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Abstract

Context. Galactic winds in the Milky Way are probably driven by cosmic
ray particles. These particles will modulate the wind by resonant excitation
of magnetohydrodynamic waves. A simple physical model based on a flux-
tube geometry is introduced for determining the gas pressure, the cosmic
ray pressure and the density 1 kpc above the outer disk (reffered to as inner
boundary of the galactic wind). Furthermore the influence of diffusion is
discussed as well as the effect of different initial models.

Aims. The simulation of sequential supernova explosions will lead to a se-
ries of subsequent shock waves propagating outwards along the galactic wind.
One goal is to investigate the scaleheight, at which the shocks are merging to
a single strong shock, which enables particle acceleration by the first-order
Fermi mechanism. Another aim is to examine and discuss the various flow
features occuring to get a better insight in the physics of galactic winds.
Methods. An implicit hydrodynamical (HD) code will be used to simu-
late galactic wind flows within an adapted fluxtube geometry. The inner
boundary conditions are modelled by using the so-called Kompaneets ap-
prozimation, which is an analytical description of an expanding superbubble
in an exponentially stratified atmosphere.

Results. The time-dependent shock structures (forward and reverse shock
as well as a contact discontinuity) have been confirmed by using the implicit
MHD code. Furthermore the merging scaleheight could be determined to be
very close to the inner boundary (approximately 5 kpc). This is important
to support the hypothesis of cosmic ray particle acceleration close to the in-
ner boundary (lower halo), which is necessary to explain the observed high
particle energies of 10'” — 10'® eV. The time evolution of the various shocks
is also discussed in detail and shows clearly the merging process of the flow
features. If galactic wind feedback on the properties of the inner boundary is
considered, the galactic outflow will terminate as soon as the shocks are too
weak to accelerate the gas. Noticeable is that the wind propagates further,
if the undisturbed medium is assumed to be hydrostatic.

Conclusions. Supernovae explosions and its subsequent propagating shock
waves are very likely to be the key process in understanding the observed

cosmic ray (CR) energy spectrum.
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Zusammenfassung

Kontext. Galaktische Winde in Galaxien mit normaler Sternentstehungsra-
te (z.B. die Milchstrafie) kénnen vermutlich mit Hilfe kosmischer Strahlung
aus der Galaxie ausstromen. Diese Teilchen beeinflussen den Wind durch re-
sonante Anregung von magnetohydrodynamischen Wellen. Weiters wird ein
einfaches auf einer Flussrohrengeometrie basierendes physikalisches Modell
verwendet um den Gasdruck, den Druck durch kosmische Strahlung und die
Dichte am inneren Rand des galaktischen Winds zu bestimmen. Zusatzlich
wird der Einfluss verschieden starker Diffusion als auch die Abhéangigkeit von
verschiedenen Anfangsmodellen diskutiert.

Ziele. Die Simulation von zeitlich versetzten Supernova-Explosionen fiihrt
zur Ausbildung von mehreren aufeinander folgenden Schockwellen, welche
sich entlang des galaktischen Windes in Richtung des Halos bewegen. Ein
Ziel ist es eine Merging-Skalenhohe zu definieren, in welcher sich die Schocks
verbinden zu einer starken Stofifront. Dieser Schock ist dann stark genug, um
Teilchenbeschleunigung durch den Fermi-Prozess erster Ordnung zu gewahr-
leisten. Ein weiteres Ziel ist die Untersuchung und Diskussion der auftreten-
den Wind-Features, um ein besseres Verstandnis fiir die involvierte Physik
zu bekommen.

Methoden. Ein impliziter hydrodynamischer (HD) Code wird verwendet,
um den galaktischen Wind innerhalb einer bestimmten Flussrohrengeometrie
zu simulieren. Die inneren Randbedingungen werden mit Hilfe der sogenann-
ten Kompaneets- Approximation modelliert, welche eine analytische Beschrei-
bung einer expandierenden Superbubble in einer exponentiell geschichteten
Atmosphére ist.

Ergebnisse. Die zeitabhingigen Schocks (vorlaufender und riicklaufender
Schock sowie eine Kontaktdiskontinuitat) werden sehr gut aufgezeigt und be-
statigt vom verwendeten MHD Code. Weiters konnte die Merging-Skalenhéhe
festgelegt werden (ungefahr 5 kpc). Dieses Ergebnis ist wichtig um die These
zu stiitzen, dass die kosmischen Teilchen nahe der galaktischen Scheibe auf
die erforderlichen und beobachteten Energien von 10'7 —10'® eV beschleunigt
werden. Weiters wird die Zeitentwicklung der einzelnen Schocks ausfiihrlich
diskutiert und zeigt ganz klar, dass alle Schockfronten zusammenlaufen und

sich zu einer Stof}front verbinden. Bei Betrachtung der Riickwirkung des



galaktischen Windes auf die innere Randbedingung der Superbubble zeigt
sich, dass die Schocks abschwéachen und nach einiger Zeit verschwinden, wel-
ches ein Abflauen des galaktischen Windes zur Folge hat. Interessanterweise
schafft es der Wind im Falle einer hydrostatischen Anfangskonfiguration, wei-
ter auszustromen als im Falle einer Wind-Anfangsverteilung.

Schlussfolgerung. Supernova-Explosionen und die daraus resultierenden
StoBlwellen sind sehr wahrscheinlich der Schliisselprozess, um die beobachte-

te Energieverteilung der kosmischen Strahlungspartikel zu verstehen.
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1 Galactic Winds

1.1 Introduction

In recent decades galaxies had been popular objects of research. Especially the issue of
galaxy formation and evolution fascinated astrophysicists and is still not understood in
all details. Gravity is responsible for the largest structures one can observe in present
days, but on galactic scales, the gravitational force is not the only important force to take
into account when making models which should explain the various observed features
of galaxies. Even inclusion of cold dark matter could not explain features like galactic
outflows. Nowadays a change of thinking has begun and different physical processes, e.g.
star formation and evolution or chemical evolution of the interstellar medium (ISM), are
taken into account in treating the issues of galaxies. [Veilleux et al.| (2005) argue that the
progress of development of new theoretical and numerical galactic wind models is slow
because of the need for comprehensive data (in sensitivity and spatial resolution) of the
full electromagnetic spectrum. These data are essential for the further improvement of

the models.

When a starburst with large outflows was detected in the galaxy M82 (see Lynds &
Sandage (1963)), the topic of galactic winds (GWs) became even more interesting and
was since then considered as the dominant feedback in galaxy formation and evolution
(Veilleux et al.| (2005)). From this time on various models have been created, which try
to explain these galactic outflows (e.g Burke| (1968)); Johnson & Axford (1971)); Mathews
& Baker| (1971))), and it was found that mass outflows only occur, if the temperature
of the gas is sufficiently high( Breitschwerdt et al.| (1991)). The problem is that most
of the recent galactic wind models are only treating galactic winds as single-component-
fluids, saying that just the effects of the ejected gas like radiative cooling are taken
into account and therefore only the thermal pressure is driving the wind. These high-
temperature winds are therefore so-called thermally-driven winds and are assumed to

have flow structures showing that the gas is ejected with high kinetic energy until dense



1 GALACTIC WINDS

clumps are formed due to radiative cooling. These dense structures then fall back to
the galactic disk (so-called galactic fountains, see Kahn| (1981), Kahn| (1991) and Kahn|
(1998) for further reading). As a result the halo around galaxies becomes inhomogeneous

(see Figure|l.3]). However, such winds are only expected to occur in galaxies with active

galactic nuclei (AGN) or in galaxies with very high gas temperatures, e.g. in starburst

galaxies.

Sy

Figure 1.1: H I contours over a multi-wavelength picture of the galaxy NGC 253. The con-
tours reveal denser regions (clumps), which were created by a galactic outflow.
Several of these clumps are very likely to fall back to the galactic disk as galactic
fountains (the picture is taken from Boomsma et al. (2005)).

The next step on the path of a better understanding of galactic winds had been taken,
when for the first time the effects of cosmic rays (CRs) were included in the dynamical
galactic wind equations (1975))). With accounting for this newly considered
component, the temperatures needed to drive a wind significantly dropped. This is
possible, because CRs can transfer a sufficient amount of momentum to the gas to
escape from the galaxy, even if the gas is cold. Nevertheless, the calculations of that
model had been carried out in a spherical geometry with the galaxy itself assumed as
a point source of mass and energy. Furthermore no coupling between the CRs and the
gas had been taken into account. The model used in this thesis picks up the idea of
Breitschwerdt et al.| (1991); de Avillez & Breitschwerdt| (2005); Dorfi & Breitschwerdt|
(2012)), this means it takes the geometry of the wind-flow structure into account (the
so-called fluxtube geometry, see section as well as the coupling between the three




1.2 PHYSICAL MODEL FOR GALACTIC WINDS

main components of the galactic wind, namely the gas component, the cosmic rays and
the magnetic wave field. These interactions are briefly reviewed in the following section
1w

1.2 Physical Model for Galactic Winds

A justification for incorporating CRs in the galactic wind model can be obtained by
consideration of observations of electromagnetic spectra e.g. (of the Milky Way). It has
been shown (see Everett et al.| (2008) for details) that a cosmic ray driven wind leads to
the best fits in explaining the observed spectra (compare with Figure .
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Figure 1.2: H [ contours over a multi-wavelength picture of the galaxy NGC 253. The con-
tours reveal denser regions (clumps), which were created by a galactic outflow.
Several of these clumps are very likely to fall back to the galactic disk as galactic
fountains (the picture is taken from Boomsma et al. (2005)).

The magnetic field modulates the gas flow pattern of the (ionized) gas flow, more pre-
cisely the plasma and the magnetic field affect each other, therefore galactic winds should
be treated magnetohydrodynamicall. Further CRs are charged particles, which start to

gyrate along the magnetic field and hence inducing small perturbations to the magnetic
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field (so-called Alfvén waves), which in turn interact with the CRs and the gas com-
ponent. In the physical model described in section [I.2] the interaction of the magnetic
field on the plasma is not be considered, but the small perturbations of the magnetic
field (already introduced as magnetic wave field) are treated as an additional pressure

component, which interacts with the CR pressure.

