of 8-mer8 probes that carry four distinct fluorescent labels is added. These labels code for the
two 3’-most nucleotides of a 8-mer and the various 8-mers then compete for ligation with the primer. The
one that binds with the greatest affinity is ligated by DNA ligase and all others are washed out. Then the
bound fluorescent label is read out and the bound octamer is enzymatically cleaved by a restriction enzyme,
removing the trailing three bases and the label itself (i.e., a five-nucleotide long fragment remains attached
to the template). This process determines what nucleotides are bound to the positions 1 and 2 of the DNA
template9. Note, that the SOLiD method actually uses only four distinct labels for encoding the two 3’-most
nucleotides. These labels may distinguish only between four different sets of dinucleotides. This means
that the dinucleotides AA and TT, for example, would be encoded by the same label. This is, however, not
a problem as later in the procedure the surrounding pairs are also read, as explained below, and a unique
function for transforming the sequence of label signals into an actual DNA sequence exists. After this first
step another round is started and the positions 6 and 7 are read (the prior positions are “blocked” by the
mentioned 5-mer), etc. After several rounds, the strands are separated again and a new round with a new
primer is started. This new primer is shifted by one nucleotide and thus allows different positions (2 and 3, 7
and 8, etc.) to be read by the method. This procedure is repeated until finally all positions are read out.

2.3.5 Single Molecule Sequencing

All above-mentioned HTS technologies are based on DNA polonies and thus on PCR-replicated ensembles
of DNA templates. The large number of copied templates has benefits: the loss of single molecules or the
wrong incorporation of a nucleotide in one of these copies is compensated by the others. However, on the
downside, the template copying process itself introduces errors too that can be avoided when sequencing is
done using a single DNA molecule as a template.

HeliScope

Helicos’ Heliscope technology10 is such a single molecule sequencing approach. It is based on iterative
detection of the fluorescence signals emitted from single DNA templates that are elongated in a sequencing by
synthesis approach. The difference is that by using a highly sensitive detection system, no clonal amplification
of the sequence template is required. By this, errors introduced in library building or amplification are
avoided. However, current error rates of this technique are still higher than for PCR-based systems, mainly
due to weak fluorescence signals. Currently, HeliScope reads are only around 35 nucleotides long [MBG+10].

6http://www.appliedbiosystems.com/
7Rolling circle amplification (RCA) is a replication system found in bacteriophages, e.g., in the phage φ29. A polymerase (e.g., φ29

DNA polymerase) replicates a circular DNA template molecule with a short attached primer. This primer is displaced by the polymerase
after the first replication “round” and replication continues. Finally, RCA results in a long concatemer of template copies. RCA is a
simple and robust way to amplify DNA sequences without thermal cycling as required, e.g., for PCR [FX95, HSMS99, DNGL01].

8The original sequence by ligation approach was published in [SPR+05] using 9-mers instead of 8-mers.
9Note, that different designs of the 8-mers would report a different position in this first step, cf. [RK08] where the method is described

with positions 4 and 5.
10http://www.helicosbio.com/

http://www.appliedbiosystems.com/
http://www.helicosbio.com/
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2.3.6 Other Emerging Approaches
Ion torrent

Ion torrent’s11 sequencing approach (aka pH sequencing) is quite different from the previously discussed ones.
It is in principle based on the release of a hydrogen ion (H+) that occurs when DNA polymerase includes a
nucleotide into the growing DNA sequence (cf. Pathway 2.3.2). In Ion torrent’s technology, DNA templates
are first compartmentalized into a large number of microtiter wells. A proper ratio between DNA molecules,
polymerases and wells ensures that each well contains one or zero DNA templates and DNA polymerases on
average. These wells are backed by a ion-sensitive layer and a proprietary H+ sensor which is basically a
very small pH-meter. Whenever a nucleotide is included into the growing sequence, the pH in the respective
wells decreases which is recognized by the H+ sensor. Now the four different bases are added one after the
other in an iterative fashion and the respective base character is added to the called DNA sequences of the
individual wells if their H+ sensor detected a base incorporation. Note that the pH-meter converts chemical
into digital information and is thus the actual base-caller of this technology [Rus11].

Pathway 2.3.2 (Nucleotide incorporation)

(DNA)n + dNT P
polymerase
−−−−−−−−→ (DNA)n+1 + P2O4−

7 + H+ (2.4)

SMRT

Pacific Bioscience12 developed a single molecule real-time sequencing approach (SMRT) that is based on
a chip with thousands of nanoscale pores that contain an immobilized DNA polymerase at their bottom.
Labeled nucleotides are added that diffuse in and out of the pore very fast. A laser is used to excite the
labels of the nucleotides when they are at the bottom of the pore (near the polymerase). Eventually, the
proper nucleotide is incorporated into the growing sequence by the polymerase which retains this nucleotide
for milliseconds in this particular position. The difference in how long the particular nucleotides reside in a
particular region of the nanopore results in different signal intensities for the various nucleotides and in high
signal-to-noise ratios. This technique uses special, proprietary nucleotides that are labeled at the phosphate
chain rather than at the base to avoid polymerase stalling. The labels are actually removed by polymerase at
incorporation time when the phosphodiester bond is created [EFG+09]. One particular interesting application
of SMRT is that the raw fluorescence signals created by this technique allow it to reason upon the methylation
states of the nucleotides in the used DNA template (as these result in different polymerase kinetics) which
opens new possibilities in epigenome research [FWL+10, DHH10, ZJ10]

Nanopore Sequencing

The Oxford nanopore technology13 is based on protein nanopores inserted into an artificial lipid bilayer.
Molecules passing through a pore result in characteristic, detectable changes of an electric current that flows
through these pores. These current fluctuations are detected by a patch-clamp amplifier.

Two currently developed sequencing approaches are based on this effect. In exonuclease sequencing, a
DNA exonuclease is attached to the pore. This enzyme cleaves nucleotides from a given DNA sequence
one at a time. The cleaved nucleotides then pass through the pore and their sequence can be detected from
the changes in the current. In strand sequencing, DNA polymerase is attached to the pore. The template
strand is pulled base-by-base through the nanopore by the polymerase and thus produces the sequence signal.
Nanopore sequencing can also be used to identify epigenetic DNA modifications [CWJ+09, WSH+10].

11http://www.iontorrent.com/
12http://pacificbiosciences.com/
13http://www.nanoporetech.com/

http://www.iontorrent.com/
http://pacificbiosciences.com/
http://www.nanoporetech.com/
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Graphene-based Approaches

Recently, graphene based DNA sequencing techniques were proposed: In principle, DNA is sequentially
passed through a voltage-biased tunnel gap inside a solid-state nanopore and the differing electronic properties
of the nucleotides would affect an electric current flowing through that pore (quite similar to the Oxford
nanopore technique). It was proposed to use graphene, a single-atom thick carbon material, for building
electrodes and membranes for such a technology due to the special characteristics of this material (conducting
properties, thickness, robustness, etc.) [Pos10].

2.4 Error Sources in Current Sequencing Methods

None of the described sequencing approaches is error-free, i.e., the resulting read sequences do not always
correspond perfectly with the chemical reality. As the discussed HTS techniques show higher error rates than
the classical Sanger method, this latter method still acts as a “gold standard” for sequencing experiments.
The rate of errors is an important issue if the detection of rare variations between an analyzed genome and
some reference is the goal of a sequencing experiment [DHH10].

One measure for errors done in sequencing is the average error rate, that is usually further split up into
the error rate for substitutions and the rate for insertion or deletion (InDel) events. The various sequencing
platforms vary not only in their error probabilities but also in the percentages of what kind of errors (sub-
stitution, insertion, deletion) occur. 454 sequencing shows, e.g., mostly InDel error while substitutions are
rather rare. Vice versa does the Illumnia technology show more substitution errors than InDels errors in the
produced reads [MBG+10].

In general, however, the error probability for a particular base in a read increases with its position in this
read. In other words, the first bases of a read are more reliable than the later ones. Reasons for this are
manifold (e.g., decreasing enzyme efficiency, phasing, etc.) and vary for the particular technologies [KK10].
In the following we discuss some general error sources resulting in imperfect reads.

2.4.1 Long Homopolymer Subsequences

One “hotspot” of errors in all sequencing by synthesis techniques are long homopolymer regions, i.e., genomic
stretches of the same nucleotide. The main problem for methods based on DNA polymerase is the known
polymerase slippage at such regions. This problem occurs also on short VNTR (variable number tandem
repeat) regions [KK10]. A problem of the 454 technology, for example, is that multiple incorporations of the
same nucleotide may occur per “round”, resulting in artificially elongated homopolymer regions [DHH10,
LMD+12].

2.4.2 Phasing – Loss of Synchronization

Phasing describes the problem that some individuals of a particular template ensemble get ahead or fall
behind the other ones during the sequencing reactions and are thus “out of phase” with the others (“loss of
synchronization”).

This may happen, for example, when nucleotides are not completely washed out between two pyrose-
quencing iterations (cycles). When this occurs, some templates may already bind one of the “old” nucleotides
before the next cycle begins and would thus be one base “ahead” of the others. It may, however, also occur
that some templates do not incorporate a particular base and thus fall one base “behind” the others. In re-
versible terminator technologies, there is also the problem that bases with non-functional terminators are
incorporated in some templates which results in the incorporation of another base in the same cycle for these
templates [KK10].
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The major problem of unsynchronized, out-of-phase strands is that phasing is a cumulative effect. This
means that such out-of-sync polonies contribute increasing levels of noise to the overall signal over time.
Phasing therefore contributes to the decreasing reliability of bases occurring “later” in a read. The errors
stemming from loss of synchronization can be partially compensated computationally when the introduced
error rates are known and reproducible. In [MEA+05], the authors report that they derived error rates by
sequencing synthetically created test sequences and used these data to automatically correct the raw signals.

2.4.3 Base Calling
Base calling is the actual process that converts the raw signals of a sequencing instrument into strings of
base characters (digital reads). Usually, this is done by special algorithms that analyze the raw read-outs
(e.g., images taken with a CCD camera). In other terms, the central base calling step is the act of mapping
a sequence of signals (e.g., fluorescence intensities in an electropherogram derived from an image) to a
sequence of base characters. This mapping is imperfect and introduces further errors. A base-calling process
usually calculates two values per sequenced base:

1. A IUPAC14 base character (which may include the N character which stands for “any base”).

2. A quality value that expresses how confident the algorithm is about the called base.

The most wide-spread base-calling algorithm is the Phred algorithm [EHWG98] that was employed ex-
tensively in the Human Genome Project. Phred reads an electropherogram (Figure 2.4) and calls the bases
by analyzing its peaks. Additionally, it assigns a quality score (the “Phred-score”) to each base which is
logarithmically related to the probability p of a wrong base-call: q = −10× log10 p. This means, for example,
that a Phred score of 20 corresponds to a base-calling accuracy of 99% respectively to the probability that 1
out of 100 base calls at this position would be wrong15. In real data sets, Phred scores range up to a value of
about 60 which stands for nearly 100% accurate base call. A wide-spread measure for a read sequence called
with Phred, however, is its Phred20 (aka Q20) score, which corresponds to the number of base calls with a
Phred-score ≥ 20 [G+04].

Phred scores are calculated based on various signal features, such as peak shape and resolution. The
extracted feature values are then used to retrieve corresponding error probabilities from technology-dependent
lookup tables. These tables were created by analyzing traces of known DNA sequences and counting the
base-calling errors. Although Phred is quite accurate at predicting error rates (see [Ric98]), other approaches
for base-calling were developed over time. The base-calling problem was for example tackled using Hidden
Markov Models (HMMs) and results were comparable with Phred [BEDE04]. In [LWA07], the authors report
a significant performance improvement when compared with this and to the Phred algorithms. Yet another
approach, ABI’s KB base-caller, reports longer Q20 stable reads (i.e., reads where each base was called with
a Phred-score ≥ 20) when compared with Phred [G+04]. A general problem for all base calling approaches
is obviously the above mentioned SNR decrease. Consequently, all modern sequencing technologies include
specialized software algorithms to increase the SNR based on technology-specific characteristics (e.g., to
compensate for the estimated “crosstalk” between wells that incorporate/do not incorporate the currently
deployed nucleotide in the 454 method).

2.4.4 Decreasing Signal to Noise Ratios
Several other technology dependent reasons lead to decay of the read-out signal. A loss in signal fluorescence
intensity, for example, results in increased base-calling errors in the respective technologies. This is, e.g., the
main source of errors in the Helios single molecule sequencing approach16. Further, as explained above, the

14http://www.iupac.org/
15q = −10 × log10(0.01) = 20.
16Note that the fluorescence signal intensity is linearly dependent on the number of incorporated bases.

http://www.iupac.org/
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increasing loss of synchronization in polony-based sequencing methods leads to increasingly polluted read-
out signals which makes the base-calling process more error prone. Signal decay and phasing problems are
the main reasons for decreasing signal to noise ratios (SNR) in the created sequencing signals over time.

