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Abstract 

 

 

The aim of this work was to provide a survey of recent contributions about 

freight and passenger transportation. Whereas passenger optimization models 

considered problems such as line planning, train timetabling, platforming, rolling 

stock circulation, shunting and crew scheduling, freight transportation dealt with 

issues concerning car blocking, train makeup, routing, and empty car 

distribution.  

The field of rail transportation has clearly received attention resulting in a 

diversity of literature contribution. As it was difficult to handle the large amount 

of papers, this work is trying to give a short review of some important 

contributions made in recent years. 

Due to the increase in more sophisticated mathematical techniques, constant 

refinements in development of the models were made that were able to deal 

with larger problems. In addition, a trend towards more efficient transportation 

support systems was observed taking robustness into account. In addition, 

solution approaches that can deal with larger disturbances of the rail 

environment in a considerable speed and time, have received attention. Thus, 

future research can be done to develop more integrated models of scheduling 

and routing problems of train and passenger transportation to provide robust 

solutions and problem solving methods that handle disturbances of rail 

environment.  

 



 



 

Zusammenfassung 

 

 

Das Ziel dieser Arbeit war es, einen Überblick über die aktuellen Beiträge der 

Literatur in den Bereichen der Eisenbahnlogistik sowohl im Güter- als auch im 

Personenverkehr zu geben. Während sich der Güterverkehr mit Problemen der 

Zusammenstellung der Züge und Waggons beziehungsweise der Verteilung der 

Leerfahrzeuge auseinander setzte, beschäftigte sich die Eisenbahnlogistik im 

Bereich des Personenverkehrs mit Optimierungsmodellen bezüglich 

Eisenbahnlinienplanung, Erstellung eines Fahrplanes, Inbetriebnahme von 

Fahrzeugen und Besatzungs- und Einsatzplanung.  

Die Bereiche der Eisenbahnlogistik haben in der Literatur eindeutig an 

Aufmerksamkeit gewonnen. In der Folge war es schwierig eine Auswahl aus 

dieser Vielfalt an Beiträgen zu treffen. Deshalb versucht diese Arbeit nur einen 

kurzen Einblick über einige wichtige Beiträge der letzten Jahre im Bereich der 

Eisenbahnlogistik zu geben. Aufgrund hochentwickelter mathematischer 

Techniken und deren Lösungsmöglichkeiten, die in den letzten Jahren 

aufgekommen sind, war es nun möglich die komplizierten Modelle der 

Eisenbahnlogistik in einer vernünftigen Zeit zu lösen. Darüber hinaus wurde ein 

Trend zur Entwicklung effizienterer entscheidungsunterstützender 

Hilfsprogramme für reale Gegebenheiten der  Eisenbahnlogistik  beobachtet. Im 

Großen und Ganzen sollten in Zukunft stärker integrierte Modelle der 

Eisenbahnplanung und Routenplanung entwickelt werden um robuste 

Lösungen und Methoden zu fördern. 
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1. Introduction 

 

 

Railroads play an important role in case of freight and passenger transportation.  

In Austria, for example, a total of 107.7 million tons of freight and a total of 

242.1 million passengers were transported on local rail network by domestic 

and foreign railway companies in 2010 [1, 2].   

However, due to severe competition from alternative transportation modes, the 

rail industry is eager to improve its planning and operational processes [3]. In 

general, rail operating policies may face a sequence of decisions to meet 

demand by allocating resources and facilities available. In case of freight 

transportation demand expressed in terms of tonnage of certain commodities 

has to be moved between a given origin-destination pair [4, 5]. 

Rail transportation problems can be classified in terms of planning horizon, 

whereas three levels of decision making can be distinguished: (i) At the 

strategic level, decisions will be made according to resource acquisition over a 

long time horizon, whereas (ii) tactical decisions based on medium and short 

term issues focus on allocating of existing resources. In contrast to tactical 

decisions, where operating policies are updated every few month, (iii) 

operational decisions deal with day-to-day activities of the railroad trying to 

respond to a detailed and dynamic environment [5].  

Strategic issues in passenger railway systems are related to the service level to 

be supplied to the customers and the capacity of resources to meet these 

services. The service level is defined in terms of number of direct links, 

frequencies, and reliability, whereas resources are railway infrastructure, rail 

equipment (rolling stock) and the crew. Furthermore, it is difficult to solve 

strategic planning issues by applying optimization approaches due to long time 

horizons. This indicates the importance of forecasting models which take 

uncertainties into account, such as demand for rail transportation in the long run 

[6]. In contrast to strategic planning, which considers rolling stock management, 

crew management and line planning, tactical planning focuses on timetabling, 

platforming and rolling stock assignment. At the operational level further details 

are planned based on the information provided by tactical models. To respond 
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to dynamic changes of the environment, timetabling, rolling stock circulation, 

crew scheduling and shunting problems are considered in detail [3, 7]. 

In case of freight rail transportation, changes of rail network structure and the 

location or extension of classification yards are considered as strategic planning 

issues. Furthermore, freight rail network models operate generally on the 

tactical level (Figure 1), which includes freight routing, blocking, train routing, 

makeup, scheduling, and the basic locomotive assignment problem [3, 8].  

Finally, operational decisions deal with empty car distribution, engine and crew 

scheduling, timetable settings and dispatching policies [3]. 

 

 
Figure 1. Mid- and short-term planning operations in freight transportation [8] 

 
 
Starting with an overview about definitions regarding to rail systems, this work 

tries to review recent contributions in literature for rail transportation concerning 

operating policies for both freight and passenger transportation. 

The following chapter 2 considers first of all train routing problems, whereas 

chapter 3 is trying to explore scheduling problems. While chapter 2 is 

considering rail network routing models and freight car models, chapter 3 is 

divided into four sections: (i) Line planning, (ii) train timetabling, (ii) train 

dispatching and (iii) locomotive assignment models. The last chapter of this 

work is going to review recent contributions of passenger rail optimization 

models including train platforming, shunting, rolling stock circulation and crew 

planning.  
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1.1. Background  

 

 

Railway systems can be seen as a network, where arcs refer to lines of track on 

which trains carry freight or passengers, and nodes refer to yards or stations. In 

case of freight transportation, nodes represent classification or marshaling 

yards, where cars are sorted and combined on tracks according to their 

outbound destination. This classification of cars into blocks (groups) allows 

railroads to take advantage of the economies of full train shipments. The 

decision about the grouping of cars are called blocking policy. Cars, with 

different destinations but sharing some initial path of their subsequent trip out of 

the yard, are usually blocked together and have to be split at a later yard and 

reassigned. In this case, cars have to pass a number of intermediate yards 

which results in delays. Two types of classification yards are used for sorting 

cars in the same group. In hump yards, cars roll down an incline and are 

subsequently assigned to the appropriate track. In contrast, flat yards are using 

locomotives (engines) to move cars onto the tracks. Next, a take-list of potential 

blocks that may go into an outbound train, in the order of preference, is defined 

by the makeup policy. Thus, the decision about the train formation follows the 

take-list of blocks until an acceptable trainload is achieved. During these 

processes, a car may suffer various departure delays: (i) In case a car has to 

wait for the next outbound train to arrive, it is called connection delay. (ii) If the 

train’s departure is dependent on the accumulation of a sufficient number of 

cars, accumulation delay occurs [3].  

However, all these operations performed in a yard are called yard activities, 

whereas line activities refer to movements of cars or trains on tracks and 

interact with routing decisions that determine the flow of traffic on a rail network. 

A line can be defined as a direct connection between two end stations that is 

operated with a certain frequency and with a certain train type [7]. This line can 

be made of a single track, as it is often in North America, or contain two or more 

tracks. In case of a single track line, sidings (short track sections) are located at 

regular intervals along the lines, to allow trains to travel in both directions and to 

overtake, if a fast train wants to pass a slower one [5]. Line policies include 
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scheduling and timetabling [3]: (i) Scheduling problems are dealing with the 

temporal dimension of railroad operations. It defines the service level and 

frequency of routes in a rail network. These scheduling activities are dependent 

upon the availability of rail equipment (rolling stock), such as locomotives and 

cars that are needed to operate trains [5]. A related scheduling problem that 

considers the use of rail equipment is the basic locomotive assignment problem. 

A locomotive is a railway vehicle that provides the power unit of a train. Given a 

planned train schedule, the locomotive assignment problem consists of 

assigning a set of locomotives to scheduled trains at minimum cost by satisfying 

some side constraints expressed as a number of locomotives or as a measure 

of pulling power needed (i.e. tonnage) [5]. (ii) A train timetable provides arrival 

and departure times for each yard or station in a train’s route. Two different 

types of timetables exist in rail transportation: (a) in a cyclic timetable each 

period is the same, where a cycle time is denoted by T. This means, if a trip 

between two stations s1 and s2 leaves at time t1 and arrives at time t2, the next 

trip will be denoted with a departure time, t1 + kT, and an arrival time, t2 + kT, for 

integer values of k. In contrast to the cyclic timetabling problem, (b) the non-

cyclic timetabling problem is mainly relevant for heavy-traffic, long-distance 

corridors, where the capacity is limited due to greater traffic density. The 

advantage of cyclic timetables is that it is easy to remember. On the other hand, 

this system is expensive to operate, because even in periods between peak 

hours with low travel demand, the system is operating with the same timetable 

used during peak hours with higher travel demand. Therefore, the capacity 

between peak hours and off-peak hours should be distinguished by modifying 

the length of the train, which results in different rolling stock and variable crew 

costs [6]. Although train timetabling is performed at the tactical planning level, 

real time operations need to synchronize freight and passenger operations on 

the lines of a rail network. Given a train timetable, the train dispatching problem 

denotes a feasible plan of meets and overtakes of trains and specifies the 

actual movements of trains [5].  