1.2.1 Interaction between the gas component and the magnetic
field

The magnetic field is assumed to be ’frozen’ in the gas. This is due to the fact, that
the mean magnetic energy density is much lower than the thermal gas energy density in
large-scale magnetic field structures like in the halo of galaxies (for details see |Ehle et al.
(1998))). On the other hand the kinetic energy of the galactic wind is dominant with
respect to the magnetic energy, which is resulting in frozen magnetic field lines. These
magnetic field structured can be traced observationally and therefore are providing a

good tool for studying the kinematics of galactic winds.

Close to the galactic mid-plane the magnetic field has a component parallel to the disk.
It has been shown in 3D-MHD simulations (for detail, see |de Avillez & Breitschwerdt,
(2005)), that the magnetic field parallel to the galactic disk cannot prevent hot gas
(especially created by supernovae) from streaming into the galactic halo. Moreover the
simulations showed, that the gas outflow into the halo is nearly as high as it would be

without having a magnetic field.

1.2.2 Interaction between the CR component, gas component and

the magnetic field and CR propagation

The CR particles are treated as a rarefied plasma, which interacts with the magnetic field
by gyrating along its field lines. The assumption of considering CRs as a plasma can be
explained and justified by taking a process into account named pitch-angle scattering.
The pitch-angle of CRs is changed, if the magnetic field is perturbed by e.g. motion of
the gas (see Figures and . The variation of this pitch-angle can cause the CRs to
change their propagation (from parallel to antiparallel and vice versa) along the magnetic
field. Because of this it is legitimate to say that the CRs are distributed isotropic with
respect to such perturbations of the magnetic field (denoted as ’Alfvén-wave frame’ in

Breitschwerdt et al| (1991)). Such Alfvén waves are propagating along the magnetic
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Figure 1.3: The left panel is showing the vertical (perpendicular to the galactic disk) density
distribution. Expanding superbubbles can be seen very clearly. The right panel
is showing the magnetic field map, which reveals magnetic field structures which
also have a component perpendicular to the galactic disk and therefore facilitate
outflows like galactic fountains or galactic winds (picture taken from |de Avillez
& Breitschwerdt| (2005)).

field lines with the Alfvén speed v 4 (with respect to the motion of the background gas

flow u),

B
= 1.2.1
VA \/m ) ( )
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Cosmic Ray proton

Cosmic Ray proton

Figure 1.4: CR particle gyrating along Figure 1.5: Pitch angle of CR particle

a unperturbed magnetic field changes, if the magnetic field
line (taken from |Everett is perturbed (taken from |Ev-
(2009)). erett (2009)).

where p is the gas density. The Alfvén-waves are preferentially propagating away from
the galactic disk (outwards). Resonant excitation of Alfvén-waves by the CRs themselves
actually leads to a confinement of CRs particles to the Alfvén waves, a so-called Alfvénic
drift (for details and the derivation of these results see Skilling (1975); Cesarsky]| (1980)).
In other words, one can say that CRs effectively are convected outwards with the speed
(u+ vy). Furthermore the Alfvén-waves act (as already argued) as the center of pitch-
angle scattering processes. Having a cosmic ray pressure gradient Vp,., then a fraction of
CR flux is also due to diffusion down the gradient. In summary it can be said that one

is able to distinguish two different components, which add to the overall CR motion,

e convective motion due to confinement of CR particles to the Alfvén wave frame
(gas flow + Alfvénic drift),

e diffusion down the CR pressure gradient.

cosmic ray particles also are influencing the magnetic field due to the so-called Parker
instability (Parker| (1966)). This instability causes the magnetic field parallel to the
galactic disk to inflate and to form {2-shaped structures. Note that this is a completely
different process than the opening of field lines due to gas-flow motion caused by super-

novae, nevertheless it facilitates the outflow of gas into the galactic halo.

1.2.3 First-Order Fermi mechanism

The first-order Fermi mechanism is the assumed process to accelerate the CRs which

are created by e.g. supernovae up to speeds, which are sufficiently high to drive galactic



1.2 PHYSICAL MODEL FOR GALACTIC WINDS

winds. The original idea has been developed by [Fermi ((1949). In the presence of strong
shock-waves the first-order Fermi mechanism is also referred to as diffusive shock accel-

eration.

Energy gain of CR particles

Subsequently the diffusive shock acceleration is briefly explained. The following assump-

tions are necessary for ensuring the applicability of the Fermi process:

e A strong shock is assumed (e.g. supersonic shells of expanding supernova rem-
nants), this means that the two densities p; and py before and after the shock *

are connected by the following relation (v, denotes the adiabatic index of the gas),

@:%ﬂrl

. 1.2.2
P1 Y9 — 1 ( )

e The CR particles are assumed to have speeds close to the speed of light ¢. This

ensures that the shock velocity U is much lower than those of the particles.

e Due to the high particle velocity, the gyration radius along the magnetic field lines
can be assumed to be much bigger than the thickness of the shock, in other words

the particles feel” the shock-front as an infinitesimally thin layer.

e Turbulent motion on both sides of the shock-front as well as streaming instabilities

are taken as the justification for assuming an isotropic velocity distribution on both
sides of the shock.

With these assumptions, the process (schematically) takes place as sketched in Figure
(following the explanations in Longair| (2011)), p. 570):

a) The velocity of a strong shock is characterized as being highly supersonic. In
the frame of the shock-wave the gas upstream flows through the shock front with
velocity u; = U. Due to conservation of mass (see section the following

expression must hold 2,

prur = pU = pusy . (1.2.3)

INote that in this section the subscript “1” denotes quantities upstream and “2” corresponds to quan-
tities downstream.
In Figure the gas velocities are denoted differently, namely u; 2 — vy 2.
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(b)

U
P T4 P4

v, =Y

(d)

Figure 1.6: Sketch of the First-order Fermi mechanism, when a strong shock wave is assumed

b)

(picture taken from (2011)).

5
For a non-relativistic mono-atomic gas the adiabatic index is v, = 3 Then, by

using the properties of a strong shock ((1.2.2)), the following relation is obtained,

P1
—4, 1.2.4
P2 ( )
1 (1.2.5)
Ug = 4U1 . L.

Now the whole system is again transformed into the system of the particles up-
stream, where the gas is at rest. Due to the made assumptions, the distribution
of CR particles upstream is isotropic. If a particle crosses the shock-front due to
scattering, it 'sees’ the moving gas downstream as explained in b). This gas moves
with ZU with respect to the material upstream, and therefore the CR particle

gains a small amount of energy.

Finally a last transformation into the frame of the gas downstream is performed.
Due to the same scattering processes as upstream, the CR particles there are
distributed isotropic too. In this system of reference the gas upstream flows towards
the gas downstream again with a velocity ZU . A particle which crosses the shock-
front therefore also gains energy. This is the crucial feature of the first-order Fermi

mechanism, because the particles only gain and never loose energy, when they are
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crossing the shock front.

The energy gain can be calculated by taking into account that the CR particles are
relativistic. Then the resulting equation can be written as (see |Longair| (2011))),

E
por ==, (1.2.6)

AFE = Pcr Z U y (127)

where pcgr is the relativistic momentum of the CRs and AFE' is the energy gain after
crossing the shock-front. The energy gain clearly also depends on the angle 6 of the
particles with respect to the shock. Only particles which are scattered into 0 < 6 < g,
can cross the the shock. After averaging over all of these possible directions and taking

into account, that this energy fraction is gained twice, one obtains,

<§§:Z. (1.2.8)

Escape Probability

Another question is, how long the particles are scattered from upstream to downstream
and vice versa, before they can escape. For this purpose a result from classical kinetic
theory is used as it has been proposed by Bell (1978). Then the average number of
particles, which are crossing the shock-front on each side, can be estimated by 1 Ne,
where N denotes the number of particles upstream. Because the region downstream is
slower than the shock-front by a value of 1 U, some of the CR particles are adventured
away from the shock region. Then the number of 'lost particles’ is clearly determined
by the number of particles in the region multiplied by velocity difference, especially it
has the value 1 U N. Thus the average rate of lost particles with respect to particles,
which are crossing the shock-front, takes the value (see |Bell (1978)); Longair| (2011) for
details),

NU U
Ne¢ ¢

=

(1.2.9)

AN,

This escape probability per crossing cycle clearly is very low, since the shock velocity is

not relativistic.

Finally it should be noted that this is a simplified version of the first-order Fermi
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mechanism. A full treatment requires to solve the so-called Fokker-Planck equation,
which describes the evolution of the CR energy spectrum (see e.g. |Axford et al.| (1977);
Blandford & Ostriker| (1978) and Krymskii (1977))).

1.3 Kompaneets Approximation

This section deals with the issue of describing the evolution of a superbubble, which is
assumed to be the precursor of the cosmic ray driven winds discussed in this thesis. The
aim is to develop an approximate theory of an expanding superbubble, which provides
physically motivated initial values of the gas energy density E,, the cosmic ray energy
density FE, and the initial fluxtube cross-section Ag. A hydrodynamic treatment of this
problem would be far too much effort, since the model could not take any advantages
of the improved accuracy and spatial resolution due to the various simplifications (e.g.

the 1D-treatment of the problem, the simple fluxtube geometry).

Hence it is sufficient to use an approximate approach as it has been made by Kompaneets
(1960). He found an implicit description of (adiabatic) shock-waves propagating through

a exponentially stratified medium,

p(z) = poe” /"=, (1.3.1)
where pg is the density at the explosion center of the supernova and h, is the stratification
scaleheight. The following assumptions are made in the Kompaneets approximation:

e A strong, non-radiative (adiabatic) shock is assumed (compare with equation
(11.2.2)).

e The post-shock pressure Ps(t) should be uniform all over the surface of the super-
bubble.

e The atmosphere is hydrostatically (exponentially) stratified.

Then the Hugoniot conditions (details e.g. in/Anderson| (1963))) can be used to determine
the normal component of the expansion velocity of the shock-front U at every position z

above the galactic mid-plane (see Bisnovatyi-Kogan & Silich! (1995)),

U(zt) = ’Vg;“;’?g =2 pyry = ;lp(z)U(z,t)Q. (1.3.2)

10



1.3 KOMPANEETS APPROXIMATION

Using now equation ([1.3.1)) and the assumption, that Pg shall be uniform all over the
shock-front, an expression for the shock velocity U is obtained (compare with |[Maciejew-

ski W (1998)),
Ul(z,t) = Uy(t)e/ =) (1.3.3)

where U denotes the shock-front velocity at the explosion site. Due to the exponential
stratification, the velocities U(zp,t) := UL(t) and U(zg,t) := Uy(t) will have different
values (z7, and zy denote the low and high density extrema, respectively; also compare
with Figure[1.7)). Following the approach of Maciejewski W (1998)), the rate of expansion

tenuous
medium

dense
medium

Figure 1.7: Schematic view of the superbubble as assumed in the Kompaneets approximation
(picture taken from Maciejewski W.| (1998)).

of the superbubble perpendicular to the galactic plane @ (a denotes the major half-axis)

11
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can be calculated rather easy as the mean value of the expansion velocities Uy, and Ug.