2.5 Summary
Although differing in their biochemistry, all described HTS approaches are similar in their workflows. Here,
we briefly repeat the general steps as already reported analogously by Shendure and Ji in [SJ08]:

1. Sequencing library preparation by random fragmentation followed by in vitro ligation with common
adaptor sequences.

2. Parallel fragment cloning via in situ polonies, ePCR or bridge PCR which results in a spatial separation
of “amplicons”.

3. Sequencing by altering cycles of enzyme-driven (polymerase, ligase) biochemistry.

4. Read-out (e.g., by imaging technologies or ion-sensitive layers) that acquires signals from a whole
array of amplicons in parallel.

Current HTS technologies, however, still suffer from higher error rates when compared with Sanger
sequencing. This means that the generated (short) reads contain certain amounts of bases that differ from the
chemical reality which leads to subsequent issues, e.g., when reconstructing the whole nucleic acid sequence
from them or when determining genomic variants. Quality values, associated with each read base by base-
calling software, provide some measure for how “reliable” a base might be. These quality values can be
used for the computational compensation of certain errors (e.g., phasing problems) while others (such as
polymerase slippage) cannot be easily detected. It is one goal of bioinformatics research to compensate for
such errors by exploiting, e.g., the large number of available reads produced by HTS technologies.

In a summary, HTS technologies have the great advantage of massive parallelism at reduced reaction vol-
umes when compared with the classical Sanger technique. This results in faster sequencing at reduced costs
but comes currently at the costs of shorter read length and less accurate base calls [SJ08, KK10, LMD+12].
It is thus common for HTS data that the determined reads differ from the actual nucleic acid sequence they
originate from (due to sequencing errors) and from some reference sequence (such as the human genome)
they are compared with (due to natural variation occurring in any individual17).

17It is, for example, estimated that the DNA sequences of two human individuals vary in 0.1% of the positions on average[Int05].





Chapter 3

High-throughput Sequencing Data

3.1 Representation of Raw Reads: FASTQ
There are several data formats that store read data (and its associated meta data) created by HTS technologies.
The currently most wide-spread data format for such “raw” reads is arguably FASTQ [CFG+10], an extension
of the well-known FASTA format (see Figure 3.1)1. FASTQ files are often huge files (tens of Gigabytes in
size) storing sets of short digital reads and their associated per-base quality values.

@HWI-SN815_0060:5:1101:10000:102873/1
CCTTGTTAAAAACCAGATCACAAATCTGGGGCTCTTGGTCCCATTGGAGAAGGAAGGAAGAGCCTCAAAATAAGTGTGCACCCATGCACATATTCAGGAA
+
CCCFFFFFHHHHHJJJJJJJJJJJJJJJJJJJJJJJJJHHJJIJGIJJGJJJJHGIJIJJJJJJJHHHHHFFFFCBDEEEEEDDDDDDDDDDEEFEDDDD
@HWI-SN815_0060:5:1101:10000:114680/1
TCCTGTCACCGACGCTTCCTCAGGGCCCACACGTCACGCCACCCGTCGGCCTGTCACCGACGCTTCCTCAGTCCCCACAGGCCATGCCACCCCTCTTCCG
+
>;=;AA7@C<+00)27<?BB=B?#############################################################################

Figure 3.1: A FASTQ file storing two reads (one drawn in black color, the other one in blue color). Each read
is represented by four lines: (i) a sequence identifier, (ii) the raw sequence characters, (iii) a plus character
(and an optional sequence name), (iv) a string encoding the quality scores of each base character. Quality
values are represented by ASCII characters whose character code was calculated by adding a certain offset to
the respective quality value Phred score (cf. Section 2.4.3). This is done to map the quality values to the set
of visible ASCII characters (which start at character code 32). Note that there exist multiple different FASTQ
variants using different offsets (e.g., 33 or 64) [CFG+10, Ill11].

3.2 Mapping and Alignment
Assembly of raw reads in order to reconstruct the original nucleotide sequences is done by special software
algorithms as briefly described in Section 2.1.1. In the following, we assume that a reference sequence for
mapping the reads against is always available and do not discuss de-novo assembly any further.

Mapping algorithms try to find the position(s) on the reference sequence where a particular read “origi-
nated” from. Usually, such algorithms start by determining a number of candidate regions (e.g., by performing

1An alternative data format is, for example, Illumina’s QSEQ format [Ill11]. Today, however, unmapped reads are increasingly stored
also in SAM/BAM files as described below.

17
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a k-mer search) and then align the reads to the respective subsequence of the reference sequence which leads
to some alignment score. Here, some algorithms support gaps in these alignments (i.e., they support InDels in
the reads) while others do not [SMZ+12]. The genomic position(s) of the highest scoring alignment(s) is/are
then usually reported as a read’s mapping position(s). The output of a mapping process is thus basically a
set of genomic positions along with some additional meta data, such as a measure about how confident an
algorithm is about a mapping position (a mapping quality value).

Mapping reads against a reference sequence constitutes another possible source of errors. The main
reason for this is that alignments are usually not unambiguous, i.e., there are often multiple positions on the
reference a particular read can be mapped to. For example, reads stemming from a homopolymer or from a
repeated or copied subsequence may be mapped to several positions in the resulting sequence. Knowledge
about what reads constitute paired ends (and should thus be mapped at a particular, known distance) helps
in the disambiguation of possible mapping sites. Some mapping algorithms additionally exploit knowledge
about certain characteristics of a respective sequencing technology the read data originates from. Particularly
helpful in this regard are known average error rates and error types (substitutions vs. InDels) for each read
position.

Mapping a very large number of short reads is a complex and time-consuming task and several specialized
algorithms/platforms were and are constantly developed to solve this problem efficiently an accurately. Refer
to [SMZ+12, LH10, MBG+10] for recent surveys of current algorithmic approaches and tools for sequence
alignment.

3.3 Representation of Mapped Reads: SAM/BAM
The result of a mapping process is a set of mapped reads (i.e., sequences and quality values, their mapping
positions and additional meta data) that is stored in a particular file format for further analysis. The current de-
facto standard for storing mapped read alignments is the Sequence Alignment/Map format (SAM) [LHW+09]2.
SAM is a text file format where each entry (a SAM record) stores eleven mandatory fields (storing, e.g., a
read’s names, its quality-values, its mapping quality, etc.), see Figure 3.2.

HWI-ST815:40:81KKTABXX:4:2102:1398:146819       
0 3 57913613 37 57M1I26M1D9M1I7M * 0 0
TGTTATGAAACCACTGAGCTATTGGGAACAAGACTTAGAGACAACTATTTGCGTGGATTTTTTTTTTTTTTAA
GGAAAAATACGTTGGAAAATAAAACTGT
CCCFFFFFHHHHDIIJIJJJIHHIJJIIJIIIGIIIJJIJEGHEHIGIJJHIDDFG=GEGCEEFDBDBD####
############################ 
XT:A:U  NM:i:3  X0:i:1  X1:i:0  XM:i:4  XO:i:1  XG:i:1  MD:Z:83^T16

Figure 3.2: A SAM record representing a read that maps to position 57913613 on chromosome 3 of the re-
spective reference sequence. The 11 mandatory SAM fields are drawn in different colors to increase the read-
ability of the figure. The optional tags are drawn in grey color with italic letters, for details refer to [The11].

Each SAM record contains a CIGAR string (Compact Idiosyncratic Gapped Alignment Report, as known
from pairwise sequence alignment) that describes its differences from the respective subsequence on the
mapping reference sequence. The CIGAR operations supported by SAM include match/mismatch, insert and

2It has to be noted that several alternative formats, such as CALF [Gre08] or the Illumina Export format, were proposed for the
representation of mapped read data. However, most bioinformatics tools concerned with mapped or unmapped reads nowadays support
the SAM/BAM format.
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delete operations. In Figure 3.2, the CIGAR string “57M1I26M1D9M1I7M” represents that the respective
read mapped against the reference genome with two non-consecutive 1bp insertions and one 1bp deletion
between them3.

SAM CIGAR strings furthermore support two kinds of so-called clipping operations: soft- and hard-
clipping. Clipping means that bases at the beginning or at the end of a read are removed, usually due to their
low quality-values (which is, e.g., common for bases at the ends of reads as discussed in Chapter 2). This
also excludes them from the actual alignment process where such “unreliable” stretches of base characters
could introduce major errors. The actual base characters of soft-clipped bases are not really removed from
the read sequences but are still contained in the SAM file and can thus be used by subsequent algorithms.
A respective CIGAR entry describes which part of the read was used in the alignment and which parts were
“clipped off”. Hard-clipped bases, however, are neither included in the alignment process nor in the SAM file
itself. The respective CIGAR entry tells subsequent algorithms basically that there were some bases in the
raw read data that were clipped-off (e.g., before or during the alignment process). Their sequence, however,
is not reproducible.

SAM additionally supports optional tags (see the lowermost line in Figure 3.2) that may store custom
read-specific meta data. Such tags frequently store meta data calculated during the mapping process (such as
the number of perfect hits of a read) or by other downstream operations (such as the per-base qualities before
some recalibration process). Refer to the SAM specification for more details and CIGAR examples that also
include padded and clipped bases [The11]. SAM is easily parsable and software libraries in various program-
ming languages exist for reading/writing this format. One problem of this text-based format is, however, that
the resulting file sizes are usually very large (tens of GBytes). For this reason, a binary, compressed version
of SAM was developed. The binary SAM (BAM) format consists basically of concatenated BGZF (Blocked
GNU Zip Format) blocks of SAM records. These blocks, each one basically a standard gzip archive, are
limited to 64 kBytes and are indexed by a hierarchical index structure that allows faster random access to
individual reads/sections in the alignment.

BAM files are, however, still quite large as discussed in the following because the used compression
approach does not pay respect to special characteristics of the data but merely applies a general-purpose
compression method (gzip) to them. This motivated the development of specialized compression algorithms
for these data as discussed in the following and in the main Chapter 4 of this thesis.

3.4 Compression of HTS Data
The enormous size of the data associated with HTS experiments motivates the development of specialized
compression algorithms for these data. These algorithms can broadly be classified into three groups:

1. Algorithms that compress any biological sequence data (e.g., standalone DNA sequences), such as Gen-
Compress [CKL00], DNACompress [CLMT02], DNAPack [BLF05] or XM [CDAM07], see [GSU09]
for a comprehensive review.

2. Algorithms specialized for compressing unmapped HTS data (mainly stored in FASTQ format), such
as SOLiDzipper [JPAH11], G-SQZ [TLS10], DSRC [DG11] or the algorithms proposed in [BBN+11,
WAA11].

3. Algorithms for compressing whole sets of mapped HTS sequence data as described in [DRC+10,
HYFLCB11, KSK+11, STZH11].

This thesis is concerned with the latter group and in the following we briefly highlight two current trends
in mapped HTS data compression: reference-based compression of the actual sequence data and value trans-
formation for the compression of per-base quality values.

357M means that there were 57 bases that matched or mismatched the reference, 1I means a 1bp insertion, 26M means again 26
matches/mismatches, 1D means a 1bp deletion, etc.
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3.4.1 Reference-based Compression
The idea of reference-based compression is to exploit that reads usually differ only slightly from the respective
subsequence on the reference sequence they were mapped to. In such a case it is more efficient to store
the (few) differences between read and reference than to store the actual read sequence itself and several
tools have exploited this [BWB09, CLLX09, DRC+10, WZ11, HYFLCB11]. Drawbacks of reference-based
compression are that the reference sequence has to be available at decompression time (however, this is
usually the case) and that it is not applicable to unmapped reads (cf. [BBN+11]).

3.4.2 Quality-value Transformations
While the actual read sequences can be effectively compressed with the mentioned approaches, this is much
harder for the per-base quality values (q-values) that accompany them. A main reason for this is that q-values
have a much wider range of possible values when compared with sequence data. There are, e.g., 94 possible
q-values in Sanger format (0-93, see [CFG+10]) while sequence data is usually composed from only five
IUPAC characters (A,C,T,G,N). Another problem is that q-values show quasi-random distributions in real-
world data and the resulting high entropies of these data makes them hard to compress. The most popular
strategy to overcome these issues is to transform q-values (either losslessly or lossy) in order to improve
subsequent compression with a general-purpose compression algorithm, such as gzip4, lzma5 or bzip26.

Lossless transformations. A lossless q-value transformation strategy is, for example, to store not the actual
q-values themselves but rather their difference to the respective preceding q-value [KSK+11]. While this does
not reduce the range of possible values (in fact, it even increases it by one), it often leads to longer consec-
utive stretches of close or even equal values which is subsequently exploited by the mentioned compression
algorithms. Several alternative transformation methods were proposed, e.g., in [WAA11].