Besides yard and line activities, network-wide policies consider the network as a 

whole, interacting with both yard and line policies. First of all, routing decisions 

have to be made that determine the flow pattern of traffic between origin-

destination (OD) pairs. Secondly, it is necessary to consider the sequence of 
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blocks to build up a train, since common blocks share certain legs of their flow 

paths on the network and split up when they have reached their destinations. 

These decisions are fully specified by network-wide blocking policies. Another 

network-wide problem in railroad operations is car and locomotive distribution. 

The basic issue is to redistribute empty cars and locomotives from locations 

with surplus to those with insufficient supply to meet demand of customers and 

passengers [3]. 

However, as mentioned above, this work deals with recent contributions of 

passenger and freight railway transportation. Optimization models were 

analyzed in both cases. Whereas in case of passenger transportation, 

operational planning problems, like line planning, train timetabling, train 

platforming, rolling stock circulation, train unit shunting, and crew planning, play 

an important role, problems of rail freight transportation are car blocking, train 

makeup, train routing and empty car distribution [6]. 

Several surveys about rail transportation were contributed over the last years. 

While Assad [3] and Cordeau et al. [5] reviewed optimization models for both, 

passenger and freight transportation, Caprara et al. [6] and Huisman et al. [7] 

provided an overview about passenger railway issues. However, the next 

section of this chapter is going to give a brief description of the definitions 

occurring during this work. 
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1.2. Problem definition 

 

 

The rail transportation problem can be classified into three levels: train routing, 

scheduling and dispatching. At the strategic level the train routing problem 

decides which routes to take for a given OD pair of a train. At the tactical level 

the train scheduling problem determines suitable timetables which specify 

arrival and departure times at each train station. At last, given a train timetable, 

the dispatching problem specifies the actual movements of a train [9]. The most 

common approach to represent the rail transportation system is a network. It 

consists of nodes that represent yards or stations and arcs that represent tracks 

on which trains carry passengers or freight. One may distinguish between local 

problems where only one node or arc of the network is involved and global 

problems involving multiple entities [5]. However, the following two sections are 

going to deal with definitions concerning routing and scheduling problems. 

 

 

1.2.1. Scheduling 

 

 

The scheduling problem deals with line planning, train timetabling, dispatching 

and locomotive assignment problems. For the line planning problem (LPP), one 

has to choose a set of operating lines and its frequency in a network of tracks, 

such that the supplied transportation capacity is sufficient to satisfy all travel 

demands. Objectives could be maximizing passenger service while minimizing 

the operational costs of the railway system. Scheduled trains can be split into a 

number of subsets of trains, also called lines. Trains in each subset have the 

same routes, but different arrival and departure times. The frequency of a line 

denotes the number of trains that run in each direction in an hourly cycle time. A 

cycle time is denoted as the difference of departure or arrival times of two 

consecutive trains in the same subset and direction for each station. The 

passenger service level is often defined by maximizing the number of direct 

passengers. Direct passengers are passengers that can travel from their origin 

to their destination without changes of trains. The more direct connections are 
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provided, the longer a line. As a consequence, this leads to transfer delays and 

may prevent an optimal allocation of rolling stock. Therefore, a solution may be 

provided through a robust and cost-optimal line system where lines are short 

and force passengers to transfer from one train to another very often. Thus, to 

obtain an optimal line system a trade-off between these two objectives has to 

be made. The line system has following options to provide enough capacity for 

the passenger‘s transportation: A line can either operate with high frequency 

and with trains with low capacity, or with low frequency and with trains with high 

capacity [6].  

However, once the line system has been designed, a timetable for its train lines 

can be constructed [10]. The train timetabling problem (TTP) specifies a 

timetable which denotes arrival and departure times for each train at each 

station. For a given timetable, the dispatching problem denotes the actual 

movements of trains, whereas the aim is to optimize total train travel time by 

minimizing train delays and deviations from the planned train schedule. In 

addition collisions and deadlocks have to be avoided. A deadlock denotes the 

situation when a train blocks the movement of another train when it tries to 

crossover a junction (railroad hub) from one line to another. Therefore the 

number of tracks can have an effect on the dispatching policy. In case of a 

single track, network sidings are used to overtake trains or wait for trains to 

pass from the opposite direction. In contrast to the single track network, no 

sidings are used for multiple track networks. Because the movement of trains is 

related to their operating speed, the train dispatching model takes velocity into 

account. Each track has different limitations on train speed. In addition, 

passenger and freight trains can have different maximum speed although there 

are routed on the same track. Speed limit at a junction will be considered, if a 

train crosses a junction by moving from one line to another. At last, the 

dispatching policy has to consider train characteristics such as train priority, 

speed, length, and acceleration and deceleration rate. In general, passenger 

trains have higher priorities than freight trains, i.e. freight trains have to wait if 

passenger trains want to share the same track. Acceleration and deceleration 

rates are used to increase or decrease the train speed without violating speed 

limits. Sometimes trains cannot be operated with their maximum speed because 

of track speed limitations [5, 9].   
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Finally, the assignment of locomotives and cars to scheduled trains is a 

complex task for most railway providers. Locomotives are power units that pull 

trains that consist of cars [11]. In freight transportation, the assignment of cars 

to trains and the locomotive planning problem (LPP) is treated separately to 

supply enough power to pull the assigned cars of each scheduled train. In 

passenger transportation, however, both the assignment of locomotives and 

cars is considered simultaneously. That is because the same set of trains is 

operated in a given period with a similar number of cars. In addition, the smaller 

number of cars makes it easier to treat the LPP and car assignment problem 

simultaneously. Given a periodic train schedule and fleet, the objective is to find 

a set of rolling stock cycles that cover a list of scheduled trains at minimum cost. 

In addition, some operational constraints have to be considered such as 

maintenance requirements and equipment switching penalties [12].  

Two kinds of locomotive assignment models can be distinguished as one has to 

determine the types and number of locomotives and cars for each scheduled 

train: (i) Single locomotive planning models consider only one engine for each 

train whereas (ii) multiple locomotive planning models may require more than 

one engine expressed as the number of engines needed for each train. These 

models can be formulated as a multi-commodity network flow problem with 

linking constraints that ensure that each train is covered exactly once. The most 

difficult version of this problem occurs when multiple engine types has to be 

considered and each train may require more than one engine to pull a train 

expressed in terms of motive power [5, 6]. 

In contrast to locomotives, some trains have self-propelled cars (train units). 

That is increasingly common in passenger rail transportation, but unusual for 

freight trains. The reason is that the turnaround process by changing the 

direction of a train can be easily carried out by self-propelled cars having 

driver’s seats on both sides of the unit. In addition, shunting (switching) 

processes is easier for self-propelled cars than for locomotive hauled cars [13]. 

Shunting considers the process of sorting rolling stock into trains on a shunting 

area. In addition, several related processes such as routing rolling stock 

between the station and shunting area and maintenance issues are considered 

in the shunting process. Thus, the train unit shunting problem (TUSP) consists 

of matching the arriving and departing train units, as well as to sort these train 
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units on tracks, such that total shunting costs including routing and penalty 

costs are minimized [6].  

Various versions of the rolling stock circulation problem (RSCP) arise 

depending on the rail network and equipment used. The RSCP is an important 

task for train operators as they are responsible for timetables, rolling stock and 

crew management. Considering the acquisition, operational and maintenance 

costs of the rolling stock used, a train operator has to consider the type and the 

number of rolling stock units per scheduled train. In addition, variations in 

passenger’s seat demand have to be considered. This leads to changes in 

train’s composition by removing or adding equipment to trains. These coupling 

and uncoupling processes are usually penalized with switching costs and 

restricted by the available time at the station. The available time at a station is 

denoted by the waiting time between two consecutive trips of the train. The time 

required to carry out shunting operations is dependent on the available rolling 

stock. As mentioned earlier two cases of rail equipment can be distinguished: (i) 

locomotives and cars, and (ii) train units. Concerning the rail network, two 

different cases can be characterized as well: (i) Sparse networks consist of long 

distances, and thus, have long travel times and low frequencies of trains. In 

addition, a seat reservation system often exists and maintenance checks of the 

equipment are considered into the basic rolling stock circulation. In contrast to 

sparse networks, (ii) dense networks have relatively short distances with higher 

frequencies of trains. This result in different maintenance checks based on an 

ad hoc basis rather than incorporated in the basic RSCP. In addition, passenger 

seat reservation usually does not exist and only expected numbers of 

passengers are known [6]. 

In addition to rail equipment needed, crew planning has to be considered to run 

a rail system. The crew planning problem (CPP), considered by train operators, 

is concerned with planning a work schedule for train drivers and conductors 

needed to cover a given timetable for train services. A train service includes 

both the actual passenger and freight travel and empty rolling stock 

movements. It has to be performed every day in a given time horizon and 

contains a sequence of trips which has to be serviced by the same crew. CPP 

usually consists of crew scheduling and crew rostering: (i) Crew scheduling 

considers short-term issues where a set of duties (pairings) covers all the trips 
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and (ii) crew rostering is showing a list of final duties to be attended. A duty 

indicates a sequence of trips to be covered by a single crew member within a 

given planning horizon. A crew member is located in a crew depot which 

denotes the starting and ending point of a work segment [6]. 

However, in addition to the scheduling problems, routing problems should be 

considered simultaneously. In fact, it is difficult to solve these problems 

simultaneously due to the complexity and size of problems. Nevertheless, the 

next section of this chapter will give a brief overview of the routing issues, 

considered in rail freight and passenger transportation. 

