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Abstract

The main topic of the present thesis is bias of estimators from sample surveys with
voluntary participation that may occur because of unit nonresponse. If not all units
selected in the sample take part in the survey, this may lead to bias in estimators if the
event of unit nonresponse does not happen completely at random. Weighting methods
can be used to compensate for this bias. Therefore, suitable methods like using the
inverse of estimated response probabilities to adjust for unit nonresponse or calibration
to external marginal distributions are presented.

In order to investigate potential bias due to unit nonresponse, simulations were carried
out to make a comparison of different estimators applying various weighting methods
that presumably counter bias. The data for these simulations were taken from the
survey EU-SILC (European Union Statistics on Income and Living Conditions) in Aus-
tria. EU-SILC is a probability sample survey of private households in Austria that
employs a rotating panel design. Participation in the survey is voluntary. The survey
variable of interest in this thesis is a component of the household income (income from
employment and old-age benefits). The sum of this variable over all households in the
population is the parameter that was chosen to be estimated from the respondents of
the selected sample. The response process was simulated for the selected sample of the
first wave of EU-SILC 2010 and the expectation of different estimators calculated from
the simulated response sets was compared to the design-weighted estimate of the se-
lected sample. Results show that no adjustment for unit nonresponse leads to a biased
estimator. Weighting methods that use auxiliary information to adjust for unit nonre-
sponse bias can reduce this bias. The most precise estimators result from calibration,
because this method reduces bias and also facilitates a reduction of variance.
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Abstract in German

Das Hauptthema der vorliegenden Arbeit sind Verzerrungen von Schätzern aus Stich-
probenerhebungen mit freiwilliger Teilnahme. Antwortausfälle aufgrund von nicht an
der Erhebung teilnehmenden Erhebungseinheiten können zu verzerrten Schätzern führen,
wenn der Ausfall nicht komplett zufällig stattfindet. Verschiedene Gewichtungsmetho-
den können verwendet werden, um dieser Verzerrung entgegenzuwirken. Dazu zählen
beispielsweise die Verwendung der Inversen der geschätzten Antwortwahrscheinlichkeiten
oder Kalibrierung an externe Randverteilungen.

Um mögliche Verzerrungen aufgrund von Antwortausfällen zu untersuchen, wurden
Simulationen durchgeführt, die einen Vergleich der verschiedenen Schätzer und der
verwendeten Gewichtungsmethoden, die vermutlich Verzerrungen entgegenwirken, er-
lauben. Die Datengrundlage der Simulationen bildet die Erhebung EU-SILC (Euro-
pean Union Statistics on Income and Living Conditions) in Österreich. EU-SILC ist
eine Erhebung mit freiwilliger Teilnahme basierend auf einer Wahrscheinlichkeitsstich-
probe privater Haushalte in Österreich und einem rotierenden Paneldesign. Die wichtig-
ste Untersuchungsvariable für die vorliegende Arbeit ist ein Bestandteil des gesamten
Haushaltseinkommens (Einkommen aus unselbständiger Tätigkeit und Alterspensio-
nen). Die Summe dieser Variable über alle Haushalte in der Population wurde als zu
schätzender Parameter gewählt. Der Antwortprozess wurde für die gezogene Stichprobe
der Erstbefragung EU-SILC 2010 simuliert und der Erwartungswert der verschiede-
nen Schätzungen, basierend auf den teilnehmenden Haushalten, wurde mit der de-
signgewichteten Schätzung der gezogenen Stichprobe verglichen. Die Ergebnisse zeigen,
dass ohne eine Anpassung der Gewichte an den Antwortausfall der Schätzer für den
Wert in der Grundgesamtheit verzerrt ist. Gewichtungsmethoden, die Hilfsvariablen
zur Kompensation des Antwortausfalls verwenden, können Verzerrungen verkleinern.
Kalibrierungen an externe Randverteilungen resultierten schließlich in Schätzern mit
der höchsten Präzision, da sie nicht nur vergleichsweise kleine Verzerrungen aufweisen,
sondern auch zu einer verringerten Varianz führen.
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1 Introduction

1.1 Motivation

During the last years I have been working at Statistics Austria with surveys that rely
on probability samples, for example EU-SILC (European Union Statistics on Income
and Living Conditions). EU-SILC is the main source of data about household income
in Austria. It is also used for estimating EU-indicators on social inclusion (e.g. the
at-risk-of-poverty rate). EU-SILC is a probability sample survey with voluntary partic-
ipation and a rotating design of four rotations. During my work on EU-SILC topics like
sampling and weighting are of importance. Therefore over-/undercoverage, sampling
error and nonresponse are issues with which I have been confronted on a regular basis.
In order to make inference on the population, to counter potential bias due to unit non-
response and to guarantee comparability with statistics from other sources, EU-SILC
facilitates a sophisticated weighting procedure which is composed of three main steps:
(1) Design weights (inverse of selection probabilities), (2) nonresponse weights (inverse
of estimated response probabilities) and (3) calibration on known external marginal
distributions.1

The first part of the weighting procedure is straightforward. Since EU-SILC is a proba-
bility sample of addresses of private household as sampling units drawn from the central
residence register (Zentrales Melderegister – ZMR), the probabilities of selection for all
units belonging to the sampling frame are known prior to sample selection. Calibra-
tion, the third part of the weighting process is applied with CALMAR (“CALage sur
MARges”)2, a macro for the statistical software SAS developed by the national statis-
tical institute of France (INSEE). However, the second part of the weighting procedure
poses certain challenges, because the probabilities of taking part in the survey have to
be estimated for those who are willing to respond as well as for those who do not re-

1Cf. Glaser & Till (2010).
2Cf. Sautory (1993).
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spond. Since only a limited amount of data is available from the sampling frame before
the actual interview of the first year wave of a rotational subsample, it is very difficult
to estimate the response probabilities. Another challenge is that nonresponse is usually
highest in the first year wave of the survey. For example, in EU-SILC 2010 the response
rate amounted to about 62% for the first wave rotation, yielding a nonresponse rate
of 38% (Statistics Austria 2011, p. 26). A logistic regression model was used to esti-
mate response probabilities, but only variables from the sampling frame and the type of
building from the gross sample could be used as predictors. The pseudo r-square of the
model was smaller than 5%. This could result from a nonresponse mechanism that acts
almost completely at random, or, is due to insufficient auxiliary data available for the
first year of the survey. For the second, third and fourth year of the survey information
from the past years can be used to estimate response probabilities. Therefore the cor-
responding models to estimate the response probabilities have much more explanatory
variables at hand compared to the model for the first year. The goodness of fit of the
corresponding logistic regression models is higher for subsequent survey years (pseudo
r-square is about 20%). The response rate for follow-up rotations ranged from 83% to
90% in EU-SILC 2010.3

1.2 Main topic and research questions

A comparatively high nonresponse rate may be the source of some major bias of esti-
mators which are used to calculate estimates based on survey data. A survey can be
defined as “a systematic method for gathering information from (a sample of) entities
for the purposes of constructing quantitative descriptors of the attributes of the larger
population of which the entities are members” (Groves et al. 2004, p. 4). In this thesis
the term “survey” will always refer to “sample survey” and thus describing the process
of drawing a sample from a (big) population and subsequently collecting information
only from the elements in the sample. The data gathered from the sample can then be
used to estimate parameters of certain quantities of the population.

Estimators from sample surveys encounter many kinds of errors that are usually de-
scribed with the concept of “total survey error” (Groves et al. 2004, p. 49) which
incorporates all sources of a deviation of the parameter of interest from its estimator
based on survey data. Of these potential errors of the survey process only "coverage

3Cf. Statistics Austria (2010).
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error, sampling error and nonresponse error” (Särndal & Lundström 2005, p. 6) will be
of interest in this thesis, where the main focus will lie on the last one. The first error
mentioned above refers to the error that occurs if not all elements of the population are
eligible in the sampling frame, or if some elements in the sampling frame do not belong
to the population. Sampling error occurs, because instead of the whole population,
only a sample is used for data collection. If not all units selected in the sample take
part in the survey, error due to this so-called “unit nonresponse” (Groves et al. 2004, p.
45) arises. If the above mentioned errors occur, they may increase the variance and/or
distort the estimators that are based on the survey data. The latter case is usually
called “bias” (Groves et al. 2004, p. 45). The bias of a parameter estimator is defined
as the deviation of that estimator from the true parameter in the population.4 Besides
the error due to (an increased) variance there are three types of biases that correspond
to the errors mentioned at the beginning of this section: coverage bias, sampling bias
and nonresponse bias (Groves et al. 2004, ch. 2.3). Coverage bias refers to the differ-
ence of a parameter based on the sampling frame to the parameter in the whole survey
population. Sampling bias occurs if certain elements of the sampling frame have a zero
probability of selection or a probability of selection that is not or incorrectly represented
by design weights. Bias due to unit nonresponse arises, if estimators based on the re-
spondents differ from those based on the whole sample. Nonresponse bias has to be
assumed as one of the biggest challenges related to estimators based on sample surveys,
because often there is not enough information at hand to counter unit nonresponse in
an effective way. Bias due to nonresponse may considerably distort estimators. Fur-
thermore, if unit nonresponse introduces bias to an estimator that is sample-unbiased,
not only the point estimate becomes biased, but also the corresponding confidence in-
terval of the estimator will be rendered invalid.5 Särndal and Lunström state that “it
is the nonresponse bias that constitutes by far the most important obstacle to correct
statistical conclusions in a survey” (Särndal & Lundström 2005, p. 14). So the increase
in variance due to unit nonresponse can be considered a minor obstacle as long as un-
biasedness can be (approximately) maintained although unit nonresponse occurs. As
described in the previous section, sample surveys which rely on voluntary participation,
e.g. EU-SILC, will almost certainly encounter some form of unit nonresponse. Although
incentives to encourage participation (e.g. financial recompensation or vouchers) may
lead to a higher response rate, in most cases there will be a percentage of units selected

4Cf. Särndal et al. (2003), p. 40.
5Cf. Särndal (2007), p. 144.
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in the sample who are not willing to participate. If this selection process does not occur
completely at random, the findings of the survey may be biased for certain variables
of interest. If, for example, a measure of income inequality as the gini coefficient is
estimated with data from a survey, a bias occurs if people belonging to the highest in-
come decile are underrepresented, because many of those persons are difficult to reach
or are not willing to take part in the survey. In order to counter this bias caused by
unit nonresponse, weighting the respondents with the inverse of their estimated (group-
)response probability is a suitable method.6 If it is possible to estimate the response
probabilities of certain groups of selected sampling units, the remaining respondents
of that group may compensate for the loss because of unit nonresponse by applying a
weighting factor that is the inverse of the estimated response probability. As mentioned
above it is usually quite difficult to correctly estimate the unknown response probability
of each selected sampling unit. Usually, only a limited amount of information about
the selected sampling unit is known before the time of the interview. In this case the
usage of register information in addition to characteristics of the sampling frame may
considerably ameliorate the scope of possible explanatory variables for estimating the
response probability. Another challenge is the actual method for countering unit non-
response. Using the inverse of the estimated response probabilities (e.g. estimated by
a logistic regression model) may be a useful tool, but other methods like calibration
to known external marginal distributions have to be taken into account too. Although
weighting may be a suitable method for countering bias, another important issue is the
enlargement of the variance of weighted estimates. The ideal solution is a method that
reduces bias and at the same time does not enlarge the variance of weights too much.

The main topic of this thesis is bias that may exist for estimators which are based on
data from sample surveys in which unit nonresponse occurs. The main assumption is
that the major source of bias in such surveys is nonresponse that does not occur at
random in the case of the EU-SILC survey. That means the probability to take part in
the survey differs for all sampled elements in a way that has a distorting influence on
the estimators of parametes of interest, based on survey variables.

6This method is described as appropriate for the weighting procedure for EU-SILC, cf. Osier et al.
(2006).
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The main research questions which shall be dealt with in this thesis using data from
the Austrian EU-SILC survey can be summarized as follows:

• Is there a considerable amount of bias due to unit nonresponse that has to be
dealt with?

• Which methods to adjust estimators in order to counter unit nonresponse exist
and how can they be improved?

• May a reduction of bias have undesirable consequences, for example a considerable
enlargement of variance?

These three questions are the foundation of the following chapters and will be answered
in this thesis. Chapter 2 introduces the topic of estimation of a certain parameter of
interest when only a sample of the concerning population is at hand. Also the most im-
portant terms and definitions of the present thesis, e.g. “bias” or “nonresponse”, will be
explained in this chapter. Chapter 3 follows with a presentation of different weighting
methods that result in unbiased estimators or estimators with can reduce bias due to
unit nonresponse, if it occurs. Chapter 2 and chapter 3 provide the theoretical founda-
tion of the practical application of methods to adjust estimators for unit nonresponse in
chapter 4. These simulations with data from the Austrian EU-SILC survey are used to
to evaluate the methods presented in chapter 3. Finally, chapter 5 sums up the findings
of the previous chapters and gives an outlook on possible future applications for sample
survey.

5
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2 Estimation and Bias

2.1 Estimation of the parameter of interest based on

sample data

Many studies, for instance EU-SILC, are carried out in order to analyze characteristics
of large populations, e.g. all private households in Austria and the persons who have
their main residence at the address of the household. Since it would be very expen-
sive to collect information about, for example, income from employment for the whole
population, only a fraction of the population is interviewed. If the selection of such a
sample is the result of a random experiment, there exists statistical theory (Lehmann
& Caselly 1998, ch.1) with which inference on the whole population can be carried out.
The variable of interest yk in this thesis is the sum of income from employment and
from old-age benefits at household level of households k in the population U of inter-
est, which consists of all private households in Austria. Let θ(yk)k∈U denote the sum
of income of all private households k belonging to the population U . The size of the
population shall be referred to as N and the index k, (k = 1, ..., N) identifies a specific
element, i.e. a private household in the population.

θ = θ(yk) =
∑
k∈U

yk (2.1)

θ = θ(yk) is the parameter that has to be estimated, sometimes also called the “esti-
mand” (Lehmann & Caselly 1998, ch. 1.1). Since it would be extremely cumbersome
to gather income information from the whole population, a sample s is drawn from the
population U in order to estimate the population total shown in (2.1).

Let S denote a random variable which refers to the random experiment of drawing a
sample s from the set of all possible samples.1 The probability πk that an element k of

1The nomenclature in this section is inspired by Särndal et al. (2003).
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the population is included in the sample is defined as follows (Särndal et al. 2003, ch.
2.4):

πk = P (k ∈ s) =
∑
s3k

p(s) (2.2)

where p(s) = P (S = s) denotes the probability of selecting a specific sample s and the
sum on the right hand side of (2.2) is over all samples s that contain the element k.
If the probabilities of selection πk are known and πk > 0 holds for all k ∈ U then a
so-called “probability sample” (Särndal et al. 2003, p. 32) can be drawn by conducting
a random experiment for all elements k in the population. The resulting sample s can
then be used to collect information about the variable y of interest for all elements
k ∈ s. For the sake of convenience, from now on ”s” will be used to describe the
random variable S as well as the realized sample s. This simplification is also justified
by statistical literature.2 The re-identification of an element k of the population within
a specific sample s can easily be done with the “sample membership indicator” (Särndal
et al. 2003, p. 30), here called Tk, which is defined as follows:

Tk =

1 if k ∈ s

0 if k /∈ s
(2.3)

Tk in (2.3) is a random variable, because it results from the random experiment of
drawing a sample. Obviously, the expectation of the sample membership indicator is
the probability of selection, because

E(Tk) = 1 · πk = πk (2.4)

If the size n of the sample s is much smaller than the size of the population (n << N),
it is obviously much more convenient to use the sample as a source of gathering data
on the variable of interest instead of the whole population. However, since only a few
randomly chosen elements of the population now remain in the sample, the parameter
θ has to be estimated by using the values yk given in the sample. The “estimator” of θ
is called θ̂ and depends on the random experiment of drawing a sample, so θ̂ = θ̂(s).3

Since only a sample is used to estimate the parameter of interest, the outcome of the
estimation process, the “estimate”, can differ from the value obtained from the whole

2Cf. Särndal et al. (2003), p. 41.
3Cf. Särndal et al. (2003), p. 39.
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population. This difference θ̂ − θ is called the “sampling error” (Särndal & Lundström
2005, p. 45). Ideally, this deviation should only stem from the randomness of the process
of selecting a sample. So, on average, the parameter and its estimator should be the
same. To evaluate this, the expectation of the estimator has to be compared with the
true value of the parameter in the population. The expectation of an estimator is the
sum over all possible samples, weighted by the probabilities of selection of all possible
samples.4 If the expectation of a parameter and the true value of the parameter in the
population are the same, then the estimator is called “unbiased” (Särndal et al. 2003,
p. 40):

BT (θ̂) = E(θ̂)− θ = 0 (2.5)

where BT (θ̂) denotes the “bias”. More specifically, the bias presented in (2.5) is the
bias due to sampling which is specified by the suffix “T” in order to refer to the sample
membership indicator in (2.3). It can also be written as the expectation of the sampling
error:

BT (θ̂) = E(θ̂ − θ) = E(θ̂)− θ (2.6)

The parameter of interest in this thesis is the population total of income from employ-
ment or old-age benefits of private households. A well-known estimator for the total in
(2.1) is the so-called “Horvitz-Thompson estimator”, which was introduced by Horvitz
& Thompson (1952).

