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Abstract
Context. Galactic winds in the Milky Way are probably driven by cosmic
ray particles. These particles will modulate the wind by resonant excitation
of magnetohydrodynamic waves. A simple physical model based on a flux-
tube geometry is introduced for determining the gas pressure, the cosmic
ray pressure and the density 1 kpc above the outer disk (reffered to as inner
boundary of the galactic wind). Furthermore the influence of diffusion is
discussed as well as the effect of different initial models.
Aims. The simulation of sequential supernova explosions will lead to a se-
ries of subsequent shock waves propagating outwards along the galactic wind.
One goal is to investigate the scaleheight, at which the shocks are merging to
a single strong shock, which enables particle acceleration by the first-order
Fermi mechanism. Another aim is to examine and discuss the various flow
features occuring to get a better insight in the physics of galactic winds.
Methods. An implicit hydrodynamical (HD) code will be used to simu-
late galactic wind flows within an adapted fluxtube geometry. The inner
boundary conditions are modelled by using the so-called Kompaneets ap-
proximation, which is an analytical description of an expanding superbubble
in an exponentially stratified atmosphere.
Results. The time-dependent shock structures (forward and reverse shock
as well as a contact discontinuity) have been confirmed by using the implicit
MHD code. Furthermore the merging scaleheight could be determined to be
very close to the inner boundary (approximately 5 kpc). This is important
to support the hypothesis of cosmic ray particle acceleration close to the in-
ner boundary (lower halo), which is necessary to explain the observed high
particle energies of 1017 − 1018 eV. The time evolution of the various shocks
is also discussed in detail and shows clearly the merging process of the flow
features. If galactic wind feedback on the properties of the inner boundary is
considered, the galactic outflow will terminate as soon as the shocks are too
weak to accelerate the gas. Noticeable is that the wind propagates further,
if the undisturbed medium is assumed to be hydrostatic.
Conclusions. Supernovae explosions and its subsequent propagating shock
waves are very likely to be the key process in understanding the observed
cosmic ray (CR) energy spectrum.
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Zusammenfassung

Kontext. Galaktische Winde in Galaxien mit normaler Sternentstehungsra-
te (z.B. die Milchstraße) können vermutlich mit Hilfe kosmischer Strahlung
aus der Galaxie ausströmen. Diese Teilchen beeinflussen den Wind durch re-
sonante Anregung von magnetohydrodynamischen Wellen. Weiters wird ein
einfaches auf einer Flussröhrengeometrie basierendes physikalisches Modell
verwendet um den Gasdruck, den Druck durch kosmische Strahlung und die
Dichte am inneren Rand des galaktischen Winds zu bestimmen. Zusätzlich
wird der Einfluss verschieden starker Diffusion als auch die Abhängigkeit von
verschiedenen Anfangsmodellen diskutiert.
Ziele. Die Simulation von zeitlich versetzten Supernova-Explosionen führt
zur Ausbildung von mehreren aufeinander folgenden Schockwellen, welche
sich entlang des galaktischen Windes in Richtung des Halos bewegen. Ein
Ziel ist es eine Merging-Skalenhöhe zu definieren, in welcher sich die Schocks
verbinden zu einer starken Stoßfront. Dieser Schock ist dann stark genug, um
Teilchenbeschleunigung durch den Fermi-Prozess erster Ordnung zu gewähr-
leisten. Ein weiteres Ziel ist die Untersuchung und Diskussion der auftreten-
den Wind-Features, um ein besseres Verständnis für die involvierte Physik
zu bekommen.
Methoden. Ein impliziter hydrodynamischer (HD) Code wird verwendet,
um den galaktischen Wind innerhalb einer bestimmten Flussröhrengeometrie
zu simulieren. Die inneren Randbedingungen werden mit Hilfe der sogenann-
ten Kompaneets-Approximation modelliert, welche eine analytische Beschrei-
bung einer expandierenden Superbubble in einer exponentiell geschichteten
Atmosphäre ist.
Ergebnisse. Die zeitabhängigen Schocks (vorlaufender und rücklaufender
Schock sowie eine Kontaktdiskontinuität) werden sehr gut aufgezeigt und be-
stätigt vom verwendeten MHD Code. Weiters konnte die Merging-Skalenhöhe
festgelegt werden (ungefähr 5 kpc). Dieses Ergebnis ist wichtig um die These
zu stützen, dass die kosmischen Teilchen nahe der galaktischen Scheibe auf
die erforderlichen und beobachteten Energien von 1017−1018 eV beschleunigt
werden. Weiters wird die Zeitentwicklung der einzelnen Schocks ausführlich
diskutiert und zeigt ganz klar, dass alle Schockfronten zusammenlaufen und
sich zu einer Stoßfront verbinden. Bei Betrachtung der Rückwirkung des
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galaktischen Windes auf die innere Randbedingung der Superbubble zeigt
sich, dass die Schocks abschwächen und nach einiger Zeit verschwinden, wel-
ches ein Abflauen des galaktischen Windes zur Folge hat. Interessanterweise
schafft es der Wind im Falle einer hydrostatischen Anfangskonfiguration, wei-
ter auszuströmen als im Falle einer Wind-Anfangsverteilung.
Schlussfolgerung. Supernova-Explosionen und die daraus resultierenden
Stoßwellen sind sehr wahrscheinlich der Schlüsselprozess, um die beobachte-
te Energieverteilung der kosmischen Strahlungspartikel zu verstehen.
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1 Galactic Winds

1.1 Introduction

In recent decades galaxies had been popular objects of research. Especially the issue of
galaxy formation and evolution fascinated astrophysicists and is still not understood in
all details. Gravity is responsible for the largest structures one can observe in present
days, but on galactic scales, the gravitational force is not the only important force to take
into account when making models which should explain the various observed features
of galaxies. Even inclusion of cold dark matter could not explain features like galactic
outflows. Nowadays a change of thinking has begun and different physical processes, e.g.
star formation and evolution or chemical evolution of the interstellar medium (ISM), are
taken into account in treating the issues of galaxies. Veilleux et al. (2005) argue that the
progress of development of new theoretical and numerical galactic wind models is slow
because of the need for comprehensive data (in sensitivity and spatial resolution) of the
full electromagnetic spectrum. These data are essential for the further improvement of
the models.

When a starburst with large outflows was detected in the galaxy M82 (see Lynds &
Sandage (1963)), the topic of galactic winds (GWs) became even more interesting and
was since then considered as the dominant feedback in galaxy formation and evolution
(Veilleux et al. (2005)). From this time on various models have been created, which try
to explain these galactic outflows (e.g Burke (1968); Johnson & Axford (1971); Mathews
& Baker (1971)), and it was found that mass outflows only occur, if the temperature
of the gas is sufficiently high( Breitschwerdt et al. (1991)). The problem is that most
of the recent galactic wind models are only treating galactic winds as single-component-
fluids, saying that just the effects of the ejected gas like radiative cooling are taken
into account and therefore only the thermal pressure is driving the wind. These high-
temperature winds are therefore so-called thermally-driven winds and are assumed to
have flow structures showing that the gas is ejected with high kinetic energy until dense
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1 GALACTIC WINDS

clumps are formed due to radiative cooling. These dense structures then fall back to
the galactic disk (so-called galactic fountains, see Kahn (1981), Kahn (1991) and Kahn
(1998) for further reading). As a result the halo around galaxies becomes inhomogeneous
(see Figure 1.3). However, such winds are only expected to occur in galaxies with active
galactic nuclei (AGN) or in galaxies with very high gas temperatures, e.g. in starburst
galaxies.

Figure 1.1: H I contours over a multi-wavelength picture of the galaxy NGC 253. The con-
tours reveal denser regions (clumps), which were created by a galactic outflow.
Several of these clumps are very likely to fall back to the galactic disk as galactic
fountains (the picture is taken from Boomsma et al. (2005)).

The next step on the path of a better understanding of galactic winds had been taken,
when for the first time the effects of cosmic rays (CRs) were included in the dynamical
galactic wind equations (Ipavich (1975)). With accounting for this newly considered
component, the temperatures needed to drive a wind significantly dropped. This is
possible, because CRs can transfer a sufficient amount of momentum to the gas to
escape from the galaxy, even if the gas is cold. Nevertheless, the calculations of that
model had been carried out in a spherical geometry with the galaxy itself assumed as
a point source of mass and energy. Furthermore no coupling between the CRs and the
gas had been taken into account. The model used in this thesis picks up the idea of
Breitschwerdt et al. (1991); de Avillez & Breitschwerdt (2005); Dorfi & Breitschwerdt
(2012), this means it takes the geometry of the wind-flow structure into account (the
so-called fluxtube geometry, see section 2.11) as well as the coupling between the three
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1.2 PHYSICAL MODEL FOR GALACTIC WINDS

main components of the galactic wind, namely the gas component, the cosmic rays and
the magnetic wave field. These interactions are briefly reviewed in the following section
1.2.

1.2 Physical Model for Galactic Winds
A justification for incorporating CRs in the galactic wind model can be obtained by
consideration of observations of electromagnetic spectra e.g. (of the Milky Way). It has
been shown (see Everett et al. (2008) for details) that a cosmic ray driven wind leads to
the best fits in explaining the observed spectra (compare with Figure 1.2).

Figure 1.2: H I contours over a multi-wavelength picture of the galaxy NGC 253. The con-
tours reveal denser regions (clumps), which were created by a galactic outflow.
Several of these clumps are very likely to fall back to the galactic disk as galactic
fountains (the picture is taken from Boomsma et al. (2005)).

The magnetic field modulates the gas flow pattern of the (ionized) gas flow, more pre-
cisely the plasma and the magnetic field affect each other, therefore galactic winds should
be treated magnetohydrodynamicall. Further CRs are charged particles, which start to
gyrate along the magnetic field and hence inducing small perturbations to the magnetic
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1 GALACTIC WINDS

field (so-called Alfvén waves), which in turn interact with the CRs and the gas com-
ponent. In the physical model described in section 1.2, the interaction of the magnetic
field on the plasma is not be considered, but the small perturbations of the magnetic
field (already introduced as magnetic wave field) are treated as an additional pressure
component, which interacts with the CR pressure.

1.2.1 Interaction between the gas component and the magnetic
field

The magnetic field is assumed to be ’frozen’ in the gas. This is due to the fact, that
the mean magnetic energy density is much lower than the thermal gas energy density in
large-scale magnetic field structures like in the halo of galaxies (for details see Ehle et al.
(1998)). On the other hand the kinetic energy of the galactic wind is dominant with
respect to the magnetic energy, which is resulting in frozen magnetic field lines. These
magnetic field structured can be traced observationally and therefore are providing a
good tool for studying the kinematics of galactic winds.

Close to the galactic mid-plane the magnetic field has a component parallel to the disk.
It has been shown in 3D-MHD simulations (for detail, see de Avillez & Breitschwerdt
(2005)), that the magnetic field parallel to the galactic disk cannot prevent hot gas
(especially created by supernovae) from streaming into the galactic halo. Moreover the
simulations showed, that the gas outflow into the halo is nearly as high as it would be
without having a magnetic field.

1.2.2 Interaction between the CR component, gas component and
the magnetic field and CR propagation

The CR particles are treated as a rarefied plasma, which interacts with the magnetic field
by gyrating along its field lines. The assumption of considering CRs as a plasma can be
explained and justified by taking a process into account named pitch-angle scattering.
The pitch-angle of CRs is changed, if the magnetic field is perturbed by e.g. motion of
the gas (see Figures 1.4 and 1.5). The variation of this pitch-angle can cause the CRs to
change their propagation (from parallel to antiparallel and vice versa) along the magnetic
field. Because of this it is legitimate to say that the CRs are distributed isotropic with
respect to such perturbations of the magnetic field (denoted as ’Alfvén-wave frame’ in
Breitschwerdt et al. (1991)). Such Alfvén waves are propagating along the magnetic
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1.2 PHYSICAL MODEL FOR GALACTIC WINDS

Figure 1.3: The left panel is showing the vertical (perpendicular to the galactic disk) density
distribution. Expanding superbubbles can be seen very clearly. The right panel
is showing the magnetic field map, which reveals magnetic field structures which
also have a component perpendicular to the galactic disk and therefore facilitate
outflows like galactic fountains or galactic winds (picture taken from de Avillez
& Breitschwerdt (2005)).

field lines with the Alfvén speed vA (with respect to the motion of the background gas
flow u),

vA := B√
4πρ , (1.2.1)
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1 GALACTIC WINDS

Figure 1.4: CR particle gyrating along
a unperturbed magnetic field
line (taken from Everett
(2009)).

Figure 1.5: Pitch angle of CR particle
changes, if the magnetic field
is perturbed (taken from Ev-
erett (2009)).

where ρ is the gas density. The Alfvén-waves are preferentially propagating away from
the galactic disk (outwards). Resonant excitation of Alfvén-waves by the CRs themselves
actually leads to a confinement of CRs particles to the Alfvén waves, a so-called Alfvénic
drift (for details and the derivation of these results see Skilling (1975); Cesarsky (1980)).
In other words, one can say that CRs effectively are convected outwards with the speed
(u + vA). Furthermore the Alfvén-waves act (as already argued) as the center of pitch-
angle scattering processes. Having a cosmic ray pressure gradient ∇pc, then a fraction of
CR flux is also due to diffusion down the gradient. In summary it can be said that one
is able to distinguish two different components, which add to the overall CR motion,

• convective motion due to confinement of CR particles to the Alfvén wave frame
(gas flow + Alfvénic drift),

• diffusion down the CR pressure gradient.

cosmic ray particles also are influencing the magnetic field due to the so-called Parker
instability (Parker (1966)). This instability causes the magnetic field parallel to the
galactic disk to inflate and to form Ω-shaped structures. Note that this is a completely
different process than the opening of field lines due to gas-flow motion caused by super-
novae, nevertheless it facilitates the outflow of gas into the galactic halo.

1.2.3 First-Order Fermi mechanism

The first-order Fermi mechanism is the assumed process to accelerate the CRs which
are created by e.g. supernovae up to speeds, which are sufficiently high to drive galactic
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1.2 PHYSICAL MODEL FOR GALACTIC WINDS

winds. The original idea has been developed by Fermi (1949). In the presence of strong
shock-waves the first-order Fermi mechanism is also referred to as diffusive shock accel-
eration.

Energy gain of CR particles

Subsequently the diffusive shock acceleration is briefly explained. The following assump-
tions are necessary for ensuring the applicability of the Fermi process:

• A strong shock is assumed (e.g. supersonic shells of expanding supernova rem-
nants), this means that the two densities ρ1 and ρ2 before and after the shock 1

are connected by the following relation (γg denotes the adiabatic index of the gas),

ρ2

ρ1
= γg + 1
γg − 1 . (1.2.2)

• The CR particles are assumed to have speeds close to the speed of light c. This
ensures that the shock velocity U is much lower than those of the particles.

• Due to the high particle velocity, the gyration radius along the magnetic field lines
can be assumed to be much bigger than the thickness of the shock, in other words
the particles ’feel’ the shock-front as an infinitesimally thin layer.

• Turbulent motion on both sides of the shock-front as well as streaming instabilities
are taken as the justification for assuming an isotropic velocity distribution on both
sides of the shock.

With these assumptions, the process (schematically) takes place as sketched in Figure
1.6 (following the explanations in Longair (2011), p. 570):

a) The velocity of a strong shock is characterized as being highly supersonic. In
the frame of the shock-wave the gas upstream flows through the shock front with
velocity u1 = U . Due to conservation of mass (see section 2.3) the following
expression must hold 2,

ρ1u1 = ρU = ρu2 . (1.2.3)
1Note that in this section the subscript “1” denotes quantities upstream and “2” corresponds to quan-
tities downstream.

2In Figure 1.6, the gas velocities are denoted differently, namely u1,2 → v1,2.
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1 GALACTIC WINDS

Figure 1.6: Sketch of the First-order Fermi mechanism, when a strong shock wave is assumed
(picture taken from Longair (2011).

b) For a non-relativistic mono-atomic gas the adiabatic index is γg = 5
3. Then, by

using the properties of a strong shock (1.2.2), the following relation is obtained,

ρ1

ρ2
= 4 , (1.2.4)

u2 = 1
4u1 . (1.2.5)

c) Now the whole system is again transformed into the system of the particles up-
stream, where the gas is at rest. Due to the made assumptions, the distribution
of CR particles upstream is isotropic. If a particle crosses the shock-front due to
scattering, it ’sees’ the moving gas downstream as explained in b). This gas moves
with 3

4U with respect to the material upstream, and therefore the CR particle
gains a small amount of energy.

d) Finally a last transformation into the frame of the gas downstream is performed.
Due to the same scattering processes as upstream, the CR particles there are
distributed isotropic too. In this system of reference the gas upstream flows towards
the gas downstream again with a velocity 3

4U . A particle which crosses the shock-
front therefore also gains energy. This is the crucial feature of the first-order Fermi
mechanism, because the particles only gain and never loose energy, when they are
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1.2 PHYSICAL MODEL FOR GALACTIC WINDS

crossing the shock front.

The energy gain can be calculated by taking into account that the CR particles are
relativistic. Then the resulting equation can be written as (see Longair (2011)),

pCR = ECR
c

, (1.2.6)

∆E = pCR
3
4 U , (1.2.7)

where pCR is the relativistic momentum of the CRs and ∆E is the energy gain after
crossing the shock-front. The energy gain clearly also depends on the angle θ of the
particles with respect to the shock. Only particles which are scattered into 0 ≤ θ ≤ π

2 ,
can cross the the shock. After averaging over all of these possible directions and taking
into account, that this energy fraction is gained twice, one obtains,〈

∆E
E

〉
= U

c
. (1.2.8)

Escape Probability

Another question is, how long the particles are scattered from upstream to downstream
and vice versa, before they can escape. For this purpose a result from classical kinetic
theory is used as it has been proposed by Bell (1978). Then the average number of
particles, which are crossing the shock-front on each side, can be estimated by 1

4 N c,
where N denotes the number of particles upstream. Because the region downstream is
slower than the shock-front by a value of 1

4 U , some of the CR particles are adventured
away from the shock region. Then the number of ’lost particles’ is clearly determined
by the number of particles in the region multiplied by velocity difference, especially it
has the value 1

4 U N . Thus the average rate of lost particles with respect to particles,
which are crossing the shock-front, takes the value (see Bell (1978); Longair (2011) for
details),

1
4 N U
1
4 N c

= U

c
. (1.2.9)

This escape probability per crossing cycle clearly is very low, since the shock velocity is
not relativistic.