 

 

1.2.2. Routing  

 

 

Problems concerning routing issues are: blocking, makeup and train routing 

models. The grouping of different shipments into cars is called blocking [14]. A 

classification yard is a place where cars are separated, sorted and recombined 

to form a block [9]. In freight transportation, a shipment containing commodities 

consists of one or more cars with the same OD pair. It may pass through 

several classification yards on its route. The blocking capacity at each yard is 

determined by available yard resources, i.e. working crew, the number of 

classification tracks and switching engines. It denotes the maximum number of 

blocks and maximum number of cars or car size that each yard can handle. The 

aim of the blocking problem is to deliver the total traffic, i.e. the set of all 

shipments with minimum handling and delay costs. This can be reached by 

delivering a set of shipments with the fewest possible classification. The 

blocking path of a shipment denotes the sequence of blocks to which one 

shipment is assigned along its physical route [15].  

A car is a rolling stock for freight transportation and has to be delivered between 

an origin and a destination point within a rail network. While large customers 

with a large amount of shipment may need to order a complete train, smaller 

customers order single cars. These cars are assigned to trains along with other 

cars demanded by other small customers and grouped together to an 

intermediate destination (shunting yard). A shunting yard is a place where trains 
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are split up and reassembled into new trains. The train which consists of several 

cars, and has its origin and destination, and arrival and departure time, is called 

a trip. Trip duration is the time difference between starting and arrival time. The 

average travel speed of freight trains is lower than of passenger trains, 

especially at daytime. This results in trip durations up to three days. However, 

trains have different length and weight and thus need a certain number of 

locomotives with sufficient pulling power. At the start, the locomotive is attached 

(coupled) to the train and then detached (uncoupled) at the destination. For 

both coupling processes, a certain amount of time has to be considered for 

maintenance issues, such as technical checks and refueling of diesel [16]. Two 

different classes of locomotives can be distinguished, electrical and diesel. 

Furthermore, a locomotive is either active (pulling a train) or deadheading 

(driving without pulling a train). In addition, light deadheading, also called light 

travel or passive deadheading occurs when a locomotive is a part of a train just 

like a car. In case of passive deadheading the costs are lower, because crew 

and fuel costs are saved. A deadhead trip occurs when a locomotive is 

travelling from the destination station of a train to the departing station of 

another train [16].   

However, locomotives and cars are important rolling stocks for rail 

transportation. Cars that share the same partial routes are blocked together in 

order to save costs. Whereas, the blocking model decides which cars should be 

combined to which blocks at which yards, the makeup model assigns blocks to 

trains. At last, network routing models determine the routing and the number of 

trains for that route to satisfy demands at various destinations [9]. In the 

following two chapters, research contribution of routing and scheduling models 

will be introduced in more detail. 
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2. Routing Problems 

 
 
Operating plans for rail freight transportation include the allocation of train 

connections, the blocks to be built in each yard, and the makeup problem while 

satisfying a set of constraints on train and yard capacity. In addition, train 

timetables, which specify train arrival and departure times, should be 

determined simultaneously to ensure an efficient way of traffic delivery while 

using the track capacity optimally. However, because of the complexity of the 

rail freight transportation problem, a sequential model is often developed. 

Furthermore, operating plans are usually updated every few month with weekly 

or daily adjustments taking the demand variability into account [5].  

However, most optimization models for rail routing problems are defined over a 

network where nodes refer to origins, destinations or intermediate transfer 

points, and lines refer to tracks where traffic has to be routed [5]. 

The following section contains a short description about network routing models 

including blocking and makeup models and will conclude with examples of 

freight car models. 
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2.1. Network Routing Models 

 
 
Railway systems can be seen as a network whose nodes represent yards or 

stations and arcs represent tracks on which trains transport passenger or 

freight. The optimization model for train and freight routing consists of assigning 

freight to cars, cars to trains, and determining the routing and frequency of 

trains [5, 10]. Therefore this chapter is going to review recent publications about 

models concerning the blocking policy, followed by train routing and makeup 

models.  

 

 

2.1.1. Blocking Models 
 

 

Within the rail network cars have to be delivered between an OD pair. While 

large customers with a large amount of shipment may need to order one single 

train or block train, smaller customers order single cars. These cars are 

assigned to trains along with cars demanded by other customers and grouped 

together at classification yards, where cars are separated and reassembled only 

after they have reached the destination of the block [16]. Ideally, each shipment 

should be assigned to a block whose OD pair is the same, to avoid delays and 

unnecessary classifications. In practice, this is limited by the blocking capacity 

at each yard defined by the available resources such as working crew, the 

number of classification tracks and switching engines [15]. The railroad blocking 

problem is a very large-scale, multi-commodity flow, network design, and 

routing problem with billions of decision variables. This results in excessively 

high running times and thus is suitable only for small networks. As a 

consequence of these considerations, railroad companies would use manual 

decision-making processes with higher transportation costs and intensive time 

requirements rather than using optimization-based approaches [17]. 

However, the blocking network graph G = (N, A) consists of a set of nodes N 

representing yards where a set of shipments K originate, terminate, or are 
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swapped. A set of arcs A represents blocks that can be built from node i to node 

j. A simplified example of the blocking network can be seen in figure 2 [17].  

 
Figure 2. A railway blocking network: Nodes representing yards and arcs representing blocks [17] 

 
 
The blocking problem can be formulated as a mixed integer programming (MIP) 

model. It has two sets of binary decision variables:  

(i) ���	 � 	1, if arc ��, �	 ∈ �	is built, and is 0 otherwise.  

(ii) ��
� � ��, if shipment k flows on arc ��, �	 ∈ �, and is 0 otherwise. 

The parameter �� denotes the number of cars in shipment � ∈ �.  

The objective function is to minimize total handling and shipping cost. The 

handling cost includes the cost of reclassification hi of a shipment at a yard, 

whereas the shipping cost deals with transportation cost of a shipment mij from 

its origin to its destination. The following three main capacity constraints have to 

be considered: (i) Each block is built on separate tracks. The blocking 

capacities of yards are limited because of the number of tracks each yard can 

provide. (ii) Each yard of the network can handle a limited number of cars. The 

car handling capacity constraint of yards is important to avoid congestions and 

breakdowns of operations. (iii) The flow capacity constraint of blocks determines 

a specified number of cars a block can carry [17].   

The first successful attempt to solve a blocking optimization model appears in 

Bodin et al. [18]. They developed a commercial software system to solve a 

mixed integer nonlinear programming (MINLP) formulation. The objective of the 

underlying multi-commodity flow problem was to minimize shipping, handling 

and delay costs. The side constraints include capacity constraints at each yard 

in terms of maximum number of blocks and car size [15].  

In the last fifteen years the railroad blocking problem was researched among 

others, by Newton et al. [19], Barnhart et al. [15] and Ahuja et al. [17]. Newton 
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et al. [19] formulated the network design problem (NDP) as a MIP model in 

which yards are represented by nodes and blocks by arcs. They developed a 

strategic decision support tool based on column generation and branch and 

bound in which attractive paths for each shipment were generated by solving a 

shortest path problem. The objective of the underlying railroad blocking problem 

was to minimize the total miles, handling and delay cost by choosing which 

blocks to build at each yard, and to assign sequences of blocks to deliver each 

shipment. The model was applied on test instances based on an aggregate 

network with 150 nodes and 1300 commodities. The data included shipment 

volumes for peak periods, blocking capacities for each station and the structure 

of the rail system [15, 19].  

Further contributions about railroad blocking problems were introduced by 

Barnhart et al. [15]. Compared to Newton et al. [19], they represented a similar 

model in which the Lagrangian relaxation technique was proposed to 

decompose the problem into two sub-problems, such as the flow and block 

problem. While the multi-commodity flow problem was solved by using linear 

programming combined with column generation due to the exponentially large 

number of potential blocking paths, the block sub-problem was solved by using 

a branch-and-cut algorithm due to the large number of connectivity constraints 

added to the problem [15]. However, their approach focused on determining a 

near-optimal solution with not scalable computing times as the problem 

increased in size. This inhibits their use in practice unless shipments are limited 

to follow a number of predetermined paths [10]. 

Ahuja et al. [17] presented a MIP model and solved the problem to near-

optimality by using the very large-scale neighborhood (VLSN) search. This 

algorithm was also able to handle a variety of practical and business constraints 

that are necessary for solving a real-life railroad blocking problem. 

Recent contributions of the railroad blocking problem have been presented by 

Yaghini et al. [20] and Yue et al. [21]. Yaghini et al. [20] formulated a MIP model 

and provided a metaheuristic algorithm based on ant colony optimization (ACO) 

to solve the railroad blocking problem within a short time. This approach was 

then experimentally applied to small test problems and compared to solutions 

generated with CPLEX. The solution method was also applied on a real-world 

blocking problem of the Iranian railways. Yue et al. [21] provided a similar 
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solution approach in comparison to [20] by proposing a model for a multi-route 

rail blocking problem and by solving the underlying integer programming 

formulation with an ACO algorithm. 

An overview about blocking models discussed is shown in table 1.  

 

 
Table 1. Blocking Models 
 

 

2.2.2. Routing and Makeup Models 
 

 

While blocking models deal with freight routing and distribution among 

classification yards of a network, routing and makeup models determine the 

routing and frequency of trains and the assignment of blocks to trains [5]. Assad 

[4] was the first one who provided a combined makeup and routing model and 

proposed a multi-commodity network flow model to solve this problem.   