Lossy transformations. A lossy value transformation strategy is to really reduce the range of possible
q-values by quantization. Quantization reduces the number of possible q-values by mapping subsets of val-
ues to one single value. Again, this is exploited by subsequent data compression algorithms [HYFLCB11,
KSK+11]. Quantization is an irreversible step which makes this strategy lossy.

In the following main part of this thesis, we present a novel compression approach for mapped HTS data sets
that makes use of both of these general strategies.

4http://www.gzip.org/
5http://www.7-zip.org/sdk.html
6http://bzip.org/

http://www.gzip.org/
http://www.7-zip.org/sdk.html
http://bzip.org/


Chapter 4

NGC: Lossless and Lossy Compression
of Aligned High-throughput Sequencing
Data

In this chapter we present NGC, a tool for the compression of mapped short read data stored in the wide-
spread SAM/BAM format. NGC enables lossless and lossy compression and introduces two novel ideas:
First, we present a way to reduce the number of required code words by exploiting common features of reads
mapped to the same genomic positions; second, we present a highly configurable way for the quantization
of per-base quality values which takes their influence on downstream analyses into account. NGC, evaluated
with several real-world data sets, saves 33-66% of disc space using lossless and up to 98% disc space using
lossy compression. By applying two popular variant and genotype prediction tools to the decompressed data,
we could show that the lossy compression modes preserve over 99% of all called variants while outperforming
comparable methods.

Note that this chapter is a slightly extended version of [PvH12].

4.1 Introduction
Current high-throughput sequencing (HTS) technologies enable the fast, accurate and affordable sequencing
of long stretches of DNA, which adds genome scientific approaches, such as RNA-sequencing (RNA-seq)
or whole genome sequencing (WGS) to the set of standard laboratory methods. These technologies result
in huge amounts of digital data that have to be processed, transferred, stored and archived, which includes
“raw” sequencing data and an even larger number of intermediate and final result files that are produced by
pipelines of data analysis and manipulation tools. Such files store HTS data in different (pre-) processing
states and associated metadata describing these data, such as read names or mapping quality values, using
various file formats, e.g., unmapped reads stored in FASTQ format, mapped reads stored in SAM/BAM or
called variations stored in the VCF format.

In general, all such files are subject to differing data handling and storage policies that define, e.g., where
and how long these files are stored, how fast they have to be accessible or how secure this access has to
be. The emerging field of personal genomic sequencing, for example, will result in large amounts of data
with high security demands, but not necessarily fast access times. Note that such policies are influenced
not only by practical considerations (such as available storage space) but also, e.g., by legal constraints and
privacy issues. It is the costs associated with processing, storage and transmission of these data, rather than
the generation of sequencing data itself, that constitute a major challenge to HTS experiments today (cf.
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[PPG11, Kah11, KSLI12]). This motivates the development of data compression algorithms specialized for
the discussed file formats, and recent research in this field may be divided into three major, but overlap-
ping, categories: (i) compression of genomic sequences as generally produced by re-sequencing experiments
[CDAM07, WZ11, PPG11], (ii) compression of unmapped short reads [TLS10, DG11, BBN+11] and (iii)
compression of aligned read data [DRC+10, HYFLCB11, KSK+11, STZH11]. This work falls in the latter
category, namely by compression of aligned short reads stored in the popular SAM text file format [LHW+09].
This data format stores not only short sequences of DNA characters (read bases) but also a lot of associated
metadata such as per-base quality values (q-values), read names or mapping positions. Along with this easily
processable text format goes a compressed binary variant (BAM) that basically comprises a blocked, gzipped
version of SAM. Our tool, NGC, allows a more efficient compression of the data stored in SAM/BAM files by
handling each contained data stream individually, using value transformations and compression algorithms
that pay attention to the respective value distributions. An overview of our solution is depicted in Figure 4.1.
In this chapter, we mainly discuss the used compression approaches for two of these data streams, namely
read bases and q-values and briefly sketch our strategies for encoding read names and alignment positions.
Our proposed method for the (lossless) compression of read bases builds on the wide-spread idea to store
such data relative to some reference sequence [BWB09, CLLX09, DRC+10, WZ11, HYFLCB11]. However,
we propose to traverse the bases in an alignment of reads in a per-column way that exploits common features
of multiple mapped reads rather than handling each read individually as done in previous research. This leads
ultimately to a reduction of required code words and, in consequence, to a more efficient data compression.
We measured the achieved compression rates (the required bits per sample) and overall compression ratios
(the ratio between compressed and uncompressed size. The smaller this ratio, the better) and compared them
with related tools. Regarding the compression of q-values, we contribute a detailed discussion of several pos-
sibilities for their lossy compression and analyse the impact of the associated information-loss on subsequent
data analysis pipelines. We propose a novel way for lossy q-value compression that distinguishes between
different categories of q-values and is able to preserve the original qualities of bases in selected columns,
that are the main targets of variant-calling and genotype prediction algorithms. We have evaluated our lossy
per-base quality value compression using variant calling pipelines composed of state-of-the-art analysis tools
and found that our proposed methods may preserve 99-100% of all called variants on average while outper-
forming comparable methods. Our evaluation included Homo sapiens, Mus musculus, Escherichia coli and
Arabidopsis thaliana data from exome, whole genome, ChIP and RNA sequencing experiments.

4.2 Materials and Methods

4.2.1 Datasets and software availability

The used evaluation datasets are deposited in the Sequence Read Archive [KSLI12] under study number-
s/run accession numbers: ChIP-Seq (mouse): SRX014899 / SRR032209, Reseq/hm (human): SRX000376
/ SRR001471, RNA-Seq (E. coli): ERX007969 / ERR019653, Reseq (E. coli, paired end): ERX008638 /

ERR022075, Reseq (E. coli): SRX118029 / SRR402891, Reseq (A. thaliana): SRX011868 / SRR029316.
The human exome-sequencing data set was kindly given to us by B. Streubel. The Reseq/chr20 (human)
dataset is a resequencing data set of human chromosome 20, available from the GATK resource bundle (see
Appendix A). The data sets were mapped using BWA v0.6.1 [LD10] with standard parameters for single re-
spectively paired end data. Unmapped reads were pruned from the data sets; variants were called with GATK
v1.4 [MHB+10] and SAMTOOLS v0.1.18 [LHW+09] using the parameter settings given in Appendix A.
NGC was implemented in Java 1.7 and is available for non-commercial use at
http://purl.org/lsdv/ngc.

http://purl.org/lsdv/ngc
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Figure 4.1: Schematic overview of the NGC compression approach. NGC takes a SAM/BAM file, a reference
sequence and a set of configuration parameters as input (step I) and generates an NGC file and an optional
statistics file (optional components drawn with dashed lines). First, NGC de-multiplexes the various data
streams and adds some additional streams (step II). These streams are then passed to our various encoders
that transform their values and prepare them for the subsequent block-compression (step III). In this step
IV, the data is compressed using a general-purpose compression algorithm (gzip, bzip2 or lzma). Finally,
the compressed data blocks, the original SAM file header and the required configuration information are
combined to one single output file (step V). Hatched streams (step II) encode the information described in
[The11] although with very different encoding schemas. Unhatched streams encode: 7: read lengths, 11-16:
data required for reconstructing clipped bases/q-values, 17: unmapped reads. The basic data types of the
streams are written in parentheses: (s)tring, (i)nteger, (c)har, (b)yte, (m)ixed or SAM format.
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4.2.2 NGC
We have developed a tool (NGC) that enables the complete lossless and lossy compression of alignment
data stored in SAM/BAM files. The NGC compressor takes an alignment file, a reference sequence and
several configuration parameters as input and outputs a compressed file (Figure 4.1). On the other hand, the
NGC decompressor reverses this operation. When the lossless mode of NGC is used, the resulting file is
semantically equal to the original file in the sense that it contains the exact same information, although it
might not be byte-equal as (i) the order of optional SAM fields is not preserved which results in different byte
streams in the resulting BAM file and (ii) the SAM fields MD (“mismatching positions”) and NM (“number of
mismatches”) are dropped at compression time and automatically recalculated at decompression time which
may result in slightly different values because of ambiguities in the SAM specification. When one of the
multiple lossy modes is chosen, the quality values in the resulting file additionally differ (partly) from the
original ones. NGC treats each read in the original file as an n-tuple of values of differing data type. Read
names, for example, are of type string, alignment coordinates are of type integer, mapping quality values
are of type byte, etc. Such an n-tuple consists in principle of the 11 mandatory and all optional SAM fields
(cf. [The11]), however, for algorithmic reasons, there are some deviations, for example, we do not store
the CIGAR information, but reconstruct it from the other data and store some additional metadata such as
read lengths (cf. Figure 4.1). NGC treats each element in these n-tuples individually, that is, each data field
may undergo independent steps of value transformations and compression. Individual fields may even be
dropped during the compression phase (e.g., NGC enables users to prune the read names from the data to
save space. New read names will then be auto-generated at decompression). Figure 4.1 gives an overall
picture of our software and shows the default encoding of the different data streams. In the following, we
describe the four streams that take up most of the space in compressed data files in more detail: read base
sequence information, per-base quality values, read positions and read names.

4.2.3 Read base compression
We call our idea for the compression of read bases “vertical difference run-length encoding” (VDRLE).
Generally, run-length encoding (RLE) is a simple encoding scheme for sequences of characters from some
alphabet A (in our case the IUPAC nucleotide single-letter codes). A run-length (RL) is basically a pair of
a single character from this alphabet and a positive integer number indicating the RL of this character in the
sequence, an RLE is then an ordered sequence of such RLs. For example, a DNA sequence S=“AACTTT”
is encoded by the RLE {(A, 2), (C, 1), (T, 3)}. The general compression idea of RLE is that long stretches
of identical characters can be represented by one single RL that requires storing only the two RL symbols.
Obviously, this simple encoding strategy is not very effective for DNA sequences, as most run lengths would
be very short, and a large number of such pairs would be needed to encode the sequence. The situation
changes, however, when the encoded sequence contains long stretches of identical characters, as in this case,
much less RL pairs than characters would be required. Our proposed compression algorithm for read bases
is based on reducing the number of required RLs that may then be effectively encoded using well-known
coding schemas respectively compression algorithms. The first step of VDRLE is similar to other reference-
based compression approaches: we do not encode a read sequence S itself but rather its differences to some
reference sequence R. For this, let us formally introduce a new character “E” to a now extended alphabet
Ae = A + {“E”} that represents that a character in S is unchanged in comparison to R. Now, we calculate a
sequence “diff” using the function ∆ : An×Am → An

e that replaces all characters in the first sequence that map
to the same characters in the second sequence with this special character. Thus, S ′ = ∆(S ,R) is constructed
by replacing all characters in S that map to equal characters in the reference sequence R with “E” characters
(cf. Figure 4.2, step 1). It is easy to see that the more similar S and R, the more and the longer the expected
runs of “E” characters in S ′. Our improvement to existing RLE-based approaches is to encode such diff-ed
read bases in an alignment “vertically” (i.e., position after position or “columnwise”, cf. [GSU09]) instead
of “horizontally” (i.e., read after read). This means that the stream of base characters that is encoded is not
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(a) Vertical and horizontal difference run-length encoding. The figure shows the difference for a very simple alignment (top of figure). In
step 1, all bases that match the reference are replaced by the “E” character. In step 2, the resulting read bases are run-length encoded. The
left box shows a “horizontal” way to do this: the bases of each read (sorted by alignment position) are enumerated (we show the indices
of the first nine bases in the figure) and a new RL is started whenever a base differing from the previous one is encountered (we have
marked such positions boldface). The lower-right box shows our vertical approach: the read bases are enumerated column-after-column.
Again, the start positions of RLs are marked boldface. Vertical encoding saves two RLs in this toy-example.

Reseq/chr20
(human)

Reseq/hm
(human)

Reseq
(A. thaliana)

Reseq
(E. coli)

Reseq
(E. coli, PE)

Exome-seq
(human)

RNA-seq
(E. coli)

ChiP-seq
(mouse)

Horiz. DRLE counts 43,532,619 900,546 13,341,776 4,303,863 191,384,090 3,386,907 56,295,485 8,127,608
Vert. DRLE counts 28,855,452 824,683 8,912,294 3,587,923 48,162,138 2,123,039 1,348,494 6,364,152
Ratio [%] 0.66 0.92 0.67 0.83 0.25 0.63 0.02 0.78

(b) This table shows the counts for horizontal and vertical difference run-length encoding (DRLE) in our test data sets. Figure 4.3 shows
an excerpt of one of these data sets.