Finally it should be noted that this is a simplified version of the first-order Fermi
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1 GALACTIC WINDS

mechanism. A full treatment requires to solve the so-called Fokker-Planck equation,
which describes the evolution of the CR energy spectrum (see e.g. Axford et al. (1977);
Blandford & Ostriker (1978) and Krymskii (1977)).

1.3 Kompaneets Approximation
This section deals with the issue of describing the evolution of a superbubble, which is
assumed to be the precursor of the cosmic ray driven winds discussed in this thesis. The
aim is to develop an approximate theory of an expanding superbubble, which provides
physically motivated initial values of the gas energy density Eg, the cosmic ray energy
density Ec and the initial fluxtube cross-section A0. A hydrodynamic treatment of this
problem would be far too much effort, since the model could not take any advantages
of the improved accuracy and spatial resolution due to the various simplifications (e.g.
the 1D-treatment of the problem, the simple fluxtube geometry).

Hence it is sufficient to use an approximate approach as it has been made by Kompaneets
(1960). He found an implicit description of (adiabatic) shock-waves propagating through
a exponentially stratified medium,

ρ(z) = ρ0e
−z/hz , (1.3.1)

where ρ0 is the density at the explosion center of the supernova and hz is the stratification
scaleheight. The following assumptions are made in the Kompaneets approximation:

• A strong, non-radiative (adiabatic) shock is assumed (compare with equation
(1.2.2).

• The post-shock pressure PS(t) should be uniform all over the surface of the super-
bubble.

• The atmosphere is hydrostatically (exponentially) stratified.

Then the Hugoniot conditions (details e.g. in Anderson (1963)) can be used to determine
the normal component of the expansion velocity of the shock-front U at every position z
above the galactic mid-plane (see Bisnovatyi-Kogan & Silich (1995)),

U(z, t) =

√√√√γg + 1
2

PS(t)
ρ(z)

(γg=5/3)⇒ PS(t) = 4
3ρ(z)U(z, t)2 . (1.3.2)
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1.3 KOMPANEETS APPROXIMATION

Using now equation (1.3.1) and the assumption, that PS shall be uniform all over the
shock-front, an expression for the shock velocity U is obtained (compare with Maciejew-
ski W. (1998)),

U(z, t) = U0(t)ez/(2hz) , (1.3.3)

where U0 denotes the shock-front velocity at the explosion site. Due to the exponential
stratification, the velocities U(zL, t) := UL(t) and U(zH , t) := UH(t) will have different
values (zL and zH denote the low and high density extrema, respectively; also compare
with Figure 1.7). Following the approach of Maciejewski W. (1998), the rate of expansion

Figure 1.7: Schematic view of the superbubble as assumed in the Kompaneets approximation
(picture taken from Maciejewski W. (1998)).

of the superbubble perpendicular to the galactic plane ȧ (a denotes the major half-axis)

11



1 GALACTIC WINDS

can be calculated rather easy as the mean value of the expansion velocities UL and UH .

ȧ = UL + UH
2 = U0(t)e

zH/(2hz) + ezL/(2hz)

2 . (1.3.4)

Because the expansion of the superbubble is dependent on the height z, a displace-
ment s of the explosion center will occur. The expansion rate ṡ can be calculated by
straightforward geometrical arguments,

ṡ = UL − UH
2 = U0(t)e

zL/(2hz) − ezH/(2hz)

2 . (1.3.5)

The expansion of the minor half-axis is determined only by using (1.3.3) and the fact
that z = s for b,

ḃ = U0(t)es/(2hz) . (1.3.6)

Then, by merging (1.3.4), (1.3.5) and (1.3.6), the unknown variable U0(t) can be elimi-
nated and the following expressions are obtained,

da

db
= cosh a

2hz
, (1.3.7)

ds

da
= tanh a

2hz
, (1.3.8)

and after subsequent integration the final relations are given by (compare with Ma-
ciejewski W. (1998)),

tan b

2hz
= sinh a

2hz
, (1.3.9)

exp s

2hz
= cosh a

2hz
. (1.3.10)

These equations give some insight about the evolution of the shock-shape, like the flat-
tening b/a or the lateral size b. Nevertheless, the derivation of the shape itself needs
some further discussions. In the original paper (Kompaneets (1960)), the form of the
shock-wave can be written in cylindrical coordinates (r, φ, z) as follows,

V (t) = π
∫ z2

z1
r(z, t)2 dz , (1.3.11)

where r(z, t) is the distance from the origin (explosion site) and dependent on the height

12



1.3 KOMPANEETS APPROXIMATION

z. Kompaneets then succeeded in finding an implicit solution for describing the shape of
the superbubble. The implicit nature of the equation is with respect to the dependence
on time t, since an integral is needed to get an explicit expression for t (see for details
e.g. Bisnovatyi-Kogan & Silich (1995)),

r(z, y) = 2hz arccos
{

1
2 exp

(
z

2hz

) [
1− y2

4h2
z

+ exp
(−z
hz

)]}
. (1.3.12)

The variable y is the transformed time variable, which is responsible for the implicit
dependence from time and is given by,

y(t) =
∫ t

0

√√√√γ2
g − 1

2
E0

ρ0 V (t′)dt
′ . (1.3.13)

The resulting shape is plotted afterwards in Figure 1.8 for various values of y and for a
stratification scaleheight hz = 80 kpc, revealing the expanding structure of the shock-
front. The problem with the time dependence as given in (1.3.13) is the dependence on
the volume, which again depends on the time-dependent radius r(z, t) (1.3.12). Hence,
obtaining the time which is connected to a certain y requires to first choose a value for
r and afterwards calculating the time y.

There is a way how to circumvent this problem. The idea is that the shock shape of
the Kompaneets approximation is virtually indistinguishable from an ellipsoid (the true
shape is a boxy ellipsoid, compare with Figure 1.8), as suggested by Maciejewski W.
(1998). Hence the volume of the superbubble V (t) can be approximated by writing,

V (t) = 4
3πa b

2 , (1.3.14)

where a and b are the major and minor half-axis of the ellipsoid, respectively. Then the
post-shock pressure PS can be written in the following terms (see Bisnovatyi-Kogan &
Silich (1995); Maciejewski W. (1998)),

PS = 4πζ5

25
E

V (t) . (1.3.15)

In this equation, ζ = 2.025 is a constant which follows from the energy integral of the
Sedov-solution (details on this in Sedov (1958)) and E is the energy of the supernova(e).
Then, by using equation (1.3.2) and equation (1.3.1) and using the fact that the expan-
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Figure 1.8: Expanding shock-waves according to the Kompaneets solution (plotted with
Mathematica).

sion velocity U for z = s is given by ḃ (compare with equation (1.3.6) and Figure 1.7),
one can write,

ρ0 e
−s/hz ḃ2 = 4ζ5

25
E

ab2 , (1.3.16)

and by expressing b and s in terms of a (see equations (1.3.5) and (1.3.6) the final
expression for the explicitly time-dependent major half-axis is obtained after integration
(Maciejewski W. (1998)),

14



1.3 KOMPANEETS APPROXIMATION

t(a) = ζ−5/2
(
E

ρ0

)−1/2

(2hz)5/2I
(
a

2hz

)
, (1.3.17)

I(x) := 5
2

∫ x

0
dy

√
y

cosh2 y
arctan(sinh(y)) ≈ 3x5/2

3 + 2x5/2 . (1.3.18)

This procedure is only directly applicable for a fixed supernova energy E. In this thesis
it is assumed that the stars of an OB-association, existing of more than one star, are
successively exploding and hence supplying energy and momentum to drive the super-
bubble expansion. For this purpose it is assumed, that the supernovae are exploding in
equidistant time intervals over a certain period. The expansion of the wind then clearly
has to be modified, since the energy is not supplied instantly, but spread over a cer-
tain time. The following steps are made for modifying the time evolution of the major
half-axis in the case of more than one supernova:

• In the case of one single supernova the superbubble expands according to (1.3.17),
until the next supernova explodes after the time dt.

• Two supernovae clearly lead to a greater expansion speed, therefore (1.3.17) is
used, but with E being twice the energy of on supernova, namely E = 2ESN (see
Figure 1.9.

• This procedure is repeated, until the superbubble has expanded to a certain ref-
erence level out of the galactic disk. At this level the quantities Eg and Ec are
calculated and used as initial inner boundary values for the galactic wind.

Furthermore it can be seen by analysis of (1.3.17), that a → ∞ in finite time. This
is called blow-out, because the superbubble accelerates rapidly due to the exponential
stratification of the ambient gas. Hence the application of the procedure above must be
handled with special care (it is possible that a blow-out occurs inbetween [(i− 1)dt, i dt]
and must be taken into account).

Applicable parameters for modelling the Kompaneets approximation for the Milky Way
galaxy are chosen as follows,

• scaleheight hz = 80 kpc,

• number density of the ambient gas at the explosion site n0 = 3 cm−3.

15
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Figure 1.9: The black line corresponds to the expansion of the major half-axis a in the case
of a single supernova. The red lines correspond to the expansion in the case of
two supernovae. The full lines represent the true expansion, the dashed lines
the expansions if there were no successive explosions of supernovae. The arrows
indicate, that the red full line must be moved in a way, that the expansion remains
continuous. This procedure is repeated for every additional supernova explosion
(plotted with Mathematica).

These values are based on the basis of the values taken by other authors for mod-
elling the Local Bubble, e.g. in Breitschwerdt et al. (2009). The values taken there are
n0 = 10 cm−3 and hz = 70 kpc, which are of the same order as the values taken in this
thesis. The somewhat lower density is chosen after comparison with other results, which
suggest slightly lower values for n0 (compare e.g. with Downes & Guesten (1982)). With
the chosen parameters the full expansion diagram for a(t) takes the following form (Fig-
ure 1.10).

The fixed value for a after approximately 10.3 dt is due to the fact, that from this time
on, the galactic wind is assumed to have started started and the cavity which has been
swept out by the superbubble, is hold constant. This can be justified physically by
arguing that before starting the galactic wind the energy provided by the supernova ex-
plosions is ’used’ to sweep up all the surrounding material, and in later times, after the
blow-out, this energy is advected away from the galactic disk by a wind. The reference
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z
[p
c]

0 1dt 2dt 3dt 4dt 5dt 6dt 7dt 8dt 9dt 10dt 11dt

0

200

400

600

800

1000

Figure 1.10: Expansion profile for the major half-axis a(t) of the Kompaneets ellipsoid (plot-
ted with Mathematica).

level is given at z0 = 1 kpc, which is in accordance with Breitschwerdt et al. (1991) and
Dorfi & Breitschwerdt (2012) (compare with Figure 1.11).

fluxtube

Kompaneets approximation
z0

Figure 1.11: Sketch of the connection of Kompaneets approximation and galactic wind. The
initial conditions for the wind are calculated at the reference level z0.

The Kompaneets superbubble is expanding until the center of the ellipsoid is reaching
the reference level z0 (the needed time until the superbubble center has reached z0 is

17



1 GALACTIC WINDS

denoted as t0), as it is already indicated in Figure 1.11. Doing this also enables one
to find a somewhat physically motivated estimate for the fluxtube surface A0 at the
reference level (for details see section 2.11), more precisely A0 is simply taken as the
cross section of the ellipsoid at z0, which is just A0 = b(t0)2π. The values Eg and Ec are
then calculated by writing,

V (t0) =: V0 = 4
3πa(t0)b(t0)2 , (1.3.19)

Eg(t) = Eth(t)
V0

, (1.3.20)

Ec(t) = ECR(t)
V0

. (1.3.21)

In these equations V0 is the superbubble volume and Eth and ECR are the thermal
energy and the CR energy, respectively. It is assumed that approximately 10% of the
total supernova energy ESN are transformed in CRs, which is in accordance with e.g.
Berezhko & Völk (2000) and Berezhko & Völk (2006), who constrain the CR energy
production to 10 − 40%. It is further assumed that a single supernova produces the
(commonly used) energy ESN = 1051 ergs. As already mentioned, the supernovae are
exploding in equidistant time intervals, thus the energy ESN(t) is a step-function in time
(see Figure 1.12). Applying the modified Kompaneets approximation as explained, the
final results can be calculated and are presented below,



tges = 1.2 · 107 yrs (period of supernova explosions) ,

dt = 4.8 · 105 yrs (time interval between 2 supernovae) ,

nmax = 13 (number of SNe before GW simulation is started) ,

t0 = 12.2 dt (time until galactic wind simulation is started) ,

b(t0) = 561.3 pc (minor half axis at z = z0) ,

A0 = 98976.4 pc2 (fluxtube crosssection at z = z0) ,

V0 = 1.466 pc3 (volume of the superbubble at t0) .
(1.3.22)

These values are sufficient to calculate Eg(t) and Ec(t) in dependence on time. In section
3.4.1 the here derived values are used to model the time-dependent inner boundary

18



1.3 KOMPANEETS APPROXIMATION

0 5dt 10dt 15dt 20dt 25dt
0

5

10

15

20

25
E
S
N

(t
)/
E

51

Figure 1.12: Energy input of supernovae exploding in equidistant times dt (plotted with
Mathematica).

conditions.
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2 Physical Equations

In this section the basic equations of CR hydrodynamics will be explained briefly. These
equations describe the behaviour of matter (fluids and gases). It is possible to formulate
them in a conservative form, meaning each of these equations correspond to a certain
conserved quantity. In the case of hydrodynamics, there are three of them,

• conservation of mass,

• conservation of momentum and

• conservation of energy.

To obtain a closed system of equations, it is furthermore necessary to formulate an
equation-of-state (EOS), which relates the gas-pressure of the system with the inner
energy of the gas. Before the equations are presented, the concept of an equation in
conservative form will be explained very briefly.

2.1 Equations in Conservative Form
The idea of an equation in conservative form is to extract, which quantities are preserved
in a volume element. A conservation law in its general form takes the form (see e.g. in
Schnack (2009), p. 43),

∂Uijk...
∂t

= − ∂

∂xm
Fmijk... , (2.1.1)

where Uijk... and Fmijk... are tensors of rank N and N+1, respectively. This form has the
advantage, that after integration over the volume V and application of Gauss’ Theorem,
one can write the conservation law as follows,

∂

∂t

∫
V
dV Uijk... =

∮
∂V
dSmFmijk... , (2.1.2)
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2.2 EQUATION OF STATE

where ∂V and dSm are the surface of the volume V and the infinitesimal surface normal,
respectively. If Fmijk... is interpreted as the flux of Uijk... in direction xm, the equation
can be interpreted straightforward: Every temporal variation of the quantity Uijk... in
the volume V must result in an equal flux through the bounding surface ∂V . Therefore
Uijk... is a conserved quantity. The following conservative equations are special cases of
this general conservation law, for N = 0 (mass and energy conservation) and for N = 1
(momentum conservation).

2.2 Equation of state

The equation of state is necessary to describe the internal structure of the gas. It relates
several thermodynamic quantities of the gas, such as pressure p and volume V . In the
case of an ideal gas, the EOS takes the following form,

pV = nRT , (2.2.1)

where n is the number of moles, R the universal gas constant and T the temperature.
This equation can also be written in other terms using the adiabatic index γ and the
(internal) energy density E (see e.g. in Stowe (2007), p. 263),

p = E(γ − 1) . (2.2.2)

Another quantity needed in the further thesis is the specific enthalpy h. It is a measure
for the total energy of the fluid per mass element, and is defined in the following well
known way,

h = E

ρ
+ p

ρ
. (2.2.3)

Now, with use of equation (2.2.2), the enthalpy h can be expressed as

h = γ

γ − 1
p

ρ
. (2.2.4)

21



2 PHYSICAL EQUATIONS

2.3 Continuity equation

This equation corresponds to conservation of mass. In conservative form it is written in
the following form (see Breitschwerdt et al. (1991)),

∂ρ

∂t
+∇ · (ρu) = q . (2.3.1)

In this equation the first term,

∂ρ

∂t
, (2.3.2)

clearly describes the temporal variation of density ρ in a certain volume and the latter
term,

∇ · (ρu) , (2.3.3)

corresponds to the mass-flux out of the volume. The term on the right-hand-side (RHS)
q is a mass-source/sink-term, which can arise from ionization of neutral atoms (source)
or recombination of ionized particles with electrons (sink). Summarizing the continuity
equation tells us, that the temporal variation of density in a definite volume must be
equal to the net mass-flux out of the volume (apart from sources or sinks).

2.4 Equation of motion

The conservation of momentum in a fluid is described by the equation of motion pre-
sented in this section. It can be understood as the second law of Newton for fluids. In
conservative form it takes the form (see Breitschwerdt et al. (1991)),

∂ρu
∂t

+∇P = ρF + m . (2.4.1)

In this equation, P is the momentum-flux tensor, a tensor of second order, and is defined
as follows,

P = ρu⊗ u +
[
p+ B2

8π

]
· I− B⊗B

4π . (2.4.2)
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2.5 EQUATION OF ENERGY

In this formula, p is the scalar pressure, B is the magnetic field, I the identity tensor
and u is the gas-velocity. The momentum-flux tensor P describes the net-momentum
outflow of a volume element with also taking the effects of magnetic fields into account.
Analogously to the continuity equation, the temporal variation of momentum in a def-
inite volume must be equal (in the absence of sources or sinks) to the net outflow of
momentum through the surface of the volume. Nevertheless, in general there can be
sources of momentum in a fluid, e.g. an external body force F like gravity, or other
sources, which are all denoted by m.