In a series of two papers Marín and Salmerón [22, 23] studied the tactical 

planning of rail freight networks by applying local search heuristics such as 

simulated annealing, tabu search and descending heuristic. The problem was to 

decide the optimal assignment of the trains to the service network and 

simultaneously assign the demand of cars to the routes. The objective was to 

minimize car costs, train costs, and investment costs. As mentioned before, 

several heuristic methods have been proposed to decompose the global 

problem into two sub-problems: (i) car routing, when the train frequency is 

known in advance and (ii) car grouping to trains, when car routes are known. 

For small size networks a reformulation of the problem as a linear program led 

to the exact solution provided by a branch and bound algorithm that were used 

to compare the heuristic approaches. In contrast to smaller networks, only 

heuristics were used to solve the problem for larger networks. Computational 
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results show that simulated annealing obtains the best solutions in terms of 

solution quality, but require more time than other heuristics [22]. 

Jha et al. [24] provided two different multi-commodity network flow models for 

the block-to-train assignment problem: an arc-based and a path-based 

formulation. They proposed exact and heuristic algorithms including Lagrangian 

relaxation and greedy heuristic algorithm to solve the path-based problem.  

In real world, however, uncertainties occur related to the amount of commodity 

or transportation cost. Yang et al. [25] analyzed the railway freight 

transportation planning problem under the mixed uncertain environment of 

randomness and fuzziness. It was solved by a hybrid genetic algorithm whereas 

the aim was to determine the optimal path, the amount of commodity flow on 

each path, and the service frequency for each origin-destination pair in a given 

network such that the total relevant cost was minimized [25].  

Recently, Yaghini et al. [26] provided a train formation plan (TFP) which 

determined routing and frequency of trains and assigned the demands to trains. 

An improved local branching algorithm was proposed to solve the MIP model 

and was applied to real-world problems. 

 

 

2.2.3. Compound Routing and Scheduling Models 
 

 

Compound models attempt to integrate scheduling models into routing models 

of freight transportation. Therefore, service reliability and costs can be 

improved.  

While Gorman [27] used a combination of genetic algorithm (GA) and tabu 

search (TS) algorithm to solve the joint train-scheduling and demand-flow 

problem, Newman and Yano [28] proposed a heuristic solution method based 

on Lagrangian relaxation and benders decomposition for the underlying integer 

programing model. They proposed a model which determined day-of-week 

schedules for direct and indirect trains and allocated containers to trains for the 

rail portion of the intermodal trip to minimize operating costs while meeting on-

time delivery requirements. Intermodal rail operations differ in several aspects 

from conventional rail operations. First, intermodal networks have few widely 



18 
 

spaced terminals, because of the high cost of container handling equipment, 

where economies of scale can be realized for container handling and in train 

movements from terminal to terminal. Second, a container makes only few 

stops or is transferred between trains a few times on its journey, because of the 

distances between intermodal terminals. As a result, blocks do not have to be 

considered. Finally, shorter delivery times are considered for intermodal freight 

with a greater need to schedule trains to achieve the desired levels of customer 

service. In comparison to conventional rail operations, freight has to wait while 

enough railcars accumulate to form a block. Intermodal rail operations indicate 

a reduction of the number of decisions required, but increase the need for train 

scheduling and routing decisions. The differences between Gorman’s model 

and Newman’s is that Gorman considered additionally linking constraints to 

enforce yard and line capacity in an aggregate way and focused on multiple 

routes between a single origin-destination pair. After the implementation of a 

tabu search enhanced genetic algorithm, Gorman applied his approach to a 

problem with multiple interdependent origins and destinations with significant 

improvements in cost and customer service [28]. To summarize, Newman and 

Yano [28] considered a problem where train schedules and container routes for 

each day over a short horizon has to be determined to achieve on-time delivery 

at minimum total cost. The objective is to minimize fixed charge per train, a 

variable transportation cost per container, handling costs per container 

dependent upon the location, and inventory holding costs for containers at any 

terminal to be held before their arrival at the destination. 
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2.2. Freight Car Models 

 

 

The service of a freight car starts when a customer orders empty cars from a 

nearby yard and compatible car types are selected and moved to a loading 

point. Once loaded, they are taken to classification yards where they are 

assigned to blocks and put onto outbound trains. When a car reaches its final 

destination, it is unloaded and used for a new shipment. Very often, however, 

empty cars have to be repositioned to a different location where a request must 

be fulfilled. Because demand for transportation is not known in advance, the 

railroad must forecast future demands and manage its fleet accordingly [5].  

Several models for fleet management and distribution of empty freight cars 

have been proposed in the literature. Recent contributions about this topic were 

provided by Joborn et al. [29] and Narisetty et al. [30]. Joborn et al. [29] 

analyzed the economy-of-scale effect for the distribution cost of empty freight 

cars in a scheduled railway system over a given train timetable. In addition to 

the cost proportional to the number of cars moved, there is a cost related to car-

handling operations at yards, which depends on the number of car groups that 

are handled. Thus, if fewer and larger groups of cars are built, the total 

distribution cost could be decreased. The model was formulated as a 

capacitated, multi-commodity network flow optimization problem with fixed costs 

associated with arcs and included a time dimension by providing a model with 

multiple time periods. To find a good-quality solution in reasonable computing 

times for the underlying complex model, the TS algorithm was applied to solve 

the problem. 

An optimization model for real-life decision support system was proposed by 

Narisetty et al. [30]. They developed a model for assigning empty freight cars 

based on customer demand with the objective to reduce overall transportation 

costs and to improve delivery times and customer satisfaction. A traditional 

repositioning strategy usually consists of returning each unloaded freight car to 

its original loading point [5]. This results in higher transportation costs due to the 

fact that most requesting customers are distant from the location of cars. In 

addition, the supply of available cars is often much smaller than the 

corresponding demand. Finally, car assignments are difficult because some 
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business standards have to be met to provide customers with service at 

minimum operating cost. Prior to this research, car distribution managers had to 

decide about assigning cars to customers [30]. To ease their decision-making 

process, the concept of carpooling has been introduced where railroads and 

shippers agreed, that unloaded cars can be sent to any of a given set of loading 

points [5]. Because of the complexity of the problem, it was difficult to obtain 

high quality solutions manually. This resulted in higher costs and lower 

customer service level. Therefore an automated decision support system was 

provided by the rail company [30]. 
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3. Scheduling Problems 

 

 

In contrast to routing models discussed in chapter 2, scheduling models deal 

with the temporal dimension of railroad operations. Coordination of available 

resources is necessary due to the large number of trains provided in a rail 

network [5]. 

The aim of this chapter is to provide a short outlook of different approaches for 

railway scheduling problems according to timetabling and real time traffic 

management. The TTP considers the process of constructing a robust and 

optimized schedule for a number of trains on a certain part of the railway 

network, while in real time the already existing schedule has to be modified due 

to timetable disturbances. 

However, this chapter intends to review some of the recent contributions 

dealing with optimization models for train scheduling problems for both freight 

and passenger trains. Section 3.1. deals with line planning models, while 

section 3.2. is referring to train timetabling problems followed by dispatching 

problems in section 3.3. The final part is focusing on locomotive assignment 

problems. 
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3.1. Line Planning Models 
 

 

The LPP, faced by train operators, is a strategic planning problem, since the 

line is the basis of railway services. The basic input of the LPP is the railway 

infrastructure and the expected passenger travel demand represented by a 

given origin-destination matrix. Furthermore, in practice travel demand is not 

constant or symmetric: there exist peak hours and off-peak hours, where in 

case of peak hours the travel demand has a dominating direction. However, the 

line system (set of all lines) is symmetric in practice. This means, for each pair 

of stations s1 and s2, the number of direct trains is equal to the number of direct 

trains from s2 to s1. In addition, peak hours are interesting for train operators to 

manage, since they are the bottlenecks in a railway system. Therefore, 

capacities of trains should be able to handle peak flows, usually occurring in the 

morning and afternoon. Thus, if ���,��	
� and ���,��	

� denote the passenger travel 

demand per hour between station s1 and s2 in the morning, and ���,��	
� and 

���,��	
� denote the demand during the afternoon peak, then the lines and the 

corresponding capacities should be such that passengers with travel demand 

 

 

���,�� = 	���,�� = ��� ���,��
� , ���,��

� , ���,��
� , ���,��

� 	! 
 

 

can be transported for each pair of stations and during the peak hours. Further 

assumptions for the LPP are that each passenger uses a pre-specified path 

through the network. This is easy to estimate as each path is specified by the 

ticket regulation. Each passenger is supposed to travel along the shortest 

distance path from their origin to their destination. Next, passenger flows are 

usually assumed to be split per line type. As a consequence different line types 

can be considered [6]. Examples for line types are: (i) Intercity (IC) trains for 

longer distances and larger stations, (ii) the interregional (IR) trains for 

intermediate distances, and aggloregional (AR) trains for short distances and 

smaller stations [31]. Finally, lines are assumed to be single track lines, where 

each line is defined to be a path in a rail network [6].  
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The LPP for a single line type can be described as follows [6]:  

 

max%�		∑ ∑ �'(	 −	%�∑ ��∈*(∈+'∈,   (1) 

 

subject to 

 
∑ � 	≤ 1∈*:'/0�    ∀2 ∈ 3    (2)     

∑ 45� 	≥ �7∈*:7∈89/
   ∀: ∈ ;   (3) 

∑ �'( 	≤ ∑ 45�∈*:'/0'(∈+:7∈8<  ∀2 ∈ 3, : ∈ ;'   (4) 

∑ �'( 	≤ �('∈,:8<∈89    ∀= ∈ >   (5) 

� ∈ ?0,1A    ∀� ∈ B    (6) 

�'( ≥ 0    ∀	2 ∈ 3, = ∈ >   (7) 

 

 

The underlying rail network of the LPP is represented by an undirected graph 

C = �D, ;	, where nodes �	 ∈ D denote the stations and the edges : ∈ ;	denote 

the tracks between the stations. The travel demand is defined by a symmetric 

origin-destination matrix. The set > denotes the pairs of stations with a positive 

demand. The pair is denoted by = = �=�, =�	 ∈ >, where �( is the number of 

passengers travelling between the stations =� and =�. In addition, for each = ∈

>, ;( is the set of edges on the shortest path between the stations =� and =�. 