Figure 4.2: Vertical difference run-length encoding results in less required run-lengths.

simply a concatenation of read bases but first lists all base characters that are mapped to position 1, then the
ones mapped to position 2, etc. (similar to the SAMTOOLS mpileup command). Figure 4.2 summarizes our
approach. The figure shows how ∆(S ,R) is calculated in the first step by replacing all bases in the individual
reads that match the respective reference bases. Our algorithm then generates a stream of base characters
by traversing such a diff-ed alignment columnwise and encodes this stream by RLE. A new RL is generated
whenever a different base than the last encoded one is encountered. For actually storing these RLs, we simply
map all characters in our alphabet to byte values and write them, followed by one byte representing the RL
length, to a standard byte stream. This stream is finally compressed using a general-purpose compression
algorithm (users may choose between bzip2, gzip, lzma and no block compression). Note that the described
VDRLE method exploits common features between reads mapped to the same genomic region to decrease
the number of required code words to be encoded. It exploits the fact that short-read mapping software tries
to minimize differences between reference sequence and mapped reads which often results in the same bases
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differing from the reference sequence being stacked above each other rather than next to each other, regardless
whether these bases are real variants from the reference sequence or just sequencing artefacts.

4.2.4 Quality value compression

As others have reported before, we also found per-base quality values (q-values) very hard to compress
because of their quasi-random distributions, respectively the high entropy of these data that results in rather
high (undesirable) data compression ratios [DG11, KSK+11, STZH11, WAA11]. Although we have tried sev-
eral approaches to improve lossless q-value compression, including an adaptive arithmetic coding approach
[WNC87] that builds a statistical model per read position, we did not reach significantly better compression
rates over all data sets in comparison with the general-purpose BZIP2 algorithm (data not shown). We, there-
fore, currently do not apply any value transformation (not even diff-encoding or GapTranslating as advocated
in [WAA11]) in our lossless mode, but we encode the raw data using bzip2 with parameter settings that result
in its best compression (i.e., using the “-9” switch). With our data sets, bzip2 achieved compression rates of
1.8-3.7 bits/q-value which compares well with other reported numbers (cf. [KSK+11, WAA11]).

This rather bad compressibility of q-values is, however, the current main challenge for our compression
method which becomes clear when considering their large fractions (82-97%) of the overall file sizes of
losslessly compressed data sets as shown in Table 4.1. It was, however, proposed by several authors in
the recent past that it might be feasible to store q-values in a so-called lossy manner, i.e., to discard some
information in favour of better compression ratios [KSK+11, HYFLCB11, WAA11].

4.2.5 Lossy q-value compression

A central step in most lossy data compression methods is quantization. Quantization of q-values maps the
set of possible Phred quality values (e.g., 0-93 in Sanger format [CFG+10]) to a smaller set of values, usually
by binning. Although this does not reduce the number of code words that have to be encoded, it greatly
enhances the effect of subsequent probabilistic or dictionary-based compression methods as there are much
smaller ranges of possible code words. However, this loss of information also affects the results of down-
stream applications that make use of q-values, such as software for the removal of polymerase chain reaction
(PCR) duplicates, for variant calling or for genotype prediction. It is a common goal of lossy compression
approaches to find a good trade-off in this regard. There are many possible q-value quantization schemas that
differ in complexity and in their influence on compression ratios and downstream effects. NGC uses a simple
binning strategy that maps all q-values that lie within an interval to some single value within this interval
(e.g., its upper or lower border). Such possibly non-uniform quantization intervals should be disjoint and
should cover the whole range of input values. Note that extreme cases of this approach are to use a single
interval that spreads the whole input value range and thus assigns a single value to all q-values or to use as
many intervals as there are possible q-values which basically results in no quantization at all. Our quantiza-
tion method does not treat all q-values in an alignment equally. It rather distinguishes between q-values of
bases that (i) match or mismatch the reference sequences and (ii) reside in single- or multiallelic alignment
columns (i.e., columns that contain one respectively multiple different base characters in the read sequences).
The resulting four possible q-value categories (annotated in Figure 4.3) are as follows:

• Q1: q-values of bases that match the reference and occur in columns where all bases match.

• Q2: q-values of bases that match the reference and occur in multiallelic columns.

• Q3: q-values of bases that mismatch the reference and occur in multiallelic columns.

• Q4: q-values of bases that mismatch the reference and occur in columns where only this allele occurs.
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(a) Excerpt of an alignment to illustrate our VDRLE approach for read base compression. The figure is a modified screenshot of region
chr1:121484997-121485088 in the Reseq/hm (human) data set made with IGV 2.0.17 [TRM12]. It shows (from bottom to top): the reads
with only the bases that differ the mapping reference shown, INDELs are drawn as I-characters or horizontal lines respectively [1], the
mapping reference [2], variants called by SAMTOOLS [3] and GATK [4] respectively. Our read sequence compression creates RLs by
traversing this alignment columnwise (see text). The present alignment could be encoded with 75 horizontal but only 55 vertical RLs.
Note that in NGC, however, the reads would be sorted strictly by coordinates and thus the results would be slightly different. The marked
bases/q-values are: Q1 - bases that match the reference in columns that contain no alternate allele; Q2/Q3 - bases that match/mismatch
the reference in multiallelic columns; Q4 - bases that mismatch the reference in columns that contain only one kind of alternate allele.

Reseq/chr20
(human)

Reseq/hm
(human)

Reseq
(A. thaliana)

Reseq
(E. coli)

Reseq
(E. coli, PE)

Exome-seq
(human)

RNA-seq
(E. coli)

ChiP-seq
(mouse)

Q1 counts 3,873,164,564 61,831,496 303,452,695 491,077,181 42,556,735 256,925,783 31,453,173 472,315,173
Q2 counts 807,325,823 119,513 109,224,800 204,412,364 4,388,981,896 65,240,735 188,284,057 21,246,748
Q3 counts 22,271,926 155,855 5,702,544 2,158,208 102,563,275 1,641,199 29,657,344 2,348,243
Q4 counts 1,582,569 324,201 1,089,650 6,578 294 113,933 3,625 1,769,643

(b) This table lists the counts of the respective q-values in our evaluation data sets. It is notable that in two data sets the number of Q2
values exceeds the number of Q1 values significantly (printed boldface) which is ascribable to the respective experimental settings.

Figure 4.3: Q-value categories and their distributions.

Our general idea is that q-values of distinct categories have also differing impacts on downstream analyses.
For this reason, our approach allows the application of different quantization schemas to q-values of differing
categories. We propose, for example, to use more fine-grained sets of quantization intervals for q-values
of substituted bases (Q3, Q4) rather than for the ones that match the mapping reference as the latter ones
have much less impact on the results of downstream applications as described below. Our tool further pro-
vides the possibility to “lock” an arbitrary number of columns in the alignment, so that the original q-values
will be retained in these positions. This is useful, e.g., in re-sequencing experiments where users already
know the positions of some (expected) variations beforehand. The counts of the four q-value categories in
our evaluation data sets are shown in the table in Figure 4.3. These numbers reveal that Q1 and Q2 values
of the categories are naturally much more frequent than Q3 and Q4 values, which makes them the primary
targets of our quantization strategies. NGC supports two modes for storing quantized q-values. The first
mode considers q-values in a horizontal way and stores them to a simple byte stream. The second mode
traverses q-values vertically and stores them run-length encoded (comparable with the described VDRLE
approach, however, without the “diff-ing” step). This latter mode is more efficient when the majority of q-



28 Chapter 4. NGC: Lossless and Lossy Compression of Aligned High-throughput Sequencing Data

values are quantized, which leads to long stretches of equal q-values. Note that the resulting byte streams are
subsequently compressed by some general-purpose block-compression method in both cases. The final com-
pression ratio of our lossy compression approach consequently depends on the present q-value distribution,
the chosen interval-sets for the four q-value categories, the partitioning of q-values into these categories, an
optional list of “locked” alignment columns and the chosen block compression mode.

4.2.6 Evaluation

To find reasonable trade-offs between quantization strategies, resulting compression ratios and possible down-
stream effects, we conducted a comprehensive experiment. In this experiment, we compressed the data sets
listed in Table 4.1 using different combinations of q-value quantization intervals. Then we decompressed the
data and used a pipeline of state-of-the-art tools to call variants (SNPs, INDELS, etc.) and their predicted
genotypes in the obtained BAM files. This pipeline contained steps for INDEL realignment, PCR duplicate
removal and various variant filtering steps (for details, see Appendix A). We further used two wide-spread
variant calling tools, namely GATK [MHB+10] and SAMTOOLS [LHW+09] for variant and genotype pre-
diction. The resulting variant sets were then compared with the ones found in the respective unquantized data
sets that served as our “gold standard”. We counted the number of recovered (true positive), lost (false neg-
ative) and additional (false positive) variants as well as the number of variants that differed in their predicted
genotype. We further measured the compression ratio of the particular approach which is defined as the ratio
between compressed and uncompressed file size. Additionally, we compared our tool with cram1 and goby2,
two tools that also compress SAM/BAM files. Goby (we used its latest version v2.1) supports only loss-
less compression. Cram is based on the method described in [HYFLCB11] but was further developed in the
meantime, and we used its latest available version (v0.85) in our evaluation, treating it as an alternative lossy
compression method. Cram enables users to preserve q-values of various categories selectively. It allows,
for example, preserving only q-values of substituted bases or of insertion regions. This leads to a number of
quantization strategies that were evaluated by us as summarized in Table 4.2. We basically configured our
tool to either quantize q-values by simply assigning a single value to them (maximum compression) or to use
a simple “standard” binning scheme:

Definition 4.1 (Standard quantization scheme)

q′ = fquant(q) =


q, q < 2
2, q < 10
15, q < 30
30, otherwise

This schema was derived by studying the descriptions of various SNP calling software that incorporate
per-base quality values in their calculations. Note, however, that multiple other schemas might be useful
and that an extensive study of this regard is beyond the scope of this work. For a direct comparison, we
configured a mode (m4, see Table 4.2) that quantizes q-values as similar as possible to a lossy configuration
of cram (parameters given in Appendix A.7), called cram-lossy in the remainder of this thesis. We further
configured a mode “recovery” where NGC was provided the VCF file obtained by calling variants with GATK
in the unquantized data sets. NGC then “locks” the respective columns and preserves its original q-values, and
we were curious whether this could significantly improve variant recovery. We additionally configured one
mode (m5) that maximized compression by using the most restrictive quantization scheme and additionally
dropping all q-values of reads with a low mapping quality.

1http://www.ebi.ac.uk/ena/about/cram_toolkit
2http://campagnelab.org/software/goby/

http://www.ebi.ac.uk/ena/about/cram_toolkit
http://campagnelab.org/software/goby/
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4.2.7 Other streams
For read positions (stream POS, Figure 4.1), we store the differences to the previous position Golomb/Rice-
encoded as also proposed by other authors (cf. [DRC+10]). We estimate the Golomb-parameter by first
calculating the mean difference between two neighbouring read alignment positions by sampling and then
applying the method discussed in [Kie04]. It is noticeable that Golomb-codes may result in very long code
words when encoding numbers that are much larger than this parameter because of the unary coding scheme
used for encoding the quotient. Such large “gaps” between reads occur, for example, between adjacent
covered regions in exome sequencing data. Long unary prefixes are, however, effectively compressed by the
subsequent block compression methods (e.g., bzip2). Read names (stream QNAME,Figure 4.1) are usually
systematic names that contain information, such as instrument and flowcell identifiers, run numbers or x/y
coordinates. For these names, we have developed a simple encoder that looks for the longest common,
stable prefix of the last n reads and encodes this prefix only once and the variable rest for each read. Our
simple method requires approximately 3-5 bytes per read name (see Appendix A), however, this could be
further optimized (cf. [STZH11] for an alternative approach). We believe, however, the information stored
in these strings is rarely used after the mapping phase, and consequently our tool enables users to drop them.
Decompressed files will then contain automatically generated read names. When not dropped, read names
take up 8-19% of the file size in the losslessly compressed evaluation data sets that increases up to 30-85%
when using lossy compression.

4.3 Results
To verify that it results in less RLs when traversing an alignment “vertically” rather than “horizontally”, we
have counted the RLs in our evaluation data (see Figure 4.2). We found considerably less code words when
compared with a “horizontal” approach (up to 50X less). Further, we compressed all data sets with NGC
and calculated how many bits per encoded read base were used by its VDRLE method. The results varied
between 0.12 and 0.03 bits/base (see Appendix A), and we believe that there is some potential left when
optimizing the RLE encoder. As the read stream accounts for only about 1-2% of our total compressed file
size; however, we focused on a different stream that accounts for about 35-71% in the original BAM files and
for about 82-97% in our losslessly compressed files: the per-base quality values.