The scalar pressure p consists of three contributions due to the three components of
the plasma, namely the gas component, the mean magnetic field and the cosmic ray
component (see section 1.2). All of these components contribute to the overall-pressure.
The pressure of the gas-component and the cosmic ray-component are denoted by pg and
pc, respectively. Besides these two components there also exists a pressure component
caused by fluctuations in the magnetic field induced by resonant pitch-angle scattering
of CR particles due to interaction of CRs with the magnetic field (see section 1.2.2).
These fluctuations are treated as waves, which propagate down the cosmic ray pressure-
gradient. The pressure-component will be denoted as wave pressure pw and can be
calculated as follows,

pw = 〈(δB)2〉
8π . (2.4.3)

In fact, the scalar pressure p can be written as a superposition of three pressure-
components,

p = pg + pc + pw . (2.4.4)

Using (2.4.4), the momentum-flux tensor can be expressed in the following form,

P = ρu⊗ u +
[
pg + pc + pw + B2

8π

]
· I− B⊗B

4π . (2.4.5)

2.5 Equation of energy

Not surprisingly this equation corresponds to the conservation of energy in a fluid. As
before, there also exists a conservative form of this formula (see Breitschwerdt et al.
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(1991)),

∂W

∂t
+∇ · S = ρu(F + m) + E . (2.5.1)

Here, W is the energy density in a definite volume , S the energy-flux density of the
system, and E corresponds to energy-sources/sinks. W and S are defined in the following
way,

W = 1
2ρu

2 + pg
γg − 1 + pc

γc − 1 + 〈(δB)2〉
4π + B2

8π , (2.5.2)

S =
(

1
2u

2 + γg
γg − 1

pg
ρ

)
ρu + 1

γc − 1 [γcpc(u + vA)− κ̄∇pc]

+ 〈(δB)2〉
4π

[3
2u + vA

]
+ E×B

4π . (2.5.3)

The energy density W can be understood as the amount of energy in a finite volume of
the fluid, and exists of the kinetic energy density (first term), the energy densities of the
gas-component and the CR component (second and third term, respectively, compare
with (2.2.2)), the energy density in the volume due to the Alfvén-waves (third term) and
the magnetic energy (fourth term).

The energy-flux density S can be interpreted as the energy per volume which flows out
through the surface of the volume-element. The first term in brackets is the flow of the
energy density of the gas-component, consisting of the kinetic part and the enthalpy of
the gas (compare with (2.2.4)). The second bracketed term corresponds to the energy-
flow of the CR component of the gas which is composed of the enthalpy of the system
and the diffusion component with diffusion coefficient κ. The diffusion part has negative
sign, because CR particles diffuse into the direction of negative CR pressure gradient.
The third term corresponds to the energy-flow of the Alfvén-waves through the volume
element and the fourth term is the well-known Poynting-vector, which describes the
electromagnetic energy flow through the volume.

Apart from these basic conservation laws of magnetohydrodynamics, two more equa-
tions are needed to ensure on the one hand a hydrodynamical description of the cosmic
ray component and on the other hand to describe the exchange of energy between the
background flow, the CRs and the Alfvén waves.
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2.6 TRANSPORT EQUATION FOR COSMIC RAYS

2.6 Transport equation for cosmic rays

The equation discussed here is the transport equation for CRs (2.6.1), which describes
the advective and diffusive transport of CR particles.

∂

∂t

(
pc

γc − 1

)
+∇ ·

[
γc

γc − 1(u + vA)pc −
κ

γc − 1∇pc
]

= (u + vA) · ∇pc +Q . (2.6.1)

In this equation the term in square brackets is the cosmic ray flux density Fc, which
consists of the convective flux, which flows with velocity u + vA (the Alfvén velocity is
defined relative to the gas-flow velocity), and the diffusive flux, which flows down the
cosmic ray pressure gradient ∇pc,

Fc := γc
γc − 1(u + vA)pc −

κ

γc − 1∇pc . (2.6.2)

On the RHS of equation (2.6.1) the term u∇pc corresponds to the rate of work done on
the gas flow, vA∇pc is the CR energy density loss due to the generation of Alfvén waves
and Q stands for all other energy gains and/or losses.

2.7 Energy exchange equation

In the following equation the energy transfer between the CR component and the Alfvén
waves is described,

∂

∂t

(
〈(δB)2〉

4π

)
+∇ ·

[
〈(δB)2〉

4π

(3
2u + vA

)]
= u · ∇pw − vA · ∇pc + L , (2.7.1)

where pw is defined in (2.4.3). In analogy to the equation of state (2.2.2) the wave energy
density also will be defined as

Ew := pw
γw − 1 , (2.7.2)

which leads after comparison with (2.7.1) to the value γw = 3
2.

The first term u∇pw on the RHS of equation (2.7.1) takes the interaction of the Alfvén
waves with the gas flow into account, more precisely it gives the work of pw on the flow.
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The term vA∇pc gives the rate of newly generated waves by scattering of CR particles
at the magnetic field B. Finally the term L corresponds to all sorts of other wave-energy
losses or gains.

2.8 Assumptions and simplifications
This section deals with the various simplifications and assumptions made in this galactic
wind model.
The gas dealt with in this thesis is assumed to be perfectly conductive. This means, that
Ohm’s law takes the form,

E + v×B = 0 . (2.8.1)

Further it is assumed, that the mean-magnetic field B is constant in time. Faraday’s
law can be with help of (2.8.1) written as,

∂B
∂t

= −∇× (v×B) . (2.8.2)

If the magnetic field B is constant in time, then ∂B
∂t

= 0. Consequently, it must hold that
v×B = 0. This means, that the gas velocity v is always parallel to the magnetic field
B. Considering (2.8.1) one can see immediately that E = 0. In other words, assuming
constant B is equivalent to neglecting all electromagnetic forces (see Breitschwerdt et al.
(1991)).

Further we neglect all sources or sinks of momentum and mass, especially q = 0 and
m = 0 (compare equations (2.4.1) and (2.5.1)). Because these simplifications have been
already extensively discussed in Breitschwerdt et al. (1991), only the major arguments
are mentioned here.

• Supernovae and stellar winds provide sources of momentum and mass, sinks can
occur due to condensation of gas into clumps. Nevertheless it is very unlikely,
that these sources or sinks are able to influence the gas in the fluxtube due to the
magnetic field which acts to some extent like a shield,

• the inner boundary of the fluxtube is located sufficiently high above the mid-
plane, such that most of the possible sources of energy and momentum are below
the fluxtube and therefore only play a minor role. All of the sources caused by
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supernovae are covered by using a time-dependent inner boundary condition (see
sections 1.3 and 3.4.1).

A further simplification is made by neglecting the galactic rotation. This movement
would lead to moving magnetic field lines in the region close to the disk and therefore
cause a motion relative to the gas-flow. This would result in a much more complicated
treatment of the galactic wind problem.

Finally all external sources or sinks of CR energy density (Q = 0) and wave energy
density (L = 0) will be neglected.

2.9 Galactic Gravitational Potential
The gravitational potential φ used in this thesis consists of two components (strictly
following Breitschwerdt et al. (1991)), namely the

• Bulge-Disk component, and the

• Halo component.

The Bulge-Disk component φB,D is defined as follows (for details, see Miyamoto & Nagai
(1975)),

φB,D(R, z) = −
2∑
i=1

GMi√
R2 + (ai +

√
z2 + b2

i )2
. (2.9.1)

The index i = 1 corresponds to quantities of the bulge, i = 2 consequently for quanti-
ties of the disk. Mi are the masses of the bulge/disk components, ai and bi are fitting
parameters, z is the height above the galactic mid-plane, G is the gravitational constant
and R is the distance from the galactic center.

The halo component can be evaluated using the approach of Innanen (1973), who ap-
proximated the gravitational potential of the dark-matter halo φH in the following way,

φH(R, z) = GMH

Rb

ln
(

1 +
√
R2 + z2

Rb

)
+ 1

1 +
√
R2 + z2

Rb

− φ0 , (2.9.2)
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where Rb is a fitting parameter, MH is halo-mass, φ0 is a reference potential and the
other parameters are like in (2.9.1). The gravitational potential φ is then,

φ(R, z) = φB,D + φH (2.9.3)

As one can see, the potential φH → ∞, if z → ∞, which is not the case in the real
world, in fact the halo has a certain size and then the gravitational potential φ tends to
zero. To capture this behaviour, a cut-off height zg is introduced for the gravitational

potential, above which the gravitational acceleration g = −∂φ(R, z)
∂z

has the expected

behaviour g ∝ 1
z2 ,

φ(R, z) =


φB,D(R, z) + φH(R, z) if z < zg

g(R, zg)
z2
g

z
if z ≥ zg

(2.9.4)

Furthermore the potential should be continuous at zg, which fixes φ0 because at the
height z = zg the condition of continuity requires that,

φ(R, zg) = φB,D(R, zg) + φH(R, zg) = g(R, zg)zg . (2.9.5)

The gravitational potential φ(R, z) and the corresponding gravitational acceleration
g(R, z) are visualized for the Milky-Way galaxy in Figure 2.1 and Figure 2.2, respectively.
Appropriate parameters for the Milky-Way galaxy are the following (see Ramberger
(2008), p. 24),

a1 [kpc] a2 [kpc] b1 [kpc] b2 [kpc] M1 [M�] M2 [M�]
0 7.258 0.495 0.52 2.05 · 1010 2.547 · 1011

Mb [M�] Rb [kpc] zg [kpc]
1.35 · 1011 13 100

Table 2.1: Parameter set for the grav. potential described in Miyamoto & Nagai (1975) .
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Figure 2.1: The gravitational potential φ for the Milky Way. The green full line corresponds
to the sum of the bulge/disk component φB,D (red dashed line) and the Halo
contribution φH (blue dashed line).
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Figure 2.2: The gravitational acceleration g for the Milky Way. The green full line corre-
sponds to the sum of the bulge/disk component gB,D (red dashed line) and the
Halo contribution gH (blue dashed line).
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2 PHYSICAL EQUATIONS

2.10 Final Set of Equations

In this section the final set of equation is written down again for the sake of clarity in
this thesis. First, not surprisingly the gravitational force will be used as an external
force F in equation (2.4.1),

F = −∇φ , (2.10.1)

where φ is the gravitational potential as defined in (2.9.3). To obtain the equation
in the form in which they are discretized, some algebraic manipulations must be done
yet. First, substituting the momentum-flux tensor P (2.4.5) in (2.4.1) and using the
simplification that B is constant in time, the equation of motion takes the following
form,

∂ρu
∂t

+∇ · (ρu⊗ u) +∇(pg + pc + pw) + ρ∇φ = 0 . (2.10.2)

Obtaining the desired form of the energy-balance equations needs some more manipula-
tions. First of all one should note, that the transport equation for CRs (2.6.1) and the
exchange equation (2.7.1) are equivalent to conservation of CR energy and wave-energy,
respectively. Furthermore, the equation of energy (2.5.1) is a conservation law for the to-
tal energy and therefore already contains the CR energy and wave-energy. Consequently
the remaining contribution to the total energy (the gas pressure) also is conserved. Be-
cause the total energy conservation law is problematic if used in the numerical code, the
conservation laws for the gas energy density Eg, the CR energy density Ec and the wave
energy density Ew are used.

The equation of energy (2.5.1) takes, after inserting the energy density W (2.5.2) and
the energy-flux density S (2.5.3), the form,

∂Eg
∂t

+ ∂Ec
∂t

+ ∂Ew
∂t

+ 1
2
∂(ρu2)
∂t

+∇ ·
(1

2ρu
2 · u

)
+∇ · (γgEgu)

+∇ · (γcEc(u + vA))−∇ · (κ∇Ec) +∇ ·
(
Ew

(3
2u + vA

))
= −ρu · ∇φ+ E .

(2.10.3)

This form of the energy equation also contains the kinetic energy density of the gas com-
ponent. Using the equation of motion, the kinetic energy contribution can be eliminated.
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2.10 FINAL SET OF EQUATIONS

For this purpose, the equation of motion is multiplied by u, which leads to

∂ρu
∂t
· u +∇ · (ρu⊗ u) · u +∇(pg + pc + pw) · u = −ρu · ∇φ . (2.10.4)

Substituting now (2.10.4) into (2.10.3), the following equation is obtained,

∂Eg
∂t

+ ∂Ec
∂t

+ ∂Ew
∂t

+ 1
2
∂(ρu2)
∂t

+∇ ·
(1

2ρu
2 · u

)
− ∂ρu

∂t
· u +∇ · (ρu⊗ u) · u︸ ︷︷ ︸

1©
+∇ · (γgEgu)−∇pg · u︸ ︷︷ ︸

2©
+∇ · (γcEc(u + vA))−∇pc · u︸ ︷︷ ︸

3©
−∇ · (κ∇Ec)

+∇ ·
(
Ew

(3
2u + vA

))
−∇pw · u︸ ︷︷ ︸

4©

= E . (2.10.5)

The term 1© is now written down in component notation, 1

1© =1
2 (∂t(ρuiui) +∇i(ρujujui))− ∂t(ρui)ui −∇i(ρuiuj)uj

= 1
2(∂tρ)uiui + 1

2(∇iρui)ujuj︸ ︷︷ ︸
= 0 (Continuity equation)

+
(((((((((((((
(∂tui)ρui + ρui(∇iuj)uj

−(∂tρ)uiui −∇i(ρui)ujuj︸ ︷︷ ︸
= 0 (Continuity equation)

−
(((((((((((((
ρui(∂tui)− ρui(∇iuj)uj = 0 . (2.10.6)

After showing that 1© vanishes, the next term of interest is 2©. Therefore the EOS
(2.2.2) is used,

2© = ∇ · (γgEgu)−∇pg · u

= γg∇ · (Egu)−∇ · (pgu) + pg∇ · u

= γg∇ · (Egu)− (γg − 1)∇ · (Egu) + pg∇ · u

= ∇ · (Egu) + pg∇ · u . (2.10.7)

1Note that ∂t ≡
∂

∂t
.
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2 PHYSICAL EQUATIONS

The terms 3© and 4© are calculated analogically (with using γw = 3/2),

3© = ∇ · (γcEc(u + vA))−∇pc · u

= ∇ · (γcEc(u + vA))−∇ · (pcu) + pc∇ · u

= ∇ · (γcEc(u + vA))− (γc − 1)∇ · (Ecu) + pc∇ · u

= ∇ · (Ec(u + γcvA) + pc∇ · u . (2.10.8)

4© = ∇ ·
(
Ew

(3
2u + vA

))
−∇pw · u

= ∇ ·
(
Ew

(3
2u + vA

))
−∇ · (pwu) + pw∇ · u

= ∇ ·
(
Ew

(3
2u + vA

))
−
(3

2 − 1
)
∇ · (Ewu) + pw∇ · u

= ∇ · (Ew(u + vA) + pw∇ · u . (2.10.9)

Using all of these manipulations, the energy equation can be expressed in the following
form,

∂Eg
∂t

+∇Eg · u + pg∇ · u+
∂Ec
∂t

+∇Ec · (u + γcvA) + pc∇ · u+
∂Ew
∂t

+∇Ew · (u + vA) + pw∇ · u = E . (2.10.10)

Finally, the external energy sources and sinks E , which are likely to be present in galactic
winds are additional heating Γ and cooling Λ.

Comparison with (2.6.1) and (2.7.1) shows that the additional factor vA · ∇pc has to be
added in the energy balance equations for the CRs and wave-energy.

The final set of equations to be solved then takes the following form,
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2.11 FLUXTUBE GEOMETRY

∂ρ

∂t
+∇ · (ρu) = 0 , (2.10.11)

∂ρu
∂t

+∇ · (ρu⊗ u) +∇(pg + pc + pw) + ρ∇φ = 0 , (2.10.12)
∂Eg
∂t

+∇ · (Egu) + pg∇ · u = Γ− Λ , (2.10.13)
∂Ec
∂t

+∇ · (Ec(u + γcvA)) + pc∇ · u− vA · ∇pc = ∇ · (κ∇Ec) , (2.10.14)
∂Ew
∂t

+∇ · (Ew(u + vA)) + pw∇ · u + vA · ∇pw = 0 . (2.10.15)

2.11 Fluxtube geometry
Throughout this thesis, all calculations are performed in a 1D-fluxtube geometry. For
this purpose the equations have to be reformulated, which is done in this section.

The fluxtube used here is explained and motivated in more detail in Breitschwerdt et al.
(1991). Using this geometry has the following main advantages,

• the magnetic field lines are characterizing the flow geometry, assuming that there
exist locally open field lines, which make a transition from plane-parallel (close to
the disk) to spherical geometry (far away from the disk, see also section 1.1). This
has been confirmed by recent 3D-hydrodynamical simulations (see e.g. Kulpa-
Dybeł et al. (2011)), which shows that initially arbitrary shaped magnetic fields
are evolving to a quadrupole-like structure with respect to the galactic plane, and

• the model can be described as a 1D-model, which has obvious numerical advan-
tages.

All unknown quantities depend on the projected distance z from the galactic plane (com-
pare with Dorfi & Breitschwerdt (2012), p. 3). The transition can be achieved by speci-
fying the fluxtubes’ cross-section A dependent on z (see Breitschwerdt et al. (1991) and
Dorfi & Breitschwerdt (2012)),

A(z) = A0

[
1 +

(
z

Z0

)2
]
, (2.11.1)
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2 PHYSICAL EQUATIONS

where A0 is the cross-section for z = 0, and Z0 represents the typical scale of the
transition from plane-parallel to spherical geometry (compare with Figure 2.3).

Figure 2.3: Schematic view of an fluxtube, arising above the galactic mid-plane and then
making a transition from plane-parallel to spherical geometry (see Breitschwerdt
et al. (1991), p. 5).