The total number of passengers that travels along the edge : is denoted by 

�7 =	∑ �((:7∈8< . Next, the set of potential lines 3 is assumed to be given a 

priori, where the set of edges of a line 2 ∈ 3 is given by ;'. The objective is to 

choose a set of appropriate lines from the given set of potential lines 3. 

Furthermore, certain capacities per train 5 ∈ E and frequency of a line 4 ∈ F 

have to be selected. The capacity of a line equals the capacity per train 

multiplied with the frequency of a line, i.e. 54 . The index � ∈ B denotes a 

feasible combination of a line 2 ∈ 3, a frequency 4 ∈ F, and a capacity 5 ∈ E	. 

The operational cost associated with � ∈ B is defined by �. These costs are 

mainly determined by the variable rolling stock and crew cost. Decision 

variables are defined as � and �'(, whereas � = 1, if line 2 is to be operated 

with frequency 4 and capacity 5. The second decision variable �'( denotes the 
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number of direct passengers that travel on line 2 between the pair of station =� 

and  =�. Hence, the objective function (1) wants to obtain a balance between 

the two main conflicting objectives: (i) maximize the number of direct 

passengers while (ii) minimizing the operational costs. The parameters %� and  

%� are weights defining the importance of (i) and (ii). Constraint (2) denotes that 

at most one line 2 ∈ 3 with a certain frequency and capacity per train has to be 

selected. Constraint (3) specifies that the provided capacity 45 on each track 

: ∈ ; has to be sufficient to meet passenger’s travel demand �7 on track :. 

Next, constraint (4) indicates that for each line 2 ∈ 3 and for each track : ∈ ;', 

the total number of direct passengers that travel on line 2 should not exceed that 

line’s provided capacity 45. Finally, constraint (5) describes that the total 

number of direct passengers between a pair of station  =� and  =� cannot 

exceed the total travel demand between these stations [6]. 

Early research on this topic was done by Bussieck et al. [32, 33], who 

formulated a linear MIP for the line optimization problem (LOP). The objective 

was to find an optimal line system with a maximum number of direct 

passengers. Whereas the frequency was variable for each line, the capacity 

was assumed to be the same for all trains. In order to reduce the size of the 

problem, they aggregated the number of decision variables. This required the 

capacity constraints to be relaxed. The underlying MIP was then solved by 

applying the CPLEX 3.0 LP solver. Adding suitable cutting planes, they 

succeeded to solve the MIP for all instances provided by the German and Dutch 

railway companies in less than 6 minutes. A solution of the LOP led to lower 

and upper bounds of the problem. For all instances the gap between those 

bounds was less than 3.2% [6, 32]. In contrast to Bussieck et al. [32], 

Claessens et al. [34] focused on the cost minimizing line planning problem 

(CLPP) for passenger trains and considered the allocation of passenger flows 

on tracks as given. They formulated a non-linear integer programming model 

with binary decision variables for the selection of lines and further decision 

variables for the frequencies and train lengths. As the nonlinearity of this 

problem results in computational difficulties, they switched to an integer linear 

programming (ILP) approach and solved it with a branch and bound procedure 

[6]. The ILP was solved by the CPLEX 3.0 MIP solver. The initial solution of the 

ILP had 5629 variables, 194 constraints, about 110.000 nonzero coefficients 



25 
 

and a lower bound of about 6920. Before starting the branch and bound method 

several techniques such as reducing the number of constraints or decision 

variables were used to reduce the size of the problem. At the end, improvement 

was obtained by adjusting the coefficients of the ILP model and identifying 

superfluous constraints and variables. The problem was reduced to 1547 

variables, 139 constraints, and about 18.000 nonzero coefficients. The lower 

bound, however, increased to 7577 [34]. Further research on the CLPP was 

done by Goossens et al. [31] who provided a similar approach compared to 

Claessens et al. [34]. Several preprocessing techniques with several classes of 

valid inequalities were used to improve the lower bounds. In addition, a branch 

and cut approach was used to solve the CLPP. Computational results were 

obtained by applying real life instances based on the Nederland’s railway 

system. These results showed that the methods used, performed very well on 

practical instances and was significantly better than the solution obtained by the 

ILP solver CPLEX 6.6.1. Further research of the authors provided an IP model 

for solving the multi-type line planning problem (MLPP), simultaneously [35]. In 

order to reduce the decision variables, the origin-destination flows of 

passengers were combined and disaggregated [6]. Using three real life 

instances, they have compared the computational results for both multi-type 

and single-type line formulations. The latter one outperformed the first one in all 

chosen instances [35].  

Finally, recent contributions to the LPP dealt with models where the objective 

was to minimize the number of transfers from one train to another. Scholl [36] 

developed a so called „Switch-and-Ride“ network and solved it by using 

Lagrangian relaxation and several heuristic methods for generating feasible 

solutions. This problem is more complex than maximizing a number of direct 

passengers as for each origin-destination pair the associated path through the 

network has to be followed [6]. However, compared to a robust and cost-optimal 

line system where lines are short and passengers are forced to transfer often, 

this model tries to maximize the service towards passengers. Nevertheless, an 

overview about the models mentioned above is shown in table 2. 
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Table 2. Line planning models 
 
 
 

3.2. Train Timetabling Models 

 

 

Train scheduling problems intend to obtain a timetable for a set of trains, e.g. 

intercity, local, and freight trains, without violating track capacities and satisfying 

some operational constraints [37]. Several variations of the problem can be 

considered and distinguished based on the complexity of the underlying rail 

network. As it was already mentioned in chapter 1 one may distinguish between 

non-cyclic and cyclic timetabling problems. Section 3.2.1. is referring to non-

cyclic TTP, whereas section 3.2.2. is going to review cyclic TTP. 

 

 

3.2.1. Non-cyclic timetabling 

 

 

The non-cyclic timetabling problem is mainly relevant for heavy-traffic, long-

distance corridors with one-way track linking two major stations and a number 

of intermediate stations in between. Oliveira and Smith [38] described the TTP 

as a job-shop scheduling problem for single-track railway systems, where trains 

were considered as jobs to be scheduled on lines. Caprara et al. [39] proposed 

a different ILP model based on a directed multi-graph representation of the TTP 

with line capacity and operational constraints. The basic ILP version of a non-

cyclic TTP for a single line system can be formulated as follows [6, 39]:  
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max∑ ∑ =�	���∈HIJ∈K        (8) 

 

subject to 

 

∑ ���∈LI
M�N	 ≤ 1   ∀	O ∈ P     (9) 

∑ ���∈LI	
Q�R	 =	∑ ��	�SLI

M�R	    ∀	O ∈ P, � ∈ D			⃥	?U, VA   (10) 

∑ ��	 ≤ 1�∈W      ∀5 ∈ E      (11) 

�� ∈ ?0, 1A    ∀	X ∈ �     (12) 

 

 

Let S represent the set of station, ordered in a sequence in which they appear 

along the line for the running direction [6]. Times are discretized and expressed 

as integers from 1 to q. The length of the given period is denoted by q [39]. A 

timetable of a single, one-way line system consists of the departure time of its 

first station 4J ∈ Y and the arrival time of its last station 2J ∈ Y, and the arrival and 

departure times for their intermediate stations 4J + 1,…	2J − 1 for each train 

O ∈ P. Each train O ∈ P	is assigned to an ideal timetable with departure time �J� 

for each station \ ∈ ?4J, … , 2J − 1A and arrival time XJ� for each station \ ∈

?4J + 1,… , 2JA. The ideal timetable is a desirable timetable which may be 

modified in order to satisfy the line capacity constraints. To be more precisely, a 

train operator is allowed to slow down and/or increase the stopping time interval 

of each train at the stations with respect to their ideal timetable. In addition, one 

can modify the departure time of each train from its first station or cancel the 

train. However, the final solution is called the actual timetable. The line capacity 

constraints denote that overtaking between trains is only allowed within the 

station. Therefore, a train is allowed to stop by at any intermediate station to 

overtake another train, although the ideal timetable does not include a stop in 

that station [6]. Furthermore, for each station � ∈ Y, there are lower bounds X 

and � on the time interval between two consecutive arrivals and departures. As 

the speed of a train on a line segment is assumed to be constant, the lower 

bound on the departure time implicitly imposes a time interval of at least 

]X�?�, X^�A between two consecutive trains in the line segment from station i 

to i+1. In addition to line capacity constraints, explicit time window constraints 

may be considered, requiring that train j arrives in a station not later than a 
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given time, or departs from the station not earlier than a given time [39]. 

However, the objective is to maximize the sum of the profits of the scheduled 

trains. The profit for train O ∈ P depends on the ideal profit _J, shift �J, and on 

stretch `J. The shift �J		is defined as the absolute difference between the 

departure times from station 4J in the actual and ideal timetables. The stretch `J 

denotes the difference between the total travel times in the actual and ideal 

timetables. Given the nonnegative parameter aJ, the function penalizing the 

train stretch is assumed to be linear. The profit for each train and line type is 

defined as follows [6]: 

 

 

bc − 	d�ec	 −	fcgc,       (13) 
 
 

where Φ��J	 is a user defined non-decreasing function penalizing the train shift. 