4.3.1 Data compression, decompression and variant recovery
We evaluated how well the different q-value quantization modes listed in Table 4.2 perform at preserving
the variants called in the nonquantized datasets with our pipelines. For this, we compressed the data using
the respective quantization schemas, decompressed them and called their variants in comparison with their
mapping reference sequence. The resulting variant sets were then compared with the ones called in the
respective unquantized data sets. The results of our evaluation are summarized in Figure 4.4 that contrasts
the achieved compression ratios with the precision and the sensitivity of the chosen quantization strategy. It
can be seen that our tool provides lossless compression ratios between approx. 0.3-0.6 which corresponds
to space savings of 40-70%. We compared these measures with the lossless compression ratios of cram and
goby, absolute numbers and a comparison of the compression ratios for lossless compression are given in
Table 4.1.

The compression ratios of the lossy modes depend mainly on the used quantization schemas for Q1-Q4
values. A comparison of m4 and cram-lossy reveals that we provide a more efficient lossy compression than
the cram tool (Table 4.1) when we configure both tools to basically quantize the same q-values (although
it has to be noted that cram-lossy preserves qualities of Q2 bases if there are two or more reads that differ
from the reference at a particular column which is a slightly different behaviour than in NGC’s m4 mode
where all Q2 q-values are quantized). The precision and sensitivity analysis also reveals to what extent
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q-value quantization has to be paid in terms of false positives and negative calls. Precision (aka positive
predictive value) measures the ratio between true positives and positive calls, sensitivity (aka recall rate or
true positive rate) measures the ratio between true positives and the sum of true positive and false negatives
(see Appendix A). One extreme is the “drop all” mode that simply replaces all q-values by a fixed value (data
given in Appendix A). This mode primarily leads not only to a large number of false positive variant calls
but also to much higher false positive rates than all other modes and consequently to low precision/sensitivity
measures. Our proposed mode m1 (quantizing only Q1 values) results in high and stable (over all data sets)
precision and sensitivity rates while considerably lowering the achieved compression ratios in comparison
with lossless compression. The outliners for the m1 compression ratios can be explained when considering
that the number of Q2 bases exceeds the number of Q1 bases for the RNA-seq (E. coli) and the Reseq (E.
coli, PE) data sets (cf. Table 4.1). This means that there are few columns that completely match the reference
sequence, which is unfavourable for RLE that was used for this mode.

Reseq/chr20
(human)

Reseq/hm
(human)

Reseq
(A. thaliana)

Reseq
(E. coli)

Reseq
(E. coli, PE)

Exome-seq
(human)

RNA-seq
(E. coli)

ChiP-seq
(mouse)

Mapped reads 50,663,069 487,201 11,651,942 19,379,287 44,938,891 3,239,217 6,927,728 13,824,441
BAM size [MB] 5,868 53 504 655 2,945 199 177 637
Base/q-value count 5.21×109 6.24×107 4.19×108 6.98×108 4.54×109 3.24×108 2.49×108 4.98×108

Avg. read length 101 128 36 36 101 100 36 36
Coverage 81.19 0.02 3.51 150.37 978.26 0.10 53.75 0.18

q-value % of total file
size (BAM)

0.41 0.35 0.49 0.64 0.66 0.64 0.71 0.44

q-value % of total file
size (NGC lossless)

0.53 0.82 0.88 0.97 0.89 0.95 0.97 0.86

Lossless
compression
ratios

NGC 0.60 0.32 0.44 0.50 0.57 0.52 0.55 0.40
Cram 0.69 0.45 0.47 0.52 0.78 0.65 0.59 0.44
Goby -3 -4 0.72 0.75 0.85 0.75 0.83 0.66

Comp./decomp
times (lossless)
[min]

NGC 150/95 8/7 26/8 41/10 89/55 12/4 17/72 38/14
Cram 26/65 1/1 3/6 4/9 20/50 1/3 1/3 3/8
Goby - - 8/13 11/20 135/1705 3/5 4/7 9/16

Lossy
compression
ratios

NGC
(m4)

0.29 0.07 0.07 0.02 0.08 0.03 0.02 0.06

Cram-
lossy

0.35 0.08 0.10 0.03 0.22 0.05 0.03 0.09

Comp./decomp
times (lossy)
[min]

NGC
(m4)

94/71 8/7 21/6 32/6 43/37 9/2 14/137 32/11

Cram-
lossy

27/56 1/1 2/5 3/6 16/34 1/2 1/2 3/6

Table 4.1: Evaluation data sets. The table provides some data describing our evaluation data sets and com-
pares the compression ratios (i.e., compressed divided by uncompressed size) and compression/decompres-
sion times of NGC, cram and goby for lossless and lossy compression (commandline parameters for the
various modes are given in Appendix A.7). Read names were not included in these data sets, all BAM files
contained tags that were preserved during the de/compression. The bottom section of the table compares com-
pression ratios and times for NGC’s m4 mode and cram’s lossy configuration (see text). Absolute numbers
for all other lossy modes are given in Appendix A.

Better compression with slightly higher counts of false positives/negatives is achieved with m2, which
uses our proposed quantization scheme fquant (see Definition 4.1) for Q1 and Q2 bases. M4 basically quantizes

3Goby could not compress this data set within two days after which we stopped the job.
4Goby could compress/decompress this data set, however, the resulting BAM file contained less reads than the original.
5We had to increase the maximum heap size for compressing this data set with goby, see Appendix A
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the same q-values as cram-lossy but results in better compression, m3 lies between m2 and m4 in most
measures. M5 provides maximum compression which is, however, near the ratios achieved by m4/cram. The
recovery mode was configured equal to m2 but here we additionally passed the set of variants called from
the respective lossless data set as parameter and did not quantize q-values at these positions. This resulted
in only slightly worse compression but could increase precision and sensitivity for most data sets. For some,
however, precision slightly dropped (e.g., Reseq (E. coli)).

Evaluation mode Q1 Q2 Q3 Q4 RLE? Low MAPQ filter Known variants? AVG % of recovered variants

lossless - - - - no - - 100.0%
m1 std - - - yes - - 99.7%
m2 std std - - yes - - 98.9%
m3 30 std - - yes - - 98.7%
m4 30 30 - - yes - - 96.1%
cram-lossy 30 306 - - - - - 96.1%
m5 30 30 std - yes 20 - 95.8%
recovery std std - - yes - yes 99.7%
drop all 30 30 30 30 yes - - 92.7%

Table 4.2: Evaluation modes. The columns Q1-Q4 list which quantization strategy was used for which kind
of q-values. An entry “std” refers to the proposed standard binning scheme that is explained in the text. The
value “30” means that the respective q-values were dropped and assigned the constant value 30. The column
RLE shows whether run-length encoding was used for q-value compression or not, the “low MAPQ filter”
column shows whether q-values of reads with a mapping quality lower than the given value were dropped or
not and the “known variants” column shows whether a set of known variants (the ones called in the lossless
data set) was used to lock q-values in the respective columns. The last column lists the achieved overall
percentage of recovered variants. Note that this measure neglects the false positive rates of the respective
methods and refer to the recovery precision and sensitivity measures in Figure 4.4 and to the data tables in
Appendix A for details in this regard. The “cram-lossy” mode in row 6 refers to the lossy configuration
of cram we evaluated against. All other modes were realized by configuring our NGC tool. Note that the
configuration of the recovery mode in row 8 was derived from the m2 mode.

Finally, we were interested in how well the individual quantization modes “preserved” the predicted
genotype of called variants. For this, we used GATK’s method to classify each found variant as homozy-
gous, heterozygous or unknown. Then we counted how many of the variants that were re-detected after
compression/decompression with the respective quantization method (i.e., the true positives) changed their
classification from homozygous to heterozygous or vice versa. In Figure 4.4, we plotted the percentage of
these “preserved” variants in the true positives. Not surprisingly, methods with the lowest compression ra-
tios lead not only to more false positives and negatives but also to more variants with wrongly predicted
genotypes which might be an issue for use cases where these data is considered (e.g., when searching for
loss-of-heterozygosity regions). It can also be observed that the recovery mode performed well in preserving
these classifications, and it outperforms it’s nearest comparable mode (m2).

4.3.2 Computing times
We compared the compression and decompression times of NGC with cram and goby and list the times in
Table 4.1. NGC is considerably slower than cram in both categories, although the differences are smaller
when considering decompression. We attribute this mainly to the following two reasons: first, the VDRLE

6Note that cram-lossy preserves qualities of Q2 bases if there are two or more reads that differ from the reference at a particular
column which is a slightly different behaviour than in NGC’s m4 mode where all Q2 q-values are quantized.
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Figure 4.4: Evaluation data. The upper-left figure compares the compression ratios of the different modes
for the used evaluation data sets (cram-l refers to the used cram-lossy mode). The absolute byte sizes and
the compression ratios of the decompressed BAM files can be found in Appendix A. Note that the Rese-
q/chr20 (human) BAM files are less compressible as they contain large sections of optional BAM tags (see
Appendix A). The figures on the right side show the variant recovery precision and sensitivity averaged over
the data we obtained by applying two different variant-calling tools (GATK and SAMTOOLS). We omit-
ted the data for the “drop all” mode in these two figures for readability as the corresponding values would
require a much larger scale. The lower-left figure shows how many of the re-found variants (i.e., the true
positives) did not change their predicted genotype classification, either from homozygous to heterozygous or
vice versa. All absolute data values and the used command-line parameters are given in Appendix A. Please
note the differing scales of the y-axes in the four figures.

approach is much more time consuming when compared with traversing an ordered alignment read-by-read.
Second, we have not yet optimized our tool in this regard as we consider it as an archiving solution where
computing times may not be the primary issue when they stay within practically useful limits. Although
efficiently computing the compressed data may not be an issue, it is certainly helpful if the decompression
of data is fast and here NGC is not substantially worse than cram and even faster than goby except for the
RNA-Seq (E. coli) data set.

The lossy compression/decompression modes of NGC and cram are commonly faster when compared
with the respective lossless modes (see Table 4.1. Again, RNA-Seq (E. coli) is a considerable exception where
the decompression times nearly doubled for NGC). For some data sets, NGC’s lossy modes compressed twice
as fast and decompressed 66% faster (absolute times are given in Appendix A).
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4.4 Discussion

Continuously dropping costs per sequenced genome and technology advances, such as longer read lengths
and shorter sequencing durations, will result in enormous amounts of data directly associated with HTS ex-
periments. This issue cannot be ignored by referring to the also dropping costs per byte of secondary/tertiary
storage as (i) the rate at which sequencing data is produced already overtook the rate of storage production
(2,3); (ii) it is not only the data storage but also their increasing transmission, e.g., between nodes in a cluster-
/cloud-computing environment, between storage servers/long-term archives in a research facility or between
research centres via the Internet which imposes a challenge; (iii) data transmission leads in many cases also to
data redundancies (e.g., cached parts, data copies) that further enlarge this “sequence data heap”. All this will
constitute a major bottleneck for HTS experiments in the future that can partly be widened when reducing
file sizes by data compression. Our proposed solution for the compression of SAM/BAM files contributes
two major improvements to the state of the art. First, we propose a way to exploit common features of reads
mapped to the same position in order to reduce the required number of code words. Second, we propose a
model for the controlled lossy compression of per-base quality values that enables a comprehensive configu-
ration of the trade-off between low compression ratios and high variant recovery rates. Lossless compression
with NGC may save between one-third and two-thirds of the disc space required for such alignment files,
depending on characteristics of the input data. With lossy compression, however, we reach space savings up
to 98%. In this thesis, we contribute a novel method for the compression of read bases in mapped alignments
that encodes read bases losslessly using 0.12-0.03 bits/base. We achieve this by representing read bases in
a vertical (per-column) way as also done by previous data formats, such as CALF [Gre08] or the Ensembl
Multi Format (EMF) [FAB+08]. However, different from those, we exploit common features between reads
mapped to the same genomic position in order to reduce the number of required code words. We further
contribute a novel approach for the lossy compression of per-base quality values. These quality values ac-
count for up to 97% of the used disc space in our losslessly compressed files which can be reduced to 2-33%
with our proposed lossy modes. Note that our idea of vertical difference run-length encoding could also be
used to compress whole sets of alignments that were mapped to the same genome (e.g., stemming from mul-
tiple resequencing experiments or from metagenomics analyses) and we plan to elaborate on this in future
research. One possible improvement of our VDRLE approach is to further enhance the clustering of equal
bases in (deep) alignment columns by applying a Burrows-Wheeler transform to them, cf. [CBJR12]. Lossy
compression means a controlled loss of information that usually affects downstream data handling methods.
Kozanitis et al. [KSK+11] have already shown that their model of lossy q-value representation shows only
little impact on SNP calling with CASAVA, and somewhat comparable, yet in a more elaborated manner,
we evaluated various q-value quantization strategies in order to find optimal trade-offs between compres-
sion rates and variant recovery. Different from this study, we used a more complex variant calling pipeline for
evaluation that included INDEL realignment, duplicate removal and two widely-adopted variant calling tools,
namely GATK and SAMTOOLS. The idea of our proposed lossy modes is to preserve maximum precision
in those parts of the data that are of high relevance to downstream applications. Variant-calling or genotype
prediction software, for example, considers an alignment and its q-values also positionwise and will benefit
from the maintained q-value characteristics in such columns. Note, however, that variant recovery in our eval-
uation depends not only on the actual variant calling tool but also on upstream processes that are influenced
by q-values, such as the PCR duplicate removal. Our evaluation showed that NGC outperforms the compa-
rable cram and goby approaches with respect to lossless and lossy compression. Note that the BAM files
resulting from decompression of our lossy compressed alignments are also considerably (up to 5X) smaller
than the originals. This is because quality quantization will result also in improved compression of BAM’s
gzip blocks. These BAM files are, however, still considerably larger than the corresponding NGC files (see
Appendix A). The configurability of our tool further allows for lossy q-value quantization approaches that
outperform cram-lossy with respect to higher variant recovery and higher genotype preservation rates. Fur-
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thermore, cram currently suffers from not being able to reconstruct original read names7 whereas our tool can
reconstruct BAM alignments completely, including the original file headers and all optional tags, and is inde-
pendent of additional data, such as BAM index files. The current version of cram is, however, considerably
faster than our tool when we compress data. Further, our data format does not allow efficient random access
to portions of its data, as proper index structures are currently missing. As our tool was designed for archiving
of BAM files, we do not consider this as a major obstacle for its application; we do, however, plan to improve
NGC in this regard. Our q-value quantization methods also outperform the value transformation proposals in
[WAA11], who report compression rates of 1 bit/q-value for a data set we also used in our evaluation. Other
related work to NGC is the cSRA format that stores compressed-by-reference alignments in the sequence
read archive [KSLI12], SAMZIP [STZH11], a tool that is specialized to compress whole SAM/BAM files
but does not allow lossy compression and SlimGene [KSK+11] that compresses reads in the Illumina Export
format.