θ̂ =
∑
k∈s

yk
πk

(2.7)

This estimator is unbiased for the total, because

E(θ̂) = E(
∑
k∈s

yk
πk

) = E(
∑
k∈U

Tk
yk
πk

) =

=
∑
k∈U

πk
yk
πk

=
∑
k∈U

yk =

= θ (2.8)

4Cf. Särndal et al. (2003), p. 40.
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The factor 1/πk is also called the “design weight” (Särndal & Lundström 2005, p. 30).
It inflates the values of the variables in the sample to the size of the population. This
approach to weighting data from probability samples is also called “design-based” or
based on “randomization theory” (Särndal & Lundström 2005, p. 49). It applies per-
fectly for data from probability samples where no data are missing, i.e. there is full
response.

The calculation of the Horvitz-Thompson estimator depends on the kind of sample se-
lection given by the distribution of p(s). The survey of interest in this thesis is EU-SILC
in Austria, which uses a stratified simple random sample without replacement as a “sam-
pling design” (Särndal et al. 2003, ch. 2.3). A stratified simple random sample with
D strata may also be viewed as a collection of D independent simple random samples.
Therefore it is important to know how the probability of inclusion in a specific sample
for element k is calculated for a simple random sample without replacement.5 If n
denotes the fixed size of the sample and N the size of the population, then the number
of possible samples is a combination without replacement and given by the binomial

coefficient of

(
N

n

)
. The number of possible samples that include a specific element k

of the population is given by

(
N − 1

n− 1

)
, because if k is fixed, the size of the remaining

population is N-1 and the size of the remaining samples is n-1. Applying Laplace’s defi-
nition of probability6, i.e. (number of favorable events)/(number of possible events) it is
now easy to see, that the inclusion probability πk simplifies to the following expression
(Särndal et al. 2003):

πk =
∑
s3k

p(s) =

(
N−1
n−1

)(
N
n

) =
n

N
(2.9)

The quantity n/N is often called the “sampling fraction” (Cochran 1977, p, 21). So
in simple random sampling the probabilities of selection are the same for all elements.
As mentioned above, a stratified simple random sample s consists of D disjunct strata
drawn from the disjunct partitions Ud (d = 1, ..., D) of U with size Nd. For each stratum
d independent samples sd of size nd are drawn. The sample sizes of the strata sum up to
the size of the sample and the sizes of the strata sum up to the size of the population, i.e.

5For a detailed description of simple random sampling and stratified sampling please refer to Särndal
et al. (2003), ch. 3.3. and ch. 3.7. and to Cochran (1977), ch. 2 and ch. 5.

6Compare Pfanzagl (1991), p. 29ff.
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n =
D∑
d=1

nd and N =
D∑
d=1

Nd (2.10)

So within every stratum, the probability of selection is defined as πkd = nd/Nd. The
Horvitz-Thompson estimator for the population total presented above (2.7) and applied
to a stratified simple random sample can easily be calculated as the sum of the stratum-
estimators over all strata. In other words, for each partition Ud of U the total θd has
to be estimated separately and the total for the whole population U is θ =

∑D
d=1 θd.

Let T (d)
k be the sample membership indicator for each stratum with the selection prob-

ability within a specific stratum as its expectation, i.e. E(T
(d)
k ) = πkd = nd/Nd (cf.

formula (2.4)). Now it follows, that the Horvitz-Thompson estimator for stratified
simple random sampling is unbiased for the total of the variable yk in the population
U :

E(θ̂STSI) = E(
D∑
d=1

∑
k∈sd

yk
πk

) =

= E(
D∑
d=1

∑
k∈sd

Nd
yk
nd

) =

=
D∑
d=1

E(
∑
k∈Ud

T
(d)
k Nd

yk
nd

) =

=
D∑
d=1

∑
k∈Ud

nd
Nd

Nd
yk
nd

=

=
D∑
d=1

θd =

= θ (2.11)

It is important to note that
∑D

d=1 θd = θ holds because the strata are disjunct. The
suffix “STSI” denotes the usage of stratified simple random sampling.7

7Cf. Särndal et al. (2003), p. 103.
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2.2 Unit Nonresponse - An Overview

In surveys with voluntary participation there will almost certainly be a part of the
selected units who cannot or will not take part in the survey. This source of missing
data in a sample survey is called “unit nonresponse” (Groves et al. 2004). The follow-
ing descriptions of the response status of units selected in a sample all refer to cases
which belong to the population of interest and can be found in the sampling frame. In
other words, under- and overcoverage are assumed to be non-existent in order to fully
concentrate on missing data due to unit nonresponse.
In the following text let y denote the survey variable of interest that is known only for
the “unit response set” (Särndal et al. 2003, p. 560) which shall be referred to by r.
Furthermore, let x denote a vector of auxiliary variables which are known for the whole
sample. The unit response set contains all elements of the sample which are responding.
Let Rk denote the “response indicator” which identifies responding elements k of the
sample:8

Rk =

1 if k ∈ r

0 if k /∈ r
(2.12)

Missing data due to unit nonresponse does not have to be a problem for unbiased
estimation intrinsically. Groves states in this context that “low response rate surveys are
not necessarily “bad” per se, but may yield some statistics subject to large nonresponse
bias” (Groves 2006, p. 649). Therefore what is of concern here is the question whether
estimation of y for the unit response set r differs from that based on the unit nonresponse
set q and furthermore how this difference may be explained.

In the literature on survey sampling and related issues two approaches of modeling the
response process can be distinguished. Cochran (1977) divides the elements of the sam-
ple into two disjunct strata, where one contains all respondents and the other contains
all nonrespondents. In one stratum all elements respond with probability one, in the
other stratum the response probability is zero for all elements. Because this model is
overly simple9 and will not adequately mirror reality10, most of the more recent works

8Little (1988) defines a “binary nonresponse indicator r ”. However, in order to resemble the sample
membership indicator presented in ch. 2.1 a binary response indicator is used in the present thesis.

9By the way, this is even admitted by Cochran (1977) on p. 360.
10Särndal & Lundström (2005) refer to this approach as “simplistic and unrealistic” (Särndal & Lund-

ström 2005, p. 49).
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about nonresponse like Bethlehem (1999), Longford (2005) or Särndal & Lundström
(2005) model the response process with the so-called “Random Response Model” (cf.
Bethlehem (1999), p. 128). The probability that an element k which has been selected
in the sample s responds to the survey shall be denoted P (Rk = 1) = δk in the present
thesis.11 It is the expected value of Rk conditional on the selected sample s (Särndal &
Lundström 2005, p. 50), so E(Rk | k ∈ s) = δk. This expectation is calculated accord-
ing to the probability distribution of all possible unit response sets d(r | s). Särndal
& Lundström (2005) call d(r | s) the “response mechanism”. Since the realization of
a specific unit response set depends on a random selection, the response process can
be viewed as a subsampling phase, given s, where δk is the probability that a specific
element k is part of one of all possible unit response sets containing k :

δk = P (k ∈ r ∧ k ∈ s) =
∑
r3k

d(r | s) (2.13)

Selecting s and r with probabilities πk and δk may be viewed as “two-phase sampling”
(Särndal et al. 2003, ch. 9). Although, auxiliary information from a vector12 of auxiliary
variables x known for all the elements of the first sampling phase is not used for selecting
the subsample, i.e. the unit response set, such auxiliary information may be related to
the response probabilities δk. Also the survey variable of interest y may be related to
the response probability. If the response probabilities were known for all elements in
the sample prior to the event of response, then it should be easy to perform estimation
of a population parameter just as in (2.8). Since the δk are unknown some assumptions
about the response mechanism have to be made. Based on descriptions by Little &
Rubin (1987) which are also mentioned in Bethlehem (1999) and Longford (2005),
three different mechanisms for missing data due to nonresponse can be distinguished
(for the sake of simpler presentation, the condition that k ∈ s is omitted in the formulas
below, because it should be obvious that an element k can only respond if it belongs
to a selected sample s):13

1. The response probability does not depend on the unknown survey variable y or
the known auxiliary data x . The δk are the same for all k and the response

11This is the same Greek letter that Bethlehem (1999) uses to denote the response probability.
12Vector-valued variables are written in bold letters in this thesis.
13The terminology for classifying different nonresponse processes introduced by Little and Rubin refers

to item- and unit nonresponse and is of a more general kind than the one presented in this thesis.
For details see Little & Rubin (1987), ch. 1.6.
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mechanism resembles simple random sampling:

δk = P (k ∈ r) (2.14)

2. The response probability does not depend directly on the unknown survey variable
y, but on the known auxiliary data x . The survey variable y is correlated with
the response probability only via the auxiliary data which are also predictors for
the survey variable. The response probabilities differ depending on the value of
x , which is known for the unit response set r as well as for the unit nonresponse
set q. In other words, the δk are constant within classes of x , so this response
mechanism can be described as stratified simple random sampling:

δk = P (k ∈ r | x) (2.15)

3. The response probability depends directly on the unknown survey variable y.
Since the δk depend on values of y which are not known for all elements in the
sample, their value cannot be assessed.14

δk = P (k ∈ r | y) (2.16)

The first case mentioned above is also called “missing completely at random (MCAR)”
(Little & Rubin 1987, p. 14). The probability of response is completely unrelated to
the survey variable and to characteristics of the whole sample which are known prior to
the survey. Therefore, the unit response set may be regarded as a random subsample
of the selected sample. In this case estimations are the same for the respondents and
nonrespondents and higher nonresponse rates only yield a higher variance for estimates
but no bias. The second description of the response process refers to the case where the
response probability depends on the auxiliary information known for the entire sample,
but not directly on the survey variable of interest. So between different values or classes
of x the probability of taking part in the survey is higher or lower, but for the same
values or within the same classes of x the response probability is the same. Therefore
the second case is called “missing at random (MAR)” (Little & Rubin 1987, p. 14).
A unit response set which is constituted this way may also be regarded as a random
14Of course, if y was known for the whole sample before the event of response, i.e. from a register,

then δk could be estimated, but in this case a survey would not be necessary in order to gather
information on y.
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subsample of the sample set within classes of x . Because of the fact that x is known for
respondents and nonrespondent it is possible to adjust for bias due to unit nonresponse.
Since in the first two cases bias caused by unit nonresponse does not occur or can be
adjusted these mechanism are also called “ignorable” (Little & Rubin 1987, p. 15). In
the last case the response probability depends on the variable that has to be surveyed
and therefore is unknown for the nonrespondents. Here no adjustments to guarantee
unbiased estimation based on the unit response set are possible and so this case is called
“nonignorable” (Little & Rubin 1987, p. 15).

If it is assumed, that all elements in the sample are also units in the population, i.e.
there are no coverage errors and all elements in the sample are “eligible” (Cobben 2009,
p. 12), then four sources of unit nonresponse can be distinguished: unprocessed cases,
non-contact, not-able and refusal (Cobben 2009, p. 13). The first one stems from lack
of resources during the fieldwork. Facilitating a well-trained fieldwork unit or fieldwork
institute the number of unprocessed cases may be held low. Therefore in this thesis
nonresponse due to unprocessed cases is assumed to be negligible. Secondly, in some
cases it may not be possible to establish contact, because the selected element (e.g. a
household) cannot be reached due to physical obstacles (e.g. floods) or the selected unit
cannot be reached because of absence of potential respondents (e.g. all the members of
the household are temporarily away). If contact can be established it is then possible
that a selected unit is not able to deliver information about the variables of interest. In
a household survey, it may happen, that all household members are unable to respond
due to illness or lack of language skills. The last of the four sources of unit nonresponse
mentioned above refers to the case where the selected unit can be reached, but explicitly
refuses to take part in the survey.

Despite unit nonresponse another source of missing data is “item nonresponse” (Groves
et al. 2004, p. 169). Item nonresponse occurs, if a selected unit takes part in the survey,
but does not answer all relevant questions and therefore some variables of interest are
missing for that respondent. In this thesis it is always assumed that a “full rectangular
data matrix” (Särndal & Lundström 2005, p. 158) is available. This means that all
missing values which are a consequence of item nonresponse have been imputed. “Im-
putation” refers to various methods of estimating missing values in the respondents’
dataset. Examples of these methods are mean imputation, regression imputation (with
or without added stochastic error terms) or hot-deck imputation.15

15For a detailed presentation of these methods please refer to Little & Rubin (1987).
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2.3 Bias due to Unit Nonresponse

As was described in section 2.1 unbiased estimation of a parameter based on a proba-
bility sample can easily be achieved with applying design weights, since these weights
are the inverse of the known inclusion probabilities πk. So one part of the error due
to sampling, namely the sampling bias, can be avoided by using the unbiased Horvitz-
Thompson estimator. Besides the sampling error, unit nonresponse can be another
source of error. It belongs to the class of “non-sampling errors” (Cobben 2009, p.
125f.). The biases which correspond to these two sorts of error, namely the sample bias
and the unit “nonresponse bias” (Särndal & Lundström 2005, p. 46) can be written
in combined form. In order to demonstrate this, the unit nonresponse error, which
originates from the response process, and the sampling error presented in (2.6) have
to be formalized together. Referring to section 2.1, let θ̂ denote the estimator based
on the whole sample. For the purpose of distinguishing this estimator for data with
full response, θ̂UNR shall define the estimator under unit nonresponse. Then the error
of using data from a probability sample that also encountered some amount of unit
nonresponse can be written as follows:16

θ̂UNR − θ = (θ̂ − θ) + (θ̂UNR − θ̂) (2.17)

θ̂UNR denotes the parameter estimator based on the unit response set. The expectation
of the sampling error E(θ̂−θ) is zero if an unbiased estimator like the Horvitz-Thompson
estimator presented in (2.7) is used. The unit nonresponse bias can be written as the
expected difference of the estimator based on the whole sample and the estimator based
only on the unit response set.

BTR(θ̂) = ETR(θ̂UNR − θ̂) = ETR(θ̂UNR)− ET (θ̂) (2.18)

The expectation of the estimator based on the sample refers to the sample membership
indicator Tk and the expectation of the estimator based on the unit response set refers
to the indicator Rk which identifies responding elements. In order to distinguish these
two expectations the suffixes “T ” and “R” are used, where “TR” denotes the condi-

16The derivations are based on Särndal & Lundström (2005), ch. 5.2.
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tional expectation of the response indicator R, given the sample membership indicator
T. Since the Horvitz-Thompson estimator is unbiased for probability samples, the unit
nonresponse bias in (2.18) simplifies to

BTR(θ̂) = ETR(θ̂UNR)− θ (2.19)

An alternative expression of the Bias in (2.19) is the so-called “relative bias” (Särndal &
Lundström 2005, p. 91), which can be interpreted as the percentage of deviation of the
parameter estimator from the the true parameter value (if it was multiplied by 100):

RBTR(θ̂) =
BTR(θ̂)

θ
=
ETR(θ̂UNR)− θ

θ
=
ETR(θ̂UNR)

θ
− 1 (2.20)

The overall bias of the estimator BTR(θ̂UNR) is the sum of the sampling bias and the
unit nonresponse bias which is easy to see by combining (2.6) and (2.18):

BTR(θ̂UNR) = ETR(θ̂UNR − θ) =

= ETR(θ̂UNR)− ETR(θ)− ET (θ̂) + ET (θ̂) =

= ETR(θ̂UNR)− ET (θ̂) + ET (θ̂)− θ =

= BTR +BT (2.21)

The part of the bias which relates to the sampling error can easily be avoided by using
the Horvitz-Thompson estimator presented in formula (2.7) which expands the value of
the survey variable in the sample by the inverse of the selection probability. However,
if this estimator was applied to the response set, then θ̂UNR, which is an estimator
of a total, would certainly be biased if unit nonresponse occurred. If a total had to
be estimated, the resulting estimator would be negatively biased, because inference
would have to be made on a set that was smaller than the sample. The estimates
of the total would be systematically too small, but if certain assumptions about the
response probabilities δk hold, the exact values of the response probabilities do not
have to be known. As was discussed in the previous section, the unit response set r
may be regarded as a simple random subsample of the selected sample s if the δk are
constant for all elements of the sample (compare (2.14)). So if the assumption holds,
that the response mechanism is MCAR the response probability reduces to a constant
factor equal to (size of unit response set)/(size of sample). Let m denote the size of the
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response set r and n denote the size of the sample s, then

δk =
m

n
(2.22)

By the definition of the MCAR case the response probability does not depend on char-
acteristics of the sample, so the probability of being selected and being a respondent is
the product of πk and δk for the MCAR case:

P (k ∈ s ∧ k ∈ r) = πk · δk (2.23)

Let dk = 1/πk denote the design weight and δk = m/n is a constant. Since the
product in (2.23) is known for all elements in the sample and also for all elements in
the population, it can be used to construct an unbiased estimator just as in (2.7):

θ̂EXP =
∑
k∈s∩r

dkyk
δk

=
n

m

∑
k∈s∩r

dkyk =

=
n

m

∑
k∈s∩r

dkyk (2.24)

The estimator shown above, which compensates the loss of data due to nonresponse
simply by inflating the response set r to the size of s and subsequently s to the size of
U is also called the the “(straight) expansion estimator” (Särndal & Lundström 2005,
p. 68). The estimator shown in (2.24) resembles the Horvitz-Thompson estimator for
two-phase sampling (Särndal et al. 2003, p. 348). It follows from (2.11) and (2.22) that
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θ̂UNR is unbiased for stratified simple random sampling if MCAR is assumed.