This geometry can be described by a metric tensor, which is important how to define
the differentiation operators like divergence and gradient. For this purpose, adapted
cylindrical coordinates (z, ϕ,R) are introduced, where z is the height above the mid-plane
and R and ϕ are the radial and angular coordinate in the plane of A(z), respectively.
Usual Cartesian coordinates (x, y, z) can be written in terms of the new coordinates as
follows,

A0 =: R2π , (2.11.2)

r(z) :=
√
A(z)
π

=
√
A(z)
A0

R , (2.11.3)

z = z , (2.11.4)

x = r(z) cos(ϕ) , (2.11.5)

y = r(z) sin(ϕ) . (2.11.6)
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2.11 FLUXTUBE GEOMETRY

The term r(z) takes into account that the radial coordinate scales with
√
A(z). Following

the usual procedure in defining a basis vector system (eR, eϕ, ez),

ez = ∂x

∂z
ex + ∂y

∂z
ey + ∂z

∂z
ez , (2.11.7)

eR = ∂x

∂R
ex + ∂y

∂R
ey + ∂z

∂R
ez , (2.11.8)

eϕ = ∂x

∂ϕ
ex + ∂y

∂ϕ
ey + ∂z

∂ϕ
ez , (2.11.9)

one arrives at the the following basis vector system (substituting (2.11.1) and (2.11.2)),

ez =


zR
√
π√

A(z)Z2
0

cos(ϕ)
zR
√
π√

A(z)Z2
0

sin(ϕ)

1

 , eϕ = r(z)


− sin(ϕ)
cos(ϕ)

0

 , eR =
√
A(z)
A0


cos(ϕ)
sin(ϕ)

0

 .

(2.11.10)

The metric tensor g(exact) then takes the following form (in components i = 1, 2, 3 cor-
responds to z, ϕ,R, respectively),

(
g

(exact)
ij

)
=


1 + z2R2π

A(z)Z4
0

0 Rz

Z2
0

0 r(z)2 0
Rz

Z2
0

0 A(z)
A0

 . (2.11.11)

The metric tensor derived here is obviously not orthogonal, to achieve this an approxi-
mation is needed: the gas flow is always considered to be orthogonal to the cross section
A(z), meaning that ez is assumed to be perpendicular to A(z). The metric can then be
approximated by the orthogonal metric tensor g,

(gij) =


1 0 0
0 r(z)2 0

0 0 A(z)
A0

 . (2.11.12)
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3 Numerical method

In this section the numerical method is discussed (strictly following Dorfi & Drury
(1987)) , which is used to integrate the set of equations (2.10.11) - (2.10.15).

3.1 The grid equation

Galactic winds are described in this thesis by magnetohydrodynamical equations cou-
pled with time-dependent inner boundary conditions. Such a flow is very likely to have
features like shock-waves. To describe such locally restricted phenomenons with a suf-
ficiently high number of grid points, the spatial grid has to be adjusted to the flow
features. The grid equation discussed in this section ensures that the grid points are
redistributing according to accuracy demands.

The flow structure in a galactic wind is due to shocks and variable boundaries perma-
nently changing, the grid therefore must have the ability to change with time to assure
the best resolution. More precisely, grid points must be concentrated in flow areas with
steep gradients of certain quantities (like density, pressure, etc.), and in contrast should
be able to spread in areas of flat gradients. These properties are achieved by solving the
grid equation simultaneously to the set of CR hydrodynamic equations.

A so-called adaptive grid method can be found in Dorfi & Drury (1987). It is assumed
that x1, ..., xN are the grid points, where N describes the number of grid points. The
question is how to distribute these grid points dependent on physical quantities. In
areas of required high resolution, the points should be concentrated (with respect to an
equidistant distribution) and if lower spatial resolution is enough to describe the flow,
the points should be spread out (again w.r.t. an equidistant distribution). Hence the
necessity arises to define measures for these two situations. If ni is the actual distribution
of grid points and Ri is the desired distribution, the easiest and straightforward way is
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3.1 THE GRID EQUATION

to say that ni should be proportional to Ri,

ni ∝ Ri , (3.1.1)

where i is the index of the grid points. Unfortunately, this simple concept cannot be
applied directly, because if n changes to fast, instabilities can occur. As a workaround, ni
is proportional to various smoothing operators multiplied withRi, which assure moderate
changes in ni. The ni are defined in the following way,

∆xi := xi+1 − xi , (3.1.2)

ni := X

∆xi
, (3.1.3)

where X is a natural length scale, which depends on the problem to be solved. Defining
the desired point concentration Ri is a little bit more complicated. Dorfi & Drury
(1987) take Ri as the arc-length of a function f , or in general a ensemble of M functions
(compare with Figure 3.1),

f1, ..., fM . (3.1.4)

f(x)

x

Figure 3.1: Visualization of the idea of equidistant arclength along a function f(x). In the
areas of steep gradients, the point distribution is much higher than in those of
flat gradients.

Implementing this concept, the desired grid point concentration Ri takes the following
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3 NUMERICAL METHOD

form,

fk,i := fk(xi) , (3.1.5)

∆fk,i := fk,i+1 − fk,i , (3.1.6)

Ri :=

√√√√1 +
M∑
k=1

Xi

Fk
gk

∆fk,i
∆xi

, (3.1.7)

where gk are chooseable weights assigned to the corresponding functions fk and Fk is
again a natural scale with respect to the function fk. 1

The spatial smoothing which has been already mentioned above, can be implemented
by introducing the following condition (see Dorfi & Drury (1987), p. 4),

α

α + 1 ≤
ni+1

ni
≤ α + 1

α
, (3.1.8)

where α corresponds to the rigidity of the grid, meaning that α� 1 is equivalent to a grid
with a almost constant lattice parameter, which results in very small maximal allowed
changes from ni to ni+1 (compare with (3.1.8)). The value of α is chosen in a way which
doesn’t allow the grid changes greater than approximately 30%. Applying a function
which obeys 3.1.8 and doing some more sophisticated manipulations to the resulting
grid equation (for details, see LeVeque et al. (1998), p. 178), the spatial smoothing can
be written as,

ñi = ni − α(α + 1)(ni+1 − 2ni + ni−1) . (3.1.9)

Furthermore, in addition to the spatial smoothing also a temporal smoothing must be
applied. If the proportionality is chosen in the following way,

n̂i = ñi + τ
ñi − ñ(old)

i

δt
, (3.1.10)

then the grid adjusts on a timescale τ and does not change much for variations shorter
than τ (δt corresponds to the time-step). The value of the timescale is dependent on the
considered problem, meaning that it must be much shorter than the shortest timescale

1The scales Fk and Xi are necessary, because the variables fk and xi are physical variables with a
dimension, further they can differ from each other by many orders of magnitudes. If the physical
problem allows it, the scale functions can be set to unity.
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3.2 ARTIFICIAL VISCOSITY

of a process of interest.

Putting all together leads to the final form of the grid equation,

n̂i−1

Ri−1
= n̂i
Ri

. (3.1.11)

The boundary conditions remain to be defined, in a way that the innermost grid point xI
and the outermost grid point xO are fixed (these two points are defining the size of the
computational domain). The boundary conditions for the grid equation can be specified
by setting the grid point concentration gradients equal to zero at the boundaries,

Inner boundary (x = xI):

xN = xI

nN−2 = nN−1

, (3.1.12)

Outer boundary (x = xO):

x1 = xO

n1 = n2

. (3.1.13)

3.2 Artificial Viscosity
Astrophysical gases are often assumed to be ideal, that means that dissipation effects
cannot occur. In the context of galactic winds, shock waves are (as already discussed)
very likely to occur. In the case of ideal magnetohydrodynamics, these shock fronts
will be infinitely thin and shown as discontinuities in density ρ and gas pressure pg.
In reality, astrophysical fluids are not perfect gases, saying that dissipative effects will
occur due to molecular interactions like frictional forces between atoms and molecules.
Viscosity is one of these dissipative processes like conversion from kinetic energy to
thermal energy, which determines the thickness of a shock (e.g. compare with Mihalas
& Mihalas (1999), p. 241). One problem in describing such dissipative processes with
(magneto-)hydrodynamics is the microscopic length scales at which these processes occur
(more precisely the length scale is of the order of the mean free path of the gas particles).
Hydrodynamical equations are unfortunately averaged over all microscopic effects of the
gas, a so called continuous theory, that means all processes which can be described with
this theory have to have length scales much greater than the mean free path of the gas.
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Applying numerics to the problem without introducing artificial viscosity would lead
to numerical instabilities and other major problems in solving the equations, because
the discontinuity (shock front) would be infinitesimally thin and could not be resolved
within two neighboured grid points (compare with Figure 3.2).

Figure 3.2: Shock front computed numerically (a) with artificial viscosity and (b) without
applying artificial viscosity. The numerical instabilities in (b) can be seen very
clearly (see Mihalas & Mihalas (1999) p. 281).

Taking into account dissipative effects can be effectively interpreted as solving not the
ideal hydrodynamical equations, but the Navier-Stokes equations for viscous fluids. The
question arises why the Navier-Stokes equations can’t be solved from scratch instead.
The answer is that a much more complicated treatment of these equations would be nec-
essary. Applying the artificial viscosity only in regions where discontinuities can occur
provides a useful workaround.

The shock fronts are broadened over a few grid cells due to locally applied artificial
viscosity, which is implemented by introducing a so-called viscous pressure tensor Q.
This tensor should obey the following conditions (according to Tscharnuter & Winkler
(1979)):

1. shock fronts should be broadened over a certain number of grid cells; in the case
of an adaptive grid this varies spatially and temporally.
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3.2 ARTIFICIAL VISCOSITY

2. Homologous contractions of the gas should be calculated without influence of ar-
tificial viscosity.

3. Expanding regions of the flow should also be free of artificial viscosity.

A form of Q which obeys all of these conditions is the following one (basically derived
by Vonneumann & Richtmyer (1950), but with an additional linear term introduced by
Tscharnuter & Winkler (1979),

µQ := −q1 lq cs + q2
2 l

2
q min(∇ · u, 0) , (3.2.1)

Q = µQ[∇⊗ u− 1
3(∇ · u)I] . (3.2.2)

In equation (3.2.2), q1 and q2 are weights for the linear and quadratic terms of Q, re-
spectively, I is the unity tensor and the factor 1/3 assures that Q is traceless, which is
equivalent to the condition of vanishing artificial viscosity in the case of homologous con-
tractions. The parameter lq is denoted as the typical viscous length scale, consequently
the products q1 lq and q2 lq determine the amount of linear and quadratic viscosity, respec-
tively. As already emphasized before, the thickness should be covered from a sufficient
number of grid points, consequently lq is spatially and temporally variable in the case of
an adaptive grid. Cosmic-ray driven galactic winds are accelerated by CRs due to the
first-order Fermi mechanism, this means that the thickness of the shock must be much
smaller than the typical mean free path of CR particles lCR (see Dorfi & Breitschwerdt
(2012)),

lq � lCR = κ

us
, (3.2.3)

where us is the shock velocity. The formulation of Q as in (3.2.2) is invariant, this means
it can be applied to an arbitrary geometry. In the case of a fluxtube geometry, the metric
tensor already has been derived (see 2.11.12). Following the scheme from Tscharnuter
& Winkler (1979), the divergence ∇ · u and the symmetrized vector gradient εml are
defined in its invariant form as follows,

∇ · u = uk ;k , (3.2.4)

εml = gmku(k;l) , (3.2.5)

where the semicolon indicates the covariant derivative with respect to the k-th variable
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and where u(k;l) is defined as follows,

u(k;l) := 1
2(uk;l + ul;k) . (3.2.6)

Applying the fluxtube geometry, ∇ · u and εml can be written as (compare with Dorfi
& Breitschwerdt (2012)),

∇ · u = 1
A(z)

∂(Au)
∂z

, (3.2.7)

εml =



∂u

∂z
0 0

0 u

2A
∂A

∂z
0

0 0 u

2A
∂A

∂z

 . (3.2.8)

The quadratic part of the artificial viscosity Q(quadr) then becomes to

Q(quadr) = 1
A

∂(Au)
∂z

×



∂u

∂z
− 1

3A
∂(Au)
∂z

0 0

0 u

2A
∂A

∂z
− 1

3A
∂(Au)
∂z

0

0 0 u

2A
∂A

∂z
− 1

3A
∂(Au)
∂z

 .

(3.2.9)

This tensor is indeed traceless, which is equivalent to no artificial viscosity in the case
of homologous contractions.

Viscous forces are clearly also influencing the gas flow, this is taken into account by
introducing an additional term, the viscous momentum transfer uQ, which can be ex-
pressed as (for details see Mihalas & Mihalas (1999) p. 263, or compare with Dorfi &
Breitschwerdt (2012)),

uQ = −∇ ·Q . (3.2.10)

This viscous momentum transfer uQ takes the following form in the fluxtube geometry
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(see Dorfi & Breitschwerdt (2012)),

uQ =


1

A3/2
∂

∂z

[
A1/2µQ ρ

∂(Au)
∂z

(
∂u

∂z
− 1

3
∂(Au)
∂z

)]
0
0

 , (3.2.11)

uQ := ||uQ|| =
1

A3/2
∂

∂z

[
A1/2µQ ρ

∂(Au)
∂z

(
∂u

∂z
− 1

3
∂(Au)
∂z

)]
. (3.2.12)

Viscosity is, as already explained above, a dissipative process, therefore kinetic energy
is dissipated into thermal energy. The specific energy dissipation is denoted as εQ and
is defined in the following way,

εQ = −1
ρ

Q · (∇⊗ u) . (3.2.13)

In the fluxtube geometry εQ is written as (see Dorfi & Breitschwerdt (2012)),

εQ = −3
2
µQ
A

∂(Au)
∂z

[
∂u

∂z
− 1

3A
∂(Au)
∂z

]2

. (3.2.14)

Keeping in mind that ∇ · u < 0 in the areas of non-vanishing artificial viscosity, this
formula for εQ ensures that εQ > 0, even in the discretized version. Otherwise, neg-
ative viscous energy dissipation is not physical and leads to instabilities (see Dorfi &
Breitschwerdt (2012) and Tscharnuter & Winkler (1979)). The momentum equation
(2.10.12) and the energy equation for the gas component (2.10.13 also need to be ex-
tended by terms, which take the viscous momentum transfer uQ and the specific energy
dissipation εQ into account,

∂ρu
∂t

+∇ · (ρu⊗ u) +∇(pg + pc + pw) + ρ∇φ− uQ = 0 , (3.2.15)
∂Eg
∂t

+∇ · (Egu) + pg∇ · u− ρεQ = Γ− Λ . (3.2.16)
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3.3 Discretization of the physical equations
In this section the set of physical equations (2.10.11) - (2.10.15) and the simultaneously
solved grid equation (3.1.11) are discretized. The equations will be first integrated over
a finite volume, this is necessary to ensure the (numerical) conservation of energy, mass
and momentum (see Dorfi & Breitschwerdt (2012)).

The computational domain (the space between inner boundary and outer boundary)
first is discretized with use of the grid equation. The outermost grid point is denoted as
l = 1, consequently the innermost grid point must have the index l = N . The unknown
variables are defined on the grid in the following manner (see LeVeque et al. (1998), p.
277):

• Scalars like density ρ, volume ∆V and the unknown energy densities Eg, Ec and
Ew are defined in the middle (inside) of the grid cell.

• Vector quantities like the velocity u or all sorts of fluxes are defined at the cell
boundaries.

A grid of this kind is called staggered mesh and can be imagined as two different grids
shifted with respect to each other such that all quantities are defined at cell boundary
of one of the two grids (compare with Figure 3.3).

(l − 1)th cell lth cell (l + 1)th cell

zl, ul

ρl, Eg,l, Ec,l, Ew,l

Figure 3.3: Schematic view of the staggered mesh used in this thesis. Some quantities are
defined at grid border, and others in the middle of the cell.

Next the discretization of various operations (like integration over a volume and differ-
entiations) are discussed in more detail. For this purpose, the temporal operator δ and
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the spatial difference ∆ are defined as follows (see Dorfi & Breitschwerdt (2012)),

δt = t(new) − t(old) , (3.3.1)

∆xl = x1−1 − xl , (3.3.2)

where the index l stands for the l-th grid cell and the superscripts (new) and (old)
correspond to the quantities at the new time and the old time, respectively. Equations
in conservative form have the following form (recalling equations (2.1.1) and (2.1.2)),

∂

∂t

∫
V (t)

dV U(x, t) =
∮
∂V
dSmFm(x, t) , (3.3.3)

where U(x, t) is an arbitrary scalar function and Fm(x, t) is its corresponding flux func-
tion. The temporal variation of the quantity U in a finite volume V on the left hand
side (the so called volume term) must be equal to the flux Fm through the surface of
the volume ∂V on the right hand side (the so called advection term) 2, as it has been
already pointed out earlier in this thesis. This global conservation of a quantity U can
also be implemented in a discretized version of the equation, therefore it is necessary to
write the equation in the volume-integrated form.

3.3.1 Discretization of the volume term

The volume term in the used numerical method is discretized in the following way,

∂

∂t

∫
V (t)

dV U ⇒
δ
∫
V (t) dV U

δt
= 1
δt

(∫
V (t)

dV U

)(new)

−
(∫

V (t)
dV U

)(old)
 . (3.3.4)

The integrals in (3.3.4) remain to get discretized. V (t) is the volume of a certain grid
cell, the time dependence arises from the fact, that an adaptive grid is used. The integral
can be approximated in the discretized scheme as,

∫
V (t)

dV U ⇒ Ul ∆Vl . (3.3.5)

The volume of the l-th grid cell ∆Vl has to be approximated as well. For this purpose
one must recall, that a fluxtube geometry is used. Integrating of equation (2.11.1) over

2Temporal variation of the volume term is fully determined just by the advection term, if there are no
sources or sinks.
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one grid cell length (from zl to zl+1) leads to,

∫ zl+1

zl

dz A0

(
1 + z2

Z0
2

)
= A0

(
∆zl + ∆zl3

3Z2
0

)
=: ∆Vl . (3.3.6)

This formula suffices for being able to finally discretize the volume term as it is shown
in the following expression,

∂

∂t

∫
V (t)

dV U ⇒ 1
δt


[
UlA0

(
∆zl + ∆zl3

3Z2
0

)](new)

−
[
UlA0

(
∆zl + ∆zl3

3Z2
0

)](old)
 .