In case of  �J = 0, the function Φ��J	 equals 0. In case that the profit of train t is 

non-positive, it is better not to schedule the train [6, 39].  

Caprara et al. [39, 40] introduced a maximum profit set paths in a directed 

acyclic multi-graph C = �D, �	, where nodes �	i	D correspond to arrivals and 

departures from the stations along the line and arcs X ∈ � correspond to train 

stops within the station as well to train trips from a station to the next one. The 

objective function (8) of the ILP formulation above is defined as the sum of 

profits =� of the arcs associated with each path in the solution. For each train 

O ∈ P	and each arc X ∈ �J, the binary variable �� = 1, if the path in the solution 

associated with train O contains arc X. The set of arcs � is split into subsets �J 

associated with each train O ∈ P. The terms jJ
^��	 and jJ

k��	 denote the sets of 

arcs �J leaving and entering node  �. To conclude the notations E indicates a 

subset of pairwise incompatible arcs. Constraint (9) describes that at most one 

arc associated with a train is selected among those leaving the starting node U, 

while constraint (10) indicates equality on the number of selected arcs 

associated with a train entering and leaving each arrival and departure node. 

Finally, constraint (11) forbids the simultaneous selection of incompatible arcs 

[6]. However, the model was then solved by Caprara et al. [39, 40] using 

Lagrangian relaxation to derive bounds on the optimal solution as well as to 
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apply different heuristic procedures [6]. Furthermore, the algorithm was 

implemented in C and tested on a set of real-world instances [39]. 

A similar problem to that considered by Caprara et al. [39, 40] was proposed 

earlier by Brännlund et al. [37]. They discretized the time into one-minute time 

slots and divided the track line into blocks. They described an ILP model with 

track capacity constraints indicating that two trains cannot be in the same block 

in the same time slot. They proposed a binary decision variable ��lJ that equals 

1, if train t occupies block b at time slot s, and 0 otherwise. However, this model 

was suited for larger instances such as those occurring for European corridors 

[39]. 

 

 

3.2.2. Cyclic timetabling 

 

 

In many European countries, most passenger railway timetables are cyclic, 

which means that a subset of trains, also called lines, has the same routes and 

the same stop stations in a given manner. The only difference between these 

subsets is their arrival and departure times [6]. Once the line system has been 

designed, a timetable for its train lines can be constructed [10]. 

The first ones who developed a model for the cyclic TTP were Serafini and 

Ukovic [41], who presented the Periodic Event Scheduling Problem (PESP). A 

periodic event : is a countable infinite set of events ;	 which have to be 

scheduled under cyclic time window constraints [42]. A timetable consists of a 

number of processes such as travelling between two stations or dwelling at a 

station. An event of a timetable is defined as the start and end times of these 

processes [6]. The PESP is defined as follows [6]: for each event : ∈ ;, the 

decision variable �7 represents the time at which the event has to be scheduled. 

All constraints that have to be specified by these decision variables are denoted 

by a lower and upper bound (27m, n7m) for the process time. For event : and 4, 

the constraint can be formulated as follows: 27m ≤ o�7 − �mp	]q�	τ ≤ n7m. Since 

the modulo operator which denotes the cyclicity of the timetable is hard to solve 

in optimization methods, a binary decision variable s7m is introduced instead of 

the operator. This binary decision variable makes it difficult to solve the PESP 
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by the standard branch and bound method. Due to the large coefficient V the LP 

relaxation on the PESP is quite weak. 

Lindner [43], Kroon and Peeters [42], Lindner and Zimmermann [44] and 

Liebchen [45] proposed a cyclic train timetabling model formulated as a PESP 

based on Serafini and Ukovic [41]. To cope with the weak LP relaxation, they 

introduced an ILP model by removing the binary decision variables and 

introducing a larger and more complex set of constraints. By using branch and 

bound, the resulting LP relaxations are much stronger leading to faster 

computation times [46]. 

Furthermore, Kroon and Peeters [42] provided a PESP model including variable 

trip times. They were assuming three different timetable constraints: (i) trip time, 

(ii) safety, and (iii) commercial constraints. The trip time constraints relate the 

departure and arrival times of trains to their subsequent stations, whereas 

safety constraints ensure a certain time buffer to avoid conflicting train 

movements. Finally, the commercial constraints are used to satisfy customers 

or to be cost-effective [42].  

Kroon et al. [47] provided a stochastic optimization model of the PESP. Real 

time railway operations are subject to stochastic disturbances resulting into train 

delays. As the underlying train timetable is a deterministic plan, it is important to 

consider disturbances in the train timetabling design as far as possible. To cope 

with such delays, buffer times can be included into travel and dwell times of 

trains on a number of consecutive trips along the same line. A trip is defined as 

a movement of a train from one station to another. In summary, Kroon et al. [47] 

considered at first a model which generated a timetable for a single train that 

operated under stochastic external disturbances and then created an extended 

model to improve the timetable with respect to the average delay by re-

allocating buffer times and time supplements. 

Cacchiani et al. [46] proposed heuristic and exact algorithms for the periodic 

and non-periodic TTP on a corridor. They formulated an ILP model that is a 

variation of the ILP model proposed by [39]. In contrast to previous approaches 

[39, 40], where variables were associated with departure and arrival times of a 

train at a specific station and time, Cacchiani et al. [46] proposed a model in 

which each variable corresponds to a train timetable. LP relaxation is used to 

solve both heuristic and exact branch and bound algorithm. The algorithm 
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proposed were implemented in C and applied to real world instances. 

Compared to [39, 40], [46] showed that an equivalent LP relaxation in which the 

number of variables is exponentially large can be solved within a significantly 

smaller computing time, yielding notably better bounds. 

As stated earlier real time railway operations are subject to stochastic 

disturbances. Thus, it is important to develop robust timetabling solutions in 

which a tradeoff between track capacity utilization and timetable robustness has 

to be provided. In contrast to Kroon et al. [47], who developed a stochastic 

programming approach for the cyclic TTP, Cacchiani et al. [48] provided a 

Lagrangian heuristic solution method for a non-periodic TTP on a corridor. 

Based on a time-space graph representation of the non-robust nominal 

timetabling problem, Cacchiani et al. [48] added two simple features to their 

solution approach. First, the model formulation was modified by introducing 

artificial parameters to control the timetable robustness. Second, the weight of 

the control parameters is changed dynamically during Lagrangian optimization 

to produce sub-problems with increased robustness. During this process a set 

of different heuristic solutions can be generated with different trade-offs 

between robustness and efficiency.  

Fischetti et al. [49] studied four different methods to improve robustness of a 

given non-cyclic TTP solution by combining linear programming with stochastic 

programming and robust optimization techniques. The underlying nominal, non-

robust timetable was formulated as a PESP modified for the non-periodic case. 

For interested readers, further solution approaches about robust train 

timetabling problems are presented by Cacchinani and Toth [50] in 2012.   

Finally, most recently Liu and Kozan [51], and Caimi et al. [52] proposed two 

different approaches to train scheduling problems. Whereas Caimi et al. [52] 

generated a conflict-free train schedule based on a graph, where the train path 

was represented by vertices and edges of pairwise conflicts Liu and Kozan [51] 

presented a no-wait blocking parallel-machine job-shop scheduling model for 

the train scheduling problem in a single-line rail network where prioritized and 

non-prioritized trains are traversed simultaneously. A modification of the no-wait 

condition is applied to non-prioritized trains, such as freight trains, which are 

allowed to enter the next section immediately if possible or to remain in a 

section until the next section becomes available [51].  
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3.3. Train Dispatching Models  

 

 

For a given timetable, the train dispatching problem denotes the actual 

movements of trains providing real time information on train position and 

velocity [5]. In fact, there are extensive literature surveys on decision support 

tools for the timetable design problem. Cordeau et al. [5] proposed a 

classification of train dispatching support systems into fixed and variable 

velocity models. It is obvious, that velocity is an important feature of train 

dispatching models to minimize train delays or deviations from the planned 

schedule. However, models with fixed velocity often assume that trains operate 

at maximum speed whenever possible. To proof the feasibility of these models, 

a velocity profile for each train is then determined. In contrast, variable velocity 

models update speed profiles frequently during operations not only to minimize 

delays, but also to minimize fuel consumption [5]. 

In 1999, Sahin [53] developed a heuristic algorithm for rescheduling trains of a 

single-track railway system by modifying the existing train schedule and 

reducing the number of inter-train conflicting situations. The model itself was 

defined as a job shop scheduling problem where the objective was to minimize 

the sum of running times or delays from arrival times of trains. 

In the same year, Adenso-Díaz et al. [54] proposed a MIP to maximize the 

number of passengers transported and developed a backtracking heuristic 

algorithm to solve train conflicts. A conflict resolution system of the underlying 

algorithm was then applied to help train dispatchers at the traffic control center 

of the Spanish national railway company.   

The general railway traffic management problem is often formulated as a job 

shop scheduling problem with additional side constraints [10]. Recent 

contributions in the literature were proposed by Flamini and Pacciarelli [55]. 

They considered a real time scheduling problem for all circulating trains plus a 

given number of incoming trains of a metro rail terminus. The scheduling 

problem was formulated as a bi-criteria job shop scheduling problem with 

blocking constraints in which earliness/tardiness and time headways have to be 

optimized.  
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Törnquist and Persson [56] introduced a model for the dispatching problem of 

the n-tracked railway system with several merging and crossing points. The 

problem was formulated as a linear MIP model where the objective was to 

minimize the total final delay of the traffic and the total cost associated with 

delays when trains arrive at their final destination.  