4.4.1 Unmapped reads
As other reference based encoding methods, our proposed approach for sequence data compression cannot be
applied to unmapped reads. We, therefore, currently store those in an own file block encoded in the original
BAM format. We do, however, quantize their q-values in lossy compression modes (for this purposes, an
own quantization scheme can be defined, i.e. an additional fifth q-value category was added). Fritz et al.
[HYFLCB11] proposed the assembly of contiguous sequences in such unmapped reads to which these could
then be mapped; however, their method resulted in additional mapping of only about 15% of those reads and
consequently achieves only limited improvement of compression ratios.

7As of August 2012, the latest version of cram (v0.9) is also able to compress read names.



Chapter 5

Conclusions

High-throughput sequencing technologies considerably changed the landscape of available analysis meth-
ods in several biology-related fields recently. Apart from enabling whole new scientific approaches such as
genome-wide association studies they have the potential to completely replace existing, wide-spread analysis
methods such as Microarrays.

Altman et al. called HTS the „Swiss pocketknife of molecular biology” [AWB+12], explicitly referring
to the flexibility of the method but not to the size of the produced data. On the contrary, the enormous
amounts of data associated with HTS experiments developed into one of the biggest bottlenecks today. And
the situation will worsen in the near future with emerging commercial and research fields such as Personal
Genomics [TMF09] and constantly improving technologies that will result, e.g., in longer read lengths at less
costs and possibly more produced data per run.

One possibility to widen the mentioned bottleneck is the development of specialized data compression
algorithms that may reduce the effective size of the resulting data. In this regards, the current development
in the area of HTS data compression might, to some extent, be comparable with the situation of multimedia
research shortly before audio, video and image capturing devices became available to the mass market: the
application of the whole arsenal of available data compression algorithms led to the development of novel,
specialized, lossless and lossy (e.g., JPEG or MP3) compression algorithms that ultimately enabled further
progress in the development of capturing devices. It is our belief that efficient HTS data compression algo-
rithms will play a gable role in the field of nucleic acid sequencing.

In this thesis, we presented and evaluated NGC, one such solution for reducing the enormous data heap
that is associated with today’s high-throughput sequencing experiments.

5.1 Future Work
Our solution introduces some novel aspects to the field of HTS data compression but is still in its infancy and
suffers from several major drawbacks that should be addressed in future work.

Most importantly should the compression and more importantly the decompression speed of NGC be
optimized. This could be achieved, e.g., by the introduction of multi-threading or by optimization of the
stream handling implementations.

Furthermore, efficient random access to the contained information is required. This might be achieved
by implementing efficient indexing structures (e.g., based on interval trees, recursive tree data structures that
allow efficient access to a set of intervals [Ede80, McC80, Sam05]). Such an index could store the byte offsets
of all NGC data streams for selected genomic positions which would enable NGC to “jump” directly into the
respective data sections. By this, users could, e.g., extract only subsets of the contained HTS data such as
only the reads from a particular genomic region.
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Another useful extension to NGC would be to make the data format completely streamable. This means
that the NGC compressor should be able to read SAM records (or possibly also other input formats) from
some input stream and immediately outputs the compressed data to some output stream. Vice versa, the
decoder should be able to read from such a stream and directly write SAM record to an output stream.
This would enable the transmission of compressed mapped read data over networks and the integration of
NGC with stream-based UNIX tools. Such an extension to NGC should be quite straightforward as our
implementation is internally already based on data streams. One would only have to multiplex these streams
at runtime (currently, the various streams are written to individual files that are merged in the end) and provide
respective buffering data structures to preserve data integrity.

Last but not least should the meta data handling capabilities of NGC be extended. It would be useful to
be able to store meta data describing, e.g., the data provenance or the used reference sequence directly in an
NGC archive which would provide the basis for automatic data integration and validation in the future.
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Appendix A

Supplementary Data

A.1 Supplementary Description of Variant Calling Pipelines
The Reseq/chr20 (human) data set corresponds to NA12878.HiSeq.WGS.bwa.cleaned.recal.hg19.20.bam, a
BAM file that was downloaded from the GATK resource bundle v1.5 b371. This file contains mapped reads
of the NA12878 individual’s chromosome 20. Note that this data set contains all original q-values of the
reads (probably the ones before q-value recalibration) stored in OQ tags which makes this file less compress-
ible in comparison to the others. All other data sets were downloaded from the SRA respectively given to
us as FASTQ files and were mapped using bwa v 0.6.1-r104 [LD10] with standard parameters for single
respectively paired end data. The following reference sequences were used for mapping:

1. Homo sapiens genome human g1k v37, available at ftp://ftp.sanger.ac.uk/pub/1000genomes/
tk2/main_project_reference/human_g1k_v37.fasta.gz

2. Mus musculus genome mm9, NCBI Build 37, available at http://hgdownload.cse.ucsc.edu/
goldenPath/mm9/bigZips/mm9.2bit

3. Escherichia coli str. K-12 substr. MG1655 genome, available at ftp://ftp.ncbi.nlm.nih.gov/
genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/NC_000913.fna

4. Arabidopsis thaliana TAIR10 genome, available at
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/

Note that we pruned unmapped reads from the data sets using SAMTOOLS v0.1.18 [LHW+09] before
our tests and that our algorithm expects the input SAM/BAM file to be sorted by mapping coordinates. Note
also that our solution preserves also hard- and soft-clipped bases that actually break the order in such a
coordinate-sorted file by storing those in some extra data streams (cf. Figure 4.1).

A.2 Computing Environment
The evaluation experiments were conducted on a server equipped with 2 Xeon E5520 processors and a total
of 32GBytes of RAM. Both, cram and NGC, were executed using Java 1.7.0_02 64Bit with 4Gbytes of
maximum heap size (-Xmx switch). Goby was executed using Java 1.6.0_27 64Bit as the latest version we
used (v 2.1) did not run with Java 1.7. We also used 4Gbytes of maximum heap size, except for compressing
the Reseq (E. coli, PE) data set where we used 16GByte as we ran into OutOfMemory errors.

1Available at ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/1.5/b37, be sure to login as user gsapubftp-
anonymous/<blank>. The file can be found in the subfolder bundle/1.5/b37.
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A.3 GATK Pipeline
Our pipeline for GATK [MHB+10] variant calling consisted of the following steps:

• Addition of read groups using Picard v1.56 (http://picard.sourceforge.net),
AddOrReplaceReadGroups

• INDEL realignment with GATK v1.4 RealignerTargetCreator and IndelRealigner

• Duplicate removal with Picard MarkDuplicates

– Duplicates were removed from the alignment

– Note that this step was omitted for the RNA-seq (e.coli) data set!

• Variant calling with GATK UnifiedGenotyper

• Variant filtration with GATK VariantFiltration

– For SNPs, we filtered for low coverage (<5), low quality (<50), variant confidence (<1.5), strand
bias and mapping quality

– For INDELs, we filtered for variant confidence, read position bias and strand bias

• Both variant sets were then combined using GATK CombineVariants

• Note that the first three pipeline stages were omitted for the Reseq/chr20 (human) data set as compara-
ble preprocessing was already done for the respective BAM file

A.4 SAMTOOLS Pipeline
Our pipeline for variant calling with SAMTOOLS consisted of the following steps:

• Addition of read groups using Picard AddOrReplaceReadGroups

• INDEL realignment with GATK RealignerTargetCreator and IndelRealigner

• Duplicate removal with Picard MarkDuplicates

– This step was omitted for the RNAseq data set.

• Variant calling with SAMTOOLS v0.1.18 mpileup/bcftools/vcfutils

– Variants were filtered by minimum (5) and maximum (2000) read depth

• Note that the first three pipeline stages were omitted for the Reseq/chr20 (human) data set as compara-
ble preprocessing was already done for the respective BAM file

Note that we did not do any quality score recalibration in this evaluation pipeline as such a step would
affect all quality scores in the data sets which would blur the effects of the different quantization scenar-
ios. Further note, that the Picard algorithm for the removal of redundant sequences (stemming mainly from
PCR amplification) also incorporates read bases qualities and will therefore also lead to different read-sets
depending on the used q-value quantization strategy.

http://picard.sourceforge.net
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A.5 Definitions
True positives (tp), false positives ( f p) and false negatives ( f n) were determined by comparing the sets of
called variants from the BAM files created by compressing and uncompressing the original alignment using
(1) the lossless mode (unquantized) and (2) the respective quantization mode.

Definition A.1 (Compression ratio) cr =
compressedsize

uncompressedsize

Compression rates are, in contrast, usually measured in bits per sample.

Definition A.2 (Space savings) 1 − cr

Definition A.3 (Precision) prec =
tp

tp + f p

Definition A.4 (Sensitivity (aka recall rate)) sens =
tp

tp + f n

Definition A.5 (Genotype preservation percentage) gpp = 1 −
cgt
tp

where cgt is the number of variants from the set of true positives that changed their genotype classification
from homozygous to heterozygous or vice versa.

Definition A.6 (Coverage) cov =
sb

re f

where sb is the number of sequenced bases and re f is the length of the reference sequence.

A.6 Counting Horizontal and Vertical Run-lengths
For counting the run-lengths (RLs) presented in Figure 4.2 we considered two streams of read bases. The
“horizontal” one was created by simply iterating over the reads in their given order in the alignment file.
The “vertical” one was produced as described in the figure. Note that clipped bases are not counted and that
RLs are also counted within insertions. In the vertical mode, we consider each inserted “column” as follows:
for each read spanning the insertion, we consider either its inserted base character (A,C,T,G,N and all other
IUPAC/FASTA characters) in this column or, if none, (e.g., in padded regions) a special character “X”. These
base characters are then “diffed” against the reference character “X” (so that a padded position finally results
in an “E” character). Note that this method slightly penalizes the vertical mode, i.e., a more optimized
method would count even less required RLs in the vertical mode. Further note that the given numbers are
the “theoretical” numbers of required run-lengths as described in Chapter 4. In practice, however, not only
these numbers but also the amount of bits needed to represent this information is relevant. For representing
the length-values of the RLs one could, for example, use fixed-sized 8-bit code words. This would mean that
RLs with a length value greater than 256 have to be split-up, which again increases the number of required
code words. Reserving more bits would again reduce the number of code words but would require more disc
space per code word. With our data we actually found that using one byte per RL length was the best tradeoff

in this regard (data not shown).
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A.7 Compression Parameters
We used the following commandline parameters for the evaluation experiments:

A.7.1 NGC v0.0.1
Lossless:
-best �truncateNames

m1:
-best -q1levels standard -qvalRleEncoding -truncateNames

m2:
-best -q1levels standard -q2levels standard -qvalRleEncoding -truncateNames

m3:
-best -q1levels standard -qvalRleEncoding -truncateNames

m4:
-best -q1levels 30 -q2levels 30 -qvalRleEncoding -truncateNames

m5:
-best -q1levels 30 -q2levels 30 -q4levels standard -qvalRleEncoding -mmq 20 -q5levels 30 -truncateNames

recovery:
-best -q1levels 30 -q2levels standard -qvalRleEncoding -truncateNames -variantList <variants.vcf>

drop all:
-best -q1levels 30 -q2levels 30 -q3levels 30 -q4levels 30 -qvalRleEncoding -truncateNames

A.7.2 Cram v0.85
cram lossless compression:
--capture-all-quality-scores --capture-all-tags

cram lossy compression:
--capture-insertion-quality-scores --capture-piled-quality-scores
--capture-substitution-quality-scores --capture-unmapped-quality-scores --capture-all-tags

cram decompression:
--calculate-md-tag --calculate-nm-tag

A.7.3 Goby v2.1
goby lossless compression:
--sorted --preserve-all-tags --preserve-soft-clips --preserve-all-mapped-qualities
--ambiguity-threshold 1000000

goby decompression:
<no options>

NOTE: Goby could compress/decompress the Reseq/hm (human) data set, however, the resulting BAM
file contained less reads than the original. Goby could not compress the Reseq/chr20 (human) with 16GByte
of dedicated RAM within two days after which we stopped the job.