E(θ̂EXP.STSI) = E(
D∑
d=1

∑
k∈sd∩r

dkyk
δk

) =

= E(
D∑
d=1

∑
k∈sd∩r

Nd

nd

yk
md/nd

) =

= E(
D∑
d=1

∑
k∈Ud

TkdRkNd
yk
md

) =

=
D∑
d=1

E(
∑
k∈Ud

nd
Nd

md

nd
Nd

yk
md

) =

=
D∑
d=1

∑
k∈Ud

yk =
D∑
d=1

θd =

= θ (2.25)

As appealing the case of MCAR may be for estimation it unfortunately is rarely realistic
and overly simple (cf. p. 12). Unit nonresponse will almost certainly have some
distorting effect on estimators in sample surveys, therefore “nonresponse invariably
causes some bias” (Särndal & Lundström 2005, p. 45).

So it is not very reasonable to assume that the response probability is not influenced at
all by some characteristics of the elements in the sample. For example, taking part in a
survey usually demands some time from the potential respondent. It is obvious that the
amount of spare time is different between people who have an occupation or are jobless
or people who have to look after their kids. Even if it is not known whether the response
probability is different for certain demographics, it is reasonable to assume a response
mechanism that differs for certain known groups. Therefore it is a good choice to take a
conservative approach and assume the response mechanism to be MAR. If it turns out
to be MCAR, nothing is lost, because the MAR assumption incorporates MCAR as a
special case where there is only one stratum within which the response probability is the
same. The primary task now is to find auxiliary information x with which it is possible
to construct groups with constant response probabilities. This approach is called the
“response homogeneity group (RHG) model” (Särndal et al. 2003, p. 578). The difficult
task now is to find good auxiliary variables and methods with which adjustments and
ameliorations of the estimators already shown can be achieved.
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3 Weighting

3.1 Weighting and unit nonresponse

In the previous chapter some adjustments to counter unit nonresponse have already
been introduced. The basic assumptions are that response probabilities are constant
within certain groups (MAR). If these groups can be defined correctly, adjustment
weights can be computed for each element k in the response set. One weighted estima-
tor has already been described in the previous chapter, namely the Horvitz-Thompson
estimator which adjusts for (unequal) selection probabilities by multiplying each ele-
ment by the inverse of its selection probability, also called the design weight (cf. section
2.1). However, these weights are only one form of adjustment weights used in sample
surveys. Kish (1990) describes seven different forms of weighting:

(i) disproportional allocations, i.e. unequal selection probabilities

(ii) unequal sampling frames

(iii) nonresponse

(iv) statistical adjustments

(v) combination of samples

(vi) control statistics

(vii) nonprobability samples

Point (i) refers to the Horvitz-Thompson estimator and is an application of the design
weights, (ii) is not considered here, because a sampling frame from which all elements
are selected in one stage is assumed. (v) does not apply because only one sample is used
and (vii) also does not hold, because a probability sample is utilized. The main reason
why weighting is necessary in this thesis is (iii), i.e. unit nonresponse, more specifically,
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weighting is a strategy to counter unit nonresponse bias. The response process is
assumed to be random with equal selection probabilities within certain constructed
classes according to specific auxiliary variables. Statistical adjustments (iv) may also
help to reduce bias due to unit nonresponse as we shall see later with the method of
calibration (cf. section 3.4). Adjustments to ensure comparability with other statistics
(vi) refer to methods of ex-post adjustments in order to guarantee that inference on the
same frame population is possible from different samples. For example, these ex-post
adjustments are applied to the final weights of EU-SILC in Austria to ensure that the
marginal counts of some common variables like age, sex, household size etc. are the
same as in the Austrian Microcensus on a yearly average (Glaser & Till 2010, p. 571).
Although the same methods as in (iv) may be used (post-stratification, calibration),
the purpose of (iv) is not to adjust for errors due to sampling or nonresponse.

It is important to note that the weights considered in this thesis are all “individual
case weights” (Kish 1990, p. 125). In every weighting scheme considered here, each
element k in the response set gets assigned one weight that is used for calculation of
parameter estimates. Although bias is evaluated with the parameter “total income from
employment and old-age benefits” the weights can be used to calculate all different kinds
of statistics. This strategy is opposed to the one using different weights for different
statistics.

In the previous section it became apparent, that some form of auxiliary information
will be needed to find an ordering with which the response process may be explained.
The probability of response, given an auxiliary information x is defined as the “response
propensity” (Little 1986, p. 146):

p(x) = P (R = 1 | x) (3.1)

Obviously, finding a good auxiliary vector x is a crucial part in using adjustments of
weights in order to counter unit nonresponse. Särndal & Lundström (2005) distinguish
three main properties that these auxiliary informations should have:

1. Explanation of the response propensity

2. Explanation of the most important study variable(s)

3. Explanation of the most relevant domains

The first property is evidently necessary in the RHG model. Otherwise the grouping
according to x would not help in adjusting for unit nonresponse. Furthermore it gen-
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erally leads to a reduction of the unit nonresponse bias for all variables.1 The second
point mentioned above does not only contribute to reducing the bias for the main sur-
vey variable(s) of interest, but also reduces the variance of these estimates. This closely
resembles the concept of “optimum allocation” (Kish 1995, p. 92). It also refers to
what Groves (2006) calls the “common cause model” (Groves 2006, p. 651). In this
causal model the survey variable(s) and the response propensity are both caused by
the same variable(s). Any covariance between the main survey variable(s) and the re-
sponse propensity can therefore be explained by common factors. The third desirable
property of an auxiliary vector ensures a correct representation of important domains.
For example, even if the sampling design uses stratification for important categories
(e.g. region, age, sex, ...), unit nonresponse may lead to a distorted representation of
these groups and therefore has to be corrected if the totals of these domains shall be
represented correctly.

This chapter will give an overview of different weighting methods and their power to
counter unit nonresponse. In the RHG model already mentioned in the previous chapter
response is explained as happening at random with equal probabilities within groups,
resembling response as a second-phase stratified simple random sample. This traditional
approach is also called the “two-phase approach to weighting for nonresponse” (Särndal
& Lundström 2005, p. 50) and can also be used for the MCAR case by assuming just
one response homogeneity group.

3.2 Two-phase weighting

Weighting for unit nonresponse was already described in the previous chapter for the
case of having the same response probabilities for all elements in the sample (MCAR).
Often the sampling frame and the whole sample contain some variables that are known
for respondents and nonrespondents. Usually these variables are those used for drawing
the sample (e.g. region, age) or characteristics of the sampled elements that become
known after the sample is drawn, but before the survey takes place (e.g. type of build-
ing). Now there are different methods for incorporating these auxiliary informations
and using them to model the response probabilities.2 All approaches presented in this
section have one thing in common: the response process is modeled as a second sam-

1Compare Särndal & Lundström (2005), ch. 10.2.
2A discussion of different adjustments methods can be found in Little (1986) and Potter et al. (2006).
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pling phase after the sample was drawn. It is assumed that, besides the known inclusion
probabilities πk, there also exists an unknown probability of response δk for each ele-
ment in the sample. This approach, which is also used throughout this section, was
described by Oh & Scheuren (1983) and is called “quai-randomization theory”.

3.2.1 Straight expansion estimator

The simplest form of adjusting an estimator for unit nonresponse is to divide the
Horvitz-Thompson estimator by the response rate and therefore implicitly assuming
a constant response probability for elements k in the sample s under the presumption
of a random response mechanism.The straight expansion estimator has already been
presented in the previous chapter as

θ̂EXP =
n

m

∑
k∈r

dkyk (3.2)

For the sake of convenience the subscript “k ∈ sd ∩ r” is simplified to “k ∈ r” from now
on, because, obviously, element k can only be part of the response set if it was drawn
in the sample.

In the special case were the selection probabilities and the response probabilities are
constant, which is the case for simple random sampling and MCAR, (2.24) simplifies to
the mean value yr of y over the response set r multiplied by the size of the population,
N :3

θ̂EXP =
∑
k∈r

dkyk
δk

=
∑
k∈r

N

n

yk
m/n

=

=
N

m

∑
k∈r

yk = Nyr (3.3)

Presumably, the straight expansion estimator will not be suitable for countering unit
nonresponse because of the unrealistic assumption that unit nonresponse happens com-
pletely at random. In the simulations presented in section 4 it will be a point of reference
for other methods that are assumed to be better in the sense of producing less biased
estimates than the straight expansion estimator. Therefore, the response process will

3Cf. Särndal et al. (2003), p. 68.
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be assumed to be MAR from now on, meaning that response is happening at random
only within certain subgroups of the population.

3.2.2 Response homogeneity groups (RHG) and weight

adjustment cells

Let there be H disjunct groups in the sample s. The formation of these groups can be
achieved according to one variable or to a cross-tabulation of different variables. For
each group h = 1, ..., H there exists a response probability δh which is the fraction of
the number of respondents mh in group h divided by the number of selected elements in
nh, which shall be called the “response fraction”. For each element k in h the response
probability therefore is constant:4

δh = P (k ∈ h ∧ k ∈ r) =
mh

nh
(3.4)

In each of the h so-called “adjustment cells” (Little 1988, p. 289) a constant weight
equal to nh/mh is applied to counter unit nonresponse. Note that in (3.4) it is assumed
that the h groups correctly assess the true response distribution. The corresponding
adjustment weight is the inverse of the product of the selection probability and the
response probability, i.e. 1/(πkδh). Since the response process is treated as a second
sampling phase the Horvitz-Thompson estimator can be applied. Let θ̂RHG denote the
unbiased estimator in the case of a stratified simple random sample and a response
process referring to RHG and ν(RHG)

k = 1/δh the “unit nonresponse weight” where the
superscript “(RHG)” shall distinguish this nonresponse weight from the ones used in
subsequent sections:

θ̂RHG =
∑
k∈r

dk
δh
yk =

∑
k∈r

dkν
(RHG)
k yk (3.5)

The estimator shown above resembles the Horvitz-Thompson estimator for two-phase
sampling with stratification in both phases and is therefore unbiased if the response
probability really only differs between the groups h. The values of yk receive one weight-
ing factor which is the product of the design weight and the inverse of the estimated
response probability.

4The nomenclature in this section is mostly based on Särndal et al. (2003), ch. 15.6.
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One major problem with the weight adjustment cells approach is the size of the groups.
If they became too many and too diverse this may result in extreme values of the
inverse sampling fraction or in groups which contain no respondents, because they are
too small. Another way of using the two-phase approach is to estimate the response
probability for each element k in the sample with a regression model.5

3.2.3 Estimation of response probabilities with logistic

regression

If a model can be found with which the true response probability can be estimated, then
many variables may be used to find predictors without having to rely on adjustment
factors that would have to be based on adjustment cells that might be quite small. In
this subsection the response probability is described as an individual feature of each
element k. In order to make this clear, the response probability is written in terms of
the response indicator R:

δk = P (Rk = 1) (3.6)

An appropriate way for estimating a dichotomous variable like the response indicator
R is logistic regression.6 Let x = (x1, ..., xI)

′ be a vector of I auxiliary variables which
shall be the predictors in the model. The dependent variable is the natural logarithm
of the odds,7 i.e. P (R = 1)/P (R = 0), where R denotes the response indicator defined
in secction 2.2. Note that the probability of response and nonresponse always sum up
to 1 for each element k, i.e. P (Rk = 0) = 1−P (Rk = 1). The logistic regression model
for estimating the response probability δk is defined as follows:

ln
(P (R = 1 | x )

P (R = 0 | x )

)
= β̂0 + β̂1x1 + ...+ β̂IxI (3.7)

With a few simple algebraic transformations, the model desricption shown above can
be rewritten in terms of the probability of response:

5A proof of the unbiasedness of this estimator can be found in Särndal et al. (2003), ch. 9.4. where
the estimator is denoted t̂π∗ .

6A basic introduction to logistic regression models can be found in Backhaus (2006), ch. 7. A detailed
description of this method is laid out in Hosmer & Lemeshow (1989).

7Cf. Hosmer & Lemeshow (1989), ch. 3.
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P (R = 1 | x )

1− P (R = 1 | x )
= exp(β̂0 + β̂1x1 + ...+ β̂IxI)

P (R = 1 | x ) = exp(β̂0 + β̂1x1 + ...+ β̂IxI)−

− P (R = 1 | x ) · exp(β̂0 + β̂1x1 + ...+ β̂IxI)

P (R = 1 | x ) =
exp(β̂0 + β̂1x1 + ...+ β̂IxI)

1 + exp(β̂0 + β̂1x1 + ...+ β̂IxI)
(3.8)

After the parameters in the regression model have been estimated it is possible to
calculate an estimate δ̂k of the response probability for each element k in the sample by
inserting the values of the auxiliary variables, where x k denotes the vector of auxiliary
information for element k in the model, i.e. x k=(x1k, ..., xJk). This results in an estimate
of the response probability for each element k in the sample. Let δ̂(LOG)

k denote the
response probabilities estimated by logistic regression. The estimator is then similar to
(3.5):

θ̂LOG =
∑
k∈r

dk

δ̂
(LOG)
k

yk =
∑
k∈r

dkν
(LOG)
k yk (3.9)

Evidently the values of the estimated response probabilities remain constant for groups
with the same values of the variables in x . The bias of the estimator in (3.9) depends
on the quality and the scope of the auxiliary information at hand. However, it has to
be assumed that all the relevant factors describing the individual response probabilities
will never be known, some amount of bias will inevitably occur. The major challenge is,
that the esimation of the response probability has to be done with information known
before the actual survey takes place. This information has to come from the sampling
frame or characteristics of the drawn sample that can be collected without contacting
the elements in the sample.

One possible consequence of using the inverse of the response probability as a weight to
compensate for unit nonresponse are extremely large unit nonresponse weights. Since
these weights are calculated as the inverse of the estimated response probabilities, a δ̂k
which is close to zero will result in an extremely large weight. One strategy to avoid this
problem, which is also applied in the EU-SILC survey, is trimming the unit nonresponse
weights.8 For each weight a measure of the relative change of the design weight due to

8Cf. Osier et al. (2006), ch. 2.
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multiplication by the nonresponse weight is calculated. Let d̄R denote the mean value of
the design weights for the respondents and ν̄ the mean of the unit nonresponse weights:

1

C
≤ νk/ν̄

dk/d̄R
≤ C (3.10)

The fraction in (3.10) shows the value of the unit nonresponse weights divided by their
mean value in relation to the design weights devided by their mean value. If this value
is below 1/C or above C then the unit nonresponse weights are changed in order to fit
the boundaries.9 If νk in (3.10) is below 1/C then νk becomes

ν
(low)
k =

1

C
dk

ν̄

d̄R
(3.11)

and if νk in (3.10) is above C then νk is changed to

ν
(high)
k = Cdk

ν̄

d̄R
(3.12)

Although trimming inhibites extreme weights, it also may introduce an new source
of bias, because the adjusted unit nonresponse weights ν(low)k and ν

(high)
k also change

the mean ν̄. The reduction of variance is due to the elimination of values that are
categorized as too high or too low by (3.10).