(3.3.7)

3.3.2 Discretization of the advection term

For the discretization of the advection term (right hand side of (3.3.3)) it is first necessary
to rewrite the advection term as a volume integral again, using Gauss’ Theorem,

∮
∂V (t)

dSmFm(x, t) =
∫
V (t)

dV ∇ · F(x, t) . (3.3.8)

In the fluxtube geometry, the divergence of a vectorial quantity ∇ ·F with F defined as
in (3.3.9) is given by (recalling equation (3.2.7)),

F =


Fz

0
0

 , (3.3.9)

∇ · F = 1
A

∂(AFz)
∂z

= ∂(AFz)
∂V

. (3.3.10)

Equation (3.3.10) is discretized straightforward as follows,

∂(AFz)
∂V

⇒ ∆(AlFz,l)
∆Vl

, (3.3.11)

consequently the final discretization of the advection term has the form,
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∮
∂V
dSmFm(x, t) ⇒ ∆(AlFz,l)

∆Vl
∆Vl = ∆(AlFz,l) . (3.3.12)

The aim of the next sections will be the discretization of the set of physical equations
and of the grid equation.

3.3.3 Discretization of the continuity equation

The first equation is the continuity equation (2.10.11). Applying (3.3.7) and (3.3.12),
this equation (in volume-integrated form) in its discretized form would look like the
following expression,

∂ρ

∂t
+∇ · (ρu) = 0 ⇒ δ(ρl∆Vl)

δt
+ ∆(Alulρl) = 0 . (3.3.13)

In this form serious problems would arise if one tried to integrate this equation numeri-
cally. Two important facts are still not taken into account:

1© The gas flow velocity u is in the discretization scheme obviously always given with
respect to the grid points. In the case of an adaptive grid the grid points also
move inbetween the computational domain, in other words the grid moves itself.
Consequently a relative velocity urel must be defined.

2© If shock waves are very likely to occur (e.g. in the case of galactic winds), the
direction of the flow must be taken into account. Shocks only can influence areas
downstream (in more detail only areas, which lie inbetween the Mach-cone). This
means that quantities which are calculated in the middle of a cell (recall Figure
3.3) as mean values of the two grid points on the left and on the right of the cell,
can cause non-physical results, because the mean values would be influenced by
the shock front.

The relative velocity urel as discussed in 1© is defined in the following way and appears
in every advection term (compare with Dorfi & Breitschwerdt (2012)),

urell = ul − ul,grid
(1D fluxtube)⇒ urell = ul −

δzl
δt

, (3.3.14)
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where ul,grid corresponds to the velocity of the grid at the l-th grid point. Knowing
that and recalling the general conservation law (2.1.2), all physical equations in volume-
integrated form in the case of an adaptive grid can be expressed as (see LeVeque et al.
(1998), p. 280),

∂

∂t

∫
V (t)

dV U(x, t) +
∮
∂V (t)

dSU(x, t)urel −
∫
V (t)

dV (Usource − Usink) = 0 . (3.3.15)

To circumvent the problems discussed in 2©, a special discretization of the advection
terms is introduced, the so called donor-cell advection scheme. As already mentioned,
because of the possibility of shock waves no quantities should be used for calculating
differences of quantities, which are lying in the downstream region. Therefore it is
necessary to use forward differences for the spatial discretization, if the relative flow
velocity urell is outward directed, and otherwise the backward differences (see LeVeque
(1992) p. 124-135, and compare with Figure 3.4),

∆fl =

fl − fl+1 (forward difference)

fl−1 − fl (backward difference)
. (3.3.16)
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(l + 1)th cell lth cell (l − 1)th cell

zl, ulzl+1, ul+1

urell > 0

urell < 0

UPSTREAM

UPSTREAM

DOWNSTREAM

DOWNSTREAM

ρl, Eg,l, ... ρl−1, Eg,l−1, ...ρl+1, Eg,l+1, ...

Figure 3.4: The donor-cell advection scheme is visualized here. If the relative velocity in the
l-th cell urell is positive, then the flow is outward directed with respect to the cell,
and vice versa. Clearly also the upstream and downstream regions depend on the
flow direction.

In the case of the continuity equation, the only quantity which is calculated in the
middle of the cell in the advection term is the density ρ (compare (2.3.1) and (3.3)). If
one takes now the points discussed in 1© and 2© into account, the following expression
for the advection term of the continuity equation is obtained,

∆(Alulρl) ⇒ ∆(Alurell ρ̃l) , (3.3.17)

where ρ̃l is defined as follows,

ρ̃l =

ρl if urell > 0

ρl−1 if urell < 0
. (3.3.18)

The final discretized continuity equation then can be written as (compare with Dorfi &
Breitschwerdt (2012)),
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δ(ρl∆Vl)
δt

+ ∆(Alurell ρ̃l) = 0 . (3.3.19)

3.3.4 Discretization of the equation of motion

The next equation which will be discretized is the equation of momentum (2.4.1). To
avoid confusion here, two different quantities must be distinguished. The discretized
momentum density stored in the finite volume Vl is denoted as ρlul, while flux-related
properties clearly need to include the relative velocity urell , because these quantities
must take into account the movement of the cell border. For being able to discretize the
equation of momentum, one needs to know how the gradient of a scalar function f(z) is
calculated in the fluxtube geometry defined in (2.11.1). The only thing which must be
known here is that the covariant derivative reduces to the ordinary derivative for scalar
functions, consequently one can write,

∇f(z) =


∂f(z)
∂z
0
0

 . (3.3.20)

Furthermore one must take into account, that the momentum density ρlul is a vector
quantity and therefore defined at the grid boundary. Consequently all vector quantities
in the equation of motion (e.g. the mass flux ρlAlurel or the gravitational force ρl∇φ)
should therefore also be defined at the grid boundary. This can be achieved by interpo-
lating these vectors by calculating the mean values. This operation is denoted by a bar
over the quantity as shown in the subsequent expression,

X̄l := 1
2(Xl +Xl+1) . (3.3.21)

After collecting the recent results and applying the discretized versions of the volume
term (3.3.7) and the advection term (3.3.12), the equation of momentum in volume-
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integrated form becomes to (compare with Dorfi & Breitschwerdt (2012)),

∂ρu
∂t

+∇ · (ρu⊗ u) +∇(pg + pc + pw) + ρ∇φ− uQ = 0
(integration over volume ∆Vl and discretization)=⇒

δ(ρlul∆Vl)
δt

+ ∆(Alurell ρ̃lũl) + ∆(pg,l + pc,l + pw,l)Al + ρlAl∆φl − uQ,l∆Vl = 0 .

(3.3.22)

The discretized pre-factor of the artificial viscosity µQ,l (3.2.1) and the discrete artificial
momentum transfer uQ,l (according to (3.2.12)) have the following form,

µQ = −q1lqcs + q2l
2
q min(∇ · u, 0)

(integration over volume ∆Vl and discretization)=⇒

µQ,l = q1lqcs,l − q2l
2
q min

(
∆(Alul)

∆Vl
, 0
)
, (3.3.23)

(3.3.24)

uQ = 1
A3/2

∂

∂z

[
A1/2µQ ρ

∂(Au)
∂z

(
∂u

∂z
− 1

3
∂(Au)
∂z

)]
(integration over volume ∆Vl and discretization)=⇒

uQ,l∆Vl = − 1
A

1/2
l

∆
[
Ā

3/2
l µQ,l ρl

∆(Alul)
∆Vl

(
∆ul
∆zl
− 1

3
∆(Alul)

∆Vl

)]
. (3.3.25)

The interpolated Āl in the last expression is due to the fact, that all other quantities
are defined at the grid cell boundary, and so it is straightforward to interpolate Al to fit
better to the other discretized quantities.
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3.3.5 Discretization of the gas energy density equation

It is continued now with the discretization of the gas energy density equation (3.2.16).
Applying the discretization of the volume term and the advection term as before and
keeping in mind the numerical details for the advection term 1© and 2©, the following
discretization is achieved,

∂Eg
∂t

+∇ · (Egu) + pg∇ · u− ρεQ = Γ− Λ
(integration over volume ∆Vl and discretization)=⇒

δ(Eg,l∆Vl)
δt

+ ∆(Alurell Ẽg,l) + pg,l∆(Alul)− εQ,lρl∆Vl = Γ− Λ . (3.3.26)

The artificial specific energy dissipation εQ (3.2.13) is discretized as follows (compare
with Dorfi & Breitschwerdt (2012)),

εQ = −3
2
µQ
A

∂(Au)
∂z

[
∂u

∂z
− 1

3A
∂(Au)
∂z

]2

(integration over volume ∆Vl and discretization)=⇒

εQ,lρl∆Vl = 3
2µQ,lρl∆(Alul)

[
∆ul
∆zl
− 1

3
∆Alul
∆Vl

]2

. (3.3.27)

3.3.6 Discretization of the cosmic ray energy density equation

The next equation which is discretized, is the cosmic ray energy density equation (2.10.14).
Analogously to the other equations the discretized form of this equation is given in the
following expression,

∂Ec
∂t

+∇ · (Ec(u + γcvA)) + pc∇ · u− vA · ∇pc = ∇ · (κ∇Ec)
(integration over volume ∆Vl and discretization)=⇒
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δEc,l∆Vl
δt

+ ∆(AlẼc,l(urell + γcvA,l)) + (γc − 1)Ec,l∆(Alul)− (γc − 1)vA,l∆Ec,lAl

= ∆
(
Al κ

∆Ec,l
∆zl

)
. (3.3.28)

3.3.7 Discretization of the wave energy density equation

The last physical equation left for discretization is the wave energy density equation or
energy exchange equation (2.10.15), which has the following discretized form,

∂Ew
∂t

+∇ · (Ew(u + vA)) + pw∇ · u + vA · ∇pw = 0
(integration over volume ∆Vl and discretization)=⇒

δEw,l∆Vl
δt

+ ∆(AlẼw,l(urell + vA,l)) + (γw − 1)Ew,l∆(Alul)− (γw − 1)vA,l∆Ew,lAl

= 0 . (3.3.29)

3.4 Implicit method
Basically there exist two different approaches for solving a system of time-dependent
differential equations, namely

• Explicit methods, and

• Implicit methods.

The major difference between implicit and explicit methods is the way how the solution
at a later time is obtained. An explicit integration scheme uses the solution of the system
at the old time for calculating the new solution. If the solution vector at the l-th grid
point is denoted as Xl, then in general an explicit discretization of a set of equation
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would look like,

Xl = (Xl,1, Xl,2, ..., Xl,M) , (3.4.1)

X = (X1,X2, ...,XN) , (3.4.2)
X(new) −X(old)

δt
= F(X(old)) , (3.4.3)

where N is the number of grid points and M the number of variables. The solution
vector X has after having a look at (3.4.2) the dimension N ×M . At the new time
X(new) can be obtained straightforward by simply writing,

X(new) = X(old) + δtF(X(old)) . (3.4.4)

This shows, that the new values are obtained by simply extrapolating the solution at
the old time to the new time. The problem with explicit schemes is the strong depen-
dence on the time step δt (see e.g. Feuchtinger (1989)). Solving differential equations
numerically with an explicit method impose an upper limit on the time step δt (other-
wise the numerical method is unstable), this condition is called Courant-Friedrichs-Lewy
(CFL)-condition and reads as follows (see e.g. LeVeque et al. (1998), p. 52),

δt ≤ ∆z
|u|+ cs

, (3.4.5)

where cs is the speed of sound. This condition is equivalent to the following condition
(see LeVeque et al. (1998), p. 52):

The numerical domain of dependence must not be greater than the true do-
main of the system of differential equations. In the limit of δt → 0 and
∆z → 0 the computational domain of dependence should change to the true
domain of dependence.

It should be noted that the CFL-condition is only a necessary condition but not suffi-
cient, this means that an explicit method cannot be stable, but a method with a satisfied
CFL-condition might be convergent, but nothing can be said for sure without doing fur-
ther stability analysis.
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On the contrary, an implicit method solves the system of equations by using solutions
from the old and the new time. This can be written in the following way,

X(new) −X(old)

δt
= F(X(old),X(new)) , (3.4.6)

The problem of equations of the form (3.4.6) is, that such systems are in the most cases
nonlinear and cannot be solved explicitly. Such systems of equations can be solved
iteratively by root searching algorithms, e.g. by a Newton-Raphson iteration. For this
purpose the system of equations at the current time (denoted by superscript (n)) and
for a certain grid point l is rewritten as follows,

Gm,l(X(n)) = 0 , m ∈ [1,M ] , (3.4.7)

where Gm,l is a set of M equations per grid point l and X(n) denotes the set of variables
at the current time. The whole system of equations consists of N ×M equations G,
because for every grid point there are M unknown variables. A solution at the new time
(denoted by superscript (n+ 1)) must obey the same set of equations Gm for every grid
point l,

Gm,l(X(n+1)) = 0 , m ∈ [1,M ] . (3.4.8)

Due to the non-linearity of the equations Gm, the system cannot be solved explicitly in
general, but it can be computed iteratively to first order, by expanding it in a Taylor
series around the solution at the new time X(n+1). For every grid point l, the Taylor
expansion looks like,

Gm,l(X(n+1)) = Gm,l(X(n)) + ∂Gm,l
∂X(n)

l︸ ︷︷ ︸
=J

(
X(n+1)
l −X(n)

l

)
= 0 . (3.4.9)

The term denoted by J is the Jacobi-matrix. Applying this Taylor expansion for every
grid point l make clear that J has the dimension (N ·M ×N ·M). Inverting that matrix
allows one to rewrite equation (3.4.9) for every grid point l in the following way,

δXl = X(n+1)
l −X(n)

l , (3.4.10)

δXl = −J−1
ml Gm,l(X(n)) . (3.4.11)
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This form (3.4.11) is used to iteratively solve the system of equations with a Newton-
Raphson iteration. Repeating this procedure leads to a more accurate solution vector
for the new time X(n). The iteration is halted, if a certain accuracy ε is achieved (see
LeVeque et al. (1998), p. 209),

min
(
|δXm,l|

|Xm,l|+ ηm,l

)
≤ ε . (3.4.12)

The constants ηm,l are introduced to circumvent problems, which arise if |Xm,l| is zero.

3.4.1 Boundary Conditions

The boundary conditions of the set of discretized physical equations are specified to-
gether with the grid boundary conditions as defined in (3.1.13). As it will be clear in the
next section 3.4.2, each variable in a cell is connected to the next two neighbouring cells
on each side. This so-called 5-point stencil clearly cannot be adopted for the boundaries,
because otherwise the computational domain would be infinite.

There exists a huge amount of different possible boundary conditions, in this thesis there
are two different types which are used:

• Fixed boundary values: The innermost (l = N) and outermost (l = 1) grid points
are set to fixed value Xbound,inner and Xbound,outer, respectively,

∆X1 = ∆XN = 0 , (3.4.13)

⇒

X1 −Xbound,outer = 0 , (3.4.14)

XN −Xbound,inner = 0 . (3.4.15)

• Zero gradient for quantities at the boundary: If the gradients should be zero e.g.
at the outer boundary, this can be written as,

∂X
∂z

∣∣∣∣∣
outer

= 0 , (3.4.16)

⇒

X2 −X1 = 0 . (3.4.17)
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According to section 1.3, the Kompaneets approximation is used to calculate the variable
inner boundary values. Two different situations are implemented:

• No feedback of the galactic wind: The quantities in the superbubble, especially ρ,
Eg and Ec are not influenced by the galactic wind.

• Non-vanishing feedback of the galactic wind: The mass-flow as well as the CR flow
will decrease the cosmic ray energy density Ec and also the density ρ in the cavity
and therefore the gas energy density Eg.

In general the variable boundary conditions at the new time (superscript “(new)”) are
computed in the following way (using the quantities in equation (1.3.22),

X(new)
bound,inner =



ρ
(new)
bound,inner = ρ

(old)
bound,inner + ρgain − ρloss

E
(new)
g,bound,inner = E

(old)
g,bound,inner + Eg,gain − Eg,loss

E
(new)
c,bound,inner = E

(old)
c,bound,inner + Ec,gain − Ec,loss

E
(new)
w,bound,inner = E

(old)
w,bound,inner

, (3.4.18)

0 = uN − uN−1 . (3.4.19)

Equation (3.4.19) is equivalent to a vanishing velocity gradient at the inner boundary
(compare with (3.4.16)). The other quantities ρN , Eg,N , Ec,N and Ew,N are set to fixed
values (compare with (3.4.13)), which are variable in time according to the Kompaneets
solution. Supernova explosions supply energy and generate CRs, in general all quantities
which increase any quantity within the superbubble are denoted with subscript “gain”.
On the other hand, the galactic wind will carry away a certain amount of energy and
mass, therefore these parts are referred to with subscript “loss”.

New mass is inserted into the superbubble by various processes such as stellar winds,
supernova explosions, etc. In starbursts this is a substantial and therefore a not negligi-
ble part of the overall mass in a superbubble. Coming back to the case of an ordinary
superbubble created by explosions of a few stars of an OB-association, the part of mass
injected by the stars or by galactic winds can be ignored with respect to the mass swept
up by the shell (for details see e.g. Ellison & Meyer (1999)). Because of that, mass
insertion is not taken into account in these calculation, ρgain = 0.

As already mentioned in section 1.3, the CR energy produced by a single supernova is
approximately 10%. Further it is assumed, that the remaining 90% of all supernova
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explosions are completely thermalized at the time the superbubble has grown to its
final volume V0. Therefore the gas and CR energy density gains caused by supernova
explosions are computed as follows,

Eg,gain = 0.9 ESN
V0

, (3.4.20)

Ec,gain = 0.1 ESN
V0

. (3.4.21)

Finally, the wave energy density Ew is assumed to be not influenced by supernova ex-
plosions.

In the case of no galactic wind feedback all quantities referring to mass loss or energy
loss, are set to zero. Otherwise, the various loss terms can be determined in the following
way. One result of the Kompaneets approximation is a physically motivated initial cross
section of the fluxtube A0. The mass flux Mloss and the resulting mass density ρloss per
timestep δt through this surface can be calculated as follows,

Mloss = ρ
(old)
bound,inA0 uN δt , (3.4.22)

ρloss = Mloss

V0
. (3.4.23)

Then the gas energy density loss per timestep Eg,loss can be obtained by calculating,

Eg,loss = A0 uN δt
0.9ESN
V0

. (3.4.24)

The CR energy loss is determined by using the expression for the cosmic ray flux Fc,
equation (2.6.2),

Fc,N = γc(uN + vA,N)E(new)
c,bound,inner − κ

∆Ec,N
∆zN

. (3.4.25)

Then the cosmic ray energy density loss per timestep Ec,loss can be calculated as fol-
lows,

Ec,loss = A0 uN δtFc,N . (3.4.26)
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3.4.2 Structure and Inversion of the Jacobi-Matrix

In this section the structure of the Jacobi matrix J will be discussed. Further the inver-
sion process is introduced schematically. More details to the inversion process can be
found e.g. in LeVeque et al. (1998).