A.8 Supplementary Data Tables
This section contains the absolute data values from our evaluation experiments.
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Data set Q-value quantization
strategy

tp fp fn tn acc prec sens spec HET/HOM HET/HOM
(%)

recovered
variants(%)

Exome-
seq
(human)

noquant (lossless) 3,994 - - 3,101,800,745 1.000 1.000 1.000 1.000 - 100.0% 100.0%
dropall (drop all) 3,897 6,013 97 3,101,794,732 1.000 0.393 0.976 1.000 52 98.7% 97.6%

quant-bestacc1 (m2) 3,982 85 12 3,101,800,660 1.000 0.979 0.997 1.000 13 99.7% 99.7%
quant-bestacc2 (m1) 3,982 28 12 3,101,800,717 1.000 0.993 0.997 1.000 4 99.9% 99.7%
quant-bestacc3 (m3) 3,975 98 19 3,101,800,647 1.000 0.976 0.995 1.000 17 99.6% 99.5%

quant-recover (recovery) 3,966 76 28 3,101,800,669 1.000 0.981 0.993 1.000 9 99.8% 99.3%
quant-cramstyle (m4) 3,928 88 66 3,101,800,657 1.000 0.978 0.983 1.000 46 98.8% 98.3%

bestcomp (m5) 3,924 91 70 3,101,800,654 1.000 0.977 0.982 1.000 46 98.8% 98.2%
cram 3,928 88 66 3,101,800,657 1.000 0.978 0.983 1.000 46 98.8% 98.3%

ChiP-
seq
(mouse)

noquant (lossless) 16,929 - - 2,725,748,552 1.000 1.000 1.000 1.000 - 100.0% 100.0%
dropall (drop all) 15,379 5,700 1,550 2,725,742,852 1.000 0.730 0.908 1.000 208 98.6% 90.8%

quant-bestacc1 (m2) 16,872 226 57 2,725,748,326 1.000 0.987 0.997 1.000 112 99.3% 99.7%
quant-bestacc2 (m1) 16,869 68 60 2,725,748,484 1.000 0.996 0.996 1.000 19 99.9% 99.6%
quant-bestacc3 (m3) 16,852 338 77 2,725,748,214 1.000 0.980 0.995 1.000 120 99.3% 99.5%

quant-recover (recovery) 16,841 133 88 2,725,748,419 1.000 0.992 0.995 1.000 27 99.8% 99.5%
quant-cramstyle (m4) 16,665 287 264 2,725,748,265 1.000 0.983 0.984 1.000 268 98.4% 98.4%

bestcomp (m5) 16,622 1,116 307 2,725,747,436 1.000 0.937 0.982 1.000 269 98.4% 98.2%
cram 16,665 287 264 2,725,748,265 1.000 0.983 0.984 1.000 268 98.4% 98.4%

Reseq/hm
(human)

noquant (lossless) 861 - - 3,101,803,878 1.000 1.000 1.000 1.000 - 100.0% 100.0%
dropall (drop all) 816 259 45 3,101,803,619 1.000 0.759 0.948 1.000 8 99.0% 94.8%

quant-bestacc1 (m2) 859 1 2 3,101,803,877 1.000 0.999 0.998 1.000 5 99.4% 99.8%
quant-bestacc2 (m1) 859 - 2 3,101,803,878 1.000 1.000 0.998 1.000 - 100.0% 99.8%
quant-bestacc3 (m3) 859 2 2 3,101,803,876 1.000 0.998 0.998 1.000 5 99.4% 99.8%

quant-recover (recovery) 859 - 2 3,101,803,878 1.000 1.000 0.998 1.000 2 99.8% 99.8%
quant-cramstyle (m4) 852 1 9 3,101,803,877 1.000 0.999 0.990 1.000 9 98.9% 99.0%

bestcomp (m5) 832 39 29 3,101,803,839 1.000 0.955 0.966 1.000 9 98.9% 96.6%
cram 852 1 9 3,101,803,877 1.000 0.999 0.990 1.000 9 98.9% 99.0%

RNA-
seq
(e.coli)

noquant (lossless) 151 - - 4,639,524 1.000 1.000 1.000 1.000 - 100.0% 100.0%
dropall (drop all) 127 148 24 4,639,376 1.000 0.462 0.841 1.000 1 99.2% 84.1%

quant-bestacc1 (m2) 149 2 2 4,639,522 1.000 0.987 0.987 1.000 - 100.0% 98.7%
quant-bestacc2 (m1) 148 1 3 4,639,523 1.000 0.993 0.980 1.000 - 100.0% 98.0%
quant-bestacc3 (m3) 149 2 2 4,639,522 1.000 0.987 0.987 1.000 - 100.0% 98.7%

quant-recover (recovery) 150 1 1 4,639,523 1.000 0.993 0.993 1.000 - 100.0% 99.3%
quant-cramstyle (m4) 144 - 7 4,639,524 1.000 1.000 0.954 1.000 - 100.0% 95.4%

bestcomp (m5) 142 1 9 4,639,523 1.000 0.993 0.940 1.000 - 100.0% 94.0%
cram 144 - 7 4,639,524 1.000 1.000 0.954 1.000 - 100.0% 95.4%

Reseq
(e.coli,PE)

noquant (lossless) 94 - - 4,639,581 1.000 1.000 1.000 1.000 - 100.0% 100.0%
dropall (drop all) 91 4,229 3 4,635,352 0.999 0.021 0.968 0.999 - 100.0% 96.8%

quant-bestacc1 (m2) 94 6 - 4,639,575 1.000 0.940 1.000 1.000 - 100.0% 100.0%
quant-bestacc2 (m1) 94 - - 4,639,581 1.000 1.000 1.000 1.000 - 100.0% 100.0%
quant-bestacc3 (m3) 94 51 - 4,639,530 1.000 0.648 1.000 1.000 - 100.0% 100.0%

quant-recover (recovery) 94 4 - 4,639,577 1.000 0.959 1.000 1.000 - 100.0% 100.0%
quant-cramstyle (m4) 76 27 18 4,639,554 1.000 0.738 0.809 1.000 - 100.0% 80.9%

bestcomp (m5) 76 27 18 4,639,554 1.000 0.738 0.809 1.000 - 100.0% 80.9%
cram 76 22 18 4,639,559 1.000 0.776 0.809 1.000 - 100.0% 80.9%

Reseq
(e. coli)

noquant (lossless) 77 - - 4,639,598 1.000 1.000 1.000 1.000 - 100.0% 100.0%
dropall (drop all) 77 1,029 - 4,638,569 1.000 0.070 1.000 1.000 - 100.0% 100.0%

quant-bestacc1 (m2) 77 1 - 4,639,597 1.000 0.987 1.000 1.000 - 100.0% 100.0%
quant-bestacc2 (m1) 77 1 - 4,639,597 1.000 0.987 1.000 1.000 - 100.0% 100.0%
quant-bestacc3 (m3) 76 4 1 4,639,594 1.000 0.950 0.987 1.000 - 100.0% 98.7%

quant-recover (recovery) 77 2 - 4,639,596 1.000 0.975 1.000 1.000 - 100.0% 100.0%
quant-cramstyle (m4) 75 4 2 4,639,594 1.000 0.949 0.974 1.000 - 100.0% 97.4%

bestcomp (m5) 75 4 2 4,639,594 1.000 0.949 0.974 1.000 - 100.0% 97.4%
cram 75 4 2 4,639,594 1.000 0.949 0.974 1.000 - 100.0% 97.4%

Reseq
(a.
thaliana)

noquant (lossless) 195,510 - - 119,472,240 1.000 1.000 1.000 1.000 - 100.0% 100.0%
dropall (drop all) 193,677 14,414 1,833 119,457,826 1.000 0.931 0.991 1.000 1,015 99.5% 99.1%

quant-bestacc1 (m2) 195,362 449 148 119,471,791 1.000 0.998 0.999 1.000 128 99.9% 99.9%
quant-bestacc2 (m1) 195,379 169 131 119,472,071 1.000 0.999 0.999 1.000 18 100.0% 99.9%
quant-bestacc3 (m3) 195,327 712 183 119,471,528 1.000 0.996 0.999 1.000 148 99.9% 99.9%

quant-recover (recovery) 195,293 324 217 119,471,916 1.000 0.998 0.999 1.000 35 100.0% 99.9%
quant-cramstyle (m4) 195,044 723 466 119,471,517 1.000 0.996 0.998 1.000 1,141 99.4% 99.8%

bestcomp (m5) 194,189 4,444 1,321 119,467,796 1.000 0.978 0.993 1.000 1,140 99.4% 99.3%
cram 195,044 723 466 119,471,517 1.000 0.996 0.998 1.000 1,141 99.4% 99.8%

Reseq/chr20
(hu-
man)

noquant (lossless) 112,753 33 15 3,101,691,938 1.000 1.000 1.000 1.000 2 100.0% 100.0%
dropall (drop all) 112,252 19,473 516 3,101,672,498 1.000 0.852 0.995 1.000 349 99.7% 100.0%

quant-bestacc1 (m2) 112,740 206 28 3,101,691,765 1.000 0.998 1.000 1.000 50 100.0% 100.0%
quant-bestacc2 (m1) 112,744 38 24 3,101,691,933 1.000 1.000 1.000 1.000 12 100.0% 100.0%
quant-bestacc3 (m3) 112,695 322 73 3,101,691,649 1.000 0.997 0.999 1.000 211 99.8% 99.9%

quant-recover (recovery) 112,738 95 30 3,101,691,876 1.000 0.999 1.000 1.000 27 100.0% 100.0%
quant-cramstyle (m4) 112,106 99 662 3,101,691,872 1.000 0.999 0.994 1.000 407 99.6% 99.4%

bestcomp (m5) 112,106 104 662 3,101,691,867 1.000 0.999 0.994 1.000 419 99.6% 99.4%
cram 112,082 30 686 3,101,691,941 1.000 1.000 0.994 1.000 403 99.6% 99.4%

Table A.3: Variant recovery (GATK)
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Data set Q-value quantization strategy tp fp fn tn acc prec sens spec HET/HOM HET/HOM
(%)

recovered
variants(%)

Exome-
seq
(human)

noquant (lossless) 3,007 - - 3,101,801,732 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 2,874 1,323 133 3,101,800,409 1.000 0.685 0.956 1.000 18 99.4% 95.6%

quant-bestacc1 (m2) 2,982 35 25 3,101,801,697 1.000 0.988 0.992 1.000 5 99.8% 99.2%
quant-bestacc2 (m1) 2,991 10 16 3,101,801,722 1.000 0.997 0.995 1.000 2 99.9% 99.5%
quant-bestacc3 (m3) 2,981 58 26 3,101,801,674 1.000 0.981 0.991 1.000 5 99.8% 99.1%

quant-recover (recovery) 2,983 16 24 3,101,801,716 1.000 0.995 0.992 1.000 3 99.9% 99.2%
quant-cramstyle (m4) 2,953 65 54 3,101,801,667 1.000 0.978 0.982 1.000 24 99.2% 98.2%

bestcomp (m5) 2,957 90 50 3,101,801,642 1.000 0.970 0.983 1.000 25 99.2% 98.3%
cram 2,953 65 54 3,101,801,667 1.000 0.978 0.982 1.000 24 99.2% 98.2%