3.2.4 Neural Networks

The method for estimating response probabilities presented in the previous subsection
does rely on the assumption, that with the appropriate predictor variables, the response
probability can be estimated with a regression model. A logistic regression is best suited
here, because of the binary dependent variable, i.e. the response indicator. However,
only if the logisitic regression model is very well specified and a strong relation between
the predictor variables and the response indicator are available, then the model can
deliver a good estimate of the probability of response.

A method that circumvents this limitation is the neural network (NNW).10 Neural
networks do not rely on a specific model formulation and are allowed to iteratively

9EU-SILC in Austria uses C = 2 for the definition of the boundaries.
10A general introduction to artificial neural networks can be found in Ripley (2004).
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establish connections between predictor variables and the dependent variable by them-
selves. This may be particularly useful for estimating unit response probabilities when
it is unknown how the auxiliary variables and the response process are exactly related.
Furthermore, the response process incorporates several steps like establishing contact,
first time asking to take part in the survey and addtitional contact attempts if the first
one did not succeed. These steps are not easy to model explicitly and hence methods
with their own heuristics may turn out to be particularly helpful.11 Neural networks are
a method of pattern recognition that were inspired by the way a network of neurons in
the human brain processes information and does prediction based on sensory inputs.12

A common form of neural networks are “feed-forward neural networks” (cf. Ripley
2004, p. 141) with one hidden layer. In their simplest version they consist of a set
of input units, the so-called “hidden layer” (cf. Ripley 2004, p. 144) and one output
unit. The input units are known auxiliary variables which are used to predict the
known output variable. The output variable is categorial and refers to a known correct
classification of the elements in the model. The units in the hidden layer, which receive
signals from the input and pass signals on to the output in a forward direction, can
be trained to learn their own relations between the input and the output. So instead
of explicitly formulating a model of how the dependent variable (i.e. the output) and
the predictor variables (i.e. the input) are connected, the neural network establishes
its own connections between the input and the output iteratively by learning from a
given data set. Therefore, neural networks can cover a broad set of functional relations
and, moreover, “neural networks with linear output units and a single hidden layer can
approximate any continous function f uniformly on compacta“ (cf. Ripley 2004, p.
147). A proof of this statement can be found in Ripley (2004), p. 174.

The importance of each connection in the neural network is described by weights con-
necting the input and the output via the hidden layer. A network trained with the
predictor variables in the input and the known correct classification in the output can
be used to classify elements only using the predictor variables from the input. Figure 3.1
shows a feed-forward neural network with three input variables, a single hidden layer
with two hidden units and one output unit.13

11Cf. Liang & Yung Cheung Kuk (2004), p. 220f.
12Cf. Ripley (2004), ch. 5.1.
13The figure is based on Ripley (2004), figure 5.1.
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Figure 3.1: Feed-forward neural network with a single hidden layer with two units and one
output unit
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Generally a feed-forward neural network with one output unit consists of the vector
x = (x1, ..., xI)′ of I input units xi referring to I auxiliary variables, J hidden units hj
(j = 1, ..., J) and the output, which is a linear function of the units in the hidden layer:

f(x) = α0 +
J∑
j=1

αjhj (3.13)

The importance of the connections is determined by the weights βij for the connections
between the input and the hidden layer and the weights αj for the connection between
the hidden layer and the output. The value of the variables hj in the hidden layer is
determined by the so-called “activation function” (Liang & Yung Cheung Kuk 2004, p.
221), denoted here by ψ:
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hj = ψ(β0j +
I∑
i=1

βijxi) (3.14)

The activation function establishes a link between the input and the output through
the hidden layer. It can take various forms like a function of binary outcome values, a
linear function, a nonlinear function, and so forth. In this thesis the logistic function is
used, because the application of neural networks is motivated by estimating response
probabilities. Furthermore, feed-forward neural networks can be interpreted as an ex-
pansion of logistic regressions in a nonlinear way.14 Therefore, the activation function
ψ(t) used in this thesis is defined as follows:

ψ(t) =
1

1 + exp(−t)
(3.15)

The so-called “bias units” (cf. Ripley 2004, p. 144) are always connected to the hidden
layer and the output. Note that the term “bias” here refers to the concept of “debiasing”
(cf. Ripley 2004, p. 55) density estimators, which refers to adjustments of density
estimators in order to make them theoretically unbiased. The bias units are always
active with a constant value of 1. This is comparable to having established a connection
where the outcome of the activation function is always equal to 1. The weights of the
bias units refer to the constant terms in (3.13) and (3.14). The usage of bias units can
be referred to adding a column with constants equal to 1 in the matrix of explanatory
variables of a regression model and thus allowing a constant to be included in the
regression.

Putting (3.13) and (3.14) together the feed-forward neural network with a single hidden
layer and one linear output unit can be written as the following function:

ẑ = f(x) = α0 +
J∑
j=1

αjψ(β0j +
I∑
i=1

βijxi) (3.16)

The fitting of the neural network is achieved by minimizing the loss referring to wrong
classification by minimizing a suitable “loss function” (Ripley 2004, p. 18ff.).

Let z denote the correct known classification for element k. The classification by ẑ =

f(x) based on the matrix of input vectors should be as close as possible to the correct
14Cf. Ripley (2004), p. 145.
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classification z. A very often used loss function is quadratic loss:15

L(x) = (f(x)− z)2 (3.17)

The parameters of the neural network are estimated by minimizing (3.17) according to
the weights α0, αj, β0j and βij:

min
α0,αj ,β0j ,βij

L(x) = E
(
(f(x)− z)2

)
=: ∆ (3.18)

The solution of this minimization problem is then found by taking the partial derivates
with respect to the weights and so iteratively updating the weights. This learning
procedure trains the neural network in order find the minimum. Since the calculation
of the partial derivatives can be reformulated in terms of the desired correct output z,
the referring fit algorithm is called “back-propagation” (cf. Ripley 2004, p. 149). A
detailed presentation of back-propagation and the corresponding improvements of the
algorithm can be found in Ripley (2004), ch. 5.3.

Although neural networks are primarily used in applications of pattern analysis (i.e.
classifying plants according to their leafs, speech recognition)16 they can also be used
to estimate probabilities, more specificially Bayesian a posteriori probabilities.17 In the
following subsection it will be shown how response probabilities can be estimated by
using the capability of neural networks to estimate a posteriori probabilities according
to Bayes’ theorem.

3.2.4.1 Bayesian a posteriori probabilties

According to Bayes’ theorem the conditonal probability P (Ai|B) of event Ai, given
event B can be calculated as follows:

P (Ai | B) =
P (Ai)P (B | Ai)

P (B)
(3.19)

In the formula above P (Ai) is called the a priori probability of event Ai and P (Ai | B)

is called the a posteriori probability of Ai, given that B is known. In Bayesian statistics
15Cf. Richard & Lippmann (1991), ch. 2.2.
16Cf. Ripley (2004).
17Cf. Richard & Lippmann (1991), p. 466.
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probability distributions are updated by starting with a prior distribution and further
updating the distribution and gaining a posterior probability distribution. Since the
unconditional probability P (B) represents a constant factor in the case of finding the
posterior distribution it is often omitted and the posterior distribution is formulated
proportional to the numerator of the right hand side of formula (3.19):

P (Ai | B) ∝ P (Ai)P (B | Ai) (3.20)

Formula (3.19) can also be written in terms of the response indicator Rk presented
in section 2.2, where P (Rk) = P (k ∈ r) is the unconditional probability of element
k belonging to set r, i.e. being a respondent, and P (k ∈ r | x) is the probability
of element k being a respondent conditional on the vector of auxiliary variables x.
Let P (Rk) denote the a priori probability of response and P (Rk | x) the a posteriori
probability of response, (3.19) then becomes:

P (Rk | x) =
P (Rk)P (x | Rk)

P (x)
(3.21)

Since the unconditional probability of the auxiliary variables P (x) is the same regard-
less of the value of the response indicator P (Rk)P (x | Rk) can be used for finding
the posterior probabilities. In a traditional approch the joint probability distribution
P (x, Rk) = P (Rk)P (x | Rk) would have to be modeled in order to find the posterior
probability distribution. The following section shows that this can also be achieved by
using neural networks.

3.2.4.2 Estimation of the a posteriori probability of response by neural
networks

The following formulation of the conditional probability of response by using neural
networks is based on Richard & Lippmann (1991) and was adapted for the notation
used in this thesis. The expectation of the squared error in the minimization problem for
the neural network described in (3.18) can be reformulated in terms of the probability
of response, i.e. the response indicator Rk. In terms of a classification problem there
are two classes, respondents and nonrespondents which shall be denoted by the values
rk = 0 and rk = 1 which are realized values of the random variable Rk and the associated
probability of realization is P (Rk = rk).
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∆ = E
(
(f(x)− rk)2

)
(3.22)

The expectation in (3.22) is calculated according to the joint probability distribution
P (x, Rk). Richard & Lippmann (1991) show that for a quadratic error function ∆ can
be rewritten to18

∆ = E
(
(f(x)− E(rk | x)2

)
+ E

(
V (rk | x)

)
(3.23)

In the equation above V (rk | x) refers to the conditional variance of rk which does
not depend on the output f(x) of the neural network. The first term in the sum in
(3.23) is the mean squared error between the output of the neural network and the
expectation of the desired classification of rk conditional on the input values x. In
other words, the output of the neural network estimates the conditional expectation
of classification according to the response indicator which can be formulated as the
conditional probability of response, given the vector of auxiliary variables x:

E(rk | x) = 0 · P (Rk = 0 | x) + 1 · P (Rk = 1 | x) =

= P (Rk = 1 | x) = δk (3.24)

The equation above leads to the conclusion that “when network parameters are chosen
to minimize a squared-error cost function, the outputs estimate the Bayesian probabil-
ities so as to minimize the mean-quared estimation error” (Richard & Lippmann 1991,
p. 466). In the case of this thesis the a posteriori probabilities preseneted in (3.24)
represent the response probabilities. Therefore, when a feed forward neural network
with one binary output variable as the response indicator Rk, auxiliary input variables
xk, one single hidden layer and a logistic activation function is fitted, the estimated
values ẑ in (3.16) can be used as estimates of the response probability. Let δ̂(NNW )

k de-
note the response probabilities estimated by neural networks. Once δ̂(NNW )

k have been
calculated, they can be used as adjustment factors ν(NNW )

k of the design weights just
as in (3.9):

18The derivation is omitted here, because it is beyond the scope of the thesis. For detailed derivations
please refer to Richard & Lippmann (1991), p. 464ff.
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θ̂NNW =
∑
k∈r

dk

δ̂
(NNW )
k

yk =
∑
k∈r

dkν
(NNW )
k yk (3.25)

3.3 Regression Estimation

In this and the following section methods are going to be explored which are all char-
acterized by adjustments of the design weights that do not rely on estimated response
probabilities, but by adjusting the design weights to auxiliary information that are
known both for respondents and nonrespondents. An important way of incorporating
auxiliary information in the estimation process with survey data regression estimation.
The “generalized regression estimatior (GREG estimator)” (Särndal & Lundström 2005,
p. 33) is a method of estimating the total of a survey variable in a nearly unbiased
way.19

In order to allow for a simple illustration, full response is assumed. An important
requirement is, that the totals of the auxiliary information

∑
k∈U x k in the population

are known. Starting point in the estimation process is again the Horvitz-Thompson
estimator. Additionaly to the Horvitz-Thompson estimator a regression adjustment
term will be added which uses the coefficients of the regression yk on x k. The following
descriptions of the GREG estimator θ̂GREG are all based on Särndal et al. (2003), ch.
6.4, Särndal & Lundström (2005), ch. 4.3. and Särndal (2007), ch. 3.2.

θ̂GREG =
∑
k∈s

dkyk +
(∑
k∈U

x k −
∑
k∈s

dkx k
)′(∑

k∈s

dkx kx ′k
)−1(∑

k∈s

dkx kyk
)

(3.26)

The two brackets on the right of the expression above contain regression coefficients
weighted by the design weights. It is important to note that the matrix given by the
product x kx ′k has to be positive definite in order to be invertible. The first bracket in
(3.26) shows the difference of the true value of each auxiliary variable in the population
minus the Horvitz-Thompson estimator of the auxiliary variables. The GREG estimator
can also be written in terms of the values ŷk predicted by the regression model:

19A basic introduction of the GREG estimator can be found in Särndal & Lundström (2005), ch. 4.3.
Särndal et al. (2003) give a detailed description of regression estimation in ch. 6 and 7.
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θ̂GREG =
∑
k∈U

ŷk +
∑
k∈s

dk(yk − ŷk) (3.27)

where

ŷk =
(∑
k∈s

dkx kx ′k
)−1(∑

k∈s

dkx kyk
)

(3.28)

Note that only the linear form of the GREG estimator is presented here, because it is
widely known. For nonlinear GREG estimators please refer to Särndal (2007), ch. 3.3.
As Särndal (2007) also points out, the GREG estimator is nearly unbiased, but has a
considerably smaller variance than the Horvitz-Thompson estimator if the regression
has a good model fit.

Yet another way of formulating the GREG estimator is in terms of an adjustment weight
gk applied to the design weight. This adjustment weight is called the “g-weight” (Särndal
et al. 2003, p.233). It enables a more handy formulation of the GREG estimator than
in (3.26):

θ̂GREG =
∑
k∈s

dkgkyk (3.29)

The introduction of the g-weights is also necessery, because they are going to play an
important role in the next section. For the GREG estimator the g-weights represent
the regression adjustment of the Horvitz-Thompson estimator, as utilized in (3.29). As
is shown in Särndal & Lundström (2005), p. 35, the g-weights can be written as

gk = 1 + λ′sx k (3.30)

Note that the vector λ′
s has dimension I which is the same dimension as the vector x k

containing the values of the I auxiliary variables of element k.

With the help of the vector λ′
s the coefficients from the regression of y on x k are added

into (3.30), i.e.,

λ′s =
(∑
k∈U

x k −
∑
k∈s

dkx k
)′(∑

k∈s

dkx kx ′k
)−1

(3.31)
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If the product of the weights wk = dkgk is applied to the vector of auxiliary variables
in the sample, an estimate for the auxiliary information in the sample is obtained:

∑
k∈s

dkgkx k =
∑
k∈s

wkx k =
∑
k∈U

x k (3.32)

Therefore these weights “happen to be “calibrated” to (consistent with) the known
population x-total” (Särndal 2007, p. 103).