First the discretized physical equations and the grid equation (3.1.11) need to be consid-
ered in more detail. The discretized advection term of the equation of motion (3.3.22)
has fully written out the following form,

∆( ¯Alu
rel
l ˜ lρ ũl) = Al−1urell−1 ˜ρl−1 ũl−1 − Alurell ρ̃l ũl

= 1
2(Al−1u

rel
l−1 ˜ρl−1 + Alu

rel
l ρ̃l) ũl−1 −

1
2(Alurell ρ̃l + Al+1u

rel
l+1 ˜ρl+1) ũl .

(3.4.27)

Recalling the donor-cell scheme (3.3.18), it is possible (in the case of urel < 0) to obtain
the following expression for the discretized advection term,

∆(Alurell ρ̃l ũl) = 1
2(Al−1u

rel
l−1 ρl−2 + Alu

rel
l ρl−1)ul−2 −

1
2(Alurell ρl−1 + Al+1u

rel
l+1 ρl)ul−1

(3.4.28)

In this form it is easy to see, that only quantities from the grid cells (l− 2), (l− 1), (l),
and (l + 1) are used.

The next equation which is considered in more detail is the grid equation. It is easy
to see from the expressions (3.1.9), (3.1.10) and (3.1.11) that only variables are used
for calculating the actual point distribution nl, which are from the grid points (l −
2, l − 1, l, l + 1, l + 2). All other discretized physical equations only have contributions
from the current grid cell and its next neighbours. Hence, in general it can be said
that only variables enter the discretized equations, which are defined at the grid points
(l−2, l−1, l, l+ 1, l+ 2). In other words, the resulting (N ·M ×N ·M)-Jacobi-matrix is
mostly filled with zeros, more precisely the structure of J is block-pentadiagonal (compare
LeVeque et al. (1998), p. 310). The system of equations (3.4.9) then can be written as
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(using for the variables at each grid point Xl the notation as introduced in (3.4.10)),


A1,1 A1,2 A1,3

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4 A3,5
. . . . . . . . . . . . . . .

Al,l−2 Al,l−1 Al,l Al,l+1 Al,l+2
. . . . . . . . . . . . . . .

AN,N−2 AN,N−1 AN,N


·



δX1

δX2

δX3
...

δXl

...
δXN


= −



Gm,1(X(n))
Gm,2(X(n))
Gm,3(X(n))

...
Gm,l(X(n))

...
Gm,N(X(n))


.

(3.4.29)

where Al,l+1 are (M ×M)-matrices and defined as,

Al,l+1 = ∂Gm,l
∂zm,l+1

=



∂G1,l

∂z1,l+1

∂G1,l

∂z2,l+1
· · · ∂G1,l

∂zM,l+1

∂G2,l

∂z1,l+1

∂G2,l

∂z2,l+1
· · · ∂G2,l

∂zM,l+1

... ... ...

∂GM,l

∂z1,l+1

∂GM,l

∂z2,l+1
· · · ∂GM,l

∂zM,l+1



. (3.4.30)

The inversion of the system (3.4.29) can be done in several steps, including a forward
elimination and a subsequent back-substitution. The procedure of inverting the matrix
is explained now briefly:

1. The first line is multiplied with A−1
1,1 and solved for δX1. The resulting equation

is given by,

δX1 = −A−1
1,1 A1,2︸ ︷︷ ︸

:=U1

δX2 −A−1
1,1 A1,3︸ ︷︷ ︸
:=V1

δX3 −A−1
1,1 Gm,1(X(n))︸ ︷︷ ︸

:=w1

. (3.4.31)

2. The result of step 1 is substituted into the second line and then the procedure is
repeated for every line of the system 3.4.29) such that the correction vectors Xl

60



3.4 IMPLICIT METHOD

can be written in the form,

δXl = Ul δXl+1 + Vl δXl+2 + wl . (3.4.32)

3. The next step is to take the boundary conditions of the system into account. If the
boundary conditions are adopted as it has been explained in section 3.4.1, then
due to the outer boundary conditions the set of variables X0 and X−1 do not occur
and because of the inner boundary conditions the set of variables XN+1 and XN+2

vanish. This leads straightforward to the following results,

A1,−1 = A1,0 = 0 , (3.4.33)

AN,N+1 = AN,N+2 = 0 . (3.4.34)

Including these vanishing sub-matrices, it is possible to define iteration formulas
for the expressions Ul, Vl and wl in (3.4.32), namely (see LeVeque et al. (1998),
p. 311),

Ul = Yl [(Al,l−2 Ul−2 + Al,l−1)Vl−1 + Al,l+1] , (3.4.35)

Vl = Yl Al,l+2 , (3.4.36)

wl = Yl

[
−Gm,l(X(n))− (Al,l−2 Ul−2 + Al,l−1)wl−1 −Al,l−2 wl−2

]
, (3.4.37)

where Yl is defined as follows,

Yl = [(Al,l−2 Ul−2 + Al,l−1) Ul−1 + Al,l−2 Vl−2 + Al,l]−1 . (3.4.38)

4. The starting values U1, V1 and w1 are already given by (3.4.31), thus it is possible
to proceed until the last grid point l = N . By recalling the inner boundary
conditions (3.4.34) and taking a closer look at (3.4.36) and (3.4.35), it is easy to
see that,

VN−1 = VN = 0 ⇒ UN = 0 . (3.4.39)

Consequently, δXN = wN follows directly from equation (3.4.32).

5. With VN−1 = 0 and known δXN the recursion formula (3.4.32) can be used to
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calculate δXN−1,

δXN−1 = UN−1δXN + wN−1 . (3.4.40)

These two values are sufficient to fully apply (3.4.32) to calculate by backward
recursion all remaining corrections δXl.

After the inversion of the Jacobi-matrix J, the corrections are applied to calculate the
new solution vector X(n+1). If the accuracy of the solution not sufficient, the inversion
procedure is repeated, until the condition (3.4.12) is obeyed or if it is clear, that no
solution can be found, because the Newton-Raphson iteration diverges.
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4 Initial Model

The implicit nature of the discretized equations (3.3.19) - (3.3.29) makes it necessary to
already have a full solution, when starting the calculations (see LeVeque et al. (1998),
p. 283). This can be seen by recalling that the solution at the new time is obtained by
a Newton-Raphson iteration. Therefore it is necessary that the convergence radius of
the new solution incorporates the initial solution. Creating such an initial model can be
very complicated, in the case of galactic winds it can be done in a rather simple way.

4.1 Steady-state Initial Model

In Breitschwerdt et al. (1991) the time dependence on the physical equations (2.10.11) -
(2.10.15) has been dropped, this enables one to find analytic expressions for the density
ρ, the velocity u and the pressures (equivalent to energy densities) pg, pc and pw. With-
out further discussions (for details see Breitschwerdt et al. (1991)) the time-independent
galactic wind equations have the following form (taking the assumptions and simplifica-
tions in section 2.8 and the fluxtube geometry into account),

ρuA = const. , (4.1.1)
dpg
dz

= γg
pg
ρ

dρ

dz
, (4.1.2)

dpc
dz

= γc
pc
ρ

MA + 1
2

MA + 1

 dρ

dz
, (4.1.3)

dpw
dz

= 1
2(MA + 1)

[
(3MA + 1)pw

ρ

dρ

dz
− dpc
dz

]
, (4.1.4)

1
u

(u2 − c2
∗)
du

dz
= c2

∗
1
A

dA

dz
− ∂φ

∂z
, (4.1.5)
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4 INITIAL MODEL

where φ is the gravitational potential as defined in (2.9.4). The compound sound speed
c∗ and the Alfvén Mach number MA are defined as follows,

MA = |u|
|vA|

, (4.1.6)

c∗ = γg
pg
ρ

+ γc
pc
ρ

(
MA + 1

2

)2

(MA + 1)2 + pw
ρ

(3MA + 1)2

(MA + 1) . (4.1.7)

This set of equation has several types of solutions, which can be represented and char-
acterized by a flow topology chart. Such a flow topology is shown in Figure 4.1.

Figure 4.1: Flow topology of a galactic wind as described in the time independent equations
given above (adiabatic galactic winds). The galactic wind flow is characterized
by the increasing full line (from Breitschwerdt et al. (1991)).

In Figure 4.1, it can be seen that the galactic wind solution must go through the critical
point (X-type singularity), otherwise no outflow of the gas is possible. Integral curves
below the critical point correspond to solutions, which are denoted as Breeze solutions.
At the critical point, the solution has a subsonic - supersonic transition (MA > 1 for
z/z0 > 1). Therefore, because of the definition of a critical point (e.g. in Jordan &
Smith (2007)) it is required, that the left-hand-side (LHS) and RHS of equation (4.1.5)
vanish simultaneously, which results in the following conditions for the existence of a
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4.1 STEADY-STATE INITIAL MODEL

galactic wind,

u2 = c2
∗ , (4.1.8)

c2
∗

1
A

dA

dz
= ∂φ

∂z
. (4.1.9)

There are two possibilities for solving the system of time-independent equations with
including the conditions (4.1.8) and (4.1.9):

• Guessing the critical point and then integrating inwards and outwards. The disad-
vantage of this integration method is, that the inner and outer boundary conditions
need to be matched, this requires a good guess of the critical point.

• Direct integration and then trying to find the critical point by integration and
subsequent iterative variation of the velocity at the inner boundary u0. The second
approach is easier to implement and has therefore been used by the authors of
Breitschwerdt et al. (1991) to calculate the initial models, which are used as initial
models for the implicit scheme.

The density profile, the velocity profile as well as the energy profiles for Eg, Ec and Ew,
which are obtained by the integration of the steady-state equations, is shown in Figure
4.2. The inner and outer boundary conditions of this calculation are given by (compare
with section 3.4.1),

(inner boundary conditions) =



uN − uN−1 = 0 , (vanishing velocity gradient)

ρN −Xρ
bound,inner = 0 , (fixed value)

Eg,N −XEg

bound,inner = 0 , (fixed value)

Ec,N −XEc
bound,inner = 0 , (fixed value)

Ew,N −XEw
bound,inner = 0 , (fixed value)

,

(4.1.10)

(outer boundary conditions) =
{
u1 − u2 = 0 , (vanishing velocity gradient) .

(4.1.11)

Furthermore no diffusion is used in this model (κ = 0).
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Figure 4.2: Initial profiles for ρ, u, pg and pc, based on the integration of the steady-state
equation as it has been done by Breitschwerdt et al. (1991).

This initial model can be used to start a simulation of time-dependent galactic winds
by varying the inner and/or outer boundary conditions.

The steady-state initial model used in the further calculations (see section 5) has the
following values at the inner boundary and is denoted as Model A:

pg,inner = 2.76 · 10−13 dyn cm−2 (initial gas pressure pg at inner boundary) ,

pc,inner = 1.00 · 10−13 dyn cm−2 (initial CR pressure pc at inner boundary) ,

pw,inner = 3.98 · 10−16 dyn cm−2 (initial wave pressure pg at inner boundary) ,

ρinner = 1.67 · 10−27 g cm−3 (initial density ρ at inner boundary) ,

uinner = 1.11 · 101 kms−1 (initial gas velocity u at inner boundary) .
(4.1.12)

4.2 Pseudo-Variation of Boundaries
From the practical point of view it is very inconvenient, if one always has to repeat this
procedure as soon as different starting parameters are required (e.g. a different compu-
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4.2 PSEUDO-VARIATION OF BOUNDARIES

tational domain, different boundary values Xbound or a different diffusion coefficient κ).
Therefore it would be nice to be able to iterate from one initial model to another step by
step. Indeed this can be done by so-called pseudo-variations of boundary values. These
variations of variables are non-physical and only have a numerical significance.

In the following examples the various effects of different pseudo-variations are illustrated
and briefly motivated. Some features of a astrophysical problem could occur outside of
the computational domain, therefore it would be convenient to just ’drag’ the innermost
or outermost grid point to the desired position, while the adaptive grid adjusts to the
varying size of the computational domain. Because the grid equation is simultaneously
solved with the physical equations, this can be done without any major problems, as
long as the rate at which the inner or outer boundaries are moved remains sufficiently
small for obtaining a convergent Newton-Raphson iteration. In the following example
(see Figure 4.3), the outer boundary z1 has been moved from 300 kpc to 100 ,kpc.
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Figure 4.3: Variations of ρ, u, pg and pc with distance z from the galactic plane. The outer-
most grid-point has moved from 300 kpc to 1000 kpc.

Because the velocity gradient ∂u

∂z
is nearly vanishing at z = 300 kpc as well as at

z = 1000 kpc, the new velocity profile is virtually indistinguishable from the original
profile. The other variables are not constrained at the outer boundary and therefore
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have values according to the flow profile.

4.3 Quasi-hydrostatic initial model

An often used pseudo-variation (at least in this thesis) is the attempt to construct
a quasi-hydrostatic initial model. The usual strategy is to take a starting solution,
which already corresponds to a galactic wind. Based on this a time-dependent variable
boundary condition is applied to study the behaviour of the flow. From the physical
point of view it is better to let the galactic wind evolve into a hydrostatically stratified
halo (see section 1.1). For this purpose it is necessary to reduce the flow velocity as
much as possible, this can be achieved by reducing the wind-driving pressures pg and pc
(equivalently Eg and Ec). The following parameters were used for obtaining profiles as
shown in Figure 4.4,

variations = =


p

(old)
g,inner = 2.76 · 10−13 dyn cm−2 ⇒ p

(new)
g,inner = 2.76 · 10−14 dyn cm−2

p
(old)
c,inner = 1.00 · 10−13 dyn cm−2 ⇒ p

(new)
c,inner = 1.00 · 10−14 dyn cm−2

p
(old)
w,inner = 3.98 · 10−16 dyn cm−2 ⇒ p

(new)
w,inner = 4.00 · 10−17 dyn cm−2

.

(4.3.1)
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Figure 4.4: Variations of ρ, u, pg and pc with distance z from the galactic plane (old profiles
black, new profiles red), if the pressures are adopted like in (4.3.1). Note that
the velocity u at the inner boundary drops significantly.

In Figure 4.4 one can see that in the inner region (0 − 20 kpc) the velocity is very
low, which results in a very low mass flow. Consequently few material is advected
along the fluxtube, which results in steeply falling pressure gradients. The following
initial parameters are used in later time-dependent calculations as initial model and are
denoted as Model B:

pg,inner = 2.76 · 10−14 dyn cm−2 (initial gas pressure pg at inner boundary) ,

pc,inner = 1.00 · 10−14 dyn cm−2 (initial CR pressure pc at inner boundary) ,

pw,inner = 4.00 · 10−17 dyn cm−2 (initial wave pressure pg at inner boundary) ,

ρinner = 1.67 · 10−27 g cm−3 (initial density ρ at inner boundary) ,

uinner = 0.28 kms−1 (initial gas velocity u at inner boundary) .
(4.3.2)

Taking the momentum equation (2.4.1) for a stationary wind
(
∂

∂t
= 0

)
and identifying
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F with the gravitational force (see section 2.9), one arrives at the following expression,

∇ [ρu⊗ u + p · I] = −ρ∇φ (4.3.3)

In the hydrostatic case u = 0 (in 1D fluxtube geometry) this would simplify to a well
known equation,

dp

dz
= −ρdφ

dz
(4.3.4)

Obviously, the velocity terms are modifying the pressure profile and the density profile.
The reason of creating a initial configuration like Model B is, that the wind should
feel no wind structure very close to the superbubble. Therefore the relative deviation of
the pressure gradients (at the inner boundary) with respect to the hydrostatic case are
shown below in Table 4.1.

Model A Model B
scaleheight hz [kpc] 5.86 1.50
dp(z = 1kpc)/dz [dyn cm−3] −2.084 · 10−35 −2.074 · 10−35

−ρ dφ(z = 1kpc)/dz [dyn cm−3] −2.078 · 10−35 −2.060 · 10−35

relative deviation 0.003 0.006
dp(z = hz)/dz [dyn cm−3] −9.676 · 10−36 −9.549 · 10−36

−ρ dφ(z = hz)/dz [dyn cm−3] −7.915 · 10−36 −8.042 · 10−36

relative deviation 0.22 0.19

Table 4.1: Comparison of thermal and kinetic energy at the inner boundary for Model B.

Because virtually no mass is transported in the case of Model B, the gas pressure is
not the important contribution to the overall pressure, in fact the gas is accelerated
very quickly up to very high velocities (always having in mind, that the wind is fast
but extremely light). This is the reason, why the approximation of having a hydrostatic
initial model only can be applied very close to the inner boundary (which was the
intention). For Model B, the model keeps slightly more accurate at the point of hz, this
is because the velocities are initally lower and therefore the hydrostatic approximation
is better obeyed. Hence Model B is sometimes referred to as quasi-hydrostatic initial
model (at least close to the inner boundary).
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5 Results

In this section the results are presented, which are obtained with the numerical method
described described in section 3. The dependence of the solutions on the diffusion
coefficient κ will be discussed as well as the effect of different time-dependent inner
boundary conditions (especially boundary conditions with and without feedback of the
wind, see section 3.4.1). A point of particular interest is the evolution of the shock-
fronts, which are very likely to occur when multiple supernovae are providing the initial
energies to drive a galactic wind (see section 1.3 for details), since these shock-fronts are
assumed to re-accelerate CRs due to the First-Order Fermi mechanism (section 1.2.3 for
details, see also Dorfi & Breitschwerdt (2012)) and hence are pushing the wind further
outwards.