ChiP-
seq
(mouse)

noquant (lossless) 6,293 - - 2,725,759,188 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 5,082 1,136 1,211 2,725,758,052 1.000 0.817 0.808 1.000 93 98.2% 80.8%

quant-bestacc1 (m2) 6,148 62 145 2,725,759,126 1.000 0.990 0.977 1.000 40 99.3% 97.7%
quant-bestacc2 (m1) 6,247 35 46 2,725,759,153 1.000 0.994 0.993 1.000 11 99.8% 99.3%
quant-bestacc3 (m3) 6,095 137 198 2,725,759,051 1.000 0.978 0.969 1.000 47 99.2% 96.9%

quant-recover (recovery) 6,244 52 49 2,725,759,136 1.000 0.992 0.992 1.000 22 99.6% 99.2%
quant-cramstyle (m4) 5,999 144 294 2,725,759,044 1.000 0.977 0.953 1.000 96 98.4% 95.3%

bestcomp (m5) 5,997 147 296 2,725,759,041 1.000 0.976 0.953 1.000 97 98.4% 95.3%
cram 5,999 144 294 2,725,759,044 1.000 0.977 0.953 1.000 96 98.4% 95.3%

Reseq/hm
(human)

noquant (lossless) 327 - - 3,101,804,412 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 284 26 43 3,101,804,386 1.000 0.916 0.869 1.000 5 98.2% 86.9%

quant-bestacc1 (m2) 324 1 3 3,101,804,411 1.000 0.997 0.991 1.000 3 99.1% 99.1%
quant-bestacc2 (m1) 326 1 1 3,101,804,411 1.000 0.997 0.997 1.000 0 100.0% 99.7%
quant-bestacc3 (m3) 322 1 5 3,101,804,411 1.000 0.997 0.985 1.000 3 99.1% 98.5%

quant-recover (recovery) 326 1 1 3,101,804,411 1.000 0.997 0.997 1.000 1 99.7% 99.7%
quant-cramstyle (m4) 322 3 5 3,101,804,409 1.000 0.991 0.985 1.000 4 98.8% 98.5%

bestcomp (m5) 322 8 5 3,101,804,404 1.000 0.976 0.985 1.000 4 98.8% 98.5%
cram 322 3 5 3,101,804,409 1.000 0.991 0.985 1.000 4 98.8% 98.5%

RNA-
seq
(e.coli)

noquant (lossless) 11 - - 4,639,664 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 8 34 3 4,639,630 1.000 0.190 0.727 1.000 0 100.0% 72.7%

quant-bestacc1 (m2) 10 - 1 4,639,664 1.000 1.000 0.909 1.000 0 100.0% 90.9%
quant-bestacc2 (m1) 11 - - 4,639,664 1.000 1.000 1.000 1.000 0 100.0% 100.0%
quant-bestacc3 (m3) 10 2 1 4,639,662 1.000 0.833 0.909 1.000 0 100.0% 90.9%

quant-recover (recovery) 11 - - 4,639,664 1.000 1.000 1.000 1.000 0 100.0% 100.0%
quant-cramstyle (m4) 9 4 2 4,639,660 1.000 0.692 0.818 1.000 0 100.0% 81.8%

bestcomp (m5) 9 4 2 4,639,660 1.000 0.692 0.818 1.000 0 100.0% 81.8%
cram 9 4 2 4,639,660 1.000 0.692 0.818 1.000 0 100.0% 81.8%

Reseq
(e.coli,PE)

noquant (lossless) 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 2 5 - 4,639,668 1.000 0.286 1.000 1.000 0 100.0% 100.0%

quant-bestacc1 (m2) 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%
quant-bestacc2 (m1) 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%
quant-bestacc3 (m3) 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%

quant-recover (recovery) 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%
quant-cramstyle (m4) 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%

bestcomp (m5) 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%
cram 2 - - 4,639,673 1.000 1.000 1.000 1.000 0 100.0% 100.0%

Reseq
(e. coli)

noquant (lossless) 72 - - 4,639,603 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 70 11 2 4,639,592 1.000 0.864 0.972 1.000 0 100.0% 97.2%

quant-bestacc1 (m2) 72 1 - 4,639,602 1.000 0.986 1.000 1.000 0 100.0% 100.0%
quant-bestacc2 (m1) 72 - - 4,639,603 1.000 1.000 1.000 1.000 0 100.0% 100.0%
quant-bestacc3 (m3) 72 3 - 4,639,600 1.000 0.960 1.000 1.000 0 100.0% 100.0%

quant-recover (recovery) 72 1 - 4,639,602 1.000 0.986 1.000 1.000 0 100.0% 100.0%
quant-cramstyle (m4) 70 4 2 4,639,599 1.000 0.946 0.972 1.000 0 100.0% 97.2%

bestcomp (m5) 70 5 2 4,639,598 1.000 0.933 0.972 1.000 0 100.0% 97.2%
cram 70 4 2 4,639,599 1.000 0.946 0.972 1.000 0 100.0% 97.2%

Reseq
(a.
thaliana)

noquant (lossless) 37,104 - - 119,630,646 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 34,303 3,352 2,801 119,627,294 1.000 0.911 0.925 1.000 449 98.7% 92.5%

quant-bestacc1 (m2) 36,650 159 454 119,630,487 1.000 0.996 0.988 1.000 93 99.7% 98.8%
quant-bestacc2 (m1) 36,995 73 109 119,630,573 1.000 0.998 0.997 1.000 9 100.0% 99.7%
quant-bestacc3 (m3) 36,567 309 537 119,630,337 1.000 0.992 0.986 1.000 107 99.7% 98.6%

quant-recover (recovery) 36,957 122 147 119,630,524 1.000 0.997 0.996 1.000 26 99.9% 99.6%
quant-cramstyle (m4) 36,371 323 733 119,630,323 1.000 0.991 0.980 1.000 483 98.7% 98.0%

bestcomp (m5) 36,372 390 732 119,630,256 1.000 0.989 0.980 1.000 484 98.7% 98.0%
cram 36,371 323 733 119,630,323 1.000 0.991 0.980 1.000 483 98.7% 98.0%

Reseq/chr20
(hu-
man)

noquant (lossless) 90,969 - - 3,101,713,770 1.000 1.000 1.000 1.000 0 100.0% 100.0%
dropall (drop all) 86,295 2,648 4,674 3,101,711,122 1.000 0.970 0.949 1.000 186 99.8% 94.9%

quant-bestacc1 (m2) 90,726 273 243 3,101,713,497 1.000 0.997 0.997 1.000 57 99.9% 99.7%
quant-bestacc2 (m1) 90,862 53 107 3,101,713,717 1.000 0.999 0.999 1.000 26 100.0% 99.9%
quant-bestacc3 (m3) 90,645 381 324 3,101,713,389 1.000 0.996 0.996 1.000 89 99.9% 99.6%

quant-recover (recovery) 90,831 70 138 3,101,713,700 1.000 0.999 0.998 1.000 38 100.0% 99.8%
quant-cramstyle (m4) 90,370 368 599 3,101,713,402 1.000 0.996 0.993 1.000 175 99.8% 99.3%

bestcomp (m5) 90,366 389 603 3,101,713,381 1.000 0.996 0.993 1.000 176 99.8% 99.3%
cram 90,379 357 590 3,101,713,413 1.000 0.996 0.994 1.000 177 99.8% 99.4%

Table A.4: Variant recovery (SAMTOOLS)
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Data set Q-value quantization strategy prec sens % %recovered vars

Exome-seq (human)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.539 0.966 0.990 97%

quant-bestacc1 (m2) 0.984 0.994 0.998 99%
quant-bestacc2 (m1) 0.995 0.996 0.999 100%
quant-bestacc3 (m3) 0.978 0.993 0.997 99%

quant-recover (recovery) 1.000 0.993 0.998 99%
quant-cramstyle (m4) 0.978 0.983 0.990 98%

bestcomp (m5) 0.974 0.983 0.990 98%
cram 0.978 0.983 0.990 98%

ChiP-seq (mouse)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.773 0.858 0.984 86%

quant-bestacc1 (m2) 0.988 0.987 0.993 99%
quant-bestacc2 (m1) 0.995 0.995 0.999 99%
quant-bestacc3 (m3) 0.979 0.982 0.993 98%

quant-recover (recovery) 0.992 0.994 0.997 99%
quant-cramstyle (m4) 0.980 0.969 0.984 97%

bestcomp (m5) 0.957 0.967 0.984 97%
cram 0.980 0.969 0.984 97%

Reseq/hm (human)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.838 0.908 0.986 91%

quant-bestacc1 (m2) 0.998 0.994 0.992 99%
quant-bestacc2 (m1) 0.998 0.997 1.000 100%
quant-bestacc3 (m3) 0.997 0.991 0.992 99%

quant-recover (recovery) 0.998 0.997 0.997 100%
quant-cramstyle (m4) 0.995 0.987 0.989 99%

bestcomp (m5) 0.965 0.976 0.988 98%
cram 0.995 0.987 0.989 99%

RNA-seq (e.coli)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.326 0.784 0.996 78%

quant-bestacc1 (m2) 0.993 0.948 1.000 95%
quant-bestacc2 (m1) 0.997 0.990 1.000 99%
quant-bestacc3 (m3) 0.910 0.948 1.000 95%

quant-recover (recovery) 0.997 0.997 1.000 100%
quant-cramstyle (m4) 0.846 0.886 1.000 89%

bestcomp (m5) 0.843 0.879 1.000 88%
cram 0.846 0.886 1.000 89%

Reseq (e.coli,PE)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.153 0.984 1.000 98%

quant-bestacc1 (m2) 0.970 1.000 1.000 100%
quant-bestacc2 (m1) 1.000 1.000 1.000 100%
quant-bestacc3 (m3) 0.824 1.000 1.000 100%

quant-recover (recovery) 0.980 1.000 1.000 100%
quant-cramstyle (m4) 0.869 0.904 1.000 90%

bestcomp (m5) 0.869 0.904 1.000 90%
cram 0.888 0.904 1.000 90%

Reseq (e. coli)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.467 0.986 1.000 99%

quant-bestacc1 (m2) 0.987 1.000 1.000 100%
quant-bestacc2 (m1) 0.994 1.000 1.000 100%
quant-bestacc3 (m3) 0.955 0.994 1.000 99%

quant-recover (recovery) 0.980 1.000 1.000 100%
quant-cramstyle (m4) 0.948 0.973 1.000 97%

bestcomp (m5) 0.941 0.973 1.000 97%
cram 0.948 0.973 1.000 97%

Reseq (a. thaliana)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.921 0.958 0.991 96%

quant-bestacc1 (m2) 0.997 0.994 0.998 99%
quant-bestacc2 (m1) 0.999 0.998 1.000 100%
quant-bestacc3 (m3) 0.994 0.992 0.998 99%

quant-recover (recovery) 0.998 0.997 1.000 100%
quant-cramstyle (m4) 0.994 0.989 0.990 99%

bestcomp (m5) 0.984 0.987 0.990 99%
cram 0.994 0.989 0.990 99%

Reseq/chr20 (human)

noquant (lossless) 1.000 1.000 1.000 100%
dropall (drop all) 0.911 0.972 0.997 97%

quant-bestacc1 (m2) 0.998 0.999 0.999 100%
quant-bestacc2 (m1) 1.000 0.999 1.000 100%
quant-bestacc3 (m3) 0.996 0.998 0.999 100%

quant-recover (recovery) 0.999 0.999 1.000 100%
quant-cramstyle (m4) 0.998 0.994 0.997 99%

bestcomp (m5) 0.997 0.994 0.997 99%
cram 0.998 0.994 0.997 99%

Table A.5: Variant recovery (averaged)
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Sample mapped reads Bases and qvalues BAM [byte] GOBY [byte] Comp. ratio comp [min] decomp [min]

Exome-seq (human) 3,239,217 323,921,700 199,019,319 149,878,386 0.75 3.13 5.43
ChiP-seq (mouse) 13,824,441 497,679,876 637,462,912 420,719,703 0.66 8.72 16.31

Reseq/hm (human) 487,201 62,435,260 53,036,863 - - - -
RNA-seq (e.coli) 6,927,728 249,398,208 177,499,665 146,982,735 0.83 3.98 7.14
Reseq (e.coli,PE) 44,938,891 4,538,790,538 2,945,453,583 2,507,599,991 0.85 135.03 169.49

Reseq (e. coli) 19,379,287 697,654,332 654,501,526 491,915,033 0.75 11.21 20.10
Reseq (a. thaliana) 11,651,942 419,469,912 503,542,318 361,810,425 0.72 7.53 13.39

Reseq/chr20 (human) 50,663,069 5,116,969,969 5,867,598,471 - - - -

Table A.7: Goby evaluation data. Note that the data sets Reseq/hm (human) and Reseq/chr20 (human) could
not be properly compressed/decompressed with Goby as explained in above in Section A.7.3.
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