UL+ Uy e/ (2hs) 4 gzr/(2hs)
@=———" :

= Uo(t) 5 (1.3.4)

Because the expansion of the superbubble is dependent on the height z, a displace-
ment s of the explosion center will occur. The expansion rate § can be calculated by
straightforward geometrical arguments,

U, —Uy e?L/(2hz) _ oznH/(2hz)

= Us(t) > . (1.3.5)

The expansion of the minor half-axis is determined only by using ((1.3.3) and the fact
that z = s for b,

b= Up(t)e/h=) . (1.3.6)

Then, by merging (1.3.4)), (1.3.5)) and (1.3.6), the unknown variable Uy(t) can be elimi-

nated and the following expressions are obtained,

da
= cosh T (1.3.7)
ds a

and after subsequent integration the final relations are given by (compare with Ma-
ciejewski W.| (1998))),

.. a

tan oh. sinh o, (1.3.9)
a

exp oh. cosh oh. (1.3.10)

These equations give some insight about the evolution of the shock-shape, like the flat-
tening b/a or the lateral size b. Nevertheless, the derivation of the shape itself needs
some further discussions. In the original paper (Kompaneets (1960)), the form of the

shock-wave can be written in cylindrical coordinates (r, ¢, z) as follows,

vu>:w/”r@¢fdz, (1.3.11)

21

where 7(z,t) is the distance from the origin (explosion site) and dependent on the height
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1.3 KOMPANEETS APPROXIMATION

z. Kompaneets then succeeded in finding an implicit solution for describing the shape of
the superbubble. The implicit nature of the equation is with respect to the dependence
on time ¢, since an integral is needed to get an explicit expression for ¢ (see for details
e.g. Bisnovatyi-Kogan & Silich| (1995))),

1 z 2 —
r(z,y) = 2h, arccos {2 exp (2712) [1 — % + exp ( . )]} ) (1.3.12)

The variable y is the transformed time variable, which is responsible for the implicit

dependence from time and is given by,

y(t) = /Ot J 792_ 1p0 go(t/)dt’ . (1.3.13)

The resulting shape is plotted afterwards in Figure for various values of y and for a
stratification scaleheight h, = 80 kpc, revealing the expanding structure of the shock-
front. The problem with the time dependence as given in ([1.3.13)) is the dependence on
the volume, which again depends on the time-dependent radius r(z,t) (1.3.12)). Hence,
obtaining the time which is connected to a certain y requires to first choose a value for

r and afterwards calculating the time .

There is a way how to circumvent this problem. The idea is that the shock shape of
the Kompaneets approximation is virtually indistinguishable from an ellipsoid (the true
shape is a boxy ellipsoid, compare with Figure , as suggested by Maciejewski W.
(1998). Hence the volume of the superbubble V() can be approximated by writing,

4
V(t) = 37a v, (1.3.14)

where a and b are the major and minor half-axis of the ellipsoid, respectively. Then the
post-shock pressure Pg can be written in the following terms (see Bisnovatyi-Kogan &

Silich (1995); Maciejewski W.| (1998))),

B An¢® FE
Ps == TR (1.3.15)

In this equation, ¢ = 2.025 is a constant which follows from the energy integral of the
Sedov-solution (details on this in |Sedov| (1958)) and F is the energy of the supernova(e).
Then, by using equation (|1.3.2)) and equation ({1.3.1)) and using the fact that the expan-

13
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Figure 1.8: Expanding shock-waves according to the Kompaneets solution (plotted with
MATHEMATICA).

sion velocity U for z = s is given by b (compare with equation 1} and Figure ,

one can write,
e AC E
25 ab?’

and by expressing b and s in terms of a (see equations ((1.3.5) and (1.3.6) the final
expression for the explicitly time-dependent major half-axis is obtained after integration

(Maciejewski W.| (1998))),

poe (1.3.16)
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1.3 KOMPANEETS APPROXIMATION

Ha) = ¢=5/ <E> P oy (5) (1.3.17)

Po 2hz
3x5/2
T34 a2

Iw):=2 [y 0 aretan(sinh(y)

Y
1.3.18
cosh? Y ( )

This procedure is only directly applicable for a fized supernova energy E. In this thesis
it is assumed that the stars of an OB-association, existing of more than one star, are
successively exploding and hence supplying energy and momentum to drive the super-
bubble expansion. For this purpose it is assumed, that the supernovae are exploding in
equidistant time intervals over a certain period. The expansion of the wind then clearly
has to be modified, since the energy is not supplied instantly, but spread over a cer-
tain time. The following steps are made for modifying the time evolution of the major

half-axis in the case of more than one supernova:

e In the case of one single supernova the superbubble expands according to (|1.3.17)),

until the next supernova explodes after the time dt.

e Two supernovae clearly lead to a greater expansion speed, therefore (|1.3.17) is

used, but with E being twice the energy of on supernova, namely £ = 2Fgy (see

Figure [I.9

e This procedure is repeated, until the superbubble has expanded to a certain ref-
erence level out of the galactic disk. At this level the quantities F, and E, are

calculated and used as initial inner boundary values for the galactic wind.

Furthermore it can be seen by analysis of , that a — oo in finite time. This
is called blow-out, because the superbubble accelerates rapidly due to the exponential
stratification of the ambient gas. Hence the application of the procedure above must be
handled with special care (it is possible that a blow-out occurs inbetween [(i — 1)dt, i dt]

and must be taken into account).

Applicable parameters for modelling the Kompaneets approximation for the Milky Way

galaxy are chosen as follows,
e scaleheight h, = 80 kpc,

e number density of the ambient gas at the explosion site ng = 3 em 3.

15
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z [pc]

0 dt 2dt

Figure 1.9: The black line corresponds to the expansion of the major half-axis a in the case
of a single supernova. The red lines correspond to the expansion in the case of
two supernovae. The full lines represent the true expansion, the dashed lines
the expansions if there were no successive explosions of supernovae. The arrows
indicate, that the red full line must be moved in a way, that the expansion remains
continuous. This procedure is repeated for every additional supernova explosion
(plotted with MATHEMATICA).

These values are based on the basis of the values taken by other authors for mod-
elling the Local Bubble, e.g. in Breitschwerdt et al.| (2009)). The values taken there are
no = 10em™3 and h, = 70 kpc, which are of the same order as the values taken in this
thesis. The somewhat lower density is chosen after comparison with other results, which
suggest slightly lower values for ny (compare e.g. with|Downes & Guesten (1982))). With

the chosen parameters the full expansion diagram for a(t) takes the following form (Fig-

ure [1.10]).

The fixed value for a after approximately 10.3 dt is due to the fact, that from this time
on, the galactic wind is assumed to have started started and the cavity which has been
swept out by the superbubble, is hold constant. This can be justified physically by
arguing that before starting the galactic wind the energy provided by the supernova ex-
plosions is "used’ to sweep up all the surrounding material, and in later times, after the

blow-out, this energy is advected away from the galactic disk by a wind. The reference

16
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Figure 1.10: Expansion profile for the major half-axis a(t) of the Kompaneets ellipsoid (plot-
ted with MATHEMATICA).

level is given at zp = 1 kpc, which is in accordance with Breitschwerdt et al.| (1991)) and
Dorfi & Breitschwerdt| (2012) (compare with Figure [1.11)).

Figure 1.11: Sketch of the connection of Kompaneets approximation and galactic wind. The
initial conditions for the wind are calculated at the reference level zg.

The Kompaneets superbubble is expanding until the center of the ellipsoid is reaching

the reference level zy (the needed time until the superbubble center has reached z is

17
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denoted as ty), as it is already indicated in Figure . Doing this also enables one
to find a somewhat physically motivated estimate for the fluxtube surface Ay at the
reference level (for details see section , more precisely Ag is simply taken as the
cross section of the ellipsoid at zo, which is just Ay = b(to)*r. The values E, and E, are

then calculated by writing,

Vito) = Vo = iwa(to)b(to)z | (1.3.19)
E,(t) = Et‘h/“) , (1.3.20)
E(t) = Ec‘f(t) (1.3.21)

In these equations Vj is the superbubble volume and FE;, and Ecgr are the thermal
energy and the CR energy, respectively. It is assumed that approximately 10% of the
total supernova energy Egn are transformed in CRs, which is in accordance with e.g.
Berezhko & Volk| (2000) and Berezhko & Volk (2006), who constrain the CR energy
production to 10 — 40%. It is further assumed that a single supernova produces the
(commonly used) energy Egy = 105! ergs. As already mentioned, the supernovae are
exploding in equidistant time intervals, thus the energy Egsy(t) is a step-function in time
(see Figure . Applying the modified Kompaneets approximation as explained, the

final results can be calculated and are presented below,

tees = 1.2-10"yrs (period of supernova explosions) ,

dt =4.8-10°yrs (time interval between 2 supernovae) ,

Nmae = 13 (number of SNe before GW simulation is started) ,
to =12.2dt (time until galactic wind simulation is started) ,
b(ty) = 561.3pc (minor half axis at z = z) ,

Ay =98976.4pc® (fluxtube crosssection at z = zg) ,

Vo = 1.466 pc? (volume of the superbubble at y) .

(1.3.22)

These values are sufficient to calculate E,(t) and E.(t) in dependence on time. In section
the here derived values are used to model the time-dependent inner boundary

18



1.3 KOMPANEETS APPROXIMATION

Figure 1.12: Energy input of supernovae exploding in equidistant times dt (plotted with

MATHEMATICA).

conditions.
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2 Physical Equations

In this section the basic equations of CR hydrodynamics will be explained briefly. These
equations describe the behaviour of matter (fluids and gases). It is possible to formulate
them in a conservative form, meaning each of these equations correspond to a certain

conserved quantity. In the case of hydrodynamics, there are three of them,
e conservation of mass,
e conservation of momentum and
e conservation of energy.

To obtain a closed system of equations, it is furthermore necessary to formulate an
equation-of-state (EOS), which relates the gas-pressure of the system with the inner
energy of the gas. Before the equations are presented, the concept of an equation in

conservative form will be explained very briefly.

2.1 Equations in Conservative Form

The idea of an equation in conservative form is to extract, which quantities are preserved
in a volume element. A conservation law in its general form takes the form (see e.g. in

Schnack| (2009)), p. 43),

OUjir. 0
8;’“ = —5—Funije.. (2.1.1)

where Ujji.... and F,5k... are tensors of rank N and N 41, respectively. This form has the
advantage, that after integration over the volume V' and application of Gauss’ Theorem,

one can write the conservation law as follows,

9
= /V AV Ui, = ]g dSn .. (2.1.2)
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2.2 EQUATION OF STATE

where OV and d.S,, are the surface of the volume V and the infinitesimal surface normal,
respectively. If F,;;x. . is interpreted as the flux of Ujj. . in direction z,,, the equation
can be interpreted straightforward: Every temporal variation of the quantity Ujj . in
the volume V' must result in an equal flux through the bounding surface 0V. Therefore
Uiji... is a conserved quantity. The following conservative equations are special cases of
this general conservation law, for N = 0 (mass and energy conservation) and for N = 1

(momentum conservation).

2.2 Equation of state

The equation of state is necessary to describe the internal structure of the gas. It relates
several thermodynamic quantities of the gas, such as pressure p and volume V. In the

case of an ideal gas, the EOS takes the following form,
pV =nRT , (2.2.1)

where n is the number of moles, R the universal gas constant and T" the temperature.
This equation can also be written in other terms using the adiabatic index v and the

(internal) energy density E (see e.g. in [Stowe (2007)), p. 263),
p=FE(-1). (2.2.2)

Another quantity needed in the further thesis is the specific enthalpy h. It is a measure
for the total energy of the fluid per mass element, and is defined in the following well

known way,

E
h==+%. (2.2.3)
PP

Now, with use of equation (2.2.2)), the enthalpy h can be expressed as

R (2.2.4)
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2 PHYSICAL EQUATIONS

2.3 Continuity equation

This equation corresponds to conservation of mass. In conservative form it is written in
the following form (see Breitschwerdt et al.| (1991))),
dp

EJFV'(pu) =q. (2.3.1)

In this equation the first term,

dp
ot ( )
clearly describes the temporal variation of density p in a certain volume and the latter

term,
V- (pu), (2.3.3)

corresponds to the mass-flux out of the volume. The term on the right-hand-side (RHS)
q is a mass-source/sink-term, which can arise from ionization of neutral atoms (source)
or recombination of ionized particles with electrons (sink). Summarizing the continuity
equation tells us, that the temporal variation of density in a definite volume must be

equal to the net mass-flux out of the volume (apart from sources or sinks).

2.4 Equation of motion

The conservation of momentum in a fluid is described by the equation of motion pre-
sented in this section. It can be understood as the second law of Newton for fluids. In

conservative form it takes the form (see Breitschwerdt et al.| (1991)),

0
9N L TP = p)F +m. (2.4.1)
ot
In this equation, P is the momentum-fluz tensor, a tensor of second order, and is defined
as follows,
B? B® B
P = — - I- : 2.4.2
pu®u+[p+87rl py (2.4.2)
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2.5 EQUATION OF ENERGY

In this formula, p is the scalar pressure, B is the magnetic field, I the identity tensor
and u is the gas-velocity. The momentum-flux tensor P describes the net-momentum
outflow of a volume element with also taking the effects of magnetic fields into account.
Analogously to the continuity equation, the temporal variation of momentum in a def-
inite volume must be equal (in the absence of sources or sinks) to the net outflow of
momentum through the surface of the volume. Nevertheless, in general there can be
sources of momentum in a fluid, e.g. an external body force F like gravity, or other

sources, which are all denoted by m.

The scalar pressure p consists of three contributions due to the three components of
the plasma, namely the gas component, the mean magnetic field and the cosmic ray
component (see section . All of these components contribute to the overall-pressure.
The pressure of the gas-component and the cosmic ray-component are denoted by p, and
Pe, Tespectively. Besides these two components there also exists a pressure component
caused by fluctuations in the magnetic field induced by resonant pitch-angle scattering
of CR particles due to interaction of CRs with the magnetic field (see section [1.2.2).
These fluctuations are treated as waves, which propagate down the cosmic ray pressure-
gradient. The pressure-component will be denoted as wave pressure p, and can be

calculated as follows,

(6B))

- (2.4.3)

Pw =

In fact, the scalar pressure p can be written as a superposition of three pressure-

components,

P =Dy + Pe + Pw - (244)
Using (2.4.4)), the momentum-flux tensor can be expressed in the following form,

B? B®B
P=pu®@u+ |p,+pc+pu+—| 1I—- . (2.4.5)
8 41

2.5 Equation of energy

Not surprisingly this equation corresponds to the conservation of energy in a fluid. As

before, there also exists a conservative form of this formula (see [Breitschwerdt et al.
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2 PHYSICAL EQUATIONS

(1991)),

56”;/+v S=pu(F +m)+£. (2.5.1)

Here, W is the energy density in a definite volume , S the energy-flux density of the
system, and & corresponds to energy-sources/sinks. W and S are defined in the following
way,

Py pe. , ((0B)*) B’

— 2.5.2
—1+%—1+ 47 +87T’ ( )

1
2
1
<u2+ e pg)pu—l—

W = ~pu® +

h/cpc(u + VA) - RVPC]

2 -1 P Ye — 1
<(6B [ ] ExB
va|+ P (2.5.3)

The energy density W can be understood as the amount of energy in a finite volume of
the fluid, and exists of the kinetic energy density (first term), the energy densities of the
gas-component and the CR component (second and third term, respectively, compare
with (2.2.2)), the energy density in the volume due to the Alfvén-waves (third term) and

the magnetic energy (fourth term).

The energy-flux density S can be interpreted as the energy per volume which flows out
through the surface of the volume-element. The first term in brackets is the flow of the
energy density of the gas-component, consisting of the kinetic part and the enthalpy of
the gas (compare with (2.2.4)). The second bracketed term corresponds to the energy-
flow of the CR component of the gas which is composed of the enthalpy of the system
and the diffusion component with diffusion coefficient k. The diffusion part has negative
sign, because CR particles diffuse into the direction of negative CR pressure gradient.
The third term corresponds to the energy-flow of the Alfvén-waves through the volume
element and the fourth term is the well-known Poynting-vector, which describes the

electromagnetic energy flow through the volume.

Apart from these basic conservation laws of magnetohydrodynamics, two more equa-
tions are needed to ensure on the one hand a hydrodynamical description of the cosmic
ray component and on the other hand to describe the exchange of energy between the
background flow, the CRs and the Alfvén waves.
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2.6 TRANSPORT EQUATION FOR COSMIC RAYS

2.6 Transport equation for cosmic rays

The equation discussed here is the transport equation for CRs (2.6.1), which describes

the advective and diffusive transport of CR particles.

0 . . K
= ( L ) + V- [77_ 1(u+VA)pc— po— 1Vpc =(u+va) - Vp.+Q. (2.6.1)
In this equation the term in square brackets is the cosmic ray flux density F., which
consists of the convective flux, which flows with velocity u + v4 (the Alfvén velocity is
defined relative to the gas-flow velocity), and the diffusive flux, which flows down the

cosmic ray pressure gradient Vp,,

Ye K
70_1

Vpe . (2.6.2)

On the RHS of equation (2.6.1)) the term uVp, corresponds to the rate of work done on
the gas flow, v4Vp. is the CR energy density loss due to the generation of Alfvén waves

and @ stands for all other energy gains and/or losses.

2.7 Energy exchange equation

In the following equation the energy transfer between the CR component and the Alfvén

waves is described,

o <<<5£>2>> Lo [<<5£>2> (S Vﬂ Ve VA VpiD.  (271)

where p,, is defined in ([2.4.3). In analogy to the equation of state ([2.2.2]) the wave energy
density also will be defined as

B, = v (2.7.2)

’Vw_l,

3
which leads after comparison with (2.7.1)) to the value ~,, = 3

The first term uVp,, on the RHS of equation ({2.7.1) takes the interaction of the Alfvén

waves with the gas flow into account, more precisely it gives the work of p,, on the flow.
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The term v, Vp,. gives the rate of newly generated waves by scattering of CR particles
at the magnetic field B. Finally the term L corresponds to all sorts of other wave-energy

losses or gains.

2.8 Assumptions and simplifications

This section deals with the various simplifications and assumptions made in this galactic
wind model.
The gas dealt with in this thesis is assumed to be perfectly conductive. This means, that

Ohm’s law takes the form,
E+vxB=0. (2.8.1)

Further it is assumed, that the mean-magnetic field B is constant in time. Faraday’s
law can be with help of ([2.8.1)) written as,

0B

— =-Vx(vxB). 2.8.2

” (v B) (282)
If the magnetic field B is constant in time, then %—}f = 0. Consequently, it must hold that
v X B = 0. This means, that the gas velocity v is always parallel to the magnetic field
B. Considering ([2.8.1)) one can see immediately that E = 0. In other words, assuming
constant B is equivalent to neglecting all electromagnetic forces (see Breitschwerdt et al.

(1991)).

Further we neglect all sources or sinks of momentum and mass, especially ¢ = 0 and
m = 0 (compare equations (2.4.1)) and (2.5.1])). Because these simplifications have been
already extensively discussed in Breitschwerdt et al.| (1991)), only the major arguments

are mentioned here.

e Supernovae and stellar winds provide sources of momentum and mass, sinks can
occur due to condensation of gas into clumps. Nevertheless it is very unlikely,
that these sources or sinks are able to influence the gas in the fluxtube due to the

magnetic field which acts to some extent like a shield,

e the inner boundary of the fluxtube is located sufficiently high above the mid-
plane, such that most of the possible sources of energy and momentum are below

the fluxtube and therefore only play a minor role. All of the sources caused by
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supernovae are covered by using a time-dependent inner boundary condition (see

sections [1.3| and [3.4.1).

A further simplification is made by neglecting the galactic rotation. This movement
would lead to moving magnetic field lines in the region close to the disk and therefore
cause a motion relative to the gas-flow. This would result in a much more complicated

treatment of the galactic wind problem.

Finally all external sources or sinks of CR energy density () = 0) and wave energy
density (L = 0) will be neglected.

2.9 Galactic Gravitational Potential

The gravitational potential ¢ used in this thesis consists of two components (strictly
following Breitschwerdt et al. (1991))), namely the

e Bulge-Disk component, and the
e Halo component.

The Bulge-Disk component ¢p p is defined as follows (for details, see Miyamoto & Nagai
(1975)),

2 .
bpp(R,2) =3 CM;

=14 R? + (a; + /22 4+ b7)?

The index ¢ = 1 corresponds to quantities of the bulge, i = 2 consequently for quanti-

(2.9.1)

ties of the disk. M; are the masses of the bulge/disk components, a; and b; are fitting
parameters, z is the height above the galactic mid-plane, G is the gravitational constant

and R is the distance from the galactic center.

The halo component can be evaluated using the approach of Innanen| (1973)), who ap-

proximated the gravitational potential of the dark-matter halo ¢ in the following way,

¢H(R7 Z) =

— &, (2.9.2)

GMH vV R? + 22 1
In{1+ +
Ry VR? + 22
Ry

b 1+
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where Ry is a fitting parameter, My is halo-mass, ¢, is a reference potential and the
other parameters are like in (2.9.1)). The gravitational potential ¢ is then,

#(R,2) = ¢pp + du (2.9.3)

As one can see, the potential ¢y — o0, if 2 — oo, which is not the case in the real
world, in fact the halo has a certain size and then the gravitational potential ¢ tends to
zero. To capture this behaviour, a cut-off height z, is introduced for the gravitational

0o(R, 2)

potential, above which the gravitational acceleration g = B v has the expected
z

behaviour g x =1

qu’D(R, Z) + ¢H(R, Z) if z < Zg

O(R,z) = p (2.9.4)

it z > 2,

Furthermore the potential should be continuous at z,, which fixes ¢y because at the

height z = z, the condition of continuity requires that,

O(R, zy) = ¢ p(R, 25) + o (R, 2,) = g(R, 24) 24 - (2.9.5)

The gravitational potential ¢(R,z) and the corresponding gravitational acceleration
g(R, z) are visualized for the Milky-Way galaxy in Figure and Figure , respectively.
Appropriate parameters for the Milky-Way galaxy are the following (see |Ramberger
(2008)), p. 24),

ap [kpe] ap [kpe] by [kpe]  bo [kpe] My [Mg] M, [Mg]
0 7.258 0.495 0.52 2.05-101 2547 .10

M, [Mg] Ry [kpe] 2z, [kpc]
1.35- 10! 13 100

Table 2.1: Parameter set for the grav. potential described in Miyamoto & Nagai (1975) .
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Figure 2.1: The gravitational potential ¢ for the Milky Way. The green full line corresponds
to the sum of the bulge/disk component ¢p p (red dashed line) and the Halo
contribution ¢ (blue dashed line).
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Figure 2.2: The gravitational acceleration g for the Milky Way. The green full line corre-

sponds to the sum of the bulge/disk component gp p (red dashed line) and the
Halo contribution gi (blue dashed line).
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2.10 Final Set of Equations

In this section the final set of equation is written down again for the sake of clarity in
this thesis. First, not surprisingly the gravitational force will be used as an external

force F' in equation (2.4.1)),
F=-V¢, (2.10.1)

where ¢ is the gravitational potential as defined in (2.9.3). To obtain the equation

in the form in which they are discretized, some algebraic manipulations must be done

yet. First, substituting the momentum-flux tensor P (2.4.5)) in (2.4.1) and using the

simplification that B is constant in time, the equation of motion takes the following
form,
Jdpu

WJrV-(pu®u)+V(pg+pc+pw)+pV¢:O : (2.10.2)

Obtaining the desired form of the energy-balance equations needs some more manipula-
tions. First of all one should note, that the transport equation for CRs and the
exchange equation are equivalent to conservation of CR energy and wave-energy,
respectively. Furthermore, the equation of energy is a conservation law for the to-
tal energy and therefore already contains the CR energy and wave-energy. Consequently
the remaining contribution to the total energy (the gas pressure) also is conserved. Be-
cause the total energy conservation law is problematic if used in the numerical code, the
conservation laws for the gas energy density £, the CR energy density E, and the wave

energy density F,, are used.

The equation of energy ([2.5.1)) takes, after inserting the energy density W (2.5.2)) and
the energy-flux density S (2.5.3), the form,

0E, OE. O0E, 10(pu?) I,
a T o T ot T2 o +V'<2pu ”)JFV(%E"U)

+ V- (vE.(u+vy)—V-(kVE.)+ V- (Ew (gu + VA>> =—pu-Vo+¢&.
(2.10.3)

This form of the energy equation also contains the kinetic energy density of the gas com-

ponent. Using the equation of motion, the kinetic energy contribution can be eliminated.
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For this purpose, the equation of motion is multiplied by u, which leads to

Jdpu
% u+V-(pu®u)-u+V(p,+p.+py) -u=—pu-Vo. (2.10.4)

Substituting now ([2.10.4)) into (2.10.3)), the following equation is obtained,

0E, O0E. O0E, 10(pu?) 1 Jpu
5 + 5 + T +2 5 +V (2 U u)— u+V-(pu®u)- u

ot
)
+ V- (yEu)—Vp,-u+V-(vE(a+vy)) — Vp.-u-V - (kVE,)
@ 8)
+V- (Ew <2u—|—v,4>) —Vp, - u=~¢&. (2.10.5)
@

The term (D is now written down in component notation, !

1
D =3 (Or(puiw;) + Vi(pujuu;)) — O(pui)u; — Vi(puiu,)u;

1 1
= i(atp)uiui + §<Vipui)ujuj +(8tui ; i z'uj>uj

= 0 (Continuity equation)

—(Op)uiu; — Vi(pui)ujuy —pu,; (Opus) =pui{Vius)u; = 0 . (2.10.6)

= 0 (Continuity equation)

After showing that (D vanishes, the next term of interest is ). Therefore the EOS
(2.2.2) is used,

@ =V (L) - ng

=7V - (Egqu) = V- (pgu) + p,V - u
=7,V (Egqu) = (v, — )V - (Eyu) + p,V - u
=V - (Eu)+p,V-u. (2.10.7)

INote that 9; = %
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The terms @) and @ are calculated analogically (with using =, = 3/2),

(Ee(u+7va) +p.V-u. (2.10.8)

Jutva)) = (5-1) 9 (B + 5V

(Ey(u+va)+p,V-u. (2.10.9)

Using all of these manipulations, the energy equation can be expressed in the following

form,

OE
7;+VEg~u+ng-u+

OF.
ot

a—g”+VEw-(u+vA)+pwv-u:5. (2.10.10)

+ VEC : (11 + ’YCVA) +pcv - u+

Finally, the external energy sources and sinks £, which are likely to be present in galactic

winds are additional heating I' and cooling A.

Comparison with (2.6.1]) and (2.7.1)) shows that the additional factor v4 - Vp. has to be

added in the energy balance equations for the CRs and wave-energy.

The final set of equations to be solved then takes the following form,
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2.11 FLUXTUBE GEOMETRY

gf*v'(p“) ~ 0, (2.10.11)
dpu
W—I—V-(pu®u)+V(pg+pc+Pw)+,0V¢:0, (2.10.12)
E
aathrV-(Egu)ergv-u:F—A, (2.10.13)
OF,
T +V-(E.(u+7va))+p.V-u—vy -Vp.=V-(kVE,) , (2.10.14)
oE,,
W%—V-(Ew(u+vA))+pwV-u—|—vA-pr:0. (2.10.15)

2.11 Fluxtube geometry

Throughout this thesis, all calculations are performed in a 1D-fluxtube geometry. For

this purpose the equations have to be reformulated, which is done in this section.

The fluxtube used here is explained and motivated in more detail in |[Breitschwerdt et al.

(1991)). Using this geometry has the following main advantages,

e the magnetic field lines are characterizing the flow geometry, assuming that there
exist locally open field lines, which make a transition from plane-parallel (close to
the disk) to spherical geometry (far away from the disk, see also section . This
has been confirmed by recent 3D-hydrodynamical simulations (see e.g. |Kulpa-
Dybet et al.| (2011)), which shows that initially arbitrary shaped magnetic fields

are evolving to a quadrupole-like structure with respect to the galactic plane, and

e the model can be described as a 1D-model, which has obvious numerical advan-

tages.

All unknown quantities depend on the projected distance z from the galactic plane (com-
pare with Dorfi & Breitschwerdt| (2012), p. 3). The transition can be achieved by speci-
fying the fluxtubes’ cross-section A dependent on z (see |Breitschwerdt et al.| (1991)) and
Dorfi & Breitschwerdt| (2012))),

A(2) = Ao [1 4 (Zﬂ , (2.11.1)
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where Ag is the cross-section for z = 0, and Z, represents the typical scale of the

transition from plane-parallel to spherical geometry (compare with Figure .

B} 4B
A(z)—
]z _~—Halo=~_
. Flux Tube ~<
z0=15 kpc// \\
.f;‘ r \\'

Figure 2.3: Schematic view of an fluxtube, arising above the galactic mid-plane and then
making a transition from plane-parallel to spherical geometry (see|Breitschwerdt

et al| (1991), p. 5).

This geometry can be described by a metric tensor, which is important how to define

the differentiation operators like divergence and gradient. For this purpose, adapted

cylindrical coordinates (z, p, R) are introduced, where z is the height above the mid-plane

and R and ¢ are the radial and angular coordinate in the plane of A(z), respectively.

Usual Cartesian coordinates (z,y, z) can be written in terms of the new coordinates as

follows,

Ay =: R*r
r(z) = \/Afrz) = \/Afg?R :
x =r(z)cos(p),
y = r(z)sin(p)
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2.11 FLUXTUBE GEOMETRY

The term r(z) takes into account that the radial coordinate scales with /A(z). Following

the usual procedure in defining a basis vector system (eg,e,,e,),

e, = &ex gey aez , (2.11.7)
ox dy 0z

R = Fpe + IR + IR (2.11.8)
ox oy 0z

e, = %ex + %ey + %ez ) (2.11.9)

one arrives at the the following basis vector system (substituting (2.11.1]) and (2.11.2))),

AN cos(p)

pr— ZRﬁ 1 p— p— 1
e, a0z sin(¢p) . e, =1(2)] cos(p) , €eg A sin(yp)
1 0
(2.11.10)

(ezact)

The metric tensor g then takes the following form (in components i = 1,2, 3 cor-

responds to z, p, R, respectively),

22R*m Rz
+ (—
A(=)Z3 Z3
(g557") = 0 rz)?2 0 | . (2.11.11)
Rz A(z)
— 0
72 Ay

The metric tensor derived here is obviously not orthogonal, to achieve this an approxi-
mation is needed: the gas flow is always considered to be orthogonal to the cross section
A(z), meaning that e, is assumed to be perpendicular to A(z). The metric can then be

approximated by the orthogonal metric tensor g,

10 0
(gi) = |0 72 A<Oz> (2.11.12)
00
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3 Numerical method

In this section the numerical method is discussed (strictly following Dorfi & Drury!
(1987))) , which is used to integrate the set of equations (2.10.11]) - (2.10.15]).

3.1 The grid equation

Galactic winds are described in this thesis by magnetohydrodynamical equations cou-
pled with time-dependent inner boundary conditions. Such a flow is very likely to have
features like shock-waves. To describe such locally restricted phenomenons with a suf-
ficiently high number of grid points, the spatial grid has to be adjusted to the flow
features. The grid equation discussed in this section ensures that the grid points are

redistributing according to accuracy demands.

The flow structure in a galactic wind is due to shocks and variable boundaries perma-
nently changing, the grid therefore must have the ability to change with time to assure
the best resolution. More precisely, grid points must be concentrated in flow areas with
steep gradients of certain quantities (like density, pressure, etc.), and in contrast should
be able to spread in areas of flat gradients. These properties are achieved by solving the

grid equation simultaneously to the set of CR hydrodynamic equations.

A so-called adaptive grid method can be found in Dorfi & Drury| (1987). It is assumed
that x1,...,zy are the grid points, where N describes the number of grid points. The
question is how to distribute these grid points dependent on physical quantities. In
areas of required high resolution, the points should be concentrated (with respect to an
equidistant distribution) and if lower spatial resolution is enough to describe the flow,
the points should be spread out (again w.r.t. an equidistant distribution). Hence the
necessity arises to define measures for these two situations. If n; is the actual distribution

of grid points and R; is the desired distribution, the easiest and straightforward way is
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3.1 THE GRID EQUATION

to say that n; should be proportional to R;,
ni < R, (3.1.1)

where 7 is the index of the grid points. Unfortunately, this simple concept cannot be
applied directly, because if n changes to fast, instabilities can occur. As a workaround, n;
is proportional to various smoothing operators multiplied with R;, which assure moderate

changes in n;. The n; are defined in the following way,

ACL’Z‘ = Ti+1 — L4, (312)
X
i = 3 1.
n Az, (3.1.3)

where X is a natural length scale, which depends on the problem to be solved. Defining
the desired point concentration R; is a little bit more complicated. Dorfi & Drury

(1987) take R; as the arc-length of a function f, or in general a ensemble of M functions

(compare with Figure [3.1)),

Froo fr (3.1.4)

X

Figure 3.1: Visualization of the idea of equidistant arclength along a function f(x). In the
areas of steep gradients, the point distribution is much higher than in those of
flat gradients.

Implementing this concept, the desired grid point concentration R; takes the following
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form,

fri = fulxi) (3.1.5)

Afii = Trivr — fri s (3.1.6)
L Xi Afpa

R; = Jl_'—;;ﬂ?gkm ) (3.1.7)

where g, are chooseable weights assigned to the corresponding functions f; and Fj is

again a natural scale with respect to the function fj. !
The spatial smoothing which has been already mentioned above, can be implemented
by introducing the following condition (see |Dorfi & Drury| (1987), p. 4),

Q n; a+1
< i+1 < +
a+1"7 n, T «

, (3.1.8)

where a corresponds to the rigidity of the grid, meaning that o > 1 is equivalent to a grid
with a almost constant lattice parameter, which results in very small maximal allowed
changes from n; to n;;1 (compare with ) The value of « is chosen in a way which
doesn’t allow the grid changes greater than approximately 30%. Applying a function
which obeys [3.1.8 and doing some more sophisticated manipulations to the resulting
grid equation (for details, see [LeVeque et al.| (1998), p. 178), the spatial smoothing can

be written as,
n; =n; — a(a + 1)(m+1 —2n; + nifl) . (3~1~9)

Furthermore, in addition to the spatial smoothing also a temporal smoothing must be

applied. If the proportionality is chosen in the following way,

Ny =N +17————— | (3.1.10)
then the grid adjusts on a timescale 7 and does not change much for variations shorter

than 7 (&t corresponds to the time-step). The value of the timescale is dependent on the

considered problem, meaning that it must be much shorter than the shortest timescale

IThe scales Fj, and X; are necessary, because the variables fi and xz; are physical variables with a
dimension, further they can differ from each other by many orders of magnitudes. If the physical
problem allows it, the scale functions can be set to unity.
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3.2 ARTIFICIAL VISCOSITY

of a process of interest.

Putting all together leads to the final form of the grid equation,

=—. (3.1.11)

The boundary conditions remain to be defined, in a way that the innermost grid point z;
and the outermost grid point xo are fixed (these two points are defining the size of the
computational domain). The boundary conditions for the grid equation can be specified

by setting the grid point concentration gradients equal to zero at the boundaries,

N =7

Inner boundary (z = zj): : (3.1.12)
nNy—2 =MNN-1
rT = To
Outer boundary (z = zp): : (3.1.13)
ny =mne

3.2 Artificial Viscosity

Astrophysical gases are often assumed to be ideal, that means that dissipation effects
cannot occur. In the context of galactic winds, shock waves are (as already discussed)
very likely to occur. In the case of ideal magnetohydrodynamics, these shock fronts
will be infinitely thin and shown as discontinuities in density p and gas pressure p,.
In reality, astrophysical fluids are not perfect gases, saying that dissipative effects will
occur due to molecular interactions like frictional forces between atoms and molecules.
Viscosity is one of these dissipative processes like conversion from kinetic energy to
thermal energy, which determines the thickness of a shock (e.g. compare with Mihalas
& Mihalas (1999), p. 241). One problem in describing such dissipative processes with
(magneto-)hydrodynamics is the microscopic length scales at which these processes occur
(more precisely the length scale is of the order of the mean free path of the gas particles).
Hydrodynamical equations are unfortunately averaged over all microscopic effects of the
gas, a so called continuous theory, that means all processes which can be described with

this theory have to have length scales much greater than the mean free path of the gas.

39



3 NUMERICAL METHOD

Applying numerics to the problem without introducing artificial viscosity would lead
to numerical instabilities and other major problems in solving the equations, because
the discontinuity (shock front) would be infinitesimally thin and could not be resolved
within two neighboured grid points (compare with Figure .

o
O —MNuw b oo

T T 7171

o —

B

X

Figure 3.2: Shock front computed numerically (a) with artificial viscosity and (b) without
applying artificial viscosity. The numerical instabilities in (b) can be seen very
clearly (see|Mihalas & Mihalas (1999) p. 281).

Taking into account dissipative effects can be effectively interpreted as solving not the
ideal hydrodynamical equations, but the Navier-Stokes equations for viscous fluids. The
question arises why the Navier-Stokes equations can’t be solved from scratch instead.
The answer is that a much more complicated treatment of these equations would be nec-
essary. Applying the artificial viscosity only in regions where discontinuities can occur

provides a useful workaround.

The shock fronts are broadened over a few grid cells due to locally applied artificial
viscosity, which is implemented by introducing a so-called viscous pressure tensor Q.

This tensor should obey the following conditions (according to Tscharnuter & Winkler
(1979)):

1. shock fronts should be broadened over a certain number of grid cells; in the case

of an adaptive grid this varies spatially and temporally.

40



3.2 ARTIFICIAL VISCOSITY

2. Homologous contractions of the gas should be calculated without influence of ar-

tificial viscosity.
3. Expanding regions of the flow should also be free of artificial viscosity.

A form of @ which obeys all of these conditions is the following one (basically derived
by [Vonneumann & Richtmyer| (1950)), but with an additional linear term introduced by
Tscharnuter & Winkler (1979),

1q = —qlgcs + ¢ 12 min(V - u,0) (3.2.1)

Q = po[V @ u - ;(v " (3.2.2)

In equation , q1 and ¢ are weights for the linear and quadratic terms of Q, re-
spectively, I is the unity tensor and the factor 1/3 assures that Q is traceless, which is
equivalent to the condition of vanishing artificial viscosity in the case of homologous con-
tractions. The parameter [, is denoted as the typical viscous length scale, consequently
the products ¢; {; and ¢, [, determine the amount of linear and quadratic viscosity, respec-
tively. As already emphasized before, the thickness should be covered from a sufficient
number of grid points, consequently [, is spatially and temporally variable in the case of
an adaptive grid. Cosmic-ray driven galactic winds are accelerated by CRs due to the
first-order Fermi mechanism, this means that the thickness of the shock must be much
smaller than the typical mean free path of CR particles lor (see [Dorfi & Breitschwerdt
(2012)),

I, < log = — | (3.2.3)

S

where u; is the shock velocity. The formulation of Q as in is invariant, this means
it can be applied to an arbitrary geometry. In the case of a fluxtube geometry, the metric
tensor already has been derived (see . Following the scheme from [Tscharnuter
& Winkler (1979)), the divergence V - u and the symmetrized vector gradient €™; are

defined in its invariant form as follows,

V-u=1u", (3.2.4)
= gmku(k;l) , (3.2.5)

where the semicolon indicates the covariant derivative with respect to the k-th variable
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and where wy) is defined as follows,

1
Uy = §(uk;l + up) - (3.2.6)

Applying the fluxtube geometry, V - u and €™; can be written as (compare with Dorfi
& Breitschwerdt| (2012)),

1 0(Au)
V-u—A(Z) o (3.2.7)
% oA
=10 —°< o |. (3.2.8)
2A 0z
o o 94
2A 0z

The quadratic part of the artificial viscosity Q%% then becomes to

ou 1 0(Au)

——= 0 0
0 3A 0
Q(quadr) — la(AU) > : 0 © i% _ L@(Au) 0
A 0Oz 240z 3A 0z
: \ w04 1 o)

249z 3A 0z
(3.2.9)

This tensor is indeed traceless, which is equivalent to no artificial viscosity in the case

of homologous contractions.

Viscous forces are clearly also influencing the gas flow, this is taken into account by
introducing an additional term, the viscous momentum transfer ug, which can be ex-
pressed as (for details see Mihalas & Mihalas (1999) p. 263, or compare with Dorfi &
Breitschwerdt| (2012))),

uy=-v-Q. (3.2.10)

This viscous momentum transfer ug takes the following form in the fluxtube geometry
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(see |Dorfi & Breitschwerdt| (2012)),

1 9 [Al/Qquﬁ(Am) (%_18@%))]

A3/29z 0z \0z 3 0z
g — . , (3.2.11)
0
1 0 O(Au) (Ou  10(Au)
ug = lluell = 5, lAl/QMQ oz ((‘92 3 02 ' (8.2.12)

Viscosity is, as already explained above, a dissipative process, therefore kinetic energy
is dissipated into thermal energy. The specific energy dissipation is denoted as €g and

is defined in the following way,
1
@z—;Q(V@M. (3.2.13)

In the fluxtube geometry € is written as (see Dorfi & Breitschwerdt| (2012)),

(3.2.14)

0z 3A 0z

_ 3pg0(Au) [ou 1 9(Au)]”
‘@ 2 A 0z

Keeping in mind that V - u < 0 in the areas of non-vanishing artificial viscosity, this
formula for €p ensures that eg > 0, even in the discretized version. Otherwise, neg-
ative viscous energy dissipation is not physical and leads to instabilities (see Dorfi &
Breitschwerdt| (2012)) and |Tscharnuter & Winkler| (1979)). The momentum equation
and the energy equation for the gas component also need to be ex-
tended by terms, which take the viscous momentum transfer ug and the specific energy

dissipation € into account,

Jdpu

W—l—v-(pu®u)+V(pg+pc+pw)+,0V¢—uQ:0, (3.2.15)
E
aatg—l-v-(Egu)—i-ng~u—peQ:F—A. (3.2.16)
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3.3 Discretization of the physical equations

In this section the set of physical equations (2.10.11]) - (2.10.15)) and the simultaneously

solved grid equation (3.1.11)) are discretized. The equations will be first integrated over
a finite volume, this is necessary to ensure the (numerical) conservation of energy, mass
and momentum (see Dorfi & Breitschwerdt| (2012)).

The computational domain (the space between inner boundary and outer boundary)
first is discretized with use of the grid equation. The outermost grid point is denoted as
[ =1, consequently the innermost grid point must have the index [ = N. The unknown
variables are defined on the grid in the following manner (see LeVeque et al.| (1998), p.
277):

e Scalars like density p, volume AV and the unknown energy densities E,, E. and
E,, are defined in the middle (inside) of the grid cell.

o Vector quantities like the velocity u or all sorts of fluxes are defined at the cell

boundaries.

A grid of this kind is called staggered mesh and can be imagined as two different grids
shifted with respect to each other such that all quantities are defined at cell boundary
of one of the two grids (compare with Figure [3.3).

21, Up

(I — 1) cell | [t cell | (I+ 1) cell ‘

[ { { !

| | |
{ { {

4 E,1, Eosy Euy

Figure 3.3: Schematic view of the staggered mesh used in this thesis. Some quantities are
defined at grid border, and others in the middle of the cell.

Next the discretization of various operations (like integration over a volume and differ-

entiations) are discussed in more detail. For this purpose, the temporal operator 6 and
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the spatial difference A are defined as follows (see Dorfi & Breitschwerdt| (2012)),

5t = tlnew) _ gletd) (3.3.1)
Ary =211 — 27, (3.3.2)

where the index [ stands for the I-th grid cell and the superscripts (new) and (old)
correspond to the quantities at the new time and the old time, respectively. Equations
in conservative form have the following form (recalling equations (2.1.1)) and (2.1.2)),

gt [ VU 1) = 72 S Fn(x.1). (3.3.3)
where U(x,t) is an arbitrary scalar function and F,,(x,t) is its corresponding flux func-
tion. The temporal variation of the quantity U in a finite volume V on the left hand
side (the so called volume term) must be equal to the flux F,, through the surface of
the volume OV on the right hand side (the so called advection term) 2, as it has been
already pointed out earlier in this thesis. This global conservation of a quantity U can
also be implemented in a discretized version of the equation, therefore it is necessary to

write the equation in the volume-integrated form.

3.3.1 Discretization of the volume term

The volume term in the used numerical method is discretized in the following way,

5 AV (new) (old)
9 / wo— oV _ 1 / dVU _ / dVU
ot Jv) ot t V(t) V(t)

The integrals in (3.3.4) remain to get discretized. V(¢) is the volume of a certain grid

(3.3.4)

cell, the time dependence arises from the fact, that an adaptive grid is used. The integral

can be approximated in the discretized scheme as,
/ VU = UAV. (3.3.5)
V(t)

The volume of the [-th grid cell AV, has to be approximated as well. For this purpose
one must recall, that a fluxtube geometry is used. Integrating of equation (2.11.1)) over

2Temporal variation of the volume term is fully determined just by the advection term, if there are no
sources or sinks.
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one grid cell length (from z; to z41) leads to,

2141 22 Az3

This formula suffices for being able to finally discretize the volume term as it is shown

in the following expression,

9 1 Ale (new) AZ[3 (old)
— avu — < |UA | A —UA | A .
ot /V(t) st { [ H0 ( at 373 )] Ao 22+ 372

(3.3.7)

3.3.2 Discretization of the advection term

For the discretization of the advection term (right hand side of (3.3.3))) it is first necessary

to rewrite the advection term as a volume integral again, using Gauss’ Theorem,

AS, Fr(x, 1) = dV'V -F(x,1). 3.3.8
By SSuFnxt)= [ (x.1) (3.3.8)

In the fluxtube geometry, the divergence of a vectorial quantity V - F with F defined as
in (3.3.9)) is given by (recalling equation ([3.2.7))),

F,
F=|o0|, (3.3.9)
0
19(AF,) O(AF,)
v A 0z Rl% (3:3.10)

Equation ((3.3.10]) is discretized straightforward as follows,

J0(AF,) N A(AF,,)

—_— 3.1
ov AV, (3:3.11)

consequently the final discretization of the advection term has the form,
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A(AF.
v AV} ’

The aim of the next sections will be the discretization of the set of physical equations

and of the grid equation.

3.3.3 Discretization of the continuity equation

The first equation is the continuity equation (2.10.11). Applying (3.3.7) and (3.3.12)),

this equation (in volume-integrated form) in its discretized form would look like the
following expression,
9p

E%—V-(pu)zo

I(pAV)

St + A(Alulpl) =0. (3313)

In this form serious problems would arise if one tried to integrate this equation numeri-

cally. Two important facts are still not taken into account:

(D The gas flow velocity u is in the discretization scheme obviously always given with
respect to the grid points. In the case of an adaptive grid the grid points also
move inbetween the computational domain, in other words the grid moves itself.

Consequently a relative velocity u,.; must be defined.

@ If shock waves are very likely to occur (e.g. in the case of galactic winds), the
direction of the flow must be taken into account. Shocks only can influence areas
downstream (in more detail only areas, which lie inbetween the Mach-cone). This
means that quantities which are calculated in the middle of a cell (recall Figure
as mean values of the two grid points on the left and on the right of the cell,
can cause non-physical results, because the mean values would be influenced by
the shock front.

rel

The relative velocity u™ as discussed in (D is defined in the following way and appears

in every advection term (compare with |Dorfi & Breitschwerdt (2012)),

1D fluxtub 0z
w = — W grid ( =" ? u)® =y — 5t (3.3.14)
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where w; 4,4 corresponds to the velocity of the grid at the [-th grid point. Knowing
that and recalling the general conservation law , all physical equations in volume-
integrated form in the case of an adaptive grid can be expressed as (see [LeVeque et al.
(1998)), p. 280),

0
2 awvUxt S U(x, t)u™ —/ AV (Ussiree — Usiri) = 0. (3.3.15
5t g WU+ ds UG = [ v )=0. (33.15)

v (t

To circumvent the problems discussed in 2), a special discretization of the advection
terms is introduced, the so called donor-cell advection scheme. As already mentioned,
because of the possibility of shock waves no quantities should be used for calculating
differences of quantities, which are lying in the downstream region. Therefore it is
necessary to use forward differences for the spatial discretization, if the relative flow
velocity ul® is outward directed, and otherwise the backward differences (see LeVeque

(1992) p. 124-135, and compare with Figure [3.4),

— forward difference
Afy = ST T ( ) (3.3.16)
fio1— fi (backward difference)
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2141, U1 2l Uy
[+ 1) cell \ I cell / (I — 1)t cell
(

DOWNSTREAM UPSTREAM
— ]
rel
u® <0

Pl+1, Eg,l+17 Pi, Eg,l; Pl—1, Eg,l—l;

rel
- U >0
UPSTREAM DOWNSTREAM

Figure 3.4: The donor-cell advection scheme is visualized here. If the relative velocity in the
[-th cell u}"ez is positive, then the flow is outward directed with respect to the cell,
and vice versa. Clearly also the upstream and downstream regions depend on the
flow direction.

In the case of the continuity equation, the only quantity which is calculated in the
middle of the cell in the advection term is the density p (compare (2.3.1)) and (3.3))). If
one takes now the points discussed in (D and @) into account, the following expression

for the advection term of the continuity equation is obtained,
A(Alulpl) = A(Alufelﬁl) , (3317)
where p; is defined as follows,

) ol if u® >0

Pl—1 if u{'el <0

The final discretized continuity equation then can be written as (compare with Dorfi &
Breitschwerdt| (2012])),
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S(pAV)

T A(Aui®p) =0 (3.3.19)

3.3.4 Discretization of the equation of motion

The next equation which will be discretized is the equation of momentum . To
avoid confusion here, two different quantities must be distinguished. The discretized
momentum density stored in the finite volume V; is denoted as p;u;, while flux-related
properties clearly need to include the relative velocity u/®, because these quantities
must take into account the movement of the cell border. For being able to discretize the
equation of momentum, one needs to know how the gradient of a scalar function f(z) is
calculated in the fluxtube geometry defined in . The only thing which must be
known here is that the covariant derivative reduces to the ordinary derivative for scalar

functions, consequently one can write,

vie =1 o |- (3.3.20)

Furthermore one must take into account, that the momentum density p;u; is a vector
quantity and therefore defined at the grid boundary. Consequently all vector quantities
in the equation of motion (e.g. the mass flux p;Au™ or the gravitational force p V)
should therefore also be defined at the grid boundary. This can be achieved by interpo-
lating these vectors by calculating the mean values. This operation is denoted by a bar

over the quantity as shown in the subsequent expression,

1
Xl = §<Xl + Xl—i—l) . (3321)

After collecting the recent results and applying the discretized versions of the volume
term (3.3.7) and the advection term (3.3.12)), the equation of momentum in volume-
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integrated form becomes to (compare with Dorfi & Breitschwerdt| (2012))),

0
TE 4V (pu @ u) + V(p, +pe+pu) + oV~ ug =0

(integration over volume AV] and discretization)

o (pru AV, el = ~ o
(IOZ(SZtl) + A(Aup® pri) + A(pgs + peg + Pwi) Al + 0rAIAG — ugi AV =0 .

(3.3.22)

The discretized pre-factor of the artificial viscosity pg, (3.2.1)) and the discrete artificial

momentum transfer ug,; (according to (3.2.12))) have the following form,

(g = —qilyCs + @2l2 min(V - u, 0)

(integration over volume AV; and discretization)

. [ A(An)
= ql o) — l? 3.2
Q. q1t¢Csl q2 q min < A‘/z aO ) (3 3 3)

(3.3.24)

10 [ A2 A <0u 18(Au)>]

UQ:A?’/?% 0z 0z 3 0z

(integration over volume AV; and discretization)

1 13/2 A(Alul) Aul 1 A(Alul)
uQ AV, = —FA [Al N :

Azl 3 A%

(3.3.25)

The interpolated A; in the last expression is due to the fact, that all other quantities
are defined at the grid cell boundary, and so it is straightforward to interpolate A; to fit

better to the other discretized quantities.
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3.3.5 Discretization of the gas energy density equation

It is continued now with the discretization of the gas energy density equation ([3.2.16)).
Applying the discretization of the volume term and the advection term as before and
keeping in mind the numerical details for the advection term @) and @), the following

discretization is achieved,

0FE
S TV (Egw) +pgVu—peg =T = A
(integration over volume AV; and discretization)
I E, 1AV, .
(g(’slto + A(AlulrelEg’l) + pg,ZA(Alul) — EleplAVE =I'—-A. (3326)

The artificial specific energy dissipation eg ([3.2.13) is discretized as follows (compare
with Dorfi & Breitschwerdt| (2012)),

EQ:_§Z 0z 0z 3A 0z

(integration over volume AV and discretization)

3 11y O(Au) [au 1 a(Au)r

(3.3.27)

Aul _ EAAIUZ 2
Az 3 AV

3
€AV, = §MQ,zPlA(AlUZ) l

3.3.6 Discretization of the cosmic ray energy density equation

The next equation which is discretized, is the cosmic ray energy density equation ([2.10.14)).
Analogously to the other equations the discretized form of this equation is given in the

following expression,

0E.
ot

+ V- (E(u+9va))+pV-u—vy -Vp.=V-(kVE,)

(integration over volume AV and discretization)
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SE., AV, o
# + A(AE (U 4+ vevag)) + (Ye — D Ea A(Auy) — (e — Dva AE A
AE.,
A4 e 3.2
< YTA ) (3.3.28)

3.3.7 Discretization of the wave energy density equation

The last physical equation left for discretization is the wave energy density equation or
energy exchange equation ([2.10.15]), which has the following discretized form,
0F,,

W%—V-(Ew(u+vA))+pwV-u+vA-pr:O

(integration over volume AV and discretization)

0E,, 1AV,

50 + A(AzEw,z(U;d +vay)) + (Vo — D Ep i A(Aw) — (Y — 1)vaAE, 1A

—0. (3.3.29)

3.4 Implicit method

Basically there exist two different approaches for solving a system of time-dependent

differential equations, namely
e Explicit methods, and
e Implicit methods.

The major difference between implicit and explicit methods is the way how the solution
at a later time is obtained. An explicit integration scheme uses the solution of the system
at the old time for calculating the new solution. If the solution vector at the [-th grid

point is denoted as X;, then in general an explicit discretization of a set of equation
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would look like,

Xl = (Xl,laXl,27"'7Xl,M) ) (341)
X = (X1’X27"'7XN) ) (342)

X(new) . X(old)
= F(XD) (3.4.3)

ot

where N is the number of grid points and M the number of variables. The solution
vector X has after having a look at (3.4.2) the dimension N x M. At the new time
X (ew) can be obtained straightforward by simply writing,

X (new) — xg(old) 4 g1 }“(X(Old)) ) (3.4.4)

This shows, that the new values are obtained by simply extrapolating the solution at
the old time to the new time. The problem with explicit schemes is the strong depen-
dence on the time step 0t (see e.g. Feuchtinger (1989))). Solving differential equations
numerically with an explicit method impose an upper limit on the time step dt (other-
wise the numerical method is unstable), this condition is called Courant-Friedrichs-Lewy
(CFL)-condition and reads as follows (see e.g. [LeVeque et al.| (1998), p. 52),

Az
ot < )
lu| + ¢

(3.4.5)

where ¢, is the speed of sound. This condition is equivalent to the following condition

(see LeVeque et al. (1998)), p. 52):

The numerical domain of dependence must not be greater than the true do-
main of the system of differential equations. In the limit of 6t — 0 and
Az — 0 the computational domain of dependence should change to the true

domain of dependence.

It should be noted that the CFL-condition is only a necessary condition but not suffi-
cient, this means that an explicit method cannot be stable, but a method with a satisfied
CFL-condition might be convergent, but nothing can be said for sure without doing fur-

ther stability analysis.
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On the contrary, an implicit method solves the system of equations by using solutions

from the old and the new time. This can be written in the following way,

X(new) _ X(old)

5 = F(Xld) x(new)y (3.4.6)

The problem of equations of the form (3.4.6|) is, that such systems are in the most cases
nonlinear and cannot be solved explicitly. Such systems of equations can be solved
iteratively by root searching algorithms, e.g. by a Newton-Raphson iteration. For this
purpose the system of equations at the current time (denoted by superscript (n)) and

for a certain grid point [ is rewritten as follows,
Gy(X")y =0, mell,M], (3.4.7)

where G, is a set of M equations per grid point [ and X™ denotes the set of variables
at the current time. The whole system of equations consists of N x M equations G,
because for every grid point there are M unknown variables. A solution at the new time
(denoted by superscript (n + 1)) must obey the same set of equations G,, for every grid
point [,

Gy(X®Y =0,  me[l,M]. (3.4.8)

Due to the non-linearity of the equations G,,, the system cannot be solved explicitly in
general, but it can be computed iteratively to first order, by expanding it in a Taylor
series around the solution at the new time X®+Y . For every grid point [, the Taylor

expansion looks like,

n n agm,l n+1 n
G (XD) = Gy (X)) + 220 (X[ — X)) = 0. (3.4.9)
X!
=J

The term denoted by J is the Jacobi-matriz. Applying this Taylor expansion for every
grid point [ make clear that J has the dimension (N - M x N - M). Inverting that matrix
allows one to rewrite equation ([3.4.9) for every grid point [/ in the following way,

§X, = X" —x (3.4.10)
60Xy = —J 1 Gy (X)) (3.4.11)
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This form ((3.4.11)) is used to iteratively solve the system of equations with a Newton-
Raphson iteration. Repeating this procedure leads to a more accurate solution vector
for the new time X . The iteration is halted, if a certain accuracy e is achieved (see
LeVeque et al. (1998), p. 209),

6 X
min ('”) <e. (3.4.12)
| Xona| = T

The constants 7,,; are introduced to circumvent problems, which arise if | X, | is zero.

3.4.1 Boundary Conditions

The boundary conditions of the set of discretized physical equations are specified to-
gether with the grid boundary conditions as defined in . As it will be clear in the
next section each variable in a cell is connected to the next two neighbouring cells
on each side. This so-called 5-point stencil clearly cannot be adopted for the boundaries,

because otherwise the computational domain would be infinite.

There exists a huge amount of different possible boundary conditions, in this thesis there

are two different types which are used:

o Fized boundary values: The innermost (I = N) and outermost (I = 1) grid points

are set to fixed value Xyound,inner a0d Xpound outer, respectively,

AX; = AXy =0, (3.4.13)
=

X1 = Xbound,outer = 0, (3.4.14)

XN — Xpound,inner = 0 . (3.4.15)

e Zero gradient for quantities at the boundary: If the gradients should be zero e.g.

at the outer boundary, this can be written as,

0X
0z

outer

=0, (3.4.16)

=
X, — X, =0. (3.4.17)
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According to section[1.3] the Kompaneets approximation is used to calculate the variable

inner boundary values. Two different situations are implemented:

e No feedback of the galactic wind: The quantities in the superbubble, especially p,
E, and E, are not influenced by the galactic wind.

e Non-vanishing feedback of the galactic wind: The mass-flow as well as the CR flow
will decrease the cosmic ray energy density E. and also the density p in the cavity

and therefore the gas energy density E.

In general the variable boundary conditions at the new time (superscript “(new)”) are
computed in the following way (using the quantities in equation ({1.3.22]),

(new) _ (old)
bound,inner - pbound,inner + pgain — Ploss
(new) _ (old)
X(new) o Eg,bound,inner — ~g,bound,inner + Eg,gain - EQJOSS 3.4.18
bound,inner ~ ) ( s )
E(new) _ +(old) +E B
c,bound,inner — ~eboundinner ¢, gain c,loss
(new) _ (old)
Ew,bound,inner - Ew,bound,inner
0= unNy —uUnN-1 - (3419)

Equation is equivalent to a vanishing velocity gradient at the inner boundary
(compare with ) The other quantities py, £y n, E.n and E,, v are set to fixed
values (compare with ), which are variable in time according to the Kompaneets
solution. Supernova explosions supply energy and generate CRs, in general all quantities
which increase any quantity within the superbubble are denoted with subscript “gain”.
On the other hand, the galactic wind will carry away a certain amount of energy and

mass, therefore these parts are referred to with subscript “loss”.

New mass is inserted into the superbubble by various processes such as stellar winds,
supernova explosions, etc. In starbursts this is a substantial and therefore a not negligi-
ble part of t