5.1 Flow structure

5.1.1 Flow features

The major purpose of the galactic-wind simulations in this thesis is the investigation
of flow features caused by variation of the inner boundaries. Using the Kompaneets
approximation described in 1.3 and 3.4.1, a supernova explosion leads to an immediate
increase in the gas pressure pg and the cosmic ray pressure pc. This increases the sound
speed cs, which can be calculated (for an ideal gas) in the following well known way,

cs :=
√
γg
pg
ρ
. (5.1.1)

Thus a perturbation propagating at sound speed is steepening while moving through the
flow, because the perturbation propagates faster for a higher pressure pg (see Figure 5.1
for a schematic view of this process). The resulting perturbations are then propagating
as shock waves along the fluxtube and heating up the medium. In addition to these so-
called forward shocks it can be shown, that also a shock-wave arises, which travels inward
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in direction of the shocked medium, a so-called reverse shock (see e.g. in Lozinskaia &
Lozinskaia (1992) or also in Dorfi & Breitschwerdt (2012)).

steepening steepening

steepening steepening

z

z

z

pg

pg

pg

Figure 5.1: Schematic view of building up a shock wave. In the upper panel an ordinary
acoustic perturbation is propagating with sound speed cs into the medium. Due to
the higher pressure at the peaks the perturbation is propagating faster there. This
leads to a steepening and a supersonic propagation of the disturbance (shock).

In the case of a sequence of supernova explosions, several shock fronts will build up at
the inner boundary and then propagate with supersonic speed uS,1 with respect to the
upstream region (in the shock frame), in other words the Mach-number of the shock
M1 > 1, and has subsonic speed uS,2 in the downstream region, consequently M2 < 1.
Therefore each forward shock will catch up with the shock in front of it, until they are
merging.
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The galactic wind structure has been calculated for the two initial models Model A and
Model B with the parameter sets (4.1.12) and (4.1.12), respectively. In the following
shown example, two different plot regions will be distinguished, namely the inner region
and the outer region of the galactic wind. In the inner region (from 1.0−1.6 kpc) the dif-
ferent subsequent shock waves can be seen and its representation in the various gas and
density profiles as well as in the wind velocity profile. When the shock propagates, the
shock waves will merge to a single strong shock wave propagating through the medium
and accelerating the out-streaming gas. Furthermore the geometrical expansion due to
the fluxtube geometry will smear the flow structures, therefore it makes sense to also
observe the large-scale behaviour (from 1.0− 300 kpc) of the galactic wind.

In this section no mass loss is considered, especially Eg,loss = Ec,loss = ρloss = 0 (see
section 3.4.1 for details).

The plots for the inner region have been performed by using N = 2000 grid points for
a better resolution and lower dissipation of the shocks. Due to numerical difficulties
(see section 6.1) it has not been able to achieve acceptable timesteps for the calculations
of the outer region. Hence these simulations have been performed for N = 1000 grid
points, which is sufficient for getting the overall structure of the galactic wind.

Parameters for the results shown in this section with a diffusion coefficient of κ = 1029

cm2 s−1 are given in the table 5.1 (the gi are weights assigned to one of the variables
i = {ρ, u, pg, pc, pw, z}, see section 3.1).

N lq τ q1 q2 gρ gu gpg gpc gpw gz

Model A (inner region) 2000 z 1.0 · 108 0 10−3 1 0 1 1 0.1 0
Model B (inner region) 2000 z 1.0 · 108 0 10−3 1 0 1 1 0.1 0
Model A (outer region) 1000 z 1.0 · 106 0 10−3 1 0 1 0 0 0
Model B (outer region) 1000 z 1.0 · 108 0 10−3 1 0 0.1 1 1 0

Table 5.1: Numerical parameters (described in section 3.1 and section 3.2) used for the sim-
ulations of the galactic wind for κ = 1029 cm2 s−1 and no mass loss.

Then the inner boundaries are varied according to the Kompaneets approximation (see
section 1.3), and the results are presented in the subsequent plots 5.2 and 5.3, comparing
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the results for the two different starting models Model A and Model B.
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Figure 5.2: Various pressure profiles pg, pc and pw as well as the density profile ρ and the gas
velocity profile u at five different times (see legend) for the two different models
Model A and Model B. The CR pressure profile and the wave pressure profiles
(dashed lines) are shown in the same plot, because of their interaction with each
other (see section 1.2).
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5.1 FLOW STRUCTURE

Various interesting things can be seen in these plots, first of all the quite dominant for-
ward shocks. This features can be seen in every profile plotted in figure 5.2. The shock
waves result (as already explained above in this section) from a sudden increase in gas
pressure and CR pressure at the inner boundary. The major difference between the two
models is the typical time inbetween two shock waves merge. This can be seen e.g. in
the gas pressure profile, where the shock fronts are clearly still separated in Model A,
but not so in Model B, which reveals a stronger merged shock already.

The density profiles in Figure 5.2 reveal both forward shocks and reverse shocks, which
is expected in the presence of strong shocks, since then the gas is compressed. The
forward shocks are propagating outwards along the fluxtube, therefore the density on
the LHS of the forward shocks is higher (downstream in the system of the shock). On
the other hand the reverse shocks tend to run inwards (but are effectively convected
outwards), consequently the gas is compressed on the RHS of the reverse shocks. Note
that in the density profiles in Model B the forward and reverse shock velocities do not
differ as much as they do in Model A. This can be verified by comparing the position
of the forward and reverse shocks in Figure 5.2 (in Model A the distance between the
two shock fronts is larger than it is in Model B). The gas pressure pg at the inner
boundary for Model B is considerably lower than in Model A (compare 4.1.12 and
4.3.2), therefore the speed of sound cs defined in (5.1.1) is also lower, which leads to
lower shock velocities in Model B (compare with Figure 5.2) with the assumption of
equally strong shocks in Model A and Model B. Consequently the forward and reverse
shocks do propagate slower through the medium and hence are not able to get as much
distance between them as they would do with higher velocities.

The wave pressure profiles in Figure 5.2) show best how the first-order Fermi mechanism
works. It has been already pointed out in Dorfi & Breitschwerdt (2012), that in the
vicinity of shock waves particle acceleration due to the first-order Fermi mechanism is
very effective. These particles themselves resonantly excite waves, which increase the
wave pressure pw. The process can be seen very clearly in the above figure, at least for
the forward shocks. The reverse shocks are at this early propagation time still quite
weak but will build up, as they proceed down the density gradients of the halo gas. As
soon as the reverse shocks have built up to strong shocks, the same particle acceleration
and wave excitation processes occur for forward and reverse shocks. This is also a
justification of taking a closer look at the wind structure for later times, which is done
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in the next plot, Figure 5.3.
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Figure 5.3: Various pressure profiles pg, pc and pw as well as the density profile ρ and the gas
velocity profile u at five different times (see legend) for the two different models
Model A and Model B. The CR pressure profile and the wave pressure profiles
(dashed line for Model A, full line for Model B) are again shown in the same
plot.
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The steepening of the forward shock can be seen best in the gas pressure profiles of Figure
5.3. The shock propagates at higher speed through the medium, which is straightforward
to understand, since due to the hydrostatic initial model (Model B) there are much
steeper density and pressure gradients. This can be seen by looking at the different
times for the models which are plotted in Figure 5.3, e.g. the forward shocks in the
rightmost curve (orange) are nearly at the same position above the galactic mid-plane
(approximately z = 265 pc) , although the shock in Model A needed 3.2 ·108 years and
the shock in Model B only needed 1.0 · 108 years.

The position of the reverse shock is best visible in the density profile, where one can
even see (at least in Model B), that the reverse shock is propagating backwards (with
respect to the contact discontinuity). The contact discontinuity can be identified as
the second very steep increase (shock-like structure) in the density profile, e.g. in the
rightmost (orange) curve at approximately z = 125 pc. It is also remarkable that the
shock velocities for Model B in Figure 5.3 seem to differ much more for forward and
reverse shock, than it can be expected from Figure 5.2. This can be explained once
more by taking the strong density gradients into account, which are present for Model
B and will let the shocks speed up and get stronger which leads straightforward to more
different shock propagation velocities.

The cosmic ray pressure profile only shows the presence of the forward shock, but no
clear evidence of the reverse shock. This is simply due to the fact, that the diffusion
coefficient is chosen sufficiently high to smear this feature in this plot, which is the case
for both initial models. In the wave pressure profile the position of both shock fronts
can be determined. In Model A as well as in Model B somewhat spiky features can
be seen on the left of the forward shock structure, e.g. in Model A at approximately
at z = 220 kpc in the rightmost (orange) curve. This quite weak feature (compared to
the forward shock) nevertheless shows, that also the reverse shock is a site of resonant
wave excitation caused by particle acceleration.

The velocity profiles show in both models the same structure, although the features
are stronger and therefore better to see in Model B. As already shown in Dorfi &
Breitschwerdt (2012), the velocity profile points out the importance of a forward shock
to drive a galactic wind. The velocity increases at the inner boundary in Model A
over more than one order of magnitude, in Model B even more than two orders of
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magnitude. The velocity profile in Model B also justifies the assumption of speaking
about a quasi-hydrostatic initial model. As one can see, the innermost curve (red dot-
dashed line) reveals that the wind transports virtually no material outside because of
the very low initial velocity, hence one can say that the halo gas is approximately at
rest.

5.2 Dependence on the diffusion coefficient
In this section the flow features discussed in section 5.1.1 are compared to those ob-
tained when different diffusion coefficients κ are chosen. In general varying the diffusion
coefficient has the following effect on the overall structure of the galactic wind:

• If the diffusion coefficient κ is increased, more CRs can escape from the confinement
to the Alfvén waves (see section 1.2.2). If purely advective winds were considered
(κ = 0 cm2 s−1), then the topology of the wind structure would be determined such
that the wind must flow through the critical point (for details see Breitschwerdt
et al. (1991); Dorfi & Breitschwerdt (2012)), whereas in the case of diffusion this
condition is not so strong anymore and the wind topology is slightly modified
(compare with Figure 5.4).
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Figure 5.4: The flow topology (Machnumber - distance plot) for Model A and Model B
and for three different diffusion coefficients.

The dependence on steady-state galactic wind solutions on the diffusion coefficient κ
has already been subject of interest in Dorfi & Breitschwerdt (2012) and is shown and
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discussed there in more detail. In this thesis it will be discussed how the time-dependent
flow features like shocks are modified by different values of κ. Therefore the simulations
shown in Figures 5.2 and 5.3 are repeated with two different values of κ, namely κ1 = 0
cm2 s−1 (Figures 5.7 and 5.8) and κ2 = 1028 cm2 s−1 (Figures 5.5 and 5.6).
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Figure 5.5: Various pressure profiles pg, pc and pw as well as the density profile ρ and the gas
velocity profile u at five different times (see legend) for the two different models
Model A and Model B. The forward shock can be also seen in the CR pressure
profile (a knee).
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Figure 5.6: Various pressure profiles pg, pc and pw as well as the density profile ρ and the
gas velocity profile u at five different times (see legend) for the two different
models Model A and Model B. The reverse shock becomes visible in the CR
pressure profile of both models (e.g. in the rightmost orange curve for Model A
at approximately 225 kpc).
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Figure 5.7: Various pressure profiles pg, pc and pw as well as the density profile ρ and the gas
velocity profile u at five different times (see legend) for the two different models
Model A and Model B. The CR pressure profile and the wave pressure profiles
(dashed lines) are again shown in the same plot.
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Figure 5.8: Various pressure profiles pg, pc and pw as well as the density profile ρ and the
gas velocity profile u at five different times (see legend) for Model A. The CR
pressure profile and the wave pressure profile (dashed line) reveal a structure
which is not flat anymore (compared to Figure 5.3).

The parameters which are used to produce the results shown in the Figures 5.5 - 5.7 are
given in Tables 5.2 and 5.3.

N lq τ q1 q2 gρ gu gpg gpc gpw gz

Model A (inner region) 2000 z 1.0 · 107 0 10−4 1 0 1.1 1 0.4 0
Model B (inner region) 2000 z 1.0 · 108 0 10−3 1 0 1 1 0.01 0
Model A (outer region) 1000 z 1.0 · 106 0 10−3 1 0 1 0 0 0
Model B (outer region) 1000 z 1.0 · 108 0 10−3 1 0 1 1 0.01 0

Table 5.2: Numerical parameters used for the simulations of the galactic wind for κ = 1028

cm2 s−1 and no mass loss.
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N lq τ q1 q2 gρ gu gpg gpc gpw gz

Model A (inner region) 2000 z 1.0 · 107 0 10−3 1 0 1 0.1 0 0
Model B (inner region) 2000 z 1.0 · 108 0 10−3 1 0 1 0.1 0.1 0
Model A (outer region) 1000 z 1.0 · 106 0 10−3 1 0 1.1 0.7 0.01 0

Table 5.3: Numerical parameters used for the simulations of the galactic wind for κ = 0 cm2

s−1 and no mass loss.

Note that the outer region plot for Model B and a diffusion coefficient κ = 0 cm2 s−1

is missing. That is because of numerical difficulties which have occured while trying to
run a simulation for these initial conditions and parameters (see also section 6.1).

In the case of diffusion, the so-called characteristic diffusion length scale L is of particular
interest when investigating the effects of diffusion in galactic winds. This scale is a
measure for the range in which diffusion can influence the galactic flow. L is proportional
to the main free path of CR particles lCR (see equation (3.2.3), hence

L ∝ lCR = κ

us
. (5.2.1)

Taking characteristic values for the flow velocity u for the inner 10 kpc (uchar ≈ 400 km
s−1 for Model A and Model B, compare with Figures 5.3 and 5.6), one obtains the
following characteristic diffusion lengths L,

L ≈ 0.8kpc (for κ = 1029 cm2 s−1) , (5.2.2)

L ≈ 0.08kpc (for κ = 1028 cm2 s−1) . (5.2.3)

Hence, all flow features smaller than this L will be smeared in the CR pressure profile
and are not visible in the plots. Therefore it is not surprising, that in the inner region
plot for κ = 1029 cm2 s−1 (see Figure 5.2) no structures are noticeable. Although still
not immediately to see, the forward shock structure can be seen in the CR pressure
profile for κ = 1028 cm2 s−1 in Figure 5.5 (a knee at the site of the forward shock).

Differences can also be seen in the plots of the CR pressure for the outer region (compare
Figure 5.3 and Figure 5.6). The reverse shock becomes visible for κ = 1028 cm2 s−1,
which is due to the same arguments as before: The reverse shock structure is of the
order of approximately 1 kpc, as well as the diffusion length L, consequently this feature
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is strongly influenced by diffusion, more precisely the diffusion will cause a smearing of
the reverse shock.

Clearly, in the case of no diffusion (κ = 0 cm2 s−1), only advection is responsible for
the flow features. Consequently, no features are smeared in the CR pressure profile
and every single shock front caused by the sequential explosion of supernovae can be
distinguished and identified (see Figure 5.7). Another remarkable flow feature can be
seen in the velocity profile for Model B and no diffusion in Figure 5.7. The structures
which can be seen in this plot are probably physical instabilities caused by the different
propagation speeds from gas component compared to waves and CRs (see section 1.2
for details).

5.2.1 Time evolution of shock fronts

Another important question is the investigation of the time evolution of the propagating
shock fronts for being able to derive a typical merging timescale τmerge as well as a typical
merging scaleheight zmerge. This is important in the context of particle acceleration due
to the first-order Fermi mechanism, if the shocks merge in short times and distances to
form very strong shocks with high compression ratios and in this way ensure ongoing
particle acceleration.

In this section the time evolution of the shock fronts and its dependence on the two
different initial models (Model A and Model B) is discussed. Furthermore the de-
pendence on the diffusion coefficient κ is discussed and values for τmerge and zmerge are
derived. In Figure 5.9 the time evolution of the first five shocks is shown for the two
initial models and for three different diffusion coefficients κ. The time axis is normalized
to the time interval between two supernova explosions dt = 4.8 · 105 years (see section
1.3, especially parameter set 1.3.22)).
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Figure 5.9: The timeevolution (distance z plotted against time t/dt, where dt is the time
interval between two supernova explosions) for the first five shocks is shown here.
One can see, that the shocks will converge after a certain time and practically
merge to one single shock-front. The full lines correspond to the forward shocks
created by each supernova explosion, the dashed lines are showing the time evo-
lution of the reverse shocks.

The non-smooth variations in the time evolution tracks of the shock fronts occur, be-
cause the program which logs the shock fronts, can temporarily lose track of the shocks,
especially when a forward shock passes a reverse shock (see for example in the upper
left plot for the fourth forward shock at t/dt ≈ 4).

The first thing which can be seen immediately is that the forward shock fronts will
merge to one single strong shock front, which is the expected result and has been already
discussed in the beginning of section 5.1.1. Note that for Model A the first two forward
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shocks merge for all diffusion coefficients discussed in this thesis at least below a height
of z ≈ 1.6 kpc, which is very close to the inner boundary. For Model B, the shocks
will merge even faster, namely below the height z ≈ 1.2 kpc. The reason for the lower
merging scaleheight zmerge in Model B comes from the fact, that the shocks run into
a highly rarefied medium (even compared to initial Model A) with a strong density
gradient which causes a further steepening of the shocks. The shock velocities uS can be
used to determine the Mach number and give information on how strong the shock is.
If the assumption of an ideal gas is made (as it is in this case, see section 1.2 for further
details), then there is another way of determining the shock Mach number. Elementary
thermodynamics and the assumption of an ideal gas lead to the following expression (see
e.g. Longair (2011), p. 317 for further details),

p2

p1
= 2γM2

1 − (γ − 1)
(γ + 1) . (5.2.4)

This can be reordered to obtain an expression for M1 dependent on the pressure ratio
p2

p1
,

M1 =
√
p2

p1

γ + 1
2γ + γ − 1

2γ , (5.2.5)

where p1 and p2 are the gas pressure before and after the shock, respectively, and M1

denotes the Mach number of the shock front with respect to the gas upstream and γ = 5
3

is the adiabatic index of the medium. The pressure ratios as well as the corresponding
shock Mach numbers (the first five shocks for Model A and B) are listed in Table 5.4, if
the gas pressure is increased at every time interval dt according to the quantities derived
for the Kompaneets approximation in section 1.3.