Most of the recent contributions about train dispatching problems were made by 

D’Ariano et al. [10, 57, 58, 59]. D’Ariano and Pranzo [58] studied short-term 

consequences of train delays and disturbances by applying a real time train 

dispatching system called ROMA (Railway traffic Optimization by Means of 

Alternative graphs) for minimizing delay and disturbance propagation. The 

railway traffic is usually regulated by traffic controllers by sequencing train 

movements and setting routes to limit train delays [57]. It is forecasted over a 

given time horizon usually defined in hours. Its objective is to minimize total 

train delays while satisfying some operational constraints. Total delay was 

defined as the difference between the calculated train arrival time and 

scheduled time of a train at a point in the network. First, primary delay is the 

result of failures and disturbances and cannot be recovered by train 

rescheduling but for train traveling at maximum speed. Second, consecutive 

delay may be caused by train interactions of a given time horizon. A conflict was 

defined as trains claim the same section of a track simultaneously and one of 

them has to change its speed profile. Hence, a solution is feasible if there are 

no conflicts between running trains exists [58]. D´Ariano et al. [57] developed a 

branch and bound algorithm for sequencing train movements, while a local 

search algorithm was applied for rerouting processes. Different types of 

disturbances were analyzed such as train delays and blocked tracks. The model 

was applied to real world instances and compared with common dispatching 

systems used in practice yielding good solutions to improve punctuality. 
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3.4. Locomotive Assignment Models 

 

 

A related scheduling problem that considers the use of rail equipment is the 

basic LPP. Given a planned train schedule, the problem of assigning 

locomotives and cars to trains is a complex task for most railways [12]. For the 

LPP, a set of locomotives has to be assigned to preplanned scheduled trains by 

satisfying requirements expressed as a number of locomotives or as a measure 

of the power needed to pull the engines from its origin to its destination [5, 11]. 

The objective is usually to minimize the required fleet size at a strategic level; 

whereas one wants to minimize costs occurred by light travel or deadheading at 

the tactical and operational levels. Light travel or deadheading occurs when 

engines have to reposition themselves between two successive trips [5]. 

Deadheading plays an important role at the planning level, enabling locomotives 

to be moved by an active engine from a location with a surplus to locations with 

short supply. In contrast, light travel is different to deadheading as it is not 

limited by the train schedule and thus much faster. In that case, one locomotive 

from a set of engines pulls the others from one place to another. However, light 

travel is more costly than deadheading because an additional crew is required 

to be paid off and the moves are not generating any revenues as there are no 

cars assigned [60, 61]. 

However, in 1999, Ziarati et al. [62] formulated a time-space network approach 

for a locomotive scheduling problem with a heterogeneous fleet where engines 

were able to perform light travel and deadheading and where maintenance 

requirements were also considered. Train schedule was noncyclic with given 

fixed starting and ending times. The objective was to provide enough 

horsepower by multiple engines to pull a train, whereas the problem was 

presented as a MIP model and solved by problem specific cutting planes and 

via Dantzig-Wolfe decomposition [16].  

Another publication of Ziarati et al. [63] proposed a model with a multi-

commodity flow structure for a cyclic heterogeneous locomotive scheduling 

problem and it was solved by a heuristic genetic algorithm [16]. 

Recent research on the problem of assigning engines to trains was considered 

by Ahuja et al. [60]. They formulated the LPP as a MIP problem and solved it by 
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using problem decomposition, integer programming, and very large-scale 

neighborhood search (VLSN) [11, 60]. An extended approach was provided by 

Vaidyanathan et al. [61] by adding new constraints and by developing additional 

formulations necessary to facilitate the application of the LPP models to 

practice.  

Two kinds of locomotive planning models have been proposed in previous 

surveys: (i) Single locomotive models, where only one type of engine is 

available for assignment and (ii) multiple locomotive models which may require 

more than one engine for each train [5]. The problem of these underlying 

models has a multi-commodity network flow structure with linking constraints. 

Difficulties arise for the multiple locomotive problems when multiple engine 

types are available and each train may require more than one locomotive to 

satisfy its requirements [5]. Multiple locomotive problems were proposed by 

Ziarati et al. [62], Ahuja et al. [60] and Vaidyanathan et al. [61], recently. Ahuja 

et al. [60] considered consist busting and consistency to their proposed models. 

A set of locomotives of an inbound train, that are separated to reassign to two 

or more outbound trains, are called busted. In contrast, a solution is consistent if 

a train maintains the same locomotive assignment each day it runs. 

Next, models with parallel assignment of locomotives and cars to passenger 

trains were taken into considerations in recent years. In comparison with freight 

transportation, where the problem of assigning cars and locomotives to trains is 

treated separately, in passenger transportation, however, both cars and 

locomotives can be assigned simultaneously. Because the same set of trains 

are used every week with a similar number of cars a cyclic solution is proposed 

to generate significant savings for most railways. In addition, the smaller size of 

the problem makes it possible to treat both, cars and locomotives assignment, 

simultaneously [12]. However, given a periodic train schedule and a fleet of 

several types of locomotives and cars the assignment problem consists of 

finding a set of minimum cost equipment cycles that cover a list of scheduled 

trains while satisfying a number of operational constraints such as those 

generated by maintenance requirements, car switching and substitution 

possibilities [64]. 

Cordeau et al. [12, 64, 65] proposed several models for the simultaneous 

locomotive and car assignment problem. Based on a multi-commodity network 
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flow model with linking constraints the first approach was trying to optimize the 

model with a heuristic branch and bound method in which the linear relaxations 

are solved by column generation [12, 64]. The next approach proposed an 

exact algorithm with a solution method based on Benders decomposition [12, 

65]. Further research recommended a model that facilitates some constraints 

such as maintenance, car switching penalties, and substitution possibilities due 

to the fact that computational experiments were applied to real-life data from a 

railway [12]. The large integer programming model was solved by a branch and 

bound method, followed by Benders decomposition in which the LP relaxations 

of the basic model were optimized either by a simple algorithm or by Dantzig-

Wolfe decomposition. At last, some algorithms were proposed to improve the 

solution, such as the generation of Pareto-optimal cuts [12].  

More recently, further research on this topic was done by Fügenschuh et al. 

[16]. They dealt with a strategic locomotive scheduling problem in freight 

transportation. The model was based on a multi-commodity minimum cost flow 

structure and was formulated as an ILP. Improvements and solutions were 

obtained by using a randomized greedy heuristic in combination with 

commercial ILP solvers [16].  

In addition to the locomotive assignment problem, the locomotive routing 

problem (LRP) can be solved as an independent problem for each locomotive 

type [11]. This routing problem was considered by Vaidyanathan et al. [11] who 

formulated an integer programming problem on a space-time network where the 

objective was to route locomotives in cycles with some fueling and servicing 

constraints. 
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4. Passenger Railway Optimization 

 
 
Passenger railway systems are rich of combinatorial optimization problems. 

Well-known operational planning problems are line planning, timetabling, traffic 

planning (route and platform assignment), rolling stock circulation, shunting and 

crew planning (Figure 3). To complete the survey, some areas of passenger 

railway optimization problems should be treated in this chapter. Line planning 

and train timetabling were already considered in previous sections. In the first 

part of this chapter, this work is going to give a short outlook of train platforming 

and rolling stock circulation including train unit shunting and maintenance 

routing, whereas the last part is going to give a short insight about crew 

planning problems.  

 

 
Figure 3. Different stages of the planning problem in passenger rail transportation [35] 

 

 

4.1. Train platforming 

 

 

Following the train timetabling problem discussed in section 3.2, the TPP is a 

routing problem which consists of assigning arriving trains to the available 

tracks in a railway station. The objective is to find a path from the point a train 

enters the station to the point where it leaves the station. The point at which a 

train may usually pass or stop to collect passengers and/or goods within a 

station is called a platform. In addition, these points correspond to directions of 

a travel. While this problem is easy to solve for small stations with a few 

platforms and alternative routes to path, it becomes extremely difficult of 

applying larger and thus complex railway station topologies [6, 66, 67].  
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First, the easiest versions of the TPP considered are those from De Luca 

Cardillo and Mione [68] and Billionnet [69] who formulated the TPP as a k l-list τ 

coloring problem where the scheduled timetable for each train cannot be 

changed and the path used to route are determined by the choice of the 

platform. Because of the underlying vertex coloring graph problem the routes to 

be avoided was represented by a list of incompatible train platform pairs [6]. 

Another version of the problem, where arrival and departure times and routes 

were not fixed, was developed by Zwaneveld et al. [67]. They formulated an ILP 

model and a weighted node packing problem (WNPP) to solve the TPP. 

In comparison to the two versions above, Carey and Carville [70] considered a 

train platforming and scheduling problem for busy and complex stations in that 

arrival and departure times can be changed, but routes are determined by the 

assignment of a train to a platform.   

Finally, most recently Caprara et al. [66] formulated the TPP as a MIP model 

whose linear programming relaxation is used to derive a heuristic algorithm. A 

quadratic objective function was provided and linearized by introducing 

additional binary variables imposing linear constraints. 

The general problem of the TPP was defined as follows: given a set of platforms 

and a set of trains to be routed there are a collection of possible patterns for 

each train which corresponds to a feasible route of a train within the station. A 

pattern has to be assigned for each train that will be repeated every day of the 

time horizon. In addition, operational constraints have to be considered for the 

train platforming problem. First, one may forbid the assignment of patterns to 

trains if this indicates an occupation of the same platform by two or more trains. 