3.4 Calibration estimators

Calibration is the term for a variety of estimators that use weights wk for which the
“calibration property” (Särndal & Lundström 2005, p.35), which was already shown at
the end of the previous section, holds:

∑
k∈s

wkx k =
∑
k∈U

x k (3.33)

Consequently all calibration estimators used for estimating the total of yk from a sample
can be written in the following form:

θ̂C =
∑
k∈s

wkyk (3.34)

As in (3.26) the calibration estimator can also be written in cojunction with the Horvitz-
Thompson estimator θ̂HT =

∑
k∈s dkyk:

θ̂C =
∑
k∈s

wkyk +
∑
k∈s

dkyk −
∑
k∈s

dkyk =

=
∑
k∈s

dkyk +
∑
k∈s

(wk − dk)yk (3.35)

With the help of (3.35) the bias of the calibration estimator can be expressed in a
convenient fashion:
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BC = ET (θ̂C − θ) =

= ET

(∑
k∈s

dkyk +
∑
k∈s

(wk − dk)yk
)
− θ =

= ET

(∑
k∈s

(wk − dk)yk)
)

(3.36)

From (3.36) it is obvious that the difference (wk − dk) should be as small as possible in
order to receive an estimator with minimum bias. The weights wk should be very close
to the design weights dk. This similarity is measured by the distance function G(wk, dk)

which has the following properties:20

• defined for all wk > 0

• G(wk, dk) ≥ 0 with G(dk, dk) = 0

• strictly convex

• differentiable with contious derivative g(wk, dk) = ∂G(wk, dk)/∂wk

with g(dk, dk) = 0

• g(dk, dk) is invertible

In order to obtain calibrated weights the distance function has to be minimized with
respect to wk (dk is fixed) and at the same time the calibration property presented in
(3.33) has to be fulfilled. Hence the following optimization problem has to be solved:21

min
wk,k∈s

∑
k∈s

G(wk, dk) with constraints
∑
k∈s

wkx k =
∑
k∈U

x k (3.37)

The optimization problem can be solved by finding the minimum of the following La-
grange function Λ with the vector of Lagrange multipliers λ = (λ1, ..., λI)

′:

Λ(w, d,λ) =
∑
k∈s

G(wk, dk)− λ′
(∑
k∈s

wkx k −
∑
k∈U

x k
)

(3.38)

20Cf. Särndal (2007), ch. 4.2.
21A thorough presentation of distance functions used in calibration weighting can be found in Särndal

& Deville (1992), section 1 and section 2.
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Derivation with respect to wk and setting (3.38) equal to zero yields the following
Lagrange equations which are solved for all k :22

∂Λ

∂wk
=
∂(G(wk, dk))

(∂wk)
− ∂(λ′wkx k)

(∂wk)
+
∂(λ′x k)
(∂wk)

∂Λ

∂wk
= g(wk, dk)− λ′x k = 0 (3.39)

In order to solve (3.39) it is practical to transform the the arguments wk and dk of the
function g into one singular argument wk/dk. Särndal & Deville (1992) point out that
“In most of our applications gk(w, d) = g(w/d)” (Särndal & Deville (1992), p. 377) a
fact that will also become apparent later in this section. So it becomes easy to derive
the calibrated weights wk from (3.39). Let F (u) = g−1(u) denote the inverse of the
derivative g :

g(wk/dk) = λ′x k
wk
dk

= g−1(λ′x k)

wk = dkF (λ′x k) (3.40)

Note that F (λ′x k) are g-weights similar to those shown in the case of the GREG es-
timator in (3.29), i.e. gk = F (λ′x k). F is also normalized to gain F (0) = 1 and
F ′(0) = 1.23 Now inserting (3.40) into the calibration property (3.33) yields I “cali-
bration equations” (Särndal & Deville 1992, p. 377) which are used to solve for the I
variables in λ = (λ1, ..., λI)

′:

∑
k∈s

wkx k =
∑
k∈s

dkF (λ′x k)x k =
∑
k∈U

x k (3.41)

After (3.41) is solved each element k in the sample receives a calibrated weight wk.
Now the calibration estimator presented in (3.34) can be written in terms of a weight
adjustment of the design weights:
22Since the partial derivatives with respect to wk are calculated, ∂(λ′wkxk)/(∂wk) = λ′xk and

∂(λ′xk)/(∂wk) = 0.
23Cf. Särndal & Deville (1992), p. 378.
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θ̂C =
∑
k∈s

dkF (λ′x k)yk =
∑
k∈s

dkgkyk =
∑
k∈s

wkyk (3.42)

All the abovementioned descriptions of the calibration estimator were presented for
application on the whole sample s, i.e. in the case of full response. If used in this fashion,
calibration can reduce the variance of the estimator and also guarantee consistency with
known population totals. However, the main concern in this thesis is unit nonresponse.
Calibration can principally be applied also to the response set r, but apparently in
this case the calibrated weights wk will not be “as close as possible” to the design
weights, because they also have to compensate for the loss due to unit nonresponse.
This means the wk have to be, on average, larger than the design weights. One way of
using calibration in the case of unit nonresponse is by breaking the vector of auxiliary
information x k up in two parts.24 One part contains information for every element k in
the sample s and therefore is known for respondents and nonrespondents, the second
part contains information on the population level. Calibrated weights using the response
set are computed just as in the case of using the full sample as described above, where
F (λ′x k) plays the role of an estimator for the unknown response probabilities δ̂k (cf.
Särndal 2007, p. 115). So point 1 of the three desired porperties of auxiliary information
used in weighting to fight potential nonresponse bias mentioned in section 3.1 is fulfilled
here. The calibration procedure can be done in one step or in two steps. In the latter
case first the response set r is calibrated to the sample s in order “to obtain intermediate
weights” (Särndal & Lundström 2005, p. 82). In a scond step these intermediate
weights are the input of the calibration from the response r set to the population U.
The resulting calibrated weights wk are very similar in both approaches as Särndal &
Lundström (2005) point out (cf. Särndal & Lundström (2005), ch. 8.1) because they
all use the same auxiliary information.

3.4.1 Distance functions for calibration estimators

As was shown in the previous section the function F (λ′x k) determines the adjustment
of the design weights to gain calibrated weights wk. The choice of the distance function
G(wk, dk) gives different possibilities of the values of the calibrated weights. One must
distinguish if the g-weights shall all be positive, if too extreme weights have to be

24Cf. Särndal (2007), section 9.2.
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avoided or trimmed, etc. The following methods describe different choices of distance
functions and their properties.25

3.4.1.1 Linear method:

This is the most basic of possible methods. It resembles a “chi-square distance” (Särndal
& Deville 1992, p. 377):

G(wk, dk) =
(wk − dk)2

dk
(3.43)

Derivation with respect to wk delivers a linear function of the fraction wk/dk:

∂G(wk, dk)

∂wk
= g(wk, dk) =

wk
dk
− 1

⇒ F (λ′x k) = 1 + λ′x k (3.44)

Evidently, negative g-weights are a possible result of the linear method. Consequently,
this would also lead to negative calibrated weights, because the design weights are
always positive. If these weight-adjustments of the design weights are modelled to
compensate for unit nonresponse, then negative g-weights are impossible. This lies in
the fact that the g-weight resembles δk which is strictly positive, because it is defined
as the inverse of the unit response probability (which is also strictly positive).

The calibrated weights wk = dkF (λ′x k) can be calculated directly by inserting (3.44)
into the calibration equations (3.41):

dkF (λ′x k) = dk(1 + λ′x k)∑
k∈s

dkxk(1 + λ′x k) =
∑
k∈U

xk∑
k∈s

dkxk + λ′
(∑
k∈s

dkx kx ′k
)

=
∑
k∈U

xk

λ′ =
(∑
k∈U

xk −
∑
k∈s

dkxk

)′(∑
k∈s

dkx kx ′k
)−1

(3.45)

25Cf. Särndal & Deville (1992), section 2.

41



The formula for calculating the values in λ′ is the same as for the GREG estimator
shown in (3.31) and thus the linear method in calibration weighting yields the GREG
estimator.26

3.4.1.2 Exponential method:

The distance function for calculating the g-weights is defined as follows (where “ln”
denotes the natural logarithm):27

G(wk, dk) = wk · ln
(wk
dk

)
− wk + dk (3.46)

Using the exponential method the undesired property of negative g-weights can be
avoided, because the calculation of F (λ′x k) yields the exponential function:

∂G(wk, dk)

∂wk
= g(wk, dk) = ln(

wk
dk

)

⇒ F (λ′x k) = exp(λ′x k) (3.47)

Clearly the resulting g-weights from (3.47) are all positive, so there will not be any
negative adjusting weights as is possible with the linear method. However, one downfall
of the exponential method is that it may lead to extremely high values of the g-weights
and thus to unpractically high calibrated weights wk because of the exponential function.
This can be a major challenge in estimation for comparatively small domains, a fact
that also Särndal & Deville (1992) point out.28

3.4.1.3 Logit Method

In order to avoid extremely large weights, which is especially possible with the expo-
nential method, it may be helpful to formulate boundaries for the argument of the
distance function, i.e. L < wk/dk < U , where L designates the lower boundary and U
designates the upper boundary. Besides the “truncated linear method” (Sautory 2003,
p. 10), which just introduces L and U as cut-off points for the linear methods shown
26This fact is also shown in Särndal & Lundström (2005), ch. 7.4.
27Cf. Särndal & Deville (1992), p. 378.
28Cf. Särndal & Deville (1992), section 2.

42



in subsection 3.4.1.1, a bounded calibration method can also be introduced for the ex-
ponential method presented in section 3.4.1.2. This bounded method is also called the
“logit method” (Sautory 2003, p. 10), which is implemented in the macro CALMAR
of the statistical software SAS.29 The logit method is also used by Statistics Austria in
the weighting process of EU-SILC in Austria.30 For the logit method the choice of L
and U should satisfy L < 1 < U . The distance function of the logit method is given
by31

G(wk, dk) = (wk/dk − L) · ln
(wk/dk − L

1− L

)
+

+(U − wk/dk) · ln
(U − wk/dk

U − 1

)
(3.48)

yielding g-weights in the form of

F (λ′x k) =
L(U − 1) + U(1− L) · exp(A · λ′x k)

(U − 1) + (1− L) · exp(A · λ′x k)
. (3.49)

A is defined as the fraction A = (U − L)/(1− L)(U − 1). The modified g-weights of
(3.49) are now bounded with F (−∞) = L and F (∞) = U .

3.4.2 Generalized Calibration

As the title already proclaimes, generalized calibration uses a more general form of
formulating the calibration equations.32 Osier (2010) shows that the weights wk derived
in generalized calibration do not rely on auxiliary information x k although they fulfill
the calibration property, hence

29Cf. Sautory (2003).
30Cf. Glaser & Till (2010).
31Cf. Särndal & Deville (1992), p. 378.
32Cf. Deville (2002), p. 6f.
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∑
k∈s

wkx k =
∑
k∈U

x k

with

wk =
dk
m/n

F (λ′z k) (3.50)

where m/n is the response rate and z k denotes a vector of variables that explain unit
nonresponse. The remarkable thing here is that z k is only required to be known for
the response set r, so a vast amount of survey variables may be used. However, the
number of variables in z k has to be the same as the number of calibration variables in
x k.33 In other words, if the dimensions of the vectors x k and z k were not equal, the
corresponding calibration equations could not be solved.

Based on Deville (2002), Osier (2010) points out that “the generalized calibration is
equivalent to the following two-step re-weighting process” (Osier (2010), p. 2):

1. Weighting adjustment of the design weights by the inverse of the true response
probability δk

2. Calibration according to the I auxiliary variables known for the population U

Therefore generalized calibration promises to adjust for unit nonresponse and establish
coherence with auxiliary population totals in one step with the possibility of using
factors that explain unit nonresponse very well.

33Cf. Sautory (2003), p. 11.
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4 Application and evaluation of
different weighting procedures

In the previous chapter various methods for countering potential bias due to unit non-
response have been presented. The important question now is which of these techniques
are best suited for countering unit nonresponse bias in estimation of the parameter of
interest described in section 2.1. Evidence from literature suggests that calibration has
a high potential of reducing unit nonresponse bias considerably.1 However, this is only
true if the auxiliary information at hand is well chosen and can explain the response
propensity as well as the most important study variables and domains (cf. section 3.1).
In order to evaluate the practical implications of different weighting schemes on a real
survey, the effects of unit nonresponse bias and methods to counter it are going to be
evaluated using the example of the EU-SILC survey in Austria that took place in the
year 2010.

4.1 EU-SILC in Austria

The EU-SILC survey has already been briefly mentioned throughout this thesis. This
section is going to give a more thorough description of the survey, because it is going
to play an important role in this chapter as the basis for simulations. An in-depth
report of EU-SILC 2010 in Austria can be found in Till-Tentschert et al. (2011) and in
Statistics Austria (2010). For a detailed description of EU-SILC for all participating
countries please refer to Atkinson & Marlier (2010), Wolff et al. (2010) and Verma &
Betti (2010). The following description of EU-SILC is based on the sources mentioned
above.

1Cf. Särndal & Lundström (2005), Ch. 6.
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“EU-SILC” is an acronym for “European Union Statistics on Income and Living Con-
ditions”2 which is a yearly statistic covering income and living conditions of private
households in Europe. The main topics of EU-SILC are income, eomployment and
living conditions as well as questions regarding subjective health, well-being and the
financial situation. EU-SILC is one of the most important sources of social statistics
in Europe and plays a central role in delivering indicators of poverty and social ex-
clusion in the so-called “Europe 2020” growth strategy of the European Union.3 The
most important indicators of EU-SILC are the at-risk-of-poverty-rate and the rate of
persons at-risk-of-poverty or social exclusion. The legal basis of EU-SILC are national
regulations and EU-regulations.

The at-risk-of-poverty-rate is defined as the rate of persons living in households where
the so-called “equivalised household income” (Till-Tentschert et al. 2011, p. 32) is
below 60% of the national median of the equivalised household income. The equivalised
household income is defined as the total disposible household income (i.e. net income)
standardized by the consumption needs of all persons living in the household. These
needs are defined by specific factors, which are equal to 1 for a grown-up person and
0.5 for each additional grown-up (i.e. a person aged at least 14 years) in a household.
Children (up to 13 years of age) receive a factor of 0.3.4 For example, the sum of the
consumption equivalents of a household with two grown-ups and two children is 2.1.5

The rate of persons at-risk-of-poverty or social exclusion, which is also the main indica-
tor of the Europe 2020 growth strategy, is defined as persons who are at-risk-of-poverty6

and/or are materially deprived and/or live in “jobless” households.7

EU-SILC in Austria started in 2003 as a cross-sectional survey conducted by Statistics
Austria. From 2004 onwards EU-SILC in Austria has been carried out as an integrated
cross-sectional and longitudinal survey with a rotational sample structure consisting of
four rotational subsamples. This means that about three quarters of the households
surveyed in one year are being followed up in the next year. Each new survey year
one quarter of the sample is renewed and hence comprises a newly selected subsample.

2Cf. http://epp.eurostat.ec.europa.eu/portal/page/portal/microdata/eu_silc (retrieved September
14, 2012).

3Cf. http://ec.europa.eu/europe2020/index_en.htm (retrieved September 14, 2012).
4Cf. Förster & D’Ercole (2009).
5Cf. Till-Tentschert et al. (2011), p. 32.
6The at-risk-of-poverty-rate indicator is one of three parts of the indicator of persons at-risk-of-poverty
or social exclusion.

7For a more detailed description of this indicator please refer to Atkinson & Marlier (2010).
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Therefore, the structure of the sample of EU-SILC is called a “rotating panel design”
(Groves et al. 2004, p. 12). Each rotational subsample has a duration of four years.
Figure 4.1 gives an impression of the structure of the EU-SILC rotational design.

Figure 4.1: Rotating panel design of EU-SILC

Figure 1: Sampling structure of EU-SILC 2010

Design of the sample EU-SILC 2008

R4/04 R1/05 R2/06 R3/07 R4/08 R1/09 R2/10

2007

2008

2009

2010

Source: Statistics Austria, EU-SILC 2010, unpublished results.

follow-up waves first wave 

Source: Statistics Austria, EU-SILC 2010, unpublished results.

Each rotational subsample in figure 4.1 is labeled with the rotation number and the
first year of the rotation. For instance R3/07 is rotation number 3 which started in
2007 and R2/06 is the rotation which commenced in 2006 and ended after four years
in 2009. If regarded from the viewpoint of the survey year 2010, the EU-SILC sample
comprises one subsample which has been followed up for the fourth wave (R3/07), one
subsample that has been followed up for the third wave (R4/08), one subsample that
has been followed up for the second wave (R1/09) and one newly selected first wave
subsample (R2/10) in 2010.

The sampling frame of the new first wave sample selected each year is the central
residence register (Zentrales Melderegister - ZMR) restricted to addresses of private
households with at least on person 16 years or older with her/his main residence at the
household. The sampling design of the first wave sample of 2010 was a single stage
stratified simple random sample with disproportional allocation for each of the nine
Austrian provinces. The disproportional allocation considered different expected unit
response rates for each province, where the actual unit response rates of the first wave
sample 2009 were taken as estimates for the unit response rates of the first wave sample
2010. Compared to the sampling fraction of a simple random sample of the whole
country, provinces with a unit response rate expected to be lower than the average
expected response rate received a slight oversample and provinces with a unit response
rate expected to be higher than the average response rate received a slight undersample.
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This strategy was used in order to gain efficiency of estimates based on the surveyed
households (i.e. the net-sample).8

The gross sample s, i.e. the sample consisting of all selected elements, i.e. addresses
of private households, of the first wave of EU-SILC 2010 consists of 3,430 addresses
selected from the central residence register. 2,005 of these households successfully took
part in the survey and therefore form the net sample.

In this thesis the first wave sample is of primary interest, because in the first year of the
survey unit nonresponse is usually highest and potential bias due to unit nonresponse
is hard to counter because of limited auxiliary information. As was already described
in chapter 2, if the response process is not MCAR (“missing completely at random”) all
methods of countering bias due to unit nonresponse need some auxiliary information
that is known for the whole population or at least for the gross sample. For the samples
of the follow-up waves of EU-SILC, i.e. the waves after the first wave, information of
the previous year’s wave can be used for estimating the response probability which is
needed for calculating the unit nonresponse weight νk in the two-phase approach to
weighting (cf. section 3.2). However, for the first wave mainly information from the
sampling frame and information about the type of building from the gross sample were
availabe at the time of data editing of EU-SILC 2010.

With the calibration approach to weighting (cf. section 3.4) information from the survey
can be used to fight bias in estimates as long as external marginal distributions of the
variables that are believed to control for nonresponse exist. One potential drawback of
this method is, that the external marginal distributions have to be known for the whole
population (with the exception of generalized calibration).

4.2 Possibilities of bias evaluation

Based on the first wave sample of EU-SILC 2010, different methods of weighting in order
to avoid or diminish bias due to unit nonresponse will be compared. This comparison
could be carried out by using estimates and indicators of EU-SILC calculated with
weights from different weighting procedures. However, definitely unbiased estimation
is only possible with the gross sample and the design weights (cf. Horvitz-Thompson
estimator, section 2.1). As soon as unit nonresponse occurs, some sort of bias will be

8For more information about the sampling design of the first wave sample of EU-SILC 2010 please
refer to Statistics Austria (2010), ch. 2.1.
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introduced when using unit nonresponse adapted weights and estimates based on the
net sample. In order to compare estimates based on the gross sample (i.e. from respon-
dents and nonrespondents) and the net sample (i.e. only from respondents) a parameter
that is known for the whole gross sample is needed. As it was laid out in the previous
section, the most relevant indicators of EU-SILC are the at-risk-of-poverty-rate and the
rate of persons at-risk-of-poverty or social exclusion. Since these indicators can only
be produced from data based on the interviews of the EU-SILC net sample, different,
but related auxiliary variables have to be used for a comparison of the effictiveness of
different weighting strategies in countering unit nonresponse bias.

For the survey year 2010 register data of some income survey variables of EU-SILC are
available for the selected sample.9 Among these income data available from registers,
the register of wage taxes delivers reliable income data that cover the largest part
of the overall household income.10 From this register the sum of the net income from
employment and old-age benefits aggregated on household level can be computed for the
gross sample. These two income components combined are the most relevant part in the
overall household income.11 Among the availabe register data this quantity shows the
strongest correlation with the overall household income based on data from interviews
and the at-risk-of-poverty-rate as well as the rate of persons at-risk-of-poverty or social
exclusion. In EU-SILC 2010 income variables from both interviews and register data
are availabe. Income values from registers were not published, but Statistics Austria is
still in the process of comparing results based on interviews and on registers. Therefore
no detailed analysis of income from register data based on the gross sample of the first
wave of EU-SILC 2010 will be presented in this thesis. Only the design-weighted sum of
yk (i.e. total sum of income from employment and old-age benefits on household level)
across all households in the gross and the net sample, i.e. the response set r, will be used
as a benchmark for comparing estimators of yk based on different weighting strategies.
The major advantage of register data is the fact that it is available for respondents
as well as for nonrespondents. Hence the estimate of the parameter of interest θ (i.e.
income from employment and old-age benefits on household level) based on the gross

9The usage of these data in a cryptographically secured way is covered by a national regulation. Cf.
BGBl II 2010/277 Einkommens- und Lebensbedingungen-Statistikverordnung (ELStV). Accessable
online: http://www.statistik.at/dynamic/wcmsprod/groups/b/documents/webobj/055277.pdf
(retrieved September 1, 2012).

10For a detailed description of the household income in EU-SILC please refer to Till-Tentschert et al.
(2011).

11Reliable register data for income from self-employment are not available for EU-SILC 2010.
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sample can be compared with estimates facilitating different weighting strategies based
on the net sample. Note that the estimate based on the gross sample is a realized value
of the unbiased Horvitz-Thompson estimator.

In this thesis only the bias due to unit nonresponse is of interest, therefore only es-
timates based on the net sample and the gross sample will be compared. It is as-
sumed that the unbiased estimate based on the gross sample using the design weights
(Horvitz-Thompson estimator) is equivalent to the true value in the population (which
is guaranteed on average over repeated samples).

However, just comparing results from one net sample with the corresponding gross
sample will not give an indication of unit nonresponse bias. The bias is defined as the
expected value of an estimator compared to the true value of the parameter that has
to be estimated in the population (cf. section 2.1) and cannot be evaluated with one
estimate. It is important to note that the bias of an estimator must not be confused
with values of estimates which may be “off the mark” (Särndal et al. 2003, p.41). Re-
calling formula (2.5) in section 2.1 helps making this distinction clearer. Unbiasedness
is evaluated by taking the expectation of an estimator and comparing it with the true
parameter. For the Horvitz-Thompson estimator this expectation is calculated with
respect to the random variable Tk, that is the sample membership indicator defined in
(2.3). So the exptectation is taken over all samples that can possibly be drawn from
the population. Where the estimator has an expectation based on a probability distri-
bution, the estimate is a constant quantity that has no expectation. To be precise, it
is incorrect to associate an estimate with the concept of bias. As written above, the
value of the estimate can be more or less different compared to the true parameter, but
this can be due to the distribution of realizations of the estimator or the fact, that the
estimator indeed deviates on average from the true parameter and thus is biased.

In order to evaluate the unit nonresponse bias of estimators applying different weight-
ing procedures, it would be necessary to calculate the expected value of all possible
response sets for each estimator. Apparently this is not possible, because only one
realized response set of the first wave of EU-SILC 2010 exists in the form of the net
sample. If the true response probabilities δk were known exactly for all households k
at addresses selected in the gross sample, a repeated response process could be simu-
lated by repeatedly selecting subsamples with selection probabilities equal to δk. The
next section will present a way of estimating the response distribution and using the
resulting estimates of the response probability for simulating the response process.
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4.3 Outline of a Monte Carlo simulation study based

on the Austrian EU-SILC 2010 survey

The following Monte Carlo simulations are principally based on the concept presented
by Särndal & Lundström (2005) who also used simulations based on the net sample
of a Swedish survey of 965 clerical municipalities. The major conceptional difference
between the simulations carried out by Särndal and Lundström and the simulations
of the present thesis is, that in this thesis the parameter of interest is known for the
gross sample. Starting with the actual gross sample of the first wave of EU-SILC 2010,
the response process can be simulated based on the actual number of selected elements
and subsampling starting with the net sample as in Särndal & Lundström (2005) is
not necessary. Besides a larger sample size in the simulation another very important
advantage here is that estimation bias for a repeating survey can be analyzed and
current weighting procedures can be evaluated in a simulation that closely resembles
the real survey situation.

In order to make repeated sampling from the 3,430 selected addresses possible, the
unknown response probabilities δk had to be estimated. Since 165 addresses turned
out to be ineligible to the population at the time of the interview (i.e. building is not
existent, not a private household, empty dwelling or no person with main residence
was present), the response probabilities of these elements were set to zero. Eleven
households where the address could not be found or there was no access to the address
were included in the set of possible respondents. So the response rate defined by 2,005
responding households and 3,265 households that where eligible to respond is 61.4%.
This adjusted gross sample consisting of eligible households shall be referred to as s∗

with size n∗ = 3, 265.

For s∗ a logistic regression model with the dichotomous indicator of response Rk (cf.
ch. 2.2) as dependent variable was created. Assuming a “logit response distribution”
(Särndal & Lundström 2005, p. 76) the response probabilities were estimated using
the adjusted gross sample and the information of which household is a respondent
or a nonrespondent based on the net sample. The response probabilities were then
estimated with a logistic regression model where the dichotomous variable of response
with the values 0 - ’nonrespondent’ and 1 - ’respondent’ was the dependent variable.
Any variables that were known for the gross sample could be used as predictors as long
as they played a significant role in explaining the response behaviour. These possible

51



predictor variables were available from the sampling frame (ZMR), the gross sample
and register data merged with the gross sample using an anonymized key.12

All metric variables were converted into categorial variables and each category was re-
coded into a (0;1) dummy variable. The statistical software SAS automatically exludes
redundant categories due to dummy coding in logistic regressions. This strategy makes
it possible to account for effects of single categories. The 68 potential predictor vari-
ables (including redundant categories) were put into a logistic regression model with a
stepwise backwards elimination algorithm using the statistical software SAS. The rule
of remaining in the model for each predictor was defined as a significant value of Wald’s
Chi-Square statistic with α < 0.1.

The resulting model reduced the predictor variables to 19 (binary) variables (i.e. x =

(x1, ..., x19). The most significant ones (α < 0.01) referred to categories of the variables:
Austrian provinces, interactions between degree of urbanisation and Austrian provinces,
type of building and social status of the main earner. The corresponding likelihood ratio
test produced a chi-square value of 99.0 with 19 degrees of freedom, meaning that the
null hypothesis that the true coefficients in the population are all equal to zero can be
rejected with high significance, i.e. α < 0.001.

It is important to note here that the aim of the logistic regression model described
above is not to find the best predictor variables for the response probability. Since the
categorial predictor variables contain single categories in the form of dummy variables,
interpretation with regard to the content of relationships between the predictors and
the response rate are rather difficult. The backwise elimination of dummy variables is a
technical procedure in order to reduce the big number of potential predictors. However,
for simulating the response process, some form of response distribution has to be used
that differs from a constant response probability, because the comparison of different
weighting schemes for a missing at random (MAR) response process is the main topic
of this thesis. The most important result of the logisitic regression are the estimated
response probabilities δ̂k. The mean value δ̂k of δ̂k from the model is exactly 0.614
which is equal to the response rate defined by 2,005 responding households and the
3,265 households in the adjusted gross sample. The estimated values of the response
probability are distributed rather symmetrically around the mean value and show only
few very small or very large values. Figure 4.2 presents the empirical distribution
12The bPK (bereichsspezifies Personenkennzeichen) allows for a cryptographically secured data merg-

ing. Cf. http://www.stammzahlenregister.gv.at/site/5970/default.aspx (retrieved September 10,
2012).
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function of the estimated response probabilities for the adjusted gross sample s∗.

Figure 4.2: Empirical distribution function of the estimated response probability δ̂ for s∗
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The shape of the distribution presented in figure 4.2 shows a response distribution that
refers to a response process that is not missing completely at random (MCAR). For
the following simulations the values of the estimated response probabilities were fixed
and treated as the real response probabilities δk. The response probabilities for the 165
cases that are known to be ineligible where set to zero.

In order to be able to calculate the expected value of the parameter estimators weighted
by each weighting procedure presented in chapter 3 the response process had to be
simulated for the 3,430 households in the gross sample with size n. The event of response
was treated as an additional sampling phase according to “Bernoulli sampling” (Särndal
et al. 2003, p. 26) with δk as probabilities of selection. For each weighting strategy
simulations were carried out by iterating the following procedure 10,000 times:
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1. Generate a vector ξ of random numbers distributed uniformely on the [0, 1] in-
terval by using the pseudo-random number generator of the statistical software
SAS.

2. Select household k belonging to the gross sample into the simulated response
set, if its associated random number ξk from step 1 is smaller than the response
probability, i.e. ξk < δk.

3. Apply a weighting procedure ω to the simulated response set selected in step 2.

4. Rescale the sum of weights from step 3 to the sum of design weights in the gross
sample.

5. Calculate the weighted value of the parameter estimate of interest, i.e. θ̂.

6. Add the estimate θ̂ from step 5 as well as the sample size of the estimated response
set to the vector θ̂ of estimates.

After each iteration the resutling estimate of the iteration is stored in vector θ̂. This
means that only the sum of the variable of interest y, i.e. income from employment
and old-age benefits from all households in the simulated response, (as well as the
sample size) remains. The values yk of each household in the simulated response set
are deleted after each iteration. The rescaling in step 3 is necessary in order to make
the expected values of the parameter estimates comparable. Since the benchmark for
comparison is the design-weighted sum of the variable of interest, i.e. sum of income
from employment and old-age benefits, the sum of weights resulting from the weighting
procedure ω should be the same in order to refer to the same population size. For
example, during the testing of simulation methods it turned out that the expected
values of the calibration estimators were quite high. This was due to the fact that the
marginal distributions used in calibration stemmed from a population of households that
is a bit larger than the one gained from the design-weighted estimate from the gross
sample that is used as a point of reference in this thesis. This estimate can be “off the
mark” (cf. section 4.2), because it is the result of the random event of sample selection.
Another reason lies in the fact that the sampling frame is inevitably a bit smaller
than the true size of the population of private households. Since EU-SILC applies a
rotational design, households that have been in the sample for the last four years or
were in the sample five years ago are exluded from the sampling frame. However, at
this point it is important to remember that the main topic of this thesis is bias due to
unit nonresponse. Bias that refers to sampling errors or frame errors is not interest,
only bias that occurs because of the event of unit nonresponse is of importance.
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After the simulation has finished the vector θ̂ consists of 10,000 entries with a column
of sample sizes and a column with estimates θ̂i of the parameter of interest. Since the
simulated response sets were created by Bernoulli sampling the sample sizes follow a
binomial distribution with parameters n and δk. The expected value of the estimator
θ̂ is the mean value of the 10,000 estimates in θ̂.13

Esim(θ̂) =

10,000∑
i=1

θ̂i
10, 000

(4.1)

Referring to the definition of the Bias presented in (2.18) the unit nonresponse bias of
a specific weighting strategy ω can be written in the following way (where ET denotes
the expectation referring to the gross sample and Esim denotes the expectation of the
estimator of a specific weighting strategy based on the simulated response sets):

BTRsim(θ̂ω) = Esim(θ̂ω)− ET (θ̂HT ) = Esim(θ̂ω)− θ (4.2)

In the equation above θ̂HT denotes the Horvitz-Thompson estimator which is unbiased
for the gross sample s. For the sake of a more clear depiction of the size of the bias, the
relative bias, which was already described in section 2.3, will be used for the comparison
of the estimators in the simulations (see also formula (2.20)):

RBTRsim(θ̂ω) =
BTRsim(θ̂)

θ
=
Esim(θ̂ω)− θ

θ
(4.3)

As a measure of variation for the estimators from the simulations the “simulation vari-
ance” (Särndal & Lundström 2005, p. 79) is being used:

Vsim(θ̂ω) =
1

9, 999

10,000∑
i=1

(
θ̂ω(i) − Esim(θ̂ω)

)2
(4.4)

An estimator that has a small bias does not necessarily have to incorporate a small
variance. In order to compare the estimators used in the simulation study regarding
their bias and their simulation variance at the same time, the simulation mean-squared
error (MSE) will be used. The MSE can be calculated as the sum of the the variance
of the estimator and the squared bias of the estimator:

13Cf. Särndal & Lundström (2005), p. 78.
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MSEsim(θ̂ω) = Vsim(θ̂ω) +
(
BTRsim(θ̂ω)

)2
(4.5)

4.4 Results of the Monte Carlo simulation study

The simulations were carried out in accordance with the weighting procedures presented
in chapter 3. The expected values of the estimators of each simulation were compared
with the value of the design-weighted estimate.

The results show that the relative bias is largest, if only the straight expansion estimator
is used. Obviously, assuming a response process with equal probabilities of response
(MCAR) does not seem to be valid, because this method produces estimates that are
on average about 4.1% off the design-weighted value of the parameter of interest.

If weighting cells according to a grouping of the nine Austrian provinces is introduced,
the relative bias drops slightly to 3.8%. This is not surprising since the provinces were
also used as predictors in the logistic regression that estimated the response probabilities
which are the basis of the simulation. The weighting cells method, also denoted here
by “RHG” (response homogeneity groups) facilitates unit nonresponse weights νh that
are simply the inverse of the response rates of each province. These unit nonresponse
weights are multiplied by the design weights to produce weights which are used to
estimate the sum of income from employment and old-age benefits with data from the
simulated net samples.

If the inverse of the response probabilities estimated by a logistic regression model are
used instead as unit nonresponse weights then the relative bias becomes noticeable
smaller in comparison to the straight expansion estimator. This time also the simula-
tion variance gets notably smaller. This is not surprising since only Austrian provinces
were used as a response homogeneity groups and the logistic regression uses far more
variables than the weighting cells. In the case of weighting by the inverse of the re-
sponse probability estimated by a logistic regression two models were formulated which
delivered similar results, i.e. a relative bias of about 3.1% and 3.0%.

Neural networks (NNW) were never before used for estimating the response probabilities
for the Austrian EU-SILC survey and were introduced as a method for estimating
response probabilities in the two-phase approach to weighting. As in the case with the
two-phase approach that uses logistic regression models in order to estimate response
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probabilities, the inverse of these estimated response probabilities are multiplied by
the design weights in order to get weights that are adjusted for unit nonresponse.
The application of neural networks for unit nonresponse weights resulted in a rather
big reduction of bias as compared to the logistic regression models mentioned above.
The relative bias drops to roughly 2% if all relevant auxiliary information is used as
predictor variables and there is an appropriate number of hidden units in the hidden
layer. However, simulations show that the variance is larger than the one resulting from
the usage of logistic regressions.

The utilization of some sort of calibration for computing weights with the aim of coun-
tering unit nonresponse bias of estimators based on the response set results in a big
reduction of unit nonresponse bias. The results of the simulations show that this meth-
ods delivers the lowest relative unit nonresponse bias and also shows the lowest variance.
This advantage of the calibration method was indicated in related literature14 and is
also evident in the simulation results of the calibration methods used in this thesis.
A comparison of the relative bias of the calibration estimators from simulations shows
that the biases of the estimators only differ slightly (ranging from -0.76% to -0.74%).
Also the corresponding variances are roughly of the same size. Stricter boundaries for
the truncated methods could result in a smaller variances for the logit and the trun-
cated linear method, but would also produce a larger amount of bias for the estimators
that result from these weighting methods. Using the inverse of the estimated response
probabilities (estimated by logistic regression models) multiplied by the design weights
as input weights in the calibration only slightly changes the bias, as can be seen in
the simulation results of these methods. The variances of these estimators are only a
little bit larger. Comparing estimators with calibrated weights and estimators without
calibration input weights from logistic regressions, adjusting the design weights with
unit nonresponse weights before calibration only delivers a small enlargement of bias
and variance. This may be due to the fact that mostly variables from the sampling
frame could be used as predictors in the logistic regression models.

The following subsections give a more detailed insight in the results of the simulation
study. For a theoretical presentation of the estimator please refer to ch. 3.

14Cf. Särndal & Lundström (2005), ch. 6.3.
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4.4.1 Straight expansion estimator

If it is assumed that unit nonresponse is happening completely at random (cf. MCAR
response process in section 2.2) then no sophisticated weighting scheme has to applied
in order to adjust for the units lost because of unit nonresponse. The design weights
of the elements remaining in the response set r (of size m) just have to be rescaled
to the selected sample s (of size n) by multiplying the design weights by the inverse
n/m of the overall response rate in order to allow the weights compensate for the lost
units. However the strong assumption of MCAR can presumably never be justified in
practice and the results of the simulation show that it is the estimator weighted by the
expansion weight which is the most biased of all (cf. table 4.1).

Table 4.1: Simulation results - straight expansion estimator

Weighting procedure Estimator
Rel. Bias

Variance MSE
in %

Inverse response rate
θ̂EXP 4.07 1.61 · 1018 2.04 · 1019

ν = n/m

Source: Statistics Austria, EU-SILC 2010, unpublished results.

The large relative bias and the rather large variance together with the large MSE show
that simply inflating the design weights by the inverse of the overall response rate is
insufficient in order to achieve design weight adjustments for EU-SILC that counter
unit nonresponse.

The 10,000 estimates from the simulations are symmetrically distributed around the
mean and the mean value of the estimates, i.e. the expectation of the estimator. More
specifically, the estimated values of the straight expansion estimator approximately fol-
low a normal distribution with µ = 1.109·1011 and σ = 1.268·109 (Kolmogorov–Smirnov
test: p-value > 0.15). However, as figure 4.3 shows, the straight expansion estimator
also heavily over-estimates the “true value” of the parameter θ computed from the
design-weighted estimate from the gross sample which is indicated by the dashed ver-
tical line.
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Figure 4.3: Simulation distribution of the straight expansion estimator
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Source: Statistics Austria, EU-SILC 2010, unpublished results.

4.4.2 Two-phase weighting: weighting cells estimator

A simple method of adjusting for unit nonresponse without a complicated model can
be achieved by using the inverse of the response rates of certain groups. These unit
nonresponse weights then only have to be multiplied by the design weights in order to
gain an estimator with unit nonresponse adjusted weights. This method described in
section 3.2.2 is the second of the broader set of weights based on the two-phase approach
to weighting introduced in section 3.2. Under the assumption of homogenous response
probabilities within certain groups, appropriate unit nonresponse weights can be found
if the response process really only differs between those groups. For this simulation the
groups were chosen to be the nine Austrian provinces, since it is known from EU-SILC
that the response rates differ by province. However, the bivariate correlations (Pearson’s
correlation coefficient) between the dummy-coded variables for Austrian provinces and
the response indicator Rk is on average quite low with a value of about 0.05 for the
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significant correlations (α = 0.05) for the provinces Lower Austria, Upper Austria,
Vorarlberg and Vienna. So the building of response homogeneity groups according to
provinces will not achieve a big reduction of bias.

The simulations show that for EU-SILC the weighting cells estimator is less biased
than the straight expansion estimator, but has a variance that is a little larger. Overall
the MSE drops by about 13% as compared to the straight expansion estimator which
shows that weighting cells adjustments deliver an improvement in the precision of the
estimator even if only big response homogeneity groups are formed and the variable
responsible for the grouping is not highly correlated with the study variable of interest.

Table 4.2: Simulation results - weighting cells estimator

Weighting procedure Estimator
Rel. Bias

Variance MSE
in %

Inverse response rate
θ̂RHG 3.76 1.63 · 1018 1.77 · 1019per group h

νh = nh/mh

Source: Statistics Austria, EU-SILC 2010, unpublished results.

Figure 4.4 also shows the rather large discrepancy between the true parameter value
and the mean value from the simulation.
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Figure 4.4: Simulation distribution of the weight adjustment cells estimator
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Source: Statistics Austria, EU-SILC 2010, unpublished results.

4.4.3 Two-phase weighting: Logistic regression

Instead of using weight adjustment cells for finding unit nonresponse adjustment weights,
logistic regression models were used to estimate the response probabilities in each it-
eration of the simulation. Two logistic regression models with a slightly different set
of predictor variables were applied in two separate simulations. Model 1 employed
dummy-coded variables of the nine Austrian provinces, the degree of urbanization ac-
cording to three levels, the type of building, the number of men, women, children and
teens per household as well as the minimum and maximum age in five age categories
per household and the information if there is at least one person with foreign citizen-
ship registered at the household as predictor variables. All these variables were taken
from the sampling frame and were therefore known for the whole gross sample. Logis-
tic regression model 2 additionally took interaction effects between provinces and the
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degree of urbanization into account. Table 4.3 shows a listing of the variables available.
Dummy-coding was carried out for each category of the variables and categories with
less than 50 households were aggregated in order to avoid dummy variables with too
few cases.

Table 4.3: Variables of logistic regression models in simulations

Model 1 Model 2
Number of
categories

Characteristics of the household address

Austrian provinces Austrian provinces 9

Degree of urbanisation Degree of urbanisation 3

Type of building Type of building 4

Austrian provinces × 36
degree of urbanisation

Austrian provinces × 27
degree of urbanisation

Characteristics of persons aggregated on household level

Number of females Number of females 4

Number of males Number of males 4

Number of children Number of children 3

Number of teens Number of teens 2

Number of foreign Citizens Number of foreign Citizens 2

Minimum age Minimum age 5

Maximum age Maximum age 5
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The difference between model 1 and model 2 lies in the usage of interactions between
characteristics of the household address. The combination of provinces with degree
of urbanisation or type of building allows for a more detailed inclusion of regional
predictors. The household size was omitted as a predictor because it clearly interacts
with the variables “number of females”, “number of males”, “number of children” and
“number of teens”. Explicitly Including interaction effects between household size and
these interaction effects would have also resulted in dummy variables with categories
that were too small.

For the prediction of the response probability in each iteration a stepwise backwards
elimination algorithm was used. The condition for remaining in the model was defined
as having a significant effect in the model as measured by Wald’s chi-square statistic
(α < 0.1). The bias is noticeable lower in the case of using logistic regressions compared
to the estimators in the previous two subsections, but still considerably high. Also the
variance drops slightly which, togehter with the bias, is recognizeable in the MSE, which
also falls perceptibly. Table 4.4 compares the results for model 1, model 2 and model 2
including trimming.

Table 4.4: Simulation results - logistic regression adjustments

Weighting procedure Estimator
Rel. Bias

Variance MSE
in %

Estimated response probability
θ̂LOG1

3.10 1.43 · 1018 1.24 · 1019from logistic regression Model 1
ν = 1/δ̂

Estimated response probability
θ̂LOG2

3.01 1.49 · 1018 1.18 · 1019from logistic regression Model 2
ν = 1/δ̂

Estimated response probability
θ̂LOG2(trimmed) 3.02 1.49 · 1018 1.18 · 1019from logistic regression Model 2

ν
(low)
k , ν(high)k

Source: Statistics Austria, EU-SILC 2010, unpublished results.

Apart from outliers the two logistic regression models used in this version of two-phase
weighting do not differ much. Using more predictor variables in the logistic regression
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(as in model 2) only produces small changes in bias and variance. As was expected
for the method of trimming the unit nonresponse weights (cf. ch. 3.2.3), trimming
introduces a new source of bias. However, relative bias only grows by a very small
amount (from 3.01% to 3.02%). Variance drops by a very small amount from 1.493·1018

to 1.489 ·1018, the MSE rises by a very small magnitude from 1.182 ·1019 to 1.183 ·1019.

Figure 4.5: Simulation distribution of the two-phase estimator with nonresponse weights from
logistic regressions
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Source: Statistics Austria, EU-SILC 2010, unpublished results.
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4.4.4 Two-phase weighting: Neural networks

The usage of neural networks (NNW) in the two-phase approach to adjusting the design
weights to unit nonresponse was introduced in section 3.2.4. In this thesis neural
networks were tried out as an alternative to logistic regressions to find estimates of
response probabilities, where the inverse of the response probabilities are used as unit
nonresponse weights to adjust design weights.

Estimating Bayesian a posteriori probabilities with NNW has been in practice for about
two decades. Liang & Yung Cheung Kuk (2004) applied neural networks for the esti-
mation of the population mean (for finite populations). Their results show that neural
networks have a smaller MSE than linear regression methods. Amer (2009) uses neu-
ral networks to incorporate characteristics of complex survey designs in imputation and
thus adjusting estimators for item nonresponse. In this thesis neural networks are solely
used for adjusting the design weight to counter unit nonresponse bias. Other charac-
teristics of the survey, e.g. the sampling design, are not considered by neural networks
here.

The results from the simulations show a considerably smaller bias for some versions
of the NNW. It seems that the number of units in the single hidden layer of the feed-
forward neural network is the key to a small bias. It seems that the larger the number
of hidden units the smaller the relative bias due to unit nonresponse. This is not too
surprising since more hidden units also make it possible for the network to find more
diverse relations between the input units and the output.

The simulations applying neural networks was implemented in the statistical software
R with the package “nnet”.15 The input variables were similar to the ones used for
the logistic regressions. This time also the household size was taken into account,
because for the neural networks no dummy variables were introduced and all variables
that relate to the size of the household were included as metric variables in the neural
networks. This is also true for the other variables of personal characteristics that
were aggregated on household level, such as number of females and males as well as
number of children, teens and foreign citizens. Since the neural networks allow for
the approximation of interactions through the connections established by the hidden
layer, no interaction variables were explicitly entered in the input. Altogether three
sets of variables were used as inputs in the neural network. Input set 1 comprises the

15Cf. cran.r-project.org/web/packages/nnet/ (retrieved August 27, 2012).
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variables of the logistic regressions plus the household size. The smaller input set 2 only
contains characteristics of the household address and input set 3 adds the minmum and
maximum age of household members to set 2. Table 4.7 presents the auxiliary variables
used by the different input sets of the neural networks.

Table 4.5: Variables of the neural network input

Input set 1 Input set 2 Input set 3

Characteristics of the household address

Austrian provinces Austrian provinces Austrian provinces

Degree of urbanisation Degree of urbanisation Degree of urbanisation

Type of building Type of building Type of building

Characteristics of persons aggregated on household level

Household size

Number of females

Number of males

Number of children

Number of teens

Number of foreign Citizens

Minimum age Minimum age

Maximum age Maximum age

During the preparations of the simulations it turned out that sometimes the neural
networks produce extremely large nonresponse adjustment weights. It was decided to
truncate these weights. In the first simulation procedure applied a maximum value of
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100 for the nonresponse adjustment weights was allowed. In the further simulations
this maximum was always fixed at a value of 10, because in the response distribution
used for the simulation there are no response probabilities greater than zero below this
value. After the neural networks were fitted, the unit nonresponse weights ν calculated
from the inverse of the estimated response probabilities where then multiplied by the
design weights and the resulting weights were used for calculating the estimates θ̂NNWi

(i = 1, ..., 8).

The results of the simulations presented in table 4.6 show a reduction of the bias for
almost all estimators using design weight adjustments by neural networks as compared
to logistic regressions. For the neural networks using input set 1 (cf. table 4.5) the
following tendency is regonizable: the more hidden units are represent in the hidden
layer, the smaller the bias gets. However, with a big number of hidden units, the risk
of occasionally computing estimates with extreme values gets higher. This can be seen
in the distribution of outliers for θ̂NNW5 and θ̂NNW6 . One downfall of the method is a
slightly increased variance compared to the results of the preceding section, but this
does not affect the MSE as greatly as the smaller bias and thus the MSE drops almost
by half in comparison with logistic regressions. The number and sort of input variables
is also an important factor of the precision of the resulting estimator. The usage of
input set 2 leads to an estimator (θ̂NNW7) that is less precise than θ̂LOG1 and θ̂LOG2 .
Using input set 3 results in the estimator θ̂NNW8 , which is more precise than θ̂NNW7

because of more auxiliary variables in the input set which also have the capacity of
more accurately explaining the response rate and the survey variable of interest.
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Table 4.6: Simulation results - adjustments by neural networks

Weighting procedure Estimator
Rel. Bias

Variance MSE
in %

NNW1: Input set 1
θ̂NNW1

1.99 1.79 · 108 6.30 · 10189 hidden units
max(ν) = 100

NNW2: Input set 1
θ̂NNW2

2.01 1.78 · 1018 6.36 · 1089 hidden units
max(ν) = 10

NNW3: Input set 1
θ̂NNW3

2.29 1.71 · 1018 7.68 · 10183 hidden units
max(ν) = 10

NNW4: Input set 1
θ̂NNW4

2.10 1.70 · 1018 6.72 · 10186 hidden units
max(ν) = 10

NNW5: Input set 1
θ̂NNW5

1.96 1.79 · 1018 6.14 · 101810 hidden units
max(ν) = 10

NNW6: Input set 1
θ̂NNW6

1.94 1.81 · 1018 6.08 · 101811 hidden units
max(ν) = 10

NNW7: Input set 2
θ̂NNW7

3.31 1.64 · 1018 1.41 · 10199 hidden units
max(ν) = 10

NNW8: Input set 3
θ̂NNW8

2.07 1.53 · 1018 6.42 · 10189 hidden units
max(ν) = 10

Source: Statistics Austria, EU-SILC 2010, unpublished results.

In figure 4.6 the different distributions of the eight estimators using neural networks
presented in table 4.6 show the main challenge of this method: although the estimates
are symmetrically distributed around the mean value and the bias is quite low, eg. for
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θ̂NNW1 or θ̂NNW2 the outliers are quite widely distributed. This depends especially on
the number of hidden units. θ̂NNW5 or θ̂NNW6 have the biggest numbers of hidden layers
and also produce the most extreme estimates.

Figure 4.6: Simulation distribution of two-phase weighting using NNW
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Source: Statistics Austria, EU-SILC 2010, unpublished results.

It is obvious that neural networks have a big potential for usage in adjusting design

69



weights for unit nonresponse, but further inquiry is necessary to deal with the problem
of seldomly gaining extreme values for weights by this method. However, using neural
networks for calculating unit nonresponse adjusted weights has to be handled with care,
because during the 10,000 iterations of the simulations, on a few occasions, extremely
large or small weights were produced which can result in extreme values of the estimates.
This can also be seen in the enlarged simulation variance of this method. Trimming the
nonresponse weights can confront this problem, but still large variance and occasionally
very large or small estimates come as a downfall of this otherwise promising method.

4.4.5 Calibration estimators

A different approach to weighting in order to counter unit nonresponse than the estima-
tors shown in the previous four subsections are calibration estimators which were laid
out in section 3.4. The GREG estimator of section 3.3 is a special case of calibration
(with a linear distance function for the g-weights) and therefore evaluated together with
the other calibration estimators.

The external marginal distributions to which the weights had to be calibrated were
taken from the yearly average of the four quarters of the Austrian Microcensus16 of
2010. The weights were calibrated to the following marginal distributions: Nine Aus-
trian provinces, degree of urbanisation in three categories, household size in four cate-
gories, number of men and women per household according to four age categories and
number of Austrian or foreign citizens. Table 4.7 presents the variables for which the
marginal distributions were calibrated to the ones of the Austrian Microcensus. Cate-
gorial variables are described by the number of categories, metric variables are indicated
by a hyphen, i.e. ’-’.

16The Austrian Microcensus is a survey carried out quarterly by Statistics Austria and consists of
about 22,500 private households selected from a probability sample. Cf. Kytir & Stadler (2004).

70



Table 4.7: Marginal distributions used for calibration

Calibration
Number of
categories

Characteristics of the household address

Austrian provinces 9

Degree of urbanisation 3

Characteristics of persons aggregated on household level

household size 4

Number of females

age<13 -
14<age<34 -
35<age<64 -

age>65 -

Number of males

age<13 -
14<age<34 -
35<age<64 -

age>65 -

number of Austrian citizens -
number of foreign citizens -

One major difference of calibration as compared to the other weighting procedures
presented in the preceding subsections is the fact that information from an external
statistic is used to compute estimators which should compensate for unit nonresponse
bias. These external marginal distributions are known to be representative for the
population of private households in Austria. Therefore, after calibration, the marignal
distributions of the weighted variables from the response set are euqal to the ones in
the external source. “Type of building” cannot be used any more as auxiliary variable,
because no appropriate auxiliary variable from external sources was available.

The solving of the calibration equations and the calculation of the g-weights was car-
ried out with the SAS macro CALMAR which was developed by the French national
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statistical institute INSEE. For the calibration methods that use truncation, i.e. the
logit method and the truncated linear method, a lower boundary of 0.4 and an upper
boundary of 2.5 were used. As a matter of fact, the weights that were adjusted by the
application of calibration were not exactly the design weights from the gross sample.
Since for the bias evaluation of estimators the net samples, i.e. the response sets r, were
used, the distance G(wk, dk) of the design weights dk to the calibrated weights wk would
have been quite large on average, because the design weights alone do not compensate
for the sum of design weights lost by unit nonresponse. Therefore, the design weights
were rescaled to the sum of the population (i.e. total number of private households
in Austria in 2010) before calibration in order to allow for a faster convergence of the
calibration algorithm.

The calibration estimators all perform similarly well which is evident in table 4.8. Both
variance and bias are much lower than for the estimators in the previous subsections.
A comparison of the different distance functions shows that the bias is lowest for the
estimators using the logit or the truncated linear method. In other words, the expected
values for the simulated estimates for θ̂Clogit

and θ̂Ctrunc.lin
show very similiar relative

bias, variance and MSE. With an MSE of 1.7490 · 1018 θ̂Clogit
is a little bit more precise

than θ̂Ctrunc.lin
(MSE= 1.7496 · 1018), but only by a very small amount. The MSE for

θ̂Cexp has an MSE that is about 2.3% higher, because of a slightly bigger bias. The
linear method delivered the most biased calibration estimator of table 4.8 which also
has the highest variance and therefore the highest MSE.
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Table 4.8: Simulation results - calibration estimators

Weighting procedure Estimator
Rel. Bias

Variance MSE
in %

Calibration
θ̂GREG, θ̂Clinear

-0.76 1.17 · 1018 1.82 · 1018

Linear method

Calibration
θ̂Cexp

-0.76 1.13 · 1018 1.79 · 1018

Exponential method

Calibration
θ̂Clogit

-0.74 1.13 · 1018 1.75 · 1018

Logit method

Calibration
θ̂Ctrunc.linear

-0.74 1.13 · 1018 1.75 · 1018

Exponential method
Source: Statistics Austria, EU-SILC 2010, unpublished results.

For generalized calibration17 the simulation produced a very high variance which is due
to some extreme values. Cutting off the top and bottom 1% or 5% from the simulation
estimates did not help to make the results from generalized calibration comparable with
the other calibration estimators. It reduced variance, but made the bias unproportion-
ally large (up to 90%). The method is best suited if a survey variable is known to be
highly associated with unit nonresponse. The choice of variables is crucial and more
research is needed to assess appropriate variables, but this is beyond the scope of this
thesis. Therefore generalized calibration is not presented in detail here.

Figure 4.7 compares the distribution of the calibration estimators (without generalized
calibration). It can bee seen that these estimators have similiar simulation distributions
and are also closer to the true parameter θ than the other estimators already presented.
The distribution of θ̂Clinear

has the most outliers since there are no limits for the values
of the g-weights for computing the calibrated weights.

17Generalized calibration is implemented in CALMAR2, also developed by INSEE.
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Figure 4.7: Simulation distribution of the calibration estimators
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Source: Statistics Austria, EU-SILC 2010, unpublished results.

4.4.6 Logistic regression adjustment and calibration

The calibration estimators shown in the section above were calculated by solving cali-
bration equations that used the design weights, rescaled to the population total, as input
weights. A modified approach to calibration is using the nonresponse adjusted design
weights as input weights. In the simulations presented in this thesis these adjustment
were carried out by applying the logistic regression model 1 and 2 of section 4.4.3.
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Table 4.9: Simulation results - calibration estimators with preceding logistic regression adjust-
ment (Model 1)

Weighting procedure Estimator
Rel. Bias

Variance MSE
in %

Log. Reg. Model 1 & θ̂LOG1 , -0.78 1.18 · 1018 1.87 · 1018

Calibration: linear θ̂GREG= θ̂Clinear

Log. Reg. Model 1
θ̂LOG1 , θ̂Cexp

-0.79 1.17 · 1018 1.88 · 1018

Calibration: exponential

Log. Reg. Model 1
θ̂LOG1 , θ̂Clogit

-0.79 1.14 · 1018 1.75 · 1018

Calibration: logit

Log. Reg. Model 1
θ̂LOG1 , θ̂Ctrunc.lin

-0.77 1.16 · 1018 1.84 · 1018

Calibration: truncated linear
Source: Statistics Austria, EU-SILC 2010, unpublished results.

As table 4.9 shows, the bias of using a logistic regression model to calculate input weights
is similar to omitting this weighting step. The relative bias is slightly larger than for
the estimators that use only calibration as weight adjustment for the design weights.
This may be due to the fact that only a very limited amount of information is available
from the sampling frame and the gross sample as predictors in the logistic regressions.
Table 4.10 states that using a logistic regression model that uses more predictors by
including interactions before calibration delivers estimators that are a little more biased.
Trimming the unit nonresponse weights has shown a small reduction of the bias and
the MSE. Altogether the findings of this subsection show rather similar results where
no big improvement or degratation of estimators becomes apparent. Perhaps errors in
calculating weight adjustments accumulate by using more than one adjustment step
and therefore introduce a new source of bias. Further research that is beyond of the
scope of this thesis has to be done in order to assess these effects in detail.

Once again, also the distributions of the different calibration estimators behave likewise.
Little differences lie in a slightly bigger amount of outliers in θ̂Cexp and fewer outliers
for θ̂Clinear

which can be seen in figure 4.8 and figure 4.9.
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Figure 4.8: Simulation results - calibration estimators with preceding logistic regression ad-
justment (Model1)
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Source: Statistics Austria, EU-SILC 2010, unpublished results.
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Table 4.10: Simulation results - calibration estimators with preceding logistic regression ad-
justment (Model 2)

Weighting procedure Estimator
Rel. Bias

Variance MSE
in %

Log. Reg. Model 2 & θ̂LOG2 , -0.83 1.21 · 1018 2.00 · 1018

Calibration: linear θ̂GREG= θ̂Clinear

Log. Reg. Model 2
θ̂LOG2 , θ̂Cexp

-0.85 1.18 · 1018 2.00 · 1018

Calibration: exponential

Log. Reg. Model 2
θ̂LOG2 , θ̂Clogit

-0.85 1.18 · 1018 2.00 · 1018

Calibration: logit

Log. Reg. Model 2
θ̂LOG2 , θ̂Ctrunc.lin

-0.82 1.19 · 1018 1.96 · 1018

Calibration: truncated linear
Source: Statistics Austria, EU-SILC 2010, unpublished results.
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Figure 4.9: Simulation results - calibration estimators with preceding logistic regression ad-
justment (Model 2)
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5 Concluding remarks and outlook

In this thesis procedures for estimating population parameters by using data from
sample surveys that suffer some sort of unit nonresponse have been presented. Unit
nonresponse was assumed to occur at random depending on an unknown response
probability. Different weighting procedures resulted in different estimators that are
modified versions of the unbiased Horvitz-Thompson estimator. Finally, simulations
showed results that speak strongly in favour for calibration, as was indicated in the
referring statistical literature discussed in this thesis.

At this point the three main research questions which were introduced at the beginning
of the thesis (cf. section 1.2) shall be reviewed.

1. Is there a considerable amount of bias due to unit nonresponse that has to be dealt
with?

The simulations presented in ch. 4.4 showed that the assumption of a response process
that is missing completely at random leads to the most biased estimator which also
shows the largest MSE (cf. ch. 4.4.1). It can be concluded that the response process
and the according event of unit nonresponse is related to the survey variable of interest
yk, i.e. income from employment and old-age benefits in some way. Therefore, weighting
methods that counter this unit nonresponse bias of the estimator θ̂ of the population
parameter θ (i.e. total sum of income from employment and old-age benefits) have to
be employed. Appropriate auxiliary variables that explain the response process as well
as the survey variable can be used to adjust the design weights in order to counter the
bias.

2. Which methods to adjust estimators in order to counter unit nonresponse exist and
how can they be improved?

Two big approaches to adjust the design weights, i.e. the inverse of the Horvitz-
Thompson estimator to account for unit nonresponse bias have been presented: Two-
phase weighting and calibration. The first one delivers adjustment weights that resemble
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the design weights used for the Horvitz-Thompson estimator, i.e. they are the inverse of
the (estimated) response probability. By treating the event of response as a second sam-
pling phase, the unit nonresponse weights are factors that are multiplied by the design
weights in order to adjust for unit nonresponse. Using estimated response probabili-
ties from neural networks has shown an improvement compared to logistic regression
models as long as appropriate auxiliary variables are put into the neural network and
enough hidden units in the hidden layer are used. The calibration approach also adjusts
for unit nonresponse, but at the same time reduces variance too. Calibrated weights
are computed by solving the calibration equations which minimize the distance of the
design weights to the calibrated weights. Additionally this minimization problem is con-
strained by the condition that totals of the weighted auxiliary variables in the survey
fit the corresponding totals from external marginal distributions. Calibration estima-
tors can be improved by introducing boundaries for the fraction wk/dk of calibrated
weights and design weights for the distance function. For example, the unbounded lin-
ear method for the distance function results in an estimator that is a little less precise
than the one which applies the bounded logit method for the distance function. Using
design weights that are adjusted by the inverse of the estimated response probabilities
and are subsequently calibrated adds a small amount of bias to the estimators. Since
calibration estimators have a small negative bias and estimators using adjustments by
estimated response probabilities from logistic regressions have a larger, positive bias,
these two weighting procedures may interact in a way that affects the estimator that
combines adjustments for unit nonresponse by logistic regression and calibration neg-
atively. Perhaps this method could be improved if there was a larger set of variables
that explain the response process available to use as predictors in the logisitc regression
models. In this thesis only a limited amount of variables from the sampling frame and
one variable from the gross sample were used in the simulations in order to resemble the
EU-SILC survey of 2010 were no register data were yet available for the computation of
indicators. Perhaps the future use of many income data from registers may improve the
models and then deliver input weights for logistic regressions that introduce a further
reduction of bias already facilitated by calibration. The weights adjusted by the inverse
of the response probabilities in this way are then calibrated in the final step of the
weighting procedure. EU-SILC also applies logistic regression adjustments for attrition
weights for the follow-up waves, i.e. nonresponse weights to adjust for attrition after
the first year wave of a rotational subsample. In this case survey variables from the
preceding year can be used as predictors in logistic regression models. These are better
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suited to estimate response probabilities which becomes evident in an improvement of
the pseudo r-square for logistic regressions used in the follow-up waves of EU-SILC.1

3. May a reduction of bias have undesirable consequences, for example a considerable
enlargement of variance?

The only set of methods that always results in a reduction of bias and variance are
the calibration estimators. For the estimators employing the two-phase approach to
weighting a reduction in bias may be achieved, but variance may rise at the same
time. For example this becomes evident in the comparison of the straight expansion
estimator and the weighting cells estimator. However, the reduction in bias here has
a stronger effect on the MSE than the enlargement of variance and hence the MSE
is smaller for the weighting cells approach. Another good illustration of the tradeoff
between a reduction of bias and an increasing of variance is given in table 4.6. θ̂NNW6

is the estimator resulting from the weighting procedure that applys the neural network
with the most hidden units and the largest set of availabe input variables. Simulations
showed that it has the smallest relative bias of all neural network methods, but has
the largest variance. In the end the reduction of bias has a greater impact on the
MSE than the variance and thus θ̂NNW6 has the smallest MSE of all estimators using
unit nonresponse adjustments by multiplying the design weights by the inverse of the
response probabilities estimated by neural networks.

Figure 5.1 shows a comparison of the esitmators which turned out to be most relevant
to illustrate strengths and weaknesses of the used weighting procedures. They are
labeled by the letters (a)-(l), where methods (a)-(h) refer to the two-phase approach to
weighting and (i)-(l) show the calibration estimators using different distance function
(C1: linear, C2: exponential, C3: logit, C4: truncated linear).

The findings from the simulation results in figure 5.1 makes the power of the calibration
methods evident. The corresponding boxplots for (i)-(l) show that the distribution of
the simulated estimates applying calibration weighting are nearest to the true parameter
θ (indicated by the dashed vertical line). Another advantage that speaks strongly in
favour of calibration is the fact, that the totals of the survey variables that are calibrated
are exactly the same as in the sources of these distributions. This is an important fact
for the presentation of official statistics where important domains according to age, sex
and region should be comparable in size across different statistics.

The neural networks ((e)-(h) in figure 5.1) show the best results for the two-phase
1Cf. Glaser & Till (2010).
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Figure 5.1: Simulation results - comparison of most relevant weighting methods
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approach to weighting. The neural network NNW6 uses 11 hidden units, which is
the highest number of hidden units used in the simulations. NNW6 has the smallest
MSE, but also shows few very extreme outliers. Therefore, one has to be careful with
using neural networks and should not employ too many hidden units, because on a few
occasions (occuring with a rate less than 0.1% in the simulated estimates) the resulting
estimates are greatly off-the mark. θ̂NNW2 resulting from NNW2 (9 hidden units) may
be better suited. Although its MSE is a little larger it has no extreme outliers.

Summing up all the results from simulations, all the weighting schemes presented in this
thesis result in some sort of bias of the estimator of the total income from employment
and old-age benefits. The methods tested in the simulations had to be limited to the
variables that were available for all possible response sets. Therefore, only variables
from the sampling frame and the gross sample were used as auxiliary information. For
example, EU-SILC uses also variables that can only be determined by a questionnaire
and for which marginal distributions from external sources are available, for example the
number of people who receive unemployment benefits. If more and appropriate register
information were available for the gross sample and external marginal distributions for
the correct population, then more auxiliary information could be used for simulations.
This may be a topic for future research.

For the simulations the “true parameter” was defined as the design-weighted estimate.
The aim of this thesis was to show the impact of unit nonresponse on the design weighted
estimate. So, concerning the population total, the design-weighted estimate was used
as a benchmark, i.e. as the “true parameter”, because of its theoretical unbiasedness.
As a matter of fact it may be a bit lower than the true value in the real population. For
drawing the sample of EU-SILC it is necessary to exclude some households from the
sampling frame, because they are already in one of the rotational subsamples. This is
unavoidable, because of the rotational design. This frame error due to a smaller frame
usually is corrected by calibration to the known population total. The considerations in
this thesis solely refer to the bias that happens due to unit nonresponse. Another issue
with the simulation method used in this thesis are sampling frame errors. Sampling
frame errors were assumed to be negligible, because for the simulated response set there
is no time lag between the reference date and the date of “interview”. In practice this
is of course not true. Usually a few month pass between the drawing of the sample and
the actual date of the interview. However, the logistic regression model to construct the
response distribution by using the estimates from the logistic regression as probabilities
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in the simulations only has a foundation in reality, if the vector of response is the one
from the actual response set of EU-SILC 2010. A solution to this challenge could be
to use a theoretical logistic distribution for the entire gross sample with distribution
parameters taken from the empirical distribution of the estimated response probabilities.

For the practice of the EU-SILC survey the finding that calibration is the best method
of the ones tested in this thesis is reassuring, because it is also used as the final step
in the weighting process of EU-SILC in Austria. Further inquiry is needed for the
follow-up waves, i.e. from the second survey year onwards, and for the combined cross-
sectional sample. From EU-SILC 2012 onwards more income register data sources
will be available and income based indicators will be calculated mainly with register
data. As soon as the according data analysis procedure is implemented simulations for
more components of the overall household income can be carried out in order to give a
more precise evaluation of unit nonresponse bias and the effictiveness of the weighting
methods applied. Among the methods at hand the usage of neural networks instead of
logistic regressions, especially for the follow-up waves of EU-SILC, has to be evaluated
in more detail. The method shows some promising results in the simulations carried
out in this thesis, but further investigations concerning the handling of extreme weights
that result from this method on a few occasions has to be given special attention.
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