In Table 5.4 one can see by looking at the Mach numbers, that apart from the first
shock for Model B the shocks are not strong shocks close to the inner boundary. This
is the reason why only the first five shock fronts are considered here; the subsequent
shocks are already very weak and are therefore from minor physical relevance. Apart
from that, it is difficult to track such weak shocks, because these features underlie a
numerical dissipation and are going to vanish after a certain simulation time.

A cosmic ray driven galactic wind needs high energy CRs for being able to propagate
into the halo, therefore it is necessary to have strong shocks which accelerate the par-
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Model A Model B

1. shock p
(1)
1 [dyn cm−2] 2.76 · 10−13 2.76 · 10−14

p
(1)
2 = p

(2)
1 [dyn cm−2] 4.15 · 10−13 1.67 · 10−13

p
(1)
1 /p

(1)
2 1.50 6.05

M
(1)
1 1.18 2.24

2. shock p
(2)
2 = p

(3)
1 [dyn cm−2] 5.55 · 10−13 3.06 · 10−13

p
(2)
2 /p

(2)
1 1.33 1.83

M
(2)
1 1.13 1.29

3. shock p
(3)
2 = p

(4)
1 [dyn cm−2] 6.94 · 10−13 4.46 · 10−13

p
(3)
2 /p

(3)
1 1.25 1.46

M
(3)
1 1.09 1.17

4. shock p
(4)
2 = p

(5)
1 [dyn cm−2] 8.33 · 10−13 5.85 · 10−13

p
(4)
2 /p

(4)
1 1.20 1.31

M
(4)
1 1.08 1.12

5. shock p
(5)
2 [dyn cm−2] 9.73 · 10−13 7.24 · 10−13

p
(5)
2 /p

(5)
1 1.17 1.23

M
(5)
1 1.06 1.09

Table 5.4: Pressure ratio and Mach number of the shock fronts for the two initial models for
the first five shock fronts.

ticles due to the first-order Fermi mechanism (see section 1.2.3). These shocks should
form at an early stage of the wind to provide a sufficient amount of high energy particles
to drive the wind. Fortunately, the first five shocks for the initial Model A merge
at a height below ≈ 5 kpc, which is very close to the inner boundary (estimate made
by extrapolation of the shock front evolutions). The shocks for Model B merge even
faster, which one can see very clear in Figure 5.9. It has been already discussed in Dorfi
& Breitschwerdt (2012), that the merged shock becomes very strong due to the steep
density gradient and is therefore able to accelerate cosmic ray particles up to the energies
needed for driving the galactic wind.

The time evolution of the galactic winds in the outer region (up to z = 300 kpc) is
virtually indistinguishable for different diffusion coefficients κ and is shown in Figure
5.10.
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Figure 5.10: The time evolution (distance z plotted against time t/dt, where dt is the time
interval between two supernova explosions) for the merged forward and reverse
shock is shown here for both initial models. The global time evolution of the
shocks only varies very slightly (virtually indistinguishable with the naked eye)
in the diffusion coefficient κ. The shock fronts separate much more for Model
B, which is the expected result and can also be seen in Figures 5.3 and 5.6.

Note that in Figure 5.10 the time evolution of the galactic wind with κ = 0 cm2 s−1

for initial Model B is missing, which is due to the same reasons as in section 5.2. The
bigger separation between the forward shock and the reverse shock in Model B is due
to the higher shock velocities (with respect to Model A). Consequently the forward
shock is much faster and the reverse shock runs inward with higher speed, resulting in
a slower outward-directed convection.

The shock speed tends to an asymptotic value very fast, which can be seen clearly in
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Figure 5.10. In the inner region (1.0 − 1.6 kpc) the velocity evolution of the shock
velocities (for the first three shocks) is plotted in Figure 5.11.
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Figure 5.11: The shock front velocities are plotted for κ = 1029 cm2 s−1 (the qualitative
behaviour for κ = 0 cm2 s−1 and κ = 1028 cm2 s−1 does not differ much from
the shown plot) and for both initial models.

One can see in Figure 5.11, that the forward shocks and reverse shocks exchange kinetic
energy; this can be seen very clearly e.g. in the velocity evolution of the second forward
and the first reverse shot in the left plot (green full and red dashed line): When these
shocks meet each other at t ≈ 1.2 dt (compare with 5.9, time evolutions for κ = 1029 cm2

s−1) then the forward shock slows down a bit, consequently the reverse shock receives
the energy and gains speed. This behaviour is observable every time, a reverse shock
meets a forward shock. Note that the inaccuracies in the velocity plots are purely from
numerical origin. Every time a supernova explodes the corresponding shock waves are
weaker than the shock before, therefore the grid equation (see section 3.1 for details)
does not allocate so much points to properly describe the shock wave. Consequently
every subsequent shock suffers from an increasing numerical dissipation, which results
in inaccuracies in describing the time evolution and velocities of the shock wave.

The asymptotic velocities us,∞ of the forward and reverse shocks (compare with Figure
5.10) are listed below in Table 5.5. The forward shock velocities in Model B are
much higher than in Model A, which is due to the steeper density gradients (compare
also with Figures 5.10. Although in the inner region close to the galactic disk the shock
velocities of Model B are lower than for Model A (see Figure 5.9, the shock accelerates
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Model A Model B
κ = 1029 cm2 s−1 us,∞ [km s−1] (forward shock) 795 3180

us,∞ [km s−1] (reverse shock) 701 943
κ = 1028 cm2 s−1 us,∞ [km s−1] (forward shock) 780 3065

us,∞ [km s−1] (reverse shock) 683 940
κ = 0 cm2 s−1 us,∞ [km s−1] (forward shock) 777 —

us,∞ [km s−1] (reverse shock) 683 —

Table 5.5: Asymptotic shock velocities for the forward and reverse shocks and for both initial
models. Because of the missing plot for κ = 0 cm2 s−1 and initial Model B the
asymptotic velocities couldn’t be determined.

much faster, which leads to the results which can be seen here. The asymptotic behaviour
has been already explained by Dorfi & Breitschwerdt (2012), who explain it by assuming
that the galactic wind is similar to a stella wind type. which propagates to a certain
distance zs,

zs ∝ t

3
5 + β , (5.2.6)

where β is the exponent of the density profile, especially ρ ∝ zβ. If one makes the
assumption that the asymptotic wind speed is reached rather fast, which is indeed the
case (compare with Figure 4.3 or 5.3), then the density profile ρ(z) can be written as
follows (with help of equation 2.11.1),

ρ(z) ∝ (u(z)A(z))−1 ∝ z−2 , (5.2.7)

where u(z) is the galactic wind velocity profile. Consequently β = −2, which leads to
zs ∝ t. If the shock speed us is determined by differentiation one obtains,

us = dzs
dt

= const. . (5.2.8)

5.3 Feedback of the wind on the superbubble

The next step in obtaining a more physical insight in the physics of galactic winds is
the consideration of the feedback of the galactic wind on the superbubble in the galactic
mid-plane. The wind transports mass, which results in a mass loss in the superbubble
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(approximated by the Kompaneets solution, see section 1.3). Hence, quantities like
densityρ and the pressure components pg and pc will decrease at the inner boundary due
to mass loss in the superbubble. In summary a superposition of two effects will then
determine the boundary conditions:

• the increase of pg and pc due to the explosion of supernovae, and

• the decrease of pg, pc and ρ due to the mass loss of the superbubble caused by the
galactic wind.

Therefore, referring to section 3.4.1, the loss terms Eg,loss, Ec,loss and ρloss are non-
vanishing terms and contribute in determining the boundary conditions (in contrast to
the sections before).

The numerical parameters which have been used for the computation, are listed in Table
5.6.

N lq τ q1 q2 gρ gu gpg gpc gpw gz

Model A (inner region) 2000 z 1.0 · 108 0 10−4 1 0 1 1 0.1 0
Model B (inner region) 2000 z 1.0 · 108 0 10−3 1 0 1 1 0.1 0
Model A (outer region) 1000 z 1.0 · 106 0 10−3 1 0 1 0 0 0
Model B (outer region) 1000 z 2.0 · 108 0 10−3 1 0 0.1 1 0.1 0

Table 5.6: Numerical parameters used for the simulations of the galactic wind for κ = 1029

cm2 s−1 and with mass loss.

The following simulations have been calculated with κ = 1029 cm2 s−1 and are shown
in 5.12. The inner region plot does not really differ from the corresponding simulation
without mass oss (compare with Figure 5.2). This is because the shock propagation time
t is still pretty short (t = 2.4 · 106 years), but the mass loss Ṁ obviously is proportional
to the elapsed time and the wind velocity u, especially Ṁ ∝ t · u. Furthermore the
mass loss rate is time-dependent, because the wind velocity u also changes in time, as
well as the gas density ρ. Hence it is evident that the effects of a wind feedback on the
superbubble become visible at longer propagation times and an outer region plot also
makes sense (shown in Figure 5.13), as it reveals the changes to the flow topology by
the wind feedback.
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Figure 5.12: Various pressure profiles pg, pc and pw as well as the density profile ρ and the
gas velocity profile u at five different times (see legend) for the two different
models Model A and Model B as well as wind feedback on the superbubble.
The CR pressure profile and the wave pressure profiles (dashed lines) are shown
in the same plot.
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Some interesting, different features (with respect to simulations without feedback, com-
pare e.g. with Figure 5.3) can be seen here. Steep cosmic ray pressure gradients are
forming near the inner boundary for both initial models. These gradients lead to the
conclusion that the diffusion is not sufficient to compensate the advective losses of the
CRs in the superbubble, more precisely this means that the advective part of the cosmic
ray flux in equation (2.6.2 is much higher than the diffusive part, which would tend to
flatten the gradient but is not strong enough to succeed. The simulation program has
been written in a way, that it does not allow lower values for pc than 10−18 dyn cm−2.
The reason for this is, that lower values don’t have any physical relevance, because even
the most depleted superbubble gets penetrated by an certain amount of extragalactic
CRs and has therefore a certain very low cosmic ray pressure component. This explains,
why the CR pressure profile is fixed at the inner boundary at pc = 10−18 dyn cm−2 for
Model B (look at the orange dot-dashed line).

Another feature can be seen in the velocity plots for Model A. The wind velocity nearly
vanishes at some distance (e.g. at z ≈ 30 kpc for Model A and t = 2.0 · 108 years),
which seems to be a feature caused by a combination of two phenomenons: first the
reverse shock, which accelerates the gas component, and second the steep positive CR
pressure gradient which is the dominant pressure contribution and causes the gas com-
ponent to slow down. Together these features could explain (in a heuristic, simplified
manner) the slow velocity peaks. Note that the simulation terminated for Model A
after approximately t = 2.0 · 108 years, which is probably because of those peaks in the
velocity profile. It also is possible that the wind cannot propagate any further because
of too flat gradients in the CR pressure profile (which is the case, compare with Figure
5.13).
It is also remarkable, that the wind is able to propagate further outwards for Model
B (compared to Model A). The reasons are very likely the steeper gradients of the
undisturbed medium, which allow the wind to speed up more (as it has been discussed
in section 5.2.1) and then is able to blow further out. One can see that the gas velocity
u of the wind also slows down in Model B, and the shock fronts become weaker when
propagating in time. This goes on, until the shock fronts are ’eaten up’ and the galactic
wind terminates.

The time evolution of the shock fronts is shown in Figure 5.14. Note that the time
evolution in the inner region will not be plotted here, since the effects of the wind
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feedback are not really visible in this region.
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Figure 5.14: The evolution of the shock fronts is plotted here for three different diffusion
coefficients κ and for galactic wind feedback for both initial models A and B.

One can see in Figure 5.14, that the reverse shocks for Model A slow down until they
don’t really move anymore. This can be explained by looking at the velocity plots of
Figure 5.13 again. There the velocity drops significantly in the region of the reverse
shocks, this means that the shock is not so fast convected with the flow anymore and
therefore slows down (since the reverse shock tends to run inward). In contrast to this
behaviour the reverse shocks for Model B still show the same behaviour as they do
in simulations without mass loss and are propagated outwards with the flow. The only
difference compared to the simulation without mass loss is the slower propagation of the
reverse shocks (compare with Figure 5.10). it is also noticeable that there are virtually
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no differences between the simulations with different diffusion coefficient (which is the
reason why the flow features for κ = 1028 cm2 s−1 and κ = 0 cm2 s−1 are not shown in
this section, since no additional features can be seen in these simulations).
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In this section the numerical difficulties which occurred during the simulations are dis-
cussed briefly. Furthermore the results presented in section 5 are summarized and some
conclusions are derived.

6.1 Numerical difficulties
During the simulations some difficulties occurred. One problem which arises for every
computational simulation of an astrophysical problem (not only for the simulations made
in this thesis) are the issue of the many orders of magnitudes of the quantities which
need to be covered. In the case of an implicit simulation code this results in problems
while inverting the Jacobi matrix (for details, see section 3). It can occur, that dur-
ing the inversion some values leave their value range (even for double precision), which
emphasises the necessity of matrix preconditioning (see e.g. LeVeque et al. (1998) for
further details). Nevertheless the matrix keeps bad preconditioned and this can lead
to errors while inverting. Furthermore note that no straightforward matrix inversion
method of the well known linear algebra packages (like LAPACK, BLAS, . . . ) is able to
invert a pentadiagonal block-matrix effectively (at least as far as we know).

Another difficulty comes from the fact that the numerical program works with an iter-
ation process to find the solution at the new time (a Newton-Raphson iteration). The
simulations performed here deal with variable boundary conditions, which makes it nec-
essary to not vary instantaneously, but with built in smoothing functions. But, as one
can understand, this is a conflict of interests: On the one hand, the variations should
be rather quick for simulation a supernova explosion, on the other hand the program
will not be able to deal with such variations, since then the iteration will not find any
convergent solution. Especially for the hydrostatic inner boundary conditions (Model
B, see sections 3.4.1 and 5) the differences between the undisturbed medium and the
onset wind are rather big, which made it difficult to fine-tune the parameters in a way
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of getting good results.

Last but not least it can be said that doing simulations with an implicit code require a
good understanding of the underlying physics and the code. Furthermore the parameters
need lots of fine-tuning and nursing and requires experience in doing such simulations,
since a slightly different parameter can result in a non-invertible (singular) matrix.

6.2 Conclusions

Various authors have already discussed the importance of CRs for the evolution of galac-
tic winds. This thesis can be seen as a further investigation of galactic winds, as it has
been done by Dorfi & Breitschwerdt (2012). They have concluded that the observed
cosmic ray energies (energies between the ’ankle’ and the ’knee’) could be explained by
acceleration of cosmic ray particles in shock waves due to the first-order Fermi mecha-
nism (see section 1.2.3 for further details).

Further it has been shown in magnetohydrodynamical 3D-simulations (de Avillez &
Breitschwerdt (2005)), that winds can occur even in thick disks where they normally
wouldn’t be expected to exist. This comes from the mechanism, that a locally thermal-
ized region (e.g. a superbubble) in the disk can push aside the surrounding halo material
and then start to stream into the outer halo, while still accelerating due to pressure and
density gradients. When the wind has propagated sufficiently far away from the galactic
disk, the cosmic ray pressure contribution becomes dominant and drives the wind further
outward.

This thesis (among others) deals with the modulation of such wind structures by the
star formation rate. If a group of massive stars in an OB-association blows up as subse-
quent supernovae, they propably will form a superbubble. The disk-halo connection is
implemented as it has been done by Dorfi & Breitschwerdt (2012), namely by varying
the inner boundary conditions (see section 3.4.1). In contrast to Dorfi & Breitschwerdt
(2012), this thesis simulates a sequence of supernovae (as it is in an OB-association)
by an incremental increase of the inner boundary conditions. It is investigated how
these shock waves evolve in time as well as the behaviour when two shocks meet each
other. An emphasis lies on the determination of the scale above the galactic midplane,
at which the shock fronts merge and form a single strong shock. This is interesting in
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the context of wind acceleration by CRs, because the observed energy spectra reveal
that CRs are already at high energies close to the disk, which is only possible with an
further acceleration mechanism (in this thesis as well as in Dorfi & Breitschwerdt (2012)
this mechanism is assumed to be the first-order Fermi mechanism). Another focus lies
on the investigation of time-dependent flow features. Multiple shock structures as well
as contact discontinuities become visible in the various pressure and density profiles.
Furthermore all galactic wind simulations are performed for two different initial models.
First, the inner boundaries of an already existing wind are varied and its effect on the
wind is investigated. A more physical initial situation is the absence of a wind before
the superbubble expands out of the disk. Hence an initial model is used, which approx-
imately imitates this situation.

Moreover the attempt of physically better motivated inner boundaries has been made.
The qualitative effect of varying inner boundaries on the galactic wind can be inves-
tigated by just increasing them by a certain value (as it has been done by Dorfi &
Breitschwerdt (2012)), but this value is completely arbitrary and has no support from
the physical processes involved. The Kompaneets approximation (explained in section
1.3) solves this problem in a highly approximative, but elegant and simple way. As
mentioned before in this work, a higher level of accuracy makes no sense, since the un-
derlying physical model itself comes with rough approximations.

Finally, the work and results obtained in this thesis is summarized now:

• the Kompaneets approximation is used to model the superbubble and to obtain
physically motivated values for the gas pressure pg, the cosmic ray pressure pc and
the density ρ,

• variations of the inner boundary lead to characteristic flow features, more precisely
forward shocks, reverse shocks and contact discontinuities which propagate along
the density gradient outward with respect to the galactic disk,

• subsequent forward shock waves will merge to a single, strong shock wave, which
then further steepens while running down the density gradient,

• the merging scaleheight zscale ≈ 5 kpc, which is very close to the disk and hence
is supporting the theory of early accelerated CRs, which then drive the wind
outwards,
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• the effect of galactic feedback on the superbubble is investigated; it is revealed
that the forward shocks get weaker and weaker then, until the wind is not able to
blow out further and terminates. In the case of a hydrostatic halo model (more
realistic than the modulation of an existing wind) the shocks are able to blow
further outwards.

• the effect of the diffusion coefficient κ is investigated. Higher diffusion leads to
flattened flow features and a flatter cosmic ray pressure profile.
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