In addition, it is also forbidden using arrival/departure paths that intersect at the 

same time which is represented by a pattern-incompatibility graph with one 

node for each train-pattern pair [66].  
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4.2. Rolling stock circulation 

 

 

The RSCP has received considerable attention in the literature. Many surveys 

have been provided in recent years such as that of Caprara et al. [6] and 

Huisman et al. [7]. 

Railway rolling stock is the most significant operational cost component for 

passenger train operators since the acquisition of rolling stock has been 

expensive and a long-term investment which includes costs of maintenance and 

power supply such as electricity or diesel. Other important concerns about 

rolling stock management are passenger service and robustness of the 

circulation. Coupling and uncoupling operations arise by adding or removing 

rolling stock equipment to meet passengers’ seat demand. These operations 

are usually penalized with switching costs. The removed equipment can be 

reassigned to later trains departing from the same station. However, two types 

of equipment can be distinguished: (i) locomotives and train carriages or (ii) 

train units. A train unit consists of a number of carriages in a fixed composition, 

and can move in both directions without being pulled by a locomotive. A 

scheduled train can be composed of several train units. In case where 

locomotives and carriages are considered, it is important to determine the 

number and types of locomotives and carriages in order to provide sufficient 

pulling capacity. Furthermore, two types of networks can be distinguished as 

well. A sparse network consists of long distances, thus longer travel times and 

lower frequencies of trains. In contrast, a dense network is characterized by 

short distances and thus higher frequencies of trains. Differences in network 

characteristics are important due to preventive maintenance and seat 

reservation. Seat reservation is not necessary for the dense network as the 

expected number of passengers is known. While rolling stock circulating in 

sparse networks need maintenance checks regularly provided by a 

maintenance center, those in sparse networks do not due to the fact that 

sufficient exchanging possibilities exist [6]. Two approaches for maintenance 

routing problems were provided by Maróti and Kroon [71, 72]. 
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However, as mentioned above the main objective of the rolling stock circulating 

problem is to minimize the expected costs of the rolling stock and increases 

passenger service whereas the required capacities are influenced by requested 

service level and total demand. In addition to that one may distinguish between 

peak and off-peak demand whereas peak demands are usually not symmetric 

and thus require a balanced utilization rate of the rolling stock [6].  

As section 3.4 described locomotive assignment problems, the remainder of this 

section is to discuss only a few examples of rolling stock management. Recent 

publications of rolling stock planning models were proposed by Abbink et al. 

[73] and Alfieri et al. [74]. Abbink et al. [73] proposed an integer programming 

model that allocates the available rolling stock capacity to different train lines in 

the morning rush hour.  

In contrast, Alfieri et al. [74] presented an integer multi-commodity flow model to 

determine the optimal number of train units and their order in trains to be 

operated on a certain set of single lines. In addition to the tactical problem, the 

operational problem addressed the efficient circulation of a given set of train 

units along these lines. Three objective functions were defined: The first was to 

(i) minimize the shortages of seats, next (ii) the number of kilometers of train 

units or carriages and finally, (iii) the number of shunting movements which is a 

potential source for disturbances. In particular, the objectives were addressing 

to three different conflicting problems based on service, efficiency and 

robustness and were solved by using a solution approach based on column 

generation in which appropriate paths through the underlying transition graph 

was determined by using the shortest path algorithm. 

Most recently, Cacchiani et al. [75] provided a two-stage optimization model that 

took robustness into account. Such disturbances include delays of trains or 

large disruptions where parts of a network are temporarily out of order. In this 

case the authors took recoverability measures into account that could deal with 

larger disruptions. The aim was to find a feasible recovered solution for the 

RSCP as soon as possible that fits with the recovered timetable. However, a 

tactical RSCP was considered and formulated as a MIP model where in the first 

stage a robust rolling stock circulation was generated and secondly, an optimal 

recovery plan was provided for a finite set of disturbances. The objective was to 

minimize the total nominal costs and to maximize the total recovery cost. The 
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problem was solved by the Benders decomposition method to obtain the 

optimal solutions for the linear programming relaxation. Then a heuristic method 

called Benders heuristic was used to obtain robust integer solutions [75].  

To summarize, Cacchiani et al. [75] discussed the RSCP based on tactical 

planning to find the most effective allocation of train carriages and units, such 

that as many people can be transported as possible, in particular during peak 

times.  

Besides the rolling stock circulating problem, there exist shunting processes for 

passenger railway transportation, the so called TUSP. This problem considers 

the assignment of arriving and departing train units as well as parking these 

units on a track of a shunting yard such that the total cost is minimized. A 

survey of shunting processes for freight transportation was provided by 

Cordeau et al. [5] and for passenger rail transportation by Caprara et al. [6].  

 

4.3. Crew planning 

 

 

The CPP is concerned with planning a work schedule for the crew needed to 

implement a given train timetable for train services. A train service includes both 

the actual passenger and freight travel and empty rolling stock movements. It 

has to be performed every day in a given time horizon and contains a sequence 

of trips which has to be serviced by the same crew. CPP usually consists of 

crew scheduling and crew rostering. Whereas crew scheduling considers short-

term issues where a set of duties or pairings covers all the trips, crew rostering 

is showing a list of final duties to be attended. Moreover, a given crew depot, 

which is the starting and ending point of a work segment or duty, is located for 

each crew member. Besides the constraint that each crew member must return 

to its home depot within one day, an additional depot constraint indicates that 

the number of restricted duties is typically assigned to crew scheduling 

problems [6]. 

Although there are many papers concerning CPP in urban mass-transit 

systems, e.g. buses and airline, this work is referring to recent contributions of 

railway crew planning problems, especially under disturbances.  
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Whereas Abbink et al. [76] considered a crew scheduling problem at the 

Netherlands railroads with the objective to assign total workload among crew 

depots, Walker et al. [77] formulated an integer programming model that 

considered train timetabling and crew rostering under disturbances, 

simultaneously. As to be precise, the first part of the model suggested a 

timetable adjustment, followed by a set partitioning model for crew schedules. 

A disruption recovery model was applied for real time problems with the 

objective function to minimize the deviation from the actual timetable and 

minimizing total cost occurred from the adjusted work schedule.  

Most recently, another crew rescheduling problem that considers large 

disruptions of a rail network was proposed by Potthoff et al. [78]. They 

represented a column generation approach combined with a Lagrangian 

heuristic algorithm. As the number of duties was large, a core problem set of 

duties was defined. For the set of uncovered task neighborhood algorithm was 

applied to improve the solution of the core problem. However, the problem was 

defined as follows: for a given point in time of rescheduling, a replacement duty 

has to be determined for every unfinished point of duty. The proposed algorithm 

was then applied to real life data provided by the Netherlands railroad company 

and showed good solutions in a reasonable amount of time. In addition, it is 

worth mentioning, that the proposed approach was the cornerstone for the 

decision support system developed for train dispatching problems of the same 

company [78]. 

To summarize, in real life rail systems, disturbances result into recovery 

procedures according to timetabling, rolling stock scheduling, and crew 

scheduling (drivers and conductors) in a sequential way. Disruptions could be 

infrastructure malfunctioning, rolling stock breakdowns or accidents, which lead 

to delays or even cancellation of trains due to reduced capacity or complete 

blockage of a certain route [78].  

Finally, a curfew planning problem for the maintenance of railway tracks was 

presented by Nemani et al. [79]. Curfew planning is a resource allocation 

problem to complete a given set of annual maintenance work on railway tracks. 

The working crew is called a subdivision. A model was formulated to develop a 

work schedule for each crew where the number of crew members under curfew 

was minimized. For these reasons a duty-generation model was developed and 
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a column generation approach applied to improve the solution obtained. In 

addition, a decomposition-based heuristic was generated and implemented 

directly into real-world applications showing significant improvements in the 

number of disruptions [79]. 
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5. Conclusion 

 

 

The aim of this work was to provide a survey of recent contributions about 

freight and passenger transportation. Due to regulations on rail transportation 

the responsibilities on rail infrastructure and operating trains are separated. In 

many countries, the government is responsible for the rail infrastructure, but 

operating trains are carried out by independent companies. While an 

infrastructure manager is responsible for train planning and real time traffic 

control, a train operator is providing timetables, rolling stock and crew. Due to 

the complexity of railway systems, the planning process is often divided into 

sequential phases. Whereas passenger optimization models considered 

problems such as line planning, train timetabling, platforming, rolling stock 

circulation, shunting and crew scheduling, freight transportation dealt with 

issues concerning car blocking, train makeup, routing, and empty car 

distribution. The field of rail transportation has clearly received attention 

resulting in a diversity of literature contribution. One of the first surveys about 

rail transportation provided by Assad [3] suggests that rail optimization models 

were not widely used in practice and that problems were rather solved by 

simulation. In addition, the development of optimization models for train routing 

and scheduling was difficult to improve because of the large size and 

complexity of the underlying model. Due to the increase in more sophisticated 

mathematical techniques, constant refinements in development of the models 

were made that were able to deal with large rail optimization problems, both of 

practical and theoretical nature. In addition, a trend towards more efficient 

transportation support systems was observed taking robustness into account. 

Solution approaches, which can deal with larger disturbances of the rail 

environment in a considerable speed and time, have received attention. Thus, 

future research can be done to develop more integrated models of scheduling 

and routing problems of train and passenger transportation to provide robust 

solutions and problem solving methods that can handle disturbances of real 

time rail environment